
Eur. Phys. J. C (2017) 77:784
https://doi.org/10.1140/epjc/s10052-017-5321-8

Special Article - Tools for Experiment and Theory

GAMBIT: the global and modular beyond-the-standard-model
inference tool

The GAMBIT Collaboration: Peter Athron1,2, Csaba Balazs1,2, Torsten Bringmann3, Andy Buckley4,
Marcin Chrząszcz5,6, Jan Conrad7,8, Jonathan M. Cornell9, Lars A. Dal3, Hugh Dickinson10, Joakim Edsjö7,8,
Ben Farmer7,8,a, Tomás E. Gonzalo3, Paul Jackson2,11, Abram Krislock3, Anders Kvellestad12,b,
Johan Lundberg7,8, James McKay13, Farvah Mahmoudi14,15,e, Gregory D. Martinez16, Antje Putze17, Are Raklev3,
Joachim Ripken18, Christopher Rogan19, Aldo Saavedra2,20, Christopher Savage12, Pat Scott13,c , Seon-Hee Seo21,
Nicola Serra5, Christoph Weniger22,d, Martin White2,11, Sebastian Wild23

1 School of Physics and Astronomy, Monash University, Melbourne, VIC 3800, Australia
2 Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Australia, http://www.coepp.org.au/
3 Department of Physics, University of Oslo, 0316 Oslo, Norway
4 SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
5 Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
6 H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
7 Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, 10691 Stockholm, Sweden
8 Department of Physics, Stockholm University, 10691 Stockholm, Sweden
9 Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8, Canada

10 Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455, USA
11 Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia
12 NORDITA, Roslagstullsbacken 23, 10691 Stockholm, Sweden
13 Department of Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK
14 Univ Lyon, Univ Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, 69230 Saint-Genis-Laval, France
15 Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
16 Physics and Astronomy Department, University of California, Los Angeles, CA 90095, USA
17 LAPTh, Université de Savoie, CNRS, 9 chemin de Bellevue, B.P.110, 74941 Annecy-le-Vieux, France
18 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
19 Department of Physics, Harvard University, Cambridge, MA 02138, USA
20 Faculty of Engineering and Information Technologies, Centre for Translational Data Science, School of Physics, The University of Sydney,

Sydney, NSW 2006, Australia
21 Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
22 GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
23 DESY, Notkestraße 85, 22607 Hamburg, Germany

Received: 14 March 2017 / Accepted: 19 October 2017 / Published online: 21 November 2017
© The Author(s) 2017. This article is an open access publication

Abstract We describe the open-source global fitting pack-
ageGAMBIT: the Global And Modular Beyond-the-Standard-
Model Inference Tool.GAMBIT combines extensive calcula-
tions of observables and likelihoods in particle and astropar-
ticle physics with a hierarchical model database, advanced
tools for automatically building analyses of essentially any
model, a flexible and powerful system for interfacing to
external codes, a suite of different statistical methods and

a e-mail: benjamin.farmer@fysik.su.se
b e-mail: anders.kvellestad@nordita.org
c e-mail: p.scott@imperial.ac.uk
d e-mail: c.weniger@uva.nl
e Also Institut Universitaire de France, 103 boulevard Saint-Michel,

75005, Paris, France

parameter scanning algorithms, and a host of other utili-
ties designed to make scans faster, safer and more easily-
extendible than in the past. Here we give a detailed descrip-
tion of the framework, its design and motivation, and the cur-
rent models and other specific components presently imple-
mented in GAMBIT. Accompanying papers deal with indi-
vidual modules and present first GAMBIT results. GAMBIT
can be downloaded from gambit.hepforge.org.

Contents

1 Introduction . 3
2 Design overview 5

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5321-8&domain=pdf
http://orcid.org/0000-0002-3151-3701
http://www.coepp.org.au/
mailto:benjamin.farmer@fysik.su.se
mailto:anders.kvellestad@nordita.org
mailto:p.scott@imperial.ac.uk
mailto:c.weniger@uva.nl
http://gambit.hepforge.org

784 Page 2 of 70 Eur. Phys. J. C (2017) 77 :784

2.1 Modularity 5
2.1.1 Physics modules, observables and

likelihoods 5
2.1.2 Backends 7
2.1.3 Models 8

2.2 Adaptability and flexibility 9
2.3 Performance and parallelisation 10
2.4 Available examples 10

3 Modules . 10
3.1 Module function declaration 11

3.1.1 Model compatibility 11
3.1.2 Dependencies 12
3.1.3 Backend requirements 13
3.1.4 Parallel module functions 14
3.1.5 One-line module function declaration . 14

3.2 Pipes . 14
3.2.1 Accessing dependencies 15
3.2.2 Accessing backend requirements . . . 15
3.2.3 Accessing model parameters 15
3.2.4 Accessing options from the input file . 16
3.2.5 Managing parallel module functions . 16

4 Backends . 17
4.1 Backend function declaration 18
4.2 Convenience functions 18
4.3 Backend initialisation functions 19
4.4 Backend types 20
4.5 Loading C++ classes at runtime with BOSS . 21
4.6 Backend information utility 23

5 Hierarchical model database 24
5.1 Model declaration 24
5.2 Model capabilities 25
5.3 Defining translation functions 26
5.4 Models defined in GAMBIT 1.0.0 27

5.4.1 Standard model 27
5.4.2 Scalar singlet 27
5.4.3 Weak-scale MSSM 28
5.4.4 GUT-scale MSSM 31
5.4.5 Flavour EFT 31
5.4.6 Nuisance parameters 32
5.4.7 Toys 33

6 User interface and input file 33
6.1 Command line switches and general usage . . 33
6.2 The master initialisation file 33
6.3 Model and parameters 34

6.3.1 General setup and fast priors 34
6.3.2 More involved priors 35

6.4 ObsLikes: target observables and likelihoods 36
6.5 Rules: dependency resolution and module

options . 37
6.5.1 Module function dependencies 37
6.5.2 Backend requirements 38
6.5.3 Options for module functions 38

6.6 Printer . 39

6.6.1 Common options 39
6.6.2 Specific options: ascii printer 39
6.6.3 Specific options: hdf5 printer 40
6.6.4 Output selection 40

6.7 Scanner . 40
6.8 Logger . 41
6.9 KeyValues: general purpose options 41

7 Dependency resolver 42
7.1 General procedure 42
7.2 Evaluation order 42
7.3 Resolution of backend requirements 44
7.4 Resolution of loops and nested functions . . . 44
7.5 Option resolution 44

8 Statistics and scanning 44
8.1 The role of ScannerBit 44
8.2 Analysing samples 45
8.3 Available likelihood forms 45

8.3.1 Profiled Gaussian 46
8.3.2 Marginalised Gaussian 46
8.3.3 Profiled Gaussian limits 46
8.3.4 Marginalised Gaussian limits 48
8.3.5 Profiled log-normal 48
8.3.6 Marginalised log-normal 48

9 Output . 49
9.1 Overview of the output format 49
9.2 Available printers 50

9.2.1 ASCII output 50
9.2.2 HDF5 output 51

9.3 Expanding the printable types 51
10 Utilities . 52

10.1 Particle database 52
10.2 Logging . 53
10.3 Exceptions 53
10.4 Diagnostics 55

10.4.1 Modules diagnostic 55
10.4.2 Capabilities diagnostic 55
10.4.3 Backends diagnostic 55
10.4.4 Models diagnostic 56
10.4.5 Scanners diagnostic 56
10.4.6 Test-functions diagnostic 56
10.4.7 Priors diagnostic 56
10.4.8 Free-form diagnostics 56

10.5 Type handling 56
10.6 Random numbers 57
10.7 Component databases and documentation . . 57
10.8 Signal handling and resuming a scan 57

10.8.1 Shutdown behaviour 57
11 Configuration and automatic component

registration . 58
11.1 Adding new models, modules, backends and

other components to GAMBIT 59
11.2 Building backends and scanners 59
11.3 Miscellaneous build targets 60

123

Eur. Phys. J. C (2017) 77 :784 Page 3 of 70 784

11.4 Configuration options 60
11.4.1 CMake standard variables 60
11.4.2 CMake library and GAMBIT-specific

variables 61
12 Examples, releases and support 61

12.1 Minimal examples 61
12.2 Releases . 62
12.3 Support . 62

13 Summary . 62
Appendix A: Quick start guide 63
Appendix B: Supported compilers and library

dependencies . 63
Appendix C: Standard Model definitions 64
Appendix D: Glossary 64
References . 66

1 Introduction

The search for physics Beyond the Standard Model (BSM)
is a necessarily multidisciplinary effort, as evidence for new
physics could appear in any observable in particle, astroparti-
cle or nuclear physics. Strategies include producing new par-
ticles at high-energy colliders [1–3], hunting for their influ-
ences on rare processes and precision measurements [4–6],
directly detecting dark matter (DM) in the laboratory [7–9],
carefully examining cosmological observations for the influ-
ence of new physics [10–12], and detecting high-energy par-
ticles from DM annihilation or decay [13–15]. In this context,
exclusions have so far been just as valuable as apparent detec-
tions; many purported signals of new physics have appeared
[16–24], often only to be disproven by a lack of correlated
signals in other experiments [14,25–29].

Properly and completely weighing the sum of data relevant
to a theory, from many disparate experimental sources, and
making rigorous statistical statements about which models
are allowed and which are not, has become a challenging task
for both theory and experiment. This is the problem addressed
by global fits: simultaneous predictions of a raft of different
observables from theory, coupled with a detailed combined
statistical analysis of the various experimental searches sen-
sitive to them. Several attempts to address this problem have
been made in particle physics, from the characterisation of
electroweak physics with ZFitter [30] and later GFitter [31]
to CKM fits [32], neutrino global fits [33–35] and global
analyses of supersymmetry (SUSY) [36–38], in particular
with packages like SuperBayeS [39–56], Fittino [57–59],
MasterCode [60–71] and others [72–88].

BSM global fits today remain overwhelmingly focused on
SUSY, specifically lower-dimensional subspaces of the min-
imal supersymmetric standard model (MSSM) [89–93], or,
more rarely, the next-to-minimal variant (NMSSM) [94–97].
There are only a handful of notable exceptions for non-SUSY

models [98–107] and none for SUSY beyond the NMSSM.
These studies, and their underlying software frameworks,
were each predicated on one specific theoretical framework,
relying on the phenomenologist-as-developer to hardcode the
relevant observables and theory definitions. This inflexibil-
ity and the correspondingly long development cycle required
to recode things to work with a new theory, are two of the
primary reasons that global fits have been applied to so few
other models. The unfortunate result has been that proper
statistical analyses have not been carried out for most of the
theories of greatest current interest. This is in spite of the fact
that the LHC and other experiments have yet to discover any
direct evidence for SUSY, heavily constraining the minimal
variant [89–93]. It is therefore essential that as many new
ideas as possible are rigorously tested with global fits.

Even working within the limited theoretical context for
which they were designed, existing global fits do not offer
a public framework that can be easily extended to integrate
new observables, datasets and likelihood functions into the fit
as they become available. Neither do they provide any stan-
dardised or streamlined way to deal with the complex inter-
faces to external codes for calculating specific observables
or experimental likelihoods. Of the major SUSY global fit
codes, only one (the now-discontinued SuperBayeS [113])
has seen a public code release, in stark contrast to many of the
public phenomenological tools that they employ. Public code
releases improve the reproducibility, accessibility, develop-
ment and, ultimately, critique, acceptance and adoptance of
methods in the community.

Another difficulty is that carrying out detailed joint statis-
tical analyses in many-dimensional BSM parameter spaces
is technically hard. It requires full understanding of many
different theory calculations and experiments, consider-
able coding experience, large amounts of computing time,
and careful attention to statistical and numerical methods
[90,114–117]. Outside of global fits, the response has been
to focus instead on individual parameter combinations or a
limited, not-necessarily-representative part of the parame-
ter space, e.g. [2,3,118]. Making concrete statements across
ranges of parameters requires adopting either the Bayesian
or frequentist statistical framework. These each impose spe-
cific mathematical conditions on how one discretely samples
the parameter space and then combines the samples to make
statements about continuous parameter ranges. The choice
of statistical framework therefore has a strong bearing upon
the appropriateness and efficiency of the scanning algorithm
one employs [114,115]; random sampling is rarely adequate.
Most global fits have so far assumed either Bayesian or
frequentist statistics, discarding the additional information
available from the other. They have also employed only a sin-
gle parameter sampling algorithm each, despite the availabil-
ity and complementarity of a wide range of relevant numer-
ical methods.

123

784 Page 4 of 70 Eur. Phys. J. C (2017) 77 :784

Table 1 A GAMBIT reading list

User/reader Wants Should read sections/references

Cheersquad To get an overview of features 2, referring to D

Playtime To run GAMBIT ↪→ A, 11.2–11.4, 12

Runtime To run GAMBIT without causing injury ↪→ 5.4, 6, 8, 9.1, 9.2, 10.2, 10.4, 10.7, 10.8

Dev To add observables, backends, etc. ↪→ all of 11 → 3, 4.1, 4.4, all of 10

Model-Dev To add new theories ↪→ all of 5

Guru BOSS the world ↪→ 4.5, 4.6, 7, 9.3

Physicist Details of physics implemented [108–111]

Stats/CompSci Details of scanning algorithms & framework [112]

Here we introduce GAMBIT, the Global And Modular
BSM Inference Tool. GAMBIT is a global fitting software
framework designed to address the needs listed above: the-
ory flexibility, straightforward extension to new observables
and external interfaces, code availability, statistical secular-
ism and computational speed. In this paper we describe the
GAMBIT framework itself in detail. First results for SUSY
and the scalar singlet DM model can be found in accompany-
ing papers [119–121], as can detailed descriptions of the con-
stituent physics and statistics modules [108–112]. TheGAM-
BIT codebase is released under the standard 3-clause BSD
license,1 and can be obtained from gambit.hepforge.org.

This paper serves three purposes. It is:

1. An announcement of the public release of GAMBIT,
2. A generally-accessible presentation of the novel and

innovative aspects of GAMBIT, along with the possi-
bilities it provides for future particle phenomenology,

3. A reference manual for the framework and associated
code.

Goals 2 and 3 imply slightly different things for the struc-
ture and content of this paper. Here we begin by specifi-
cally addressing Goal 2, in Sect. 2. This section provides an
extended synopsis of the flexible and modular design concept
of GAMBIT, describing its main features and advances com-
pared to previous global fits. Sect. 2 provides something of a
teaser for the more extended ‘manual’, which can be found
in Sects. 3–13. These sections describe how the features of
GAMBIT are actually implemented, used and extended. A
quick start guide can be found in Appendix A, library depen-
dencies and supported compiler lists in Appendix B, spe-
cific SM parameter definitions in Appendix C, and a glos-

1 http://opensource.org/licenses/BSD-3-Clause. Note that fjcore [122]
and some outputs of FlexibleSUSY [123] (incorporating routines from
SOFTSUSY [124]) are also shipped with GAMBIT 1.0. These code
snippets are distributed under the GNU General Public License (GPL;
http://opensource.org/licenses/GPL-3.0), with the special exception,
granted to GAMBIT by the authors, that they do not require the rest
of GAMBIT to inherit the GPL.

sary of GAMBIT-specific terms in Appendix D. When terms
make their first or other crucial appearances in the text, we
cross-link them to their entries in the glossary.

Within the ‘manual’ part of the paper, Sect. 3 describes
in detail how a physics module in GAMBIT works, Sect. 4
details the system GAMBIT uses for interfacing with exter-
nal codes, and Sect. 5 covers the internal model database and
its influence on analyses and the rest of the code. Section
6 explains the user interface to GAMBIT and documents
the available settings in the master initialisation file. Sec-
tion 7 details the GAMBIT system for instigating scans by
automatically activating different calculations, depending on
the models scanned and the observables requested by the
user. Section 8 explains how GAMBIT deals with statistical
and parameter scanning issues; further details of the spe-
cific methods and optimisation options in the scanning mod-
ule can be found in Ref. [112]. Section 9 describes the sys-
tem for outputting results from GAMBIT. Section 10 covers
other assorted utility subsystems. Section 11 discusses the
build and automatic component registration system, includ-
ing a crash course in adding new models, observables, like-
lihoods, scanners and other components to GAMBIT. Sec-
tion 12 describes some minimal examples included in the
base distribution, and provides information about releases
and support.

A code like GAMBIT and a paper such as this have mul-
tiple levels of user and reader. The relevant sections of this
paper for each are summarised in Table 1. Those more inter-
ested in understanding what GAMBIT offers than actually
running or extending it need only this introduction, Sect. 2
and the glossary (Appendix D). Users interested in running
scans without modifying any code should find more than
enough to get started in Appendix A, Sects. 11.2–11.4 and
12. To get the most out of the code, such users should then
move progressively on to Sects. 5.4, 6, 8, 9.1, 9.2, 10.2, 10.4,
10.7 and 10.8. Those interested in adding new observables,
likelihoods or interfaces to external codes should also read
Sects. 3, 4.1, 4.4, and the rest of Sects. 10 and 11. Users want-
ing to extend GAMBIT to deal with new models and theories
should add the remainder of Sect. 5 to this tally. Power users

123

http://gambit.hepforge.org
http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/GPL-3.0

Eur. Phys. J. C (2017) 77 :784 Page 5 of 70 784

Fig. 1 A schematic representation of the basic elements of a GAM-
BIT scan. The user provides a YAML input file (see www.yaml.org),
which chooses a model to scan and some observables or likelihoods
to calculate. The requested model δ and its ancestor models (see text
for definition) β and α are activated. All model-dependent module and
backend functions/variables are tested for compatibility with the acti-
vated models; incompatible functions are disabled (C2 in the example).
Module functions are identified that can provide the requested quantities
(A2 and B1 in the example), and other module functions are identified

to fulfil their dependencies. More are identified to fulfil those functions’
dependencies until all dependencies are filled. Backend functions and
variables are found that can fulfil the backend requirements of all chosen
module functions. The Core determines the correct module function
evaluation order. It passes the information on to ScannerBit, which
chooses parameter combinations to sample, running the module func-
tions in order for each parameter combination. The requested quantities
are output by the printer system for each parameter combination tested

and developers wanting to have a complete understanding of
the software framework should also familiarise themselves
with Sects. 4.5, 4.6, 7 and 9.3. Readers and users with spe-
cific interests in particular physical observables, experiments
or likelihoods should also add the relevant physics module
paper(s) [108–111] to this list, and those interested in details
of parameter scanning or statistics should likewise add Ref.
[112].

2 Design overview

GAMBIT consists of a number of modules or ‘Bits’, along
with various Core components and utilities. Figure 1 is a
simplified representation of how these fit together. GAMBIT
modules are each either physics modules (DarkBit, Collid-

erBit, etc.) or the scanning module, ScannerBit. Scanner-
Bit is responsible for parameter sampling, prior transforma-
tions, interfaces to external scanning and optimisation pack-
ages and related issues; it is discussed in more detail in Sect.
8 and Ref. [112].

2.1 Modularity

2.1.1 Physics modules, observables and likelihoods

The first version of GAMBIT ships with six physics modules:

ColliderBit calculates particle collider observables and
likelihoods. It includes detailed implementations of LEP,
ATLAS and CMS searches for new particle production,
and measurements of the Higgs boson. The LEP likeli-

123

http://www.yaml.org/

784 Page 6 of 70 Eur. Phys. J. C (2017) 77 :784

hoods are based on direct cross-section limits on spar-
ticle pair production from ALEPH, OPAL and L3. Fast
Monte Carlo simulation of signals at ATLAS and CMS
can be performed with a specially parallelised version of
Pythia8 [125]. ColliderBit offers the option to carry out
detector simulation with BuckFast, a fast smearing tool,
or the external packageDelphes [126,127]. We have val-
idated all likelihoods and limits via extensive comparison
to experimental limits and cutflows. Higgs likelihoods
in the first version of ColliderBit are provided exclu-
sively by communication with HiggsBounds [128–130]
and HiggsSignals [131]. Supersymmetic models are
presently supported natively by the LEP and LHC likeli-
hoods. The Higgs likelihoods are model-independent in
as much as they require only Higgs couplings as inputs.
Other models can be supported in LHC calculations by
reading matrix elements into Pythia8, e.g. from Mad-
Graph [132,133]. For a detailed description, see [108].

FlavBit calculates observables and likelihoods from flavour
physics, in particular B, D and K meson decays as
observed by LHCb, including angular observables and
correlations. Possibilities for inter-code communication
exist with SuperIso [134–136] and FeynHiggs [137–
143]. Supersymmetry is supported directly. A broad
range of other models is supported, via the use of effective
field theory. Likelihoods and observables have been val-
idated by comparison to existing flavour fits [144–146].
See [109].

DarkBit calculates DM observables and likelihoods, from
the relic abundance to direct and indirect searches. It
includes an on-the-fly cascade decay spectral yield cal-
culator, and a flexible, model-independent relic den-
sity calculator capable of mixing and matching aspects
from existing backends, includingDarkSUSY [147] and
micrOMEGAs [148–153]. Direct detection likelihoods
in DarkBit are based on calls to the DDCalc package
[110]. Indirect detection can be carried out with the help
of nulike [15] (neutrinos) and gamLike [110] (gamma
rays). Validation of relic density calculations is based
on extensive comparison with results from standalone
versions of DarkSUSY and micrOMEGAs. Direct and
indirect limits are validated by comparison with exclu-
sion curves from the relevant experiments. All calcula-
tions support MSSM neutralinos and all other WIMPs
(in particular, this includes Higgs portal models such as
scalar singlet dark matter). See [110] for details.

SpecBit interfaces to one of a number of possible external
spectrum generators in order to determine pole masses
and running parameters, and provides them to the rest
of GAMBIT in a standardised spectrum container for-
mat. Spectrum generators currently supported include
FlexibleSUSY [123] and SPheno [154,155]. Models
include MSSM models defined at arbitrary scales and

the scalar singlet model. Support for additional spec-
trum generators and models is straightforward for users
to add. Results of the existing code have been vali-
dated by comparison to standalone versions of Flexi-
bleSUSY, SPheno and SOFTSUSY [124,156–159].
SpecBit also carries out vacuum stability calculations
and perturbativity checks, which have been validated
against existing results in the literature. See [111] for
full details.

DecayBit calculates decay rates of all relevant particles
in the BSM theory under investigation, and contains
decay data for all SM particles. Theory calculations
can make use of interfaces to FeynHiggs [137–143]
and an improved version of SUSY-HIT [160–163], vali-
dated against direct SLHA communication with the same
codes. DecayBit supports the MSSM and scalar singlet
models. See [111].

PrecisionBit calculates model-dependent precision cor-
rections to masses, couplings and other observables, as
well as precision nuisance likelihoods for e.g. Standard
Model (SM) parameters. BSM calculations are presently
limited to the MSSM, and can call on GM2Calc [164],
FeynHiggs [137–143] and SuperIso [134–136]. See
[111].

Physics modules are collections of module functions,
each capable of calculating a single physical or mathematical
quantity. This may be an observable, likelihood component
or any intermediate quantity required for computing one or
more observables or likelihoods.

Each module function is tagged with a capability, which
together with the associated type describes exactly what
quantity it is capable of calculating. Module functions,
rather than modules themselves, are the main building blocks
of GAMBIT. The capability-type pairs associated with mod-
ule functions are the threads that allow GAMBIT to auto-
matically stitch together multiple functions into arbitrarily
complicated physics calculations.

Individual module functions may have one or moredepen-
dencies on quantities that their own calculations depend on.
At runtime,GAMBIT selects an appropriate module function
to fulfil each dependency, by matching the declared capabil-
ities of module functions with the declared dependencies of
other module functions. This process also requires matching
the declared return types of module functions with the types
requested in each dependency.

A simple example is the W mass likelihood function in
PrecisionBit, which has capability lnL_W_mass. This func-
tion calculates a basic χ2 likelihood for the W mass, and
is correspondingly named lnL_W_mass_chi2. To do its job,
PrecisionBit::lnL_W_mass_chi2 must be provided with
a predicted value for the W mass, by some other module
function in GAMBIT. These aspects are declared

123

Eur. Phys. J. C (2017) 77 :784 Page 7 of 70 784

#define CAPABILITY lnL_W_mass
START_CAPABILITY

#define FUNCTION lnL_W_mass_chi2
START_FUNCTION(double)
DEPENDENCY(mw, triplet<double>)
#undef FUNCTION

#undef CAPABILITY

Here the DEPENDENCY on the W mass mw is explicitly
declared, and the declaration demands that it must be
provided as a set of three real numbers, corresponding
to a central value with upper and lower uncertainties (a
triplet<double>). lnL_W_mass_chi2 accesses these val-
ues in its actual source via a pointer named mw placed in a spe-
cial namespace reserved for dependencies (Pipes::lnL_W_
mass_chi2::Dep). It then uses the values to compute the
likelihood, which it returns as its result:

/// W boson mass likelihood
const double mw_central_observed = 80.385;

const double mw_err_observed = 0.015;

void lnL_W_mass_chi2(double &result)

{

using namespace Pipes::lnL_W_mass_chi2;

double theory_uncert = std::max(Dep::mw->upper,

Dep::mw->lower);

result = Stats::gaussian_loglikelihood(

Dep::mw->central, mw_central_observed,

theory_uncert, mw_err_observed);

}

This module function has no concern for precisely where
or how the W mass has been determined. This allows GAM-
BIT to choose for itself at runtime, on the basis of the model
being scanned, whether it should provide e.g. an MSSM-
corrected prediction (for an MSSM scan), or a different pre-
diction (for a scan of a different model). This serves to illus-
trate the power of the modular design of GAMBIT, allowing
different calculations to be automatically reused in myriad
different physics scenarios, with essentially zero user inter-
vention.

Section 3 covers declaring and writing module functions
in detail.

2.1.2 Backends

External software packages that might be useful for calculat-
ing specific quantities are referred to in GAMBIT as back-
ends. Examples of these might be DarkSUSY [147] (for,
e.g., relic density calculations), or FeynHiggs [139–143]
(for, e.g., Higgs mass calculations). A full list of existing
codes with which GAMBIT can communicate via the back-
end system, along with all relevant references, can be found
in the file README.md included in the main distribution. All
studies that make use of GAMBIT with a backend must cite

all the literature associated with that backend, along with all
relevant GAMBIT literature.

Although GAMBIT itself is written in C++, with a small
admixture of Python for build abstraction, backends can in
principle be written in any language. Module functions can
directly call backend functions and access global backend
variables from these codes. To do this, a module function
must declare that it has a backend requirement, which is
then matched at runtime to the declared capability of a func-
tion or variable from some backend. This mirrors the man-
ner in which GAMBIT fills dependencies from amongst the
available module functions.

Whilst module functions can have both dependencies
(resolvable with other module functions) and backend require-
ments (resolvable with backend functions or variables), back-
end functions and variables cannot themselves have either
dependencies nor backend requirements. This is illustrated
in the example in Fig. 1: backend functions and variables
feed into module functions, but nothing feeds into the back-
end functions nor variables themselves.

A simple example is the calculation in DarkBit of the rate
at which DM is gravitationally captured by the Sun:

#define CAPABILITY capture_rate_Sun

START_CAPABILITY

#define FUNCTION capture_rate_Sun_const_xsec

START_FUNCTION(double)

DEPENDENCY(mwimp, double)

DEPENDENCY(sigma_SI_p, double)

DEPENDENCY(sigma_SD_p, double)

BACKEND_REQ(cap_Sun_v0q0_isoscalar, (), double,

(const double&, const double&, const double&))

#undef FUNCTION

#undef CAPABILITY

Here DarkBit::capture_rate_Sun_const_xsecdepends
on the DM mass and scattering cross-sections, and explic-
itly declares that it requires access to a function from a
backend. It demands that the backend function be tagged
with capability cap_Sun_v0q0_isoscalar, that it take three
const double& arguments, and that it must return a double

result. The declaration of a matching backend function (taken
in this example from the interface to DarkSUSY 5.1.3)
would then look like:

BE_FUNCTION(dsntcapsuntab, double, (const double&,

const double&, const double&), "dsntcapsuntab_",

"cap_Sun_v0q0_isoscalar")

The function DarkBit::capture_rate_Sun_const_xsec

then accesses the backend function from its source via a sim-
ilar alias system to the one used for dependencies:

123

784 Page 8 of 70 Eur. Phys. J. C (2017) 77 :784

Fig. 2 The model hierarchy graph of the pre-defined models that ship
with GAMBIT 1.0.0. The graph forms a set of disconnected directed
trees, potentially linked by friend translation pathways. Nodes are indi-
vidual models. Black arrows indicate child-to-parent translation path-
ways. The red arrows from MSSM9atQ to MSSM10batQ, and from
MSSM19atQ to MSSM20atQ, indicate translations to friend mod-

els. Friend translations can cross between otherwise disconnected fam-
ily trees, or, as in these two examples, between different branches of
the same tree. Graphs like this (including any additional user-specified
models) can be generated by runninggambit models from the com-
mand line, and following the instructions provided

// Capture rate in s−1 of regular DM in the Sun

// (�⇒ σ is neither v-dependent nor

// q-dependent), assuming isoscalar interactions (σp = σn).
void capture_rate_Sun_const_xsec(double &result)

{

using namespace

Pipes::capture_rate_Sun_const_xsec;

result =

BEreq::cap_Sun_v0q0_isoscalar(*Dep::mwimp,

*Dep::sigma_SI_p, *Dep::sigma_SD_p);

}

Typically, the requirement cap_Sun_v0q0_isoscalar will
be fulfilled by DarkSUSY, a Fortran code – but there is
nothing about this particular example function nor its decla-
ration that forces such a pairing. The only conditions are that
the selected backend function fulfils the requirements laid
out in the BACKEND_REQ declaration. This is another exam-
ple of the power of the modular design of GAMBIT, allowing
it to attach any matching function from any backend at run-
time, and to adapt to the presence or absence of different
versions of different backends present on any given user’s
system.

There are many additional options and declarations avail-
able but not shown in this example, for constraining which
versions of which backends are permitted to provide which
backend requirement, under what model-dependent condi-
tions and so on. Two additional features of note are not shown
in Fig. 1: backend initialisation functions, which always
run before any functions or variables in a backend are used,
and backend convenience functions, which are agglomera-
tions of functions and variables from one backend, presented
to the rest of GAMBIT as if they are single backend func-
tions.

Declaration of backend requirements is covered in detail
in Sect. 3.1.3, and declaration of actual interfaces to backends
is covered in Sect. 4.

2.1.3 Models

The models already implemented in GAMBIT 1.0.0 are
shown in Fig. 2, and described in detail in Sect. 5.4. Instruc-
tions for adding new models are given in Sects. 5.1 and 11.1.

GAMBIT automatically activates or disables module and
backend functions2 according to their compatibility with the
BSM model under investigation. It does this using a hierar-
chical model database, where each model is defined as a set
of free parameters and a series of relations to other models.
Models can be declared as children of existing models, which
implies that there exists a mapping from the child parame-
ter space to some subspace of the parent space. Each child
model comes with a function that defines the transformation
required to take a parameter point in its space to a corre-
sponding point in the parent parameter space. GAMBIT uses
these transformations at runtime to deliver the same param-
eter point in different parameterisations to different module
functions, according to their declared needs. Models can also
have translations pathways defined to other so-called friend
models outside their own family tree.

One important aspect of this arrangement is that models
can be arbitrarily ‘bolted together’ for any given scan, so
that multiple models can be scanned over simultaneously,
and their parameter values delivered together to any module
functions that need them. This allows for the SM parameters
to be varied as nuisance parameters when doing an MSSM
or other BSM scan, for example. It also means that in such a
joint SM-MSSM scan, the same underlying SM model (and
therefore the same SM calculations wherever possible) will
be used as in any other joint SM-BSM scan.

When a user requests a scan of a particular BSM model,
that model and its entire model ancestry are activated. This

2 and backend variables – but from here we will stop explicitly referring
to backend functions and backend variables as different things except
where it actually matters.

123

Eur. Phys. J. C (2017) 77 :784 Page 9 of 70 784

makes all module and backend functions that are compatible
with any model in the activated ancestry available as valid
building blocks of the scan. This provides maximum safety
by forbidding any calculations that are not valid for the model
under consideration, and maximum re-usability of modules,
backends and their functions with new models, by providing
certainty about which existing functions are ‘safe’ to use with
new additions to the model hierarchy.

A basic example of model and backend function activa-
tion/deactivation can be seen in Fig. 1. Functions A1 and
C2 have been specifically declared as model-dependent and
therefore require activation or deactivation by the model
database. Only functions that have been declared as model-
dependent in this way are allowed to access the values of
the underlying parameters in a scan. No other functions have
any such declarations, so they are therefore valid for all mod-
els. Such functions must always work for any model, as all
they need to do their job is to be confident that GAMBIT
will deliver their declared dependencies and backend require-
ments in the form that they request – and GAMBIT guaran-
tees precisely this for all module functions.

The two examples given in the previous subsections, of the
W mass likelihood and the capture rate of DM by the Sun,
are both examples of essentially model-independent calcula-
tions, where the module function does not need direct access
to any of the underlying model parameters. These functions
care only that their dependencies and backend requirements
are available; if this is the case, they can do their jobs, irre-
spective of the underlying model actually being scanned.3

An example of an explicitly model-dependent module
function is theDarkBit likelihood associated with the nuclear
matrix elements relevant for spin-independent DM-nucleon
scattering:

// Likelihoods for nuclear parameters.
START_CAPABILITY

#define FUNCTION lnL_sigmas_sigmal
START_FUNCTION(double)
ALLOW_MODEL(nuclear_params_sigmas_sigmal)

#undef FUNCTION

Here the ALLOW_MODEL declaration is used to indicate that
the module function can only be used when scanning the

3 Note the distinction between model-independent functions and
model-independent results. Model-independent numerical results have
the same values regardless of the physics model assumed. Model-
independent functions act on input data according to the values of the
data only, not according to the physics model that gave rise to the data.
In general, the input data to model-independent functions are model-
dependent quantities, leading to different results for different models.
The W mass likelihood is a case in point: the predicted value of mW
and its likelihood are necessarily model-dependent quantities – but the
function that computes the likelihood from a given value of mW is not
dependent on the model for which mW has been computed.

nuclear_params_sigmas_sigmal model (or one of its
descendants – but it has none in this version of GAMBIT).
This particular module function directly accesses the values
of the model parameters, uses them to compute the joint like-
lihood and returns the result. In contrast, when the nuclear
matrix elements are needed for calculating the physical DM-
nucleon couplings in e.g., the scalar singlet Higgs portal
model, they are instead upcast to the nuclear_params_fnq

model (an ancestor of nuclear_params_sigmas_sigmal,
cf. Fig. 2), and presented as such within the relevant module
function:

#define FUNCTION DD_couplings_SingletDM

START_FUNCTION(DM_nucleon_couplings)

DEPENDENCY(SingletDM_spectrum, Spectrum)

ALLOW_JOINT_MODEL(nuclear_params_fnq, SingletDM)

#undef FUNCTION

Here the ALLOW_JOINT_MODEL declaration explicitly forbids
GAMBIT from using this function except when scanning
both the nuclear_params_fnq and SingletDM models, or
some pairwise combination of their respective descendants.

The GAMBIT model database, its declarations and fea-
tures are discussed in much more detail in Sect. 5.

2.2 Adaptability and flexibility

After filtering out invalid module and backend functions by
checking their compatibility with the model under inves-
tigation, GAMBIT works through the remaining functions
to properly connect module functions to dependencies and
backend functions to backend requirements. It starts with
the quantities requested by the user (observables, likelihood
components or other derived quantities), and then progres-
sively resolves dependencies and backend requirements until
it either reaches an impasse due to a mutual dependency
between groups of module functions, or no outstanding needs
remain. If all needs have been fulfilled, the result is a directed
graph of dependencies, with no internal closed loops – a so-
called directed acyclic graph. Directed acyclic graphs have
the mathematical property that they possess an implied topo-
logical order. GAMBIT computes this ordering, and uses
it to determine the optimal order in which to evaluate the
module functions, such that each module function is guar-
anteed to run before any other function that depends on its
results. GAMBIT further optimises the ordering beyond the
constraint implied by this condition, considering the typical
evaluation time of each function as a scan progresses, and
its role in ruling out previous parameter combinations. We
explain this overall dependency resolution process in detail
in Sect. 7.

With a specific module function evaluation order in hand,
GAMBIT passes the problem of actually sampling the param-

123

784 Page 10 of 70 Eur. Phys. J. C (2017) 77 :784

eter space to ScannerBit (Sect. 8). ScannerBit engages
whichever statistical scanning algorithm and output method
a user has selected in their input file (see Sect. 6), choos-
ing parameter combinations, calling the module functions in
order, and sending the results to the GAMBIT printer system
(Sect. 9). Functions log their activity via an extensive internal
logging system (Sect. 10.2), and invalid parameter combina-
tions, warnings and errors are identified using a dedicated
exceptions system (Sect. 10.3).

This rather abstract formulation of the global fit prob-
lem enables a very high degree of automation, in turn pro-
viding flexibility and extendibility. By deferring the actual
choice of the function that will provide the requisite phys-
ical inputs to each step of a calculation, GAMBIT makes
it easy to confidently swap or add functions to existing
scans. It also makes such scans efficient, as only the calcu-
lations needed for a given scan are actually activated, and
each calculation is guaranteed to run only once for each
parameter combination. Linking this to a hierarchical model
database then provides the means for GAMBIT to automat-
ically adapt existing likelihood and observable calculations
to new models, to the largest extent theoretically possible.
New components of course need to be added when different
physics is to be considered for the first time, but the level
of automation allows the user to immediately identify the
precise gaps in the theoretical chain in need of new work,
rather then wasting time by coding almost identical func-
tions for every new model. This is facilitated by extensive
and informative error messages presented when a scan is
attempted but some link in the dependency chain cannot
be fulfilled. These messages explain, for example, when a
given dependency cannot be filled by any known function,
if a requisite backend appears to be missing, if appropri-
ate functions seem to exist but are not compatible with the
model being scanned, if multiple permitted options exist for
resolving a given dependency or backend requirement, and
so on.

GAMBIT takes this flexibility and automatic adaptation
even further by having the backend (Sect. 4) and build (Sect.
11) systems automatically add or disable modules, backends,
models, printers and other components when new ones are
defined, or when existing ones happen to be missing from a
user’s system. GAMBIT also includes extensive command-
line diagnostics, which the user can employ to obtain reports
on the status and contents of its components at many different
levels (Sect. 10.4).

2.3 Performance and parallelisation

Parallelisation inGAMBIT happens at two levels: at the scan-
ner level via MPI [165], and at the level of module func-
tions with OpenMP [166]. This allows GAMBIT to easily

scale to many thousands of cores, as most major external
sampling packages employ MPI, and a number of exter-
nal physics codes make use of OpenMP (e.g. nulike [15]
and forthcoming versions of DarkSUSY [147]). Users also
have the option of implementing their own module functions
using OpenMP natively in GAMBIT. In fact, GAMBIT can
even automatically connect OpenMP-aware module func-
tions and have other module functions run them in parallel
using OpenMP. Section 3.1.4 explains how to achieve this.
With this method, the total runtime for a single MSSM param-
eter combination, even including explicit LHC Monte Carlo
simulation, can be reduced to a matter of a few seconds [108].

The performance of GAMBIT is explored in detail in the
ScannerBit paper [112].

2.4 Available examples

In Sect. 12.1 we provide a series of examples showing how to
run the fullGAMBIT code. AnyGAMBITmodule can also be
compiled with a basic driver into a standalone program. We
also give a number of examples of module standalone drivers
in Sect. 12.1, as well as dedicated examples for different
modules included in first release [108–112].

A standalone driver program that calls a GAMBIT module
needs to do a number of specific things:

– specify which model to work with,
– choose what the parameter values should be,
– indicate which module functions to run and what to do

with the results,
– indicate which module functions to use to fulfil which

dependencies,
– indicate which backend functions or variables to use to

fulfil which backend requirements, and
– set input options that different module functions should

run with.

These are all functions that are normally done automatically
by GAMBIT. We provide a series of simple utility functions
specifically designed for use in standalone driver programs
though, allowing most of these operations to be completed
in a single line each.

3 Modules

Other than the six physics and one scanning module inGAM-
BIT 1.0.0, behind the scenes GAMBIT also arranges back-
end initialisation functions into a virtual module known as
BackendIniBit, and puts model parameter translation func-
tions into effective modules of their own. These are discussed
in detail in Sects. 4 and 5, respectively.

123

Eur. Phys. J. C (2017) 77 :784 Page 11 of 70 784

3.1 Module function declaration

GAMBIT modules and their functions are declared in a mod-
ule’s so-called rollcall header, using a series of convenient
macros.

A module called MyBit would be created simply by creating
a header MyBit_rollcall.hpp containing

#define MODULE MyBit
START_MODULE
#undef MODULE

and then rerunning the build configuration step in order to
make GAMBIT locate the new file.4

Creating a module function requires a user to write it as a
standard C++ function in a source file, and add a correspond-
ing declaration to the rollcall header. The function should
have return type void, and take exactly one argument by ref-
erence: the result of the calculation that the function is sup-
posed to perform. This result can be of any type.5 Taking a
double-precision floating point number as an example, the
definition of a function function_name in module MyBit would
look like

namespace MyBit
{

void function_name(double& result)
{

result = ... // something useful
}

}

This would traditionally be placed in a file called MyBit.cpp

or similar.
The declaration must state the name of the function, the

type of its result, and the capability to assign to it. Such a
declaration would look like

#define MODULE MyBit
START_MODULE

#define CAPABILITY example_capability
START_CAPABILITY

#define FUNCTION function_name
START_FUNCTION(double)
#undef FUNCTION

#undef CAPABILITY
#undef MODULE

where example_capability is the name of the capability assigned
to the function MyBit::function_name in this example.

The following examples in Sects. 3.1.1–3.1.3 will show
other specific declarations that may be given between
START_FUNCTION and #undef FUNCTION.

4 Re-running the configuration step is a generic requirement whenever
adding new source or header files to GAMBIT. See Sect. 11 for details.
5 At least, any type with a default constructor. Dealing in types without
default constructors requires declaring objects internally in the module
and returning pointers to them.

3.1.1 Model compatibility

In the absence of any specific declarations as to the
model-dependency of the calculations in a module function,
GAMBIT assumes that the function is completely model-
independent. To instead declare that a module function may
only be used with a single specific model model_a, one adds
a declaration

ALLOW_MODEL(model_a)

after calling START_FUNCTION. To declare that the function
may be used with one or more models from a particular set,
one instead writes

ALLOW_MODEL(model_a)
ALLOW_MODEL(model_b)
...

or just

ALLOW_MODELS(model_a, model_b, ...)

where the ellipses... indicate that theALLOW_MODELSmacro
is variadic, and can take up to 10 specific models. Alterna-
tively, to declare that all models from a given set must be in
use, one declares

ALLOW_JOINT_MODEL(model_γ , model_δ, ...)

Declaring ALLOW_MODEL, ALLOW_MODELS or
ALLOW_JOINT_MODEL also grants the module function access
to the values of the parameters of the appropriate model(s) at
runtime. Section 3.2.3 below deals with how to retrieve these
parameter values.

GAMBIT is expressly designed for simultaneous scanning
of multiple models, where the parameters of each model are
varied independently. This allows for arbitrary combinations
of different models, e.g. from including SM parameters as
nuisances in a BSM scan, to varying cosmological and BSM
parameters simultaneously in some early-Universe cosmo-
logical scenario. In these cases, module functions can be
granted access to the parameters of multiple models at the
same time, as long as the function is declared from the outset
to need all of those parameters in order to operate correctly.

To set rules that constrain module functions’ validi-
ties to scans of specific combinations of models, rather
than simply declaring valid combinations one by one with
ALLOW_JOINT_MODEL, a more involved syntax is required.
Here, the possible individual models involved in the com-
binations are first listed with ALLOW_MODEL_DEPENDENCE.
They are then placed into one or more specificmodel groups.
Each allowed model combination is then specified by set-
ting allowed combinations of model groups. If a given scan
includes one model from each group listed in an allowed
combination, then the module function is deemed to be com-
patible with the given scan.

123

784 Page 12 of 70 Eur. Phys. J. C (2017) 77 :784

For example, to specify that a function may be used when
either model_a or model_b is being scanned, but only if model_c

is also being scanned at the same time, one must write

ALLOW_MODEL_DEPENDENCE(model_a, model_b, model_c)
MODEL_GROUP(group1, (model_a, model_b))
MODEL_GROUP(group2, (model_c))
ALLOW_MODEL_COMBINATION(group1, group2)

This reveals that ALLOW_JOINT_MODEL(model_γ, model_δ,

...) is simply a special case of this extended syntax, pre-
cisely equivalent to

ALLOW_MODEL_DEPENDENCE(model_γ , model_δ, ...)
MODEL_GROUP(group1, (model_γ))
MODEL_GROUP(group2, (model_δ))
...
ALLOW_MODEL_COMBINATION(group1, group2, ...)

Note that GAMBIT still deems a model to be in use even
if its parameters are fixed to constant values during a scan.
Declaring that a module function requires some model or
model combination to be in use therefore merely demands
that the model parameters have definite values during a scan,
not that they are necessarily varied.

An explicit example of the syntax described in this
section can be found in the declaration of the function
DarkBit::DD_couplings_MicrOmegas in DarkBit/

include/gambit/DarkBit/DarkBit_rollcall.hpp:

ALLOW_MODEL_DEPENDENCE(nuclear_params_fnq,
MSSM63atQ, SingletDM)

MODEL_GROUP(group1, (nuclear_params_fnq))
MODEL_GROUP(group2, (MSSM63atQ, SingletDM))
ALLOW_MODEL_COMBINATION(group1, group2)

This function computes couplings relevant for direct detec-
tion, using micrOMEGAs [153]. To do this, it needs the
parameters of the nuclear matrix element model nuclear_
params_fnq, plus the parameters of a dark matter model,
which in GAMBIT 1.0.0 may be either the MSSM or the
scalar singlet model.

3.1.2 Dependencies

To indicate that a module function requires some specific
quantity as input in order to carry out its own calculation,
one must declare that it has a dependency upon the capa-
bility, and the corresponding type, of some other module
function. Dependencies are explicitly defined in terms of
capabilities, not specific functions: from the GAMBIT per-
spective functions do not depend on each other, they depend
on each others’ capabilities. This is specifically designed to
make module functions genuinely modular, by keeping the
use of a module function’s result completely independent of
its identity. This has the (entirely intentional) consequence
of making it practically impossible to safely use global states
for passing information between module functions.

The syntax for declaring that a module function function_

name has a dependency on some capability capability is simply
to add a line

DEPENDENCY(capability, type)

to the module function declaration. Here type is the actualC++

type of the capability that needs to be available for function_

name to use in its function body.
Such a declaration ensures that at runtime, GAMBIT will

arrange its dependency tree such that it

(a) only runs function_name after some other module function
with capability capability and return type type has already
run for the same parameter combination,

(b) delivers the result of the other module function to
function_name, so that the latter can use it in its own cal-
culation.

It is also possible to arrange conditional dependencies
that only apply when specific conditions are met. The sim-
plest form is a purely model-dependent conditional depen-
dency,

MODEL_CONDITIONAL_DEPENDENCY(capability, type,
model_α, model_β, ...)

which would cause a function to depend on capability only
when model_α and/or model_β is being scanned. Here the
ellipses again indicate that up to 10 models can be specified.

A concrete example of this is the declaration of the func-
tion FlavBit::SuperIso_modelinfo in FlavBit/

include/gambit/FlavBit/FlavBit_rollcall.hpp. This
function is responsible for constructing the data object that
will be sent to SuperIso [134,135] to tell it the values of the
relevant Lagrangian parameters. Its declaration includes the
lines:

MODEL_CONDITIONAL_DEPENDENCY(MSSM_spectrum,
Spectrum, MSSM63atQ, MSSM63atMGUT)

MODEL_CONDITIONAL_DEPENDENCY(SM_spectrum,
Spectrum, WC)

These statements cause the function to have a dependency on
an MSSM_spectrum when scanning the MSSM, but a depen-
dency on an SM_spectrum when scanning a low-energy
effective theory of flavour (WC; see Sect. 5.4.5).

An alternative formulation allows both model conditions
and backend conditions to be specified:

#define CONDITIONAL_DEPENDENCY capability
START_CONDITIONAL_DEPENDENCY(type)
ACTIVATE_FOR_MODELS(model_α, model_β, ...)
ACTIVATE_FOR_BACKEND(requirement, be_name1)
ACTIVATE_FOR_BACKEND(requirement, be_name2)
#undef CONDITIONAL_DEPENDENCY

In this example, the dependency on capability would not only
be activated if model_α or model_β were in use, but also if

123

Eur. Phys. J. C (2017) 77 :784 Page 13 of 70 784

either backend be_name1 or backend be_name2 were used to
resolve the backend requirement requirement. In this case, the
CONDITIONAL_DEPENDENCY declaration must appear after
the corresponding backend requirement is declared. Decla-
ration of backend requirements is covered in Sect. 3.1.3.

There is currently no way to specify more complicated
arrangements like ‘dependency is activated only if scanning
model_α and using backend_name’ or ‘only if scanning both
model_α and model_β’. Wanting to use such complicated sce-
narios is usually a sign that the intended design of the mod-
ule function is unnecessarily complicated, and the function
would be better just split into multiple functions with differ-
ent properties.

3.1.3 Backend requirements

Backend requirements are declarations that a module func-
tion intends to use either a function or a global variable from a
backend (external) code. Backend requirements are specified
in a similar way to dependencies: by declaring the type and
the capability of the required backend function or variable
(not the name of a specific backend function). In contrast
to dependencies, however, the type of a backend require-
ment may be an entire function signature, describing not just
the return type, but also the types of an arbitrary number of
arguments. Designating the capability of the backend vari-
able required as var_requirement and its required type var_type,
the declaration of a backend variable requirement is

BACKEND_REQ(var_requirement, (tags), var_type)

If a backend function is required, with capability fn_

requirement, return type fn_return_type and function argument
types arg1_type, arg2_type and so on, the declaration is instead

BACKEND_REQ(fn_requirement, (tags), fn_return_type,
(arg1_type, arg2_type, ...))

Note that the final argument of BACKEND_REQ should be
absent for backend variable requirements, but should be
explicitly specified as () for backend functions with no argu-
ments – as is standardC/C++ syntax. The ellipses in the back-
end function example again indicate that the entry is variadic,
so as many function arguments can be specified as required.
If the backend function is itself required to be variadic (in
the C-style sense that the function required must be able to
take a variable number of arguments), then instead of the
traditional ellipses used to declare such a function, one must
use the keyword etc, as in

BACKEND_REQ(fn_requirement, (tags), fn_return_type,
(arg1_type, etc))

The tags entry in the declarations above allows one to spec-
ify a set of zero or more comma-separated tags, which can
then be used to impose various conditions on how backend
requirements can be filled. Consider the following example:

BACKEND_REQ(req_A, (tag1), float, (int, int))
BACKEND_REQ(req_B, (tag1, tag2), int, ())
BACKEND_REQ(req_C, (tag3), int)
ACTIVATE_BACKEND_REQ_FOR_MODELS((model_α,

model_β), (tag1))
BACKEND_OPTION((be_name1), (tag1))
BACKEND_OPTION((be_name2, 1.2, 1.3, 1.5),
(tag2, tag3))

FORCE_SAME_BACKEND(tag1)

In this example, the ACTIVATE_BACKEND_REQ_FOR_MODELS

directive ensures that req_A and req_B only exist as back-
end requirements when model_α and/or model_β are in use.
FORCE_SAME_BACKEND creates a rule that at runtime, both
req_A and req_B must be filled using functions from the same
version of the same backend.

Further rules are given by the BACKEND_OPTION decla-
rations. The first of these indicates that be_name1 is a valid
backend from which to fill one or both of req_A and req_

B. The second BACKEND_OPTION declaration indicates that
req_B and req_C may each be filled from versions 1.2, 1.3
or 1.5 only of be_name2. Version numbers here are both
optional and variadic. Failure to list any version is taken
to imply that any version of the backend is permitted.
Presently there is no mechanism for indicating that only
specific ranges of version numbers are permitted, short of
listing each one explicitly. Version numbers can actually be
specified in the same way when ACTIVATE_FOR_BACKEND

is specified within a CONDITIONAL_DEPENDENCY declara-
tion.

When model_α or model_β is being scanned, the rules
in this particular snippet have the effect of forcing req_

A to be filled from some version of be_name1 (due to the
first BACKEND_OPTION declaration), which in turn forces
req_B to be filled from the same version of be_name1 (due
to the FORCE_SAME_BACKEND directive). If other models
are scanned, req_A and req_B are simply ignored, and go
unfilled. Req_C is forced to be filled from either version
1.2, 1.3 or 1.5 of be_name2, regardless of which models are
scanned.

As with other GAMBIT rollcall header commands, the
lists of models and tags in all backend requirement declara-
tions are variadic. In this case there is practically no limit to
the number of entries that a tag or model list may contain.
Empty lists () are also permitted.

When a backend requirement has a rule imposed on it by
one or more BACKEND_OPTION declarations, one of the stated
options must be used. When none of the tags of a given
backend requirement is mentioned in a BACKEND_OPTION

command, any version of any backend is permitted as
long as the capability and type match. Simply omitting
BACKEND_OPTION altogether means that any matching func-
tion can be used, from any backend.

123

784 Page 14 of 70 Eur. Phys. J. C (2017) 77 :784

3.1.4 Parallel module functions

GAMBIT can make effective use of OpenMP parallelistaion
either at the backend level, or natively within its own module
functions. The simplest way to use OpenMP at the module
function level is to place OpenMP directives inside a sin-
gle module function, keeping the OpenMP block(s) wholly
contained within the module function. In this case no special
declarations are needed at the level of the module’s rollcall
header.

An alternative method is to have a single module func-
tion open and close an OpenMP block, and to call other
module functions (indirectly) within that block, potentially
very many times over for a single parameter combination. In
this case we refer to the managing module function as a loop
manager and the functions it callsnestedmodule functions.
Loop managers are declared using the CAN_MANAGE_LOOPS

switch

START_FUNCTION(type, CAN_MANAGE_LOOPS)

Unlike regular module functions, loop managers may have
type = void. Nested functions need to declare the capability
of the loop manager that they require with

NEEDS_MANAGER_WITH_CAPABILITY(management_cap)

This declaration endows the function with a special depen-
dency on management_cap that can only be fulfilled by a func-
tion that has been declared as a loop manager. The result
type of the loop manager is ignored, i.e. loop managers of
any return type are equally valid sources of this dependency.

This arrangement allowsGAMBIT’sdependencyresolver
to dynamically string together various nested module func-
tions and instruct loop managers to run them in parallel. At
runtime, nested functions are arranged into their own mini
dependency trees, and pointers to ordered lists of them are
handed out to the designated loop managers.

Other functions can depend on nested functions in the reg-
ular way. In this case they receive the final result of the func-
tion, the last time it is called by its loop manager for a given
parameter combination. Loop managers are assigned hidden
dependencies at runtime by the dependency resolver, on all
quantities on which their designated nested functions depend.
This ensures that a loop is not invoked until the dependencies
of all functions in the loop have been satisfied.

The GAMBIT Core does not invoke any nested functions
itself; this is the express responsibility of loop managers. The
only exception to this rule occurs when for whatever reason
a nested function’s loop manager executes zero iterations of
the loop it manages, but some other module function outside
the loop depends on one of the nested functions that never
ran; in this case the nested function is run the first time the
dependent function tries to retrieve its value (as are any other
nested functions that the first nested function depends on).

3.1.5 One-line module function declaration

It is also possible to declare a module function with its
allowed models and even dependencies, in a single line:

QUICK_FUNCTION(module_name,
example_capability,
capability_vintage,
function_name,
function_type,
(model_α, model_β, ...),
(dep_cap1, dep_type1),
(dep_cap2, dep_type2),
...)

Here one gives the module name explicitly, meaning that
the declaration can even be used after MODULE has been
#undef-ed. The argument capability_vintage tells GAMBIT
whether or not example_capability has been declared pre-
viously; this can be set to either NEW_CAPABILITY or
OLD_CAPABILITY. As usual, the variadic allowed model list
(model_α, model_β, ...) can take up to 10 entries. This can be
followed by up to 10 dependencies, given as capability-type
pairs. The model list and dependency entries are optional
arguments; specifying dependencies but leaving the allowed
models free requires giving () for the allowed model list.

3.2 Pipes

Module functions must be entirely self-contained for GAM-
BIT to safely place them in a dependency tree. They must
not call each other directly, nor call functions from specific
backends directly. They should also strongly avoid setting
or reading any global variables, especially those where the
order of read or write operations might matter at all. The only
safe way for code inside module functions to communicate
with the outside world is via the function’s own personal set
of pipes.

At runtime, GAMBIT’s dependency resolver (Sect. 7)
connects each pipe to the relevant data stream that a mod-
ule function is permitted to interact with. This might be the
result of a module function deemed appropriate for fulfilling
a dependency, a backend function fitting a backend require-
ment, or some other more specific utility.

Pipes are safe pointers, automatically declared when mod-
ule functions themselves are declared. They and the data they
point to can be set by the dependency resolver, but not by code
inside module functions (except for the special case of data
pointed to by a backend variable requirement pipe). They
reside in the namespace Pipes::function_name.

Here we give a complete list of all the pipes that can be
available to a module function, along with information on
their usage and the circumstances under which they should
be expected to exist.

123

Eur. Phys. J. C (2017) 77 :784 Page 15 of 70 784

3.2.1 Accessing dependencies

A dependency on a capability of dep_type can be accessed at
runtime through the safe pointer

Pipes::function_name::Dep::capability

by simply dereferencing it, or calling some_member_function of
class dep_type

using namespace Pipes::function_name;
dep_type my_variable = *Dep::capability;
Dep::capability->some_member_function();

e.g. if the function decay_width had a double-precision
dependency on mass, one would simply type

double m = *Pipes::decay_width::Dep::mass;

The actual host module, name, capability and type of the
function providing a dependency can be ascertained from its
pipe, e.g.

using namespace Pipes::decay_width;

std::string m_module = Dep::mass->origin();

std::string m_function = Dep::mass->name();

std::string m_capability= Dep::mass->capability();

std::string m_type = Dep::mass->type();

3.2.2 Accessing backend requirements

Backend requirements can be used or retrieved by way of the
safe pointer

Pipes::function_name::BEreq::requirement

Take the example of a double-precision backend variable
with capability my_var_req, declared in function my_func

with

BACKEND_REQUIREMENT(my_var_req, (), double)

This variable is accessed directly as

using namespace Pipes::my_func;
double y = 2.5 + *BEreq::my_var_req;
*BEreq::my_var_req = y*y;

In the case of a backend function, e.g. declared as

BACKEND_REQUIREMENT(my_fn_req1, (), double,
(double))

one can call the corresponding backend function by writing

using namespace Pipes::my_func;
double f_of_pi = BEreq::my_fn_req1(3.14159);

If necessary, the actual underlying function or variable
pointer can be retrieved from a backend requirement pipe, by
calling its pointer() method. This can be useful if a module
or backend function requires a pointer to some function in

order to perform its duties, as in the following example from
DarkBit::nuyield_from_DS

// Hand back the pointer to the DarkSUSY
// neutrino yield function
result.pointer = BEreq::nuyield.pointer();

There is an important final subtlety to note here: because
the arguments are forwarded through a number of different
layers of indirection, in order to support the direct use of
literals in calls to backend functions it is necessary to indi-
cate explicitly if any non-literal parameters must be passed
by value. The way to do this is to wrap such arguments in
the helper function byVal(). For example, take a backend
requirement of a function my_func declared as

BACKEND_REQUIREMENT(my_fn_req2, (), double,
(double, double&))

This can be safely called as

using namespace Pipes::my_func;
double x = 2.0;
double y = BEreq::my_fn_req2(3.0, x);

or

using namespace Pipes::my_func;
double x = 2.0;
double y = BEreq::my_fn_req2(byVal(x), x);

but will fail to compile if

using namespace Pipes::my_func;
double x = 2.0;
double y = BEreq::my_fn_req2(x, x);

is attempted. The backend requirement system in GAMBIT
is entirely typesafe, so if the code compiles one can at least be
confident that the types in calls to backend functions correctly
match their declarations.

As with dependencies, the name, capability and type of
the backend function fulfilling a backend requirement can be
extracted from its pipe, along with the host backend and its
version, e.g.

using namespace Pipes::my_func;

std::string r3_function = BEreq::r3->name();

std::string r3_capability =

BEreq::r3->capability();

std::string r3_type = BEreq::r3->type();

std::string r3_backend = BEreq::r3->origin();

std::string r3_bkend_versn = BEreq::r3->version();

3.2.3 Accessing model parameters

Model parameters are only provided to module functions
that have been explicitly declared as model-dependent, and
then only for the models actually being used in a particular
scan. A module function is model dependent if it features an

123

784 Page 16 of 70 Eur. Phys. J. C (2017) 77 :784

ALLOWED_MODELS or ALLOW_MODEL_DEPENDENCE declara-
tion, a model-conditional dependency, or a backend require-
ment activation rule that is conditional on some model. Once
again, this is to enforce modularity; functions that claim to
be model-independent through their (lack of) model dec-
larations must operate only on dependencies and backend
requirements, i.e. without using the values of the scanned
parameters.

For module functions that are permitted access to the
parameter values, all parameters of all models are delivered
in a simple map of parameter names to their values. For such
a function function_name, the value of a parameter parameter_

name can then be retrieved with

double p = Pipes::function_name::Param["parameter_
name"];

Whether or not the Param map contains a given param-
eter depends on whether or not its model is actually being
scanned. This can be checked with the funtion

bool Pipes::function_name::ModelInUse(str);

which takes as input a string containing the model in ques-
tion (str is just a typedef of std::string). Note that the
models in use in different functions may not always be what
one expects – the nature of the GAMBIT model hierarchy
is such that if a module function declares that it can work
with a model that is an ancestor of the actual model being
scanned, the function will be permitted to run but will receive
each parameter point delivered in terms of the parameters of
the ancestor model, rather than directly in the parameters of
the model actually being scanned.6 This is an important fea-
ture, as it allows module functions to be re-used unaltered
with models that may not have even been invented when the
original module function was written.

Although it is possible to scan two models containing a
parameter with a common name, it is not possible to retrieve
both parameters from the Param map in the same module
function. By default, GAMBIT raises a runtime error if mod-
els with common parameters are declared as allowed (by
ALLOWED_MODELS or ALLOW_MODEL_DEPENDENCE) in a sin-
gle module function, and then activated together in a scan.
More adventurous users may wish to deactivate this error and
allow such parameter clashes in some very specific circum-
stances (see Sect. 6.3.1).

6 Note that if a module function is explicitly declared to work with
multiple ancestors of the model being scanned, then only the parameters
of the least-distant ancestor will be delivered. These rules also apply for
activation of model-dependent depedencies and backend requirements
(cf. Sects. 3.1.2, 3.1.3).

3.2.4 Accessing options from the input file

GAMBIT features an extensive system for specifying run
options for module functions, discussed in detail in Sect. 6.
Module functions access these options via a dedicated pipe,
which connects to a miniature YAML structure generated by
the dependency resolver from all the entries in the original
input YAML file that actually apply to the module function
in question.

The pipe is runOptions. It can be queried for the presence
of a given option "my_option"

using namespace Pipes::function_name;
if (runOptions->hasKey("my_option"))
{

// Do something exciting
}

or used to retrieve the value as a variable of type opt_type,
either directly

using namespace Pipes::function_name;
opt_type x = runOptions->getValue<opt_type>
("my_option");

or with a default value default

using namespace Pipes::function_name;
opt_type x = runOptions->getValueOrDef<opt_type>
(default, "my_option");

3.2.5 Managing parallel module functions

Running OpenMP loops containing GAMBIT module func-
tions takes a little care, but it is ultimately one of the most
efficient ways to speed up computationally challenging like-
lihood calculations.

A loop manager lpman is responsible for opening and clos-
ing the multi-threaded OpenMP block. Inside the block, it
needs to use the void function

Pipes::lpman::Loop::executeIteration(long long)

to execute a single call to the chain of nested functions that
it manages. Here the integer argument of the function is the
iteration number, which is passed directly on to each nested
function running inside the loop. A nested function nested_fn

can access the iteration using the pipe iteration as

long long it = *Pipes::
nested_fn::Loop::iteration;

Internally, GAMBIT holds the results of each module
function in memory, for efficiently handing over results as
dependencies and so on. For nested functions, it holds the
results in an array of size equal to the number of threads.
Serial module functions access the first element of this array

123

Eur. Phys. J. C (2017) 77 :784 Page 17 of 70 784

when retrieving dependencies, whereas nested module func-
tions run by the same loop manager access the element corre-
sponding to the thread number. This is what allows the nested
module functions to run safely in parallel, in arbitrary depen-
dency trees arranged by the dependency resolver at runtime.

A consequence of this setup is that any serial module func-
tion that depends on a nested module function will only read
the result obtained in the last iteration of the first thread (i.e.
of index 0). For this reason, it is generally advisable to run
the final iteration of a GAMBIT OpenMP loop in serial, so
as to properly sync the results for use further ‘downstream’.
Likewise, it is desirable to run the first iteration in serial as
well, to allow any nested module functions to initialise any
local static variables and other data elements that they might
share across threads. With this consideration in mind, a min-
imal example of an OpenMP loop implemented in a loop
manager is

using namespace Pipes::lpman;
Loop::executeIteration(0);
#pragma omp for
for (int i = 1; i < 9; i++)
{

Loop::executeIteration(i);
}
Loop::executeIteration(9);

In this example, the first iteration of ten is run serially, the
next 8 are done in parallel using however many threads are
available, and the tenth and final iteration is again done seri-
ally.

The above example assumes that the number of required
iterations is known at compile time. If this is not the case,
one may call the void function pipe wrapup() from within
a nested function, in order to signal to the loop manager that
the loop can be terminated. When one of the nested module
functions in one of the threads calls wrapup(), the boolean
pipe

Pipes::lpman::Loop::done

in the function managing the loop is set to true, allowing it
to cut the loop short. This allows constructions like

using namespace Pipes::lpman;
long long it = 0;
Loop::executeIteration(it);
#pragma omp parallel
{

#pragma omp atomic
it++;
while(not *Loop::done)
{

Loop::executeIteration(it);
}

}
Loop::executeIteration(it++);

to be used in loop managers. Note that using this pattern
requires that it be safe for a few more iterations of the loop

to be performed after the done flag has been raised, because
calling wrapup() in one thread will not affect other threads
until they at least complete their own iterations and return
to re-evaluate the while condition. The final serial iteration
should generally also still be run as well, after the loop has
terminated.

The done flag is automatically reset to false in all nested
functions for each new parameter point. If for whatever rea-
son it needs to be reset manually during a calculation, this
can be achieved with the void function pipe

Pipes::lpman::Loop::reset()

which is available in all loop managers.

4 Backends

GAMBIT interfaces with backends by using them as runtime
plug-ins. Backends are compiled into shared libraries, which
GAMBIT then dynamically loads with the POSIX-standard
dl library. This approach allows for direct access to the func-
tions of the backend library and efficient data communication
via memory, while at the same time keeping the build process
of GAMBIT separate from of that of the particular backends
used.

The locations of backend shared libraries can be specified
in a YAML file config/backend_locations.yaml, with
entries of the form

backend_name:
backend_version: path_to_shared_library

Library paths can either be given as absolute paths, or relative
to the mainGAMBIT directory. Ifbackend_locations.yaml
does not exist, or if it is missing an entry for a given
backend, GAMBIT will instead look for a path in the file
config/backend_locations.yaml.default, which con-
tains default library paths for all backends that GAMBIT has
interfaces to.

Similar to module functions, functions in backend libraries
are tagged with a capability describing what they can calcu-
late. The capability tags are used byGAMBIT to match back-
end functions to the backend requirements declared by mod-
ule functions. The layer of abstraction introduced by these
tags allows appropriately designed module functions to use
different backends interchangeably, given that they calculate
the same quantity.

GAMBIT can currently communicate with backends writ-
ten in C, C++ and Fortran. However, we must pay some
attention to the differences between these languages. In par-
ticular, using a Fortran backend requires translating between
standard Fortran and C-family types, and using a C++ back-
end typically involves loading entirely new types from the
C++ library. We return to these topics in Sects. 4.4 and 4.5.

123

784 Page 18 of 70 Eur. Phys. J. C (2017) 77 :784

The interface to a backend library is declared in a frontend
header file, located in

Backends/include/gambit/Backends/frontends

and named after the backend. Thus, a backend called
MyBackend would be traditionally interfaced with GAM-
BIT via a frontend header MyBackend.hpp. To differ-
entiate multiple versions of the same backend, the ver-
sion number can be appended to the header name, e.g.
MyBackend_1_2.hpp for version 1.2 of MyBackend. Appli-
cations such as this, where the periods in the version number
are replaced with underscores, make use of what we refer to
as the safe version of a backend, i.e. a representation of the
version number that is safe to use when periods would be syn-
tactically hazardous. A frontend header starts by defining the
name, version and safe version of the backend, then imme-
diately calls the LOAD_LIBRARY macro, which takes care of
loading the backend shared library:

#define BACKENDNAME MyBackend
#define VERSION 1.2
#define SAFE_VERSION 1_2
LOAD_LIBRARY

4.1 Backend function declaration

The main pieces of information required to interface a back-
end function to GAMBIT are its return type, call signa-
ture and library symbol. The name mangling schemes of
g++/gfortran and icpc/ifort (the two main compiler suites
that GAMBIT supports; cf. Appendix B) are mostly con-
sistent, so a single symbol name can usually be entered
here for both compilers.7 In addition, the function must be
assigned a name and a capability. This is all specified via the
BE_FUNCTION macro. For instance, a C/C++ backend func-
tion with the declaration

double getMatrixElement(int, int);

could be registered in the frontend header as

BE_FUNCTION(getMatrixElement, double, (int, int),

"_Z13getMatrixElementii",

"rotation_matrix_element")

7 The symbols of a shared library, with names prepended by an addi-
tional underscore, can be obtained using the nm command. Functions
within Fortran modules are an exception to the consistency of name
mangling. The best way to deal with these is often to use the C-
interoperability features of Fortran to explicitly choose a symbol name,
taking the choice out of the hands of the compiler. An example of this can
be seen in DDCalc [110]. In future, GAMBIT will automatically deter-
mine the appropriate name mangling itself, according to the scheme of
the selected compiler.

where "_Z13getMatrixElementii" is the library sym-
bol and "rotation_matrix_element" is the capability we
assign to this function.

The macro BE_VARIABLE used to interface global vari-
ables in a backend library follows a similar syntax. If the
backend contains a global variable

double epsilon;

controlling the tolerance of some calculation, it can be reg-
istered as

BE_VARIABLE(epsilon, double, "_epsilon",
"tolerance")

with "_epsilon" the library symbol and "tolerance" the
capability assigned to the variable.

Backend functions and variables can be declared as either
model-independent or valid for use only with certain models,
just like module functions can. The default is to treat every-
thing as model-independent. To declare an alternative default
that applies to an entire backend, one places

BE_ALLOW_MODELS(model_α, model_β, ...)

directly after LOAD_LIBRARY. This has the effect of allowing
the entire backend to be used only if one or more of the listed
models is involved in a scan. This default can be further
overridden at the level of individual backend variables and
backend functions, by adding additional model arguments to
their declarations:

BE_FUNCTION(getMatrixElement, double, (int,int),

"_Z13getMatrixElementii",

"rotation_matrix_element",

(model_α, model_β, ...))

BE_VARIABLE(epsilon, double,

"_epsilon",

"tolerance",

(model_α, model_β, ...))

4.2 Convenience functions

If several backend function calls or variable manipulations
are commonly performed together, it may be useful to
combine these into a single backend convenience function.
Althought technically defined inside GAMBIT, this func-
tion will appear to the rest of GAMBIT as if it were sim-
ply another function in the backend library. Convenience
functions are registered in the frontend header with the
BE_CONV_FUNCTION macro. The syntax is identical to that
of BE_FUNCTION except that there is no need to specify a
library symbol, as the convenience function is not actually
part of the backend library.

BE_CONV_FUNCTION(getMatrix, Matrix<double,2,2>,

(), "full_rotation_matrix")

123

Eur. Phys. J. C (2017) 77 :784 Page 19 of 70 784

The definition of the convenience function can then either
be given directly in the frontend header, or in a separate
source file named after the backend, e.g., MyBackend.cpp,
and placed in the directory

Backends/src/frontends

In either case, the function definition must be placed
inside a designated namespace Gambit::Backends::

backend_name_safe_version, automatically generated with the
BE_NAMESPACE and END_BE_NAMESPACE macros.

BE_NAMESPACE
{

Matrix<double,2,2> getMatrix()
{

// Call getMatrixElement four times
// and return a complete matrix.

}
}
END_BE_NAMESPACE

All backend functions and variables registered with the
BE_FUNCTION and BE_VARIABLE macros (in the same fron-
tend) can be accessed directly in convenience functions, as
long as the body of the convenience function appears after
their declarations. This also applies to calling convenience
functions from each other.

Just like backend variables and regular backend functions,
backend convenience functions can be declared as model-
dependent, e.g.

BE_CONV_FUNCTION(getMatrix, Matrix<double,2,2>,

(), "full_rotation_matrix", (model_α,

model_β, ...))

4.3 Backend initialisation functions

A backend library will usually have to be initialised in some
way before any calculations can be performed. For instance,
variables storing masses and couplings may have to be reset
for every new parameter point. For this purpose, the user
can define a backend initialisation function. This is a special
kind of convenience function that automatically runs prior
to any other backend operations. An initialisation function
is registered by enclosing it within BE_INI_FUNCTION and
END_BE_INI_FUNCTION. These macros automatically set up
a void function taking no input arguments, so the user only
has to supply the function body. As for backend convenience
functions, this function definition can be placed either in the
frontend header file or in the corresponding source file.

BE_INI_FUNCTION
{

// Point-level initialisation.
}
END_BE_INI_FUNCTION

If some part of the initialisation only has to happen once for
an entire scan, this can be accomplished by using a static flag:

BE_INI_FUNCTION
{

static bool scan_level = true;
if(scan_level)
{

// Scan-level initialisation.
}
scan_level = false;

// Point-level initialisation.
}
END_BE_INI_FUNCTION

As with convenience functions, all registered backend func-
tions and variables from the same backend are directly acces-
sible from within the body of initialisation functions, so long
as the body appears after the functions and variables have
been declared.

To help with scan-level initialisation,GAMBIT provides a
flag for every registered backend function, variable and con-
venience function, indicating whether or not it will be used
in the upcoming scan. These flags are accessible only from a
backend’s initialisation function. The flags consist of pointers
to boolean variables placed in the InUse namespace, i.e.

bool *InUse::name

where name is the name of the backend function, variable
or convenience function as declared in the frontend header.
Some example usage of the backend function InUse flags
can be found in the fronted source files for nulike [15,53]
and DDCalc [110].

Some backends write temporary files to disk during
scan-level initialisation, which means that they cannot
be safely initialised simultaneously in different MPI pro-
cesses.8 For such cases we provide a simple locking utility
(Utils::FileLock) that can be employed to force serial exe-
cution of any block of code; example usage can be seen in the
frontends to HiggsBounds and HiggsSignals [128–130].

In fact, backend initialisation functions are
actually promoted to module function status, and associ-
ated with a special GAMBIT-internal module called Back-
endIniBit. This is how GAMBIT ensures that they always
run before any other functions from their backend are
used. This also allows backend initialisation functions
to depend on input from other GAMBIT module func-
tions. This is declared using the BE_INI_DEPENDENCY and
BE_INI_CONDITIONAL_DEPENDENCY macros. These follow
exactly the same syntax as the DEPENDENCY and
MODEL_CONDITIONAL_DEPENDENCYmacros for module func-
tions (Sect. 3.1.2):

8 This is also to be discouraged on basic efficiency grounds.

123

784 Page 20 of 70 Eur. Phys. J. C (2017) 77 :784

BE_INI_DEPENDENCY(capability, type)
BE_INI_CONDITIONAL_DEPENDENCY(capability, type, model_
α, model_β, ...)

Thus, a backend initialisation function that needs to know the
particle spectrum for the given parameter point could declare
a dependency similar to

BE_INI_DEPENDENCY(particle_spectrum, Spectrum)

This will be fulfilled if some module function can provide
the capability particle_spectrum of type Spectrum. The
dependency can then be accessed from within the function
body of the initialisation function,

const Spectrum& my_spec = *Dep::particle_spectrum;

This is similar to the way module functions access their
dependencies (Sect. 3.2.1), except that for backend initial-
isation functions there is no need to specify the namespace
Pipes::function_name.

4.4 Backend types

Backend functions and variables will often require types that
are not known to GAMBIT, and which therefore need to
be defined. For C and Fortran backends, these types are
typically structs or typedefs involving only built-in C types.
In this case the required definitions can be placed directly in
a designated backend types header, named after the backend
and placed in

Backends/include/gambit/Backends/backend_types

The types must live within the Gambit namespace, e.g.,

namespace Gambit
{

struct Triplet
{

double x, y, z;
};

}

but additional sub-namespaces can of course be used.
To ease the process of generating these type declarations

and the BE_FUNCTION and BE_VARIABLE declarations that
use them, GAMBIT ships with a simple utility for parsing
Fortran backend code: CBGB, the Common Block har-
vester for GAMBIT Backends. CBGB automatically gen-
erates GAMBIT code that declares the necessary backend
types, functions and variables, according to the list of func-
tions and common blocks that a user chooses to interface with
GAMBIT. CBGB is written in Python and can be found in
Backends/scripts/CBGB.

CBGB takes a single configuration file as input. This
file is written in Python syntax and must be placed in

Backends/scripts/CBGB/configs. An annotated exam-
ple detailing all options and variables can be found in

Backends/scripts/CBGB/configs/example.py.

The most important variables to set in the configuration
file are the three lists input_files, load_functions and
load_common_blocks. We illustrate their use with a simple
example, assuming a Fortran backend FortranBE v1.1:

input_files =
["../../installed/FortranBE/1.1/src/main.f
90"]

load_functions = ["f1", "f2"]
load_common_blocks = ["cb"]

Here CBGB would parse the Fortran file main.f90 and
generate the BE_FUNCTION declarations needed to load the
functions/subroutines f1 and f2, as well as the type and
BE_VARIABLE declarations required to load the common
block cb. The file paths in input_files must either be
absolute paths or relative to the Backends/scripts/CBGB

directory. To ensure that the library symbol names used in
BE_FUNCTION and BE_VARIABLE match those in the back-
end shared library, CBGB must also know which name
mangling scheme to use. This is specified via the variable
name_mangling, which can be set to either "gfortran",
"ifort" or "g77".

Once the configuration file is ready, CBGB can be run by
passing in this file as a command line argument, e.g.

python cbgb.py configs/FortranBE.py

The generated GAMBIT code is stored in the output files
backend_types_code.hpp and frontend_code.hpp. In
this example, the code in backend_types_code.hpp should
be used in the backend types header Backends/include/

gambit/Backends/backend_types/FortranBE_1_1.hpp,
while the code in frontend_code.hpp should go in the
frontend header Backends/include/gambit/Backends/

frontends/FortranBE_1_1.hpp.
As GAMBIT itself is written in C++, interfacing with

a Fortran backend requires translation between the For-
tran types used in the backend and the corresponding C-
family types. Therefore,GAMBIT provides several Fortran-
equivalent types and typedefs for use in communicating with
Fortran backends, with names indicating which Fortran
type they correspond to:

Flogical
Flogical1
Finteger
Finteger2
Finteger4
Finteger8
Freal
Freal4
Freal8
Freal16

123

Eur. Phys. J. C (2017) 77 :784 Page 21 of 70 784

Fdouble
Fdoubleprecision
Fcomplex
Fcomplex8
Fcomplex16
Fdouble_complex
Flongdouble_complex
Fcharacter

These are the types that CBGB makes use of in the gen-
erated GAMBIT code. In cases where CBGB fails to cor-
rectly parse the Fortran code, the user must manually specify
type, BE_VARIABLE and BE_FUNCTION declarations using the
above Fortran-equivalent types.

There are important differences in how arrays are treated
inFortran compared toC/C++. First, the lower array index in
Fortran is by default 1, in contrast to C/C++ arrays, which
count from 0. More generally, Fortran allows the user to
specify arbitrary index ranges, something that is not allowed
in C/C++. In the case of multidimensional arrays, C/C++

arrays are stored in memory in row-major order, whereas
Fortran arrays use column-major ordering, and the two types
of arrays are therefore effectively transposed with respect to
each other. To save the user from having to deal with these
complexities, GAMBIT provides an Farray class for work-
ing with Fortran arrays. This class provides basic Fortran
array semantics directly in C++ code. The class is templated
on the array type and index ranges. Thus, a two-dimensional
integer array with index ranges 1–3 and 1–4 can be declared
as

Farray<Finteger,1,3,1,4> my_f_array;

We also provide a special Fstring class for working with
Fortran strings. It takes the string length as a template argu-
ment

Fstring<4> my_f_string;

Similar to regular Fortran strings, any string longer than the
specified length will be truncated, and shorter strings will be
padded with trailing spaces.

More information about the GAMBIT Fortran compati-
bility types can be found in the in-codeGAMBIT documenta-
tion (cf. Sect. 10.7), and inUtils/include/gambit/Utils/

util_types.hpp.

4.5 Loading C++ classes at runtime with BOSS

Most physics tools written in C or Fortran are fundamen-
tally just collections of functions and variables of standard
types. In contrast, C++ tools typically define a number of
new classes for the user to work with. Unfortunately, there
exists no standard way of loading an arbitrary C++ class
from a shared library at runtime. The dl library, itself writ-
ten in C, only provides access to functions and global vari-
ables. This limitation can be overcome if the main application

has a predefined class interface that classes in the shared
library are forced to adhere to; this is the so-called ‘fac-
tory’ pattern. This is unproblematic as long as all plug-ins
are developed after the main application, which is normally
the case. In GAMBIT, however, we face the reverse problem
of turning already existing C++ physics tools into plug-ins
for GAMBIT. To solve this problem we have developed the
Python-based Backend-On-a-Stick Script (BOSS), which
we describe here.

Strategies for runtime loading of classes are essentially
always based on the C++ concept of polymorphism. One
constructs a class interface from a base class containing a set
of virtual member functions. These are functions for which
the signature is defined, but where the actual implementa-
tion is expected to be overridden by classes that inherit from
the base class. The idea can be illustrated by considering
a base class Polygon containing a virtual member function
calculateArea. From this base class two derived classes
Triangle and Rectangle can be defined. Both classes
should contain a calculateArea member function, but their
implementations of this function would differ.

In plug-in, i.e. factory-based, systems, the main applica-
tion defines the base class, while the plug-ins provide the
specialized classes deriving from the base class. The main
application can then be designed with the assumption that
any future class passed in from a plug-in will have the prede-
fined set of member functions, whose implementations live in
the shared library that is loaded at runtime. The shared library
also contains factory functions, one for each class it provides.
These are functions that return a pointer to a newly created
instance of a plug-in class. When a new class instance is
required, the main application calls the correct factory func-
tion and interprets the pointer it receives as pointing to an
instance of the known base class.

The purpose of BOSS is to reverse-engineer such a plug-
in system for every backend class that is to be used from
GAMBIT. Starting from a class X defined in the backend
library, BOSS must generate source code for a base class
with matching pure virtual member functions, as well as
code for factory functions corresponding to the constructors
X(...). The generated base class is called Abstract_X, as
classes containing pure virtual member functions are gen-
erally referred to as abstract classes. The source code for
Abstract_X is added to both the backend source code and
to GAMBIT. On the backend side, some additional source
code is also inserted in the original class X, most importantly
adding Abstract_X to the inheritance list of X. If class X

originally inherits from a parent class Y, the abstract classes
generated by BOSS mirror this structure. The resulting ‘lad-
der pattern’ is illustrated in Fig. 3.

When the ladder structure is complete, the basic ingredi-
ents for a plug-in system are in place. However, from the user
perspective there are several limitations and inconveniences

123

784 Page 22 of 70 Eur. Phys. J. C (2017) 77 :784

Fig. 3 The basic class ‘ladder’ pattern generated by BOSS in order to
allow runtime loading of classes X, Y and Z, where Z is the parent of Y,
which is in turn the parent of X. The original class hierarchy is mirrored
by the abstract parent classes generated by BOSS. Virtual inheritance,
illustrated here by dashed arrows, is used to avoid ambiguities. Member
functions in the original classes are matched by pure virtual member
functions in the abstract classes

inherrent in such a minimal system. For example, the factory
functions must be called to create class instances, and class
member variables cannot be accessed directly. To overcome
such limitations, BOSS generates an additional layer in the
form of an interface class, which mimics the user interface of
the original class. It is this interface class that a user interacts
with from withinGAMBIT. The generated class is placed in a
namespace constructed from the backend name and version,
so if our example class X is part of MyBackend v1.2 the
full name of the interface class will be MyBackend_1_2::X.
However, from within a GAMBITmodule function using this
class, the shorter name X can be used.

Fundamentally, the interface class is just a wrapper for a
pointer to the abstract class. Through a factory function, this
pointer is initialised to point to an instance of the orginal class,
thus establishing the connection between GAMBIT and the
original class living in the backend library. In the example
considered above, the class MyBackend_1_2::X would hold
a pointer of type Abstract_X, pointing to an instance of
X. This system is illustrated in Fig. 4. Note that the source
code for the interface class is also inserted into the backend
library. This allows BOSS to generate wrapper functions for
any global library functions where the original class appears
in the declaration.

When a GAMBIT module function requires classes from
a backend library, this must be specified in the function’s
rollcall header entry by adding the macro

Fig. 4 Schematic diagram of the plug-in system generated by BOSS
for the case where a backend library MyBackend 1.2 contains a sin-
gle class X. For every constructor in X, a factory function returning a
pointer to a new X instance is added to the library. An abstract base class
Abstract_X and an interface class MyBackend_1_2::X are gen-
erated and added to both the backend library and GAMBIT. The inter-
face class MyBackend_1_2::X wraps a pointer to Abstract_X.
The factory function initialises this pointer with an instance of X, allow-
ing GAMBIT to communicate with the original library class

NEEDS_CLASSES_FROM(backend_name, versions)

Here versions is an optional comma-separated list of permit-
ted backend version numbers. If versions is left out or set
to default, GAMBIT will use the default backend version
specified in the header file Backends/include/ gambit/

Backends/default_bossed_versions.hpp. Here a defa-
ult version can be chosen by setting a precompiler variable
Default_backend_name to the desired safe version number,
e.g.

#define Default_MyBackend 1_2

BOSS itself is the stand-alone Python program

Backends/scripts/BOSS/boss.py

For parsing the backend library source code BOSS employs
the open-source toolCastXML.9 The basic input toBOSS is
a configuration file, written in Python, containing informa-
tion about the backend library code that is to be ‘BOSSed’.
The configuration file should be placed in the configs subdi-
rectory of the main BOSS directory. Here we will briefly go
through the most important parts of the configuration file. For
a complete list of options and variables we refer the reader
to the example

Backends/scripts/BOSS/configs/Example_1_234.
py

First the name and version number that GAMBIT should
associate with the BOSSed library is set via the two variables
gambit_backend_name and gambit_backend_version.

9 http://github.com/CastXML/CastXML.

123

http://github.com/CastXML/CastXML

Eur. Phys. J. C (2017) 77 :784 Page 23 of 70 784

gambit_backend_name = "MyBackend"
gambit_backend_version = "1.2"

Then follows a set of path variables. All paths must be given
either as absolute paths or relative to the main BOSS direc-
tory. Consider the following example:

input_files =
["../../installed/MyBackend/1.2/include/
X.hpp"]

include_paths =
["../../installed/MyBackend/1.2/include"]

base_paths = ["../../installed/MyBackend/1.2"]

Here we assume that our example backend MyBackend 1.2
is located in

Backends/installed/MyBackend/1.2

The input_files variable is a list of the header files that
contain the declarations for the classes and functions that are
to be used from GAMBIT. Next, include_paths lists the
paths whereCastXML should search for any header files that
are included from one of the input files. Finally, base_paths
is a list of the base directories of the backend library. This is
used byBOSS to differentiate between classes that are native
to the backend and classes that are pulled in from external
libraries.

BOSS generates a number of header and source files that
must be included when the BOSSed backend is compiled
into a shared library. The output paths for these files are set
with the variables header_files_to and src_files_to,
for instance

header_files_to =

"../../installed/MyBackend/1.2/include"

src_files_to = "../../installed/MyBackend/1.2/src"

The next two variables, load_classes and
load_functions, are lists containing the fully qualified
names of the classes and functions to be loaded for use
in GAMBIT. If we assume that in addition to the class X,
MyBackend also contains a global function addX for adding
two instances of X, we may have

load_classes = ["X"]
load_functions = ["addX(X, X)"]

Typically users will only need access to a subset of all the
classes defined in the library, so only a subset of the avail-
able classes will be listed in load_classes. BOSS will
then automatically limit the user interface of the BOSSed
library to make sure that only functions and variables that
make use of the loaded library classes and standard C++

types are accessible from GAMBIT. However, if the back-
end library includes some classes that are also independently
included in GAMBIT, functions and variables relying on
these classes should also be allowed as part of the BOSSed

library interface. Such classes can be listed in the dictionary
known_classes. Here the dictionary key is the class name
and the corresponding value is the header file where the class
is declared.

BOSS is run by passing in the configuration file as a
command line argument. For instance, with a configuration
file configs/MyBackend_1_2.py, the command is simply

python boss.py configs/MyBackend_1_2.py

When BOSS finishes, a short set of instructions on how
to connect the BOSSed library with GAMBIT is printed to
stdout. Several of the variables in the configuration file can
also be set directly as command line arguments to BOSS.
For a complete list of arguments with explanations, see the
output of the command

python boss.py --help

Although BOSS is able to provide runtime loading for
most C++ classes and functions, there are some cases that the
plug-in system generated by BOSS cannot handle yet. Most
importantly, BOSS currently does not work with backend
template classes, nor specialisations of C++ standard tem-
plate library (STL) classes where the template parameter is a
backend class. Further, the use of function pointers as func-
tion arguments or return types, and the use of C++11 features
in function declarations, is only partially supported. When
a limitation only affects a class member function or vari-
able, BOSS will attempt to generate a limited class interface
where the problematic element is excluded. Future versions
of BOSS will improve on these limitations.

4.6 Backend information utility

Although most users will never have need to access it
directly, we briefly point out here that a global backend
information object exists in GAMBIT. It can be accessed
by reference from any module function using the function
Backends::backendInfo(). It provides a plethora of run-
time information about which backends are presently con-
nected, their versions, functions, classloading status and so
on. The mostly likely use cases from within module func-
tions for this object are to determine the folder in which a
loaded backend resides:

std::string path_to_MyBackend_1_2 = Backends::

backendInfo().path_dir("MyBackend", "1.2");

or to get the default version of a BOSSed backend required
by an unversioned NEEDS_CLASSES_FROM declaration:

std::string default_MyBackend = Backends::
backendInfo().default_version("MyBackend");

The full interface to this object can be found in Backends/

include/gambit/Backends/backend_info.hpp.

123

784 Page 24 of 70 Eur. Phys. J. C (2017) 77 :784

5 Hierarchical model database

In GAMBIT, a model is defined to be a collection of named
parameters. These parameters are intended to be sampled by
some scanning algorithm, according to some chosen prior
probability distribution.10 The physical meaning of these
parameters is defined entirely by how they are interpreted by
module functions. It is up to the writers of modules to ensure
that parameters are used in a consistent manner. Consistent
usage is facilitated by the GAMBIT model database that the
dependency resolver (Sect. 7) employs in order to automati-
cally determine which module functions are compatible with
which models. Module functions that are incompatible with
the model(s) selected for scanning are disabled at runtime,
and not considered during dependency resolution.

5.1 Model declaration

GAMBIT ships with a pre-defined selection of common mod-
els (Sect. 5.4). New models can be defined easily by adding
an appropriate declaration in a new C++ header file located
in the folder

Models/include/gambit/Models/models

When the GAMBIT build configuration is next re-run (see
Sect. 11), the new model will be automatically detected and
registered. The declarations of all the pre-defined models can
also be found in this folder.

The syntax for declaring a simple two parameter model
my_model with parameters my_par1 and my_par2 is:

#define MODEL my_model
START_MODEL
DEFINEPARS(my_par1, my_par2)
#undef MODEL

The START_MODEL command creates a ModelParameters

object for the given model, which will hold the values of the
parameters chosen at runtime by ScannerBit, and commu-
nicate them to relevant module functions during a scan. The
macro DEFINEPARS is variadic, and can take up to 64 param-
eters (or more, depending on the user’s version of Boost).
If one prefers to break a long list of parameters into several
pieces, this macro can be reused as many times as desired.

It is often the case that models will be subsets of a more
general model, in the sense that a mapping from the general
model to the more constrained model can be constructed.
This hierarchical relationship between models is handled in
GAMBIT by defining the general model to be a parent of the
constrained model, with the constrained model being recip-
rocally defined as a child of that parent. The mapping from

10 For frequentist sampling, the prior simply defines the distance mea-
sure on the parameter space to be used internally by the scanning algo-
rithm when choosing new points.

the child parameters to the parent parameters is encoded in
a translation function, which GAMBIT will call automati-
cally when needed. Each parent model may have multiple
children, however, a child model has only one parent. The
“family tree” of any given model is thus a directed rooted
tree graph, with the root of the tree being the common ances-
tor of all other models in the graph. The complete model
database consists of a disconnected set of such family trees,
see Fig. 2. When assessing the compatibility of module func-
tion with the model(s) being scanned, the GAMBIT depen-
dency resolver automatically treats all module functions that
declare compatibility with a given model as also compatible
with all descendents of that model.

To declare that a model has a parent model parent, and
assign a function to_parent capable of performing the trans-
lation from the child to the parent parameter set, the model
declaration can be expanded to the following:

#define PARENT parent
#define MODEL my_model
START_MODEL
DEFINEPARS(my_par1, my_par2)
INTERPRET_AS_PARENT_FUNCTION(to_parent)
#undef MODEL

#undef PARENT

If a model is declared to have a parent but no translation func-
tion, any attempt to use another function that depends on the
translation will trigger a runtime error from the dependency
resolver. Further details on declaring and defining transla-
tion functions can be found in Sect. 5.3. Note that we are
only dealing with the abstract concept of translation func-
tions between different model parameter spaces at this stage,
not the actual physics of any translations in any given class of
models. The actual translations between the models imple-
mented in GAMBIT 1.0 are implied by the relations between
parent and child models described in Sect. 5.4.

Putting these aspects together, complete model declara-
tions can be very simple, as in the CMSSM:

// Must include models that are targets of
// translation functions
#include "gambit/Models/models/NUHM1.hpp"

#define MODEL CMSSM

#define PARENT NUHM1

START_MODEL

DEFINEPARS(M0,M12,A0,TanBeta,SignMu)

INTERPRET_AS_PARENT_FUNCTION(CMSSM_to_NUHM1)

// Translation functions defined in CMSSM.cpp
#undef PARENT

#undef MODEL

This declaration can be found in the model header Models/
include/gambit/Models/models/CMSSM.hpp.

Directed cross-links between branches of a family tree, or
even between trees, are also possible. Models related in this

123

Eur. Phys. J. C (2017) 77 :784 Page 25 of 70 784

way are denoted as friend models, though the relationship
is not automatically mutual. If a model my_model has a friend
model friend, then a function to_friend must also exist that can
translate the parameters of my_model into those of friend. To
declare such a relationship, one inserts the following into the
model declaration for my_model:

INTERPRET_AS_X_FUNCTION(friend, to_friend)

With the addition of friend translations, the model hier-
archy graph can become arbitrarily complicated. To avoid
painful manual resolution of ambiguous translation path-
ways between models, it can be advisable to limit the num-
ber of friend links. Nevertheless, a large number of the pos-
sible ambiguities are automatically resolved by the default
behaviour of the dependency resolver to prefer child-to-
parent links over child-to-friend links. This behaviour can
be disabled by switching the prefer_model_specific_

functions option in the KeyValues section of the initialisa-
tion file to false. Manual resolution of all translation path-
way ambiguities will then be required. Alternatively, one can
simply add a Rule that overrides the default in a specific case.
See Sect. 6 for details.

In some cases the translation from child to parent model, or
to a friend model, may require the result of a calculation from
a module function. It is therefore possible to declare depen-
dencies for translation functions, which are directly analo-
gous to the dependencies declared by module functions.11

In general, translation functions can depend on any other
capability, which may be filled by functions from any mod-
ule. The dependency resolution system ensures consistency
of the requested and provided dependencies of all translation
functions in such cases. For example, the translation func-
tions might depend on some aspect of the particle spectrum,
and may involve translation of parameters from one renor-
malisation scheme to another, from a UV-complete theory
to an EFT, or from one renormalisation scale to another. In
these examples, the dependencies would be most naturally
resolved from SpecBit, if it possesses the relevant capability
for the model in question; we refer readers to Ref. [111] for
details of the functionalities available from this module.

To declare a dependency on some capability with C++ type

for a child-to-parent translation function, one adds the fol-
lowing to the model declaration for the child:

INTERPRET_AS_PARENT_DEPENDENCY(capability, type)

To declare such a dependency for a translate-to-friend func-
tion, one instead adds:

INTERPRET_AS_X_DEPENDENCY(friend, capability, type)

11 Internally, the translation functions actually are module functions,
each belonging to a virtual module named after their source model.

where friend is the name of the target friend model. These
declarations must appear after the declaration of the corre-
sponding translation function.

The full machinery for declaring dependencies with com-
plicated conditions on groups of models and backend choices
– which is available for standard module functions – is not
available for the dependencies of model translation functions.
If this machinery is required, one should write a module func-
tion that uses it and returns a result associated with a new
capability, which can then be made accessible in a translation
function using the above declarations. In the most extreme
case, this module function may perform the complete param-
eter translation and then simply store the results in a tempo-
rary ModelParameters object, which can then be retrieved
by the “true” translation function via the above mechanism
and simply copied into the target model ModelParameters
object (see Sect. 5.3).

5.2 Model capabilities

In some cases a parameter in a model may directly cor-
respond to a physically meaningful quantity. This quantity
may be available already, computed in an alternate way, as
the capability of some existing module function. One may
wish to have the alternative of simply using the value of
the parameter to satisfy the dependencies of other module
functions on this quantity, rather than the module function
calculation. It can therefore be convenient to directly inform
GAMBIT of this correspondence when declaring a model.
To declare this kind of relationship between a parameter my_

par and a capability capability, one adds the following to the
declaration of the model containing my_par:

MAP_TO_CAPABILITY(my_par, capability)

Of course the same could be achieved by manually creat-
ing a trivial module function that takes the model parameters
as input, and then directly outputs one of them as its capa-
bility. Internally, MAP_TO_CAPABILITY causes GAMBIT to
create a virtual module function of precisely this kind, but it
is convenient to have this task performed automatically.

The module function so created has the same name as the
parameter being mapped, and lives in the module correspond-
ing to the model to which it belongs. Take the example of the
top mass, a parameter of the demo_A model found (com-
mented out) inModels/include/gambit/Models/models/

demo.hpp:

MAP_TO_CAPABILITY(Mstop, Mstop_obs)

This declaration creates a new module function called Mstop,
with capability Mstop_obs and return type double, and
places it within the module named after demo_A. The func-
tion demo_A::Mstop simply returns the value of the Mstop

parameter as it varies during a scan of demo_A.

123

784 Page 26 of 70 Eur. Phys. J. C (2017) 77 :784

This convenience facility exists for the simplest case only.
In the case where the correspondence is not direct – for exam-
ple, if a factor of two or a change of units is required, or if a
dependency on some other calculation exists – then manually
adding an additional module function to do the transforma-
tion is the only option.

5.3 Defining translation functions

In Sect. 5.1 we discussed how to declare a translation path-
way between two models; we now turn to how to define the
functions that actually perform the translation. These may or
may not involve calculations relating to the spectrum (as in
the example the referee is thinking of). , so in this case, they
would depend on functions from SpecBit. The full details of
how those functions work is provided in the SpecBit, Decay-
Bit and PrecisionBit paper (1705.07936). In particular, this
includes translations between pole and running masses in
different schemes and EFTs.

The function definition can either be placed directly into
the header file in which the source model is declared, or into
a separate source file that includes the header. In the former
case, the function body must appear after the INTERPRET_AS

macro that declares it. In the latter case, the source file should
be placed in

Models/src/models

to be properly auto-detected by the GAMBIT build sys-
tem. Some extra headers providing additional helper macros
should be included, and the names of the model and its parent
redefined in order for the helpers to work properly. A basic
template for such a file is:

#include "gambit/Models/model_macros.hpp"
#include "gambit/Models/model_helpers.hpp"
#include "gambit/Models/models/my_model.hpp"

#define MODEL my_model
#define PARENT parent

// function definition

#undef PARENT
#undef MODEL

Consider the following example function definition:

void MODEL_NAMESPACE::to_parent(const
ModelParameters& myparams, ModelParameters&
parentparams)

{
double x = myparams["my_par"];
parentparams.setValue("parent_par", 2*x);

}

Although this example is a child-to-parent translation func-
tion, the syntax is the same for child-to-friend functions. The

translation function must return void, and take two argu-
ments by reference: the source model parameters (which are
const), and the target model parameters (of either the par-
ent or friend model). The helper macro MODEL_NAMESPACE

places the function in the correct namespace (Gambit::
Models::MODEL), and relies on MODEL having been defined
appropriately. On the first line of the function body, a param-
eter my_par is retrieved from the ModelParameters object,
which contains the parameters of the source model. The value
of this parameter is stored in the variable x. This is then mul-
tiplied by two, and used to set the value of the target model
parameter parent_par, completing the parameter translation.

This example assumes that the target model has only one
parameter, parent_par. Often a source and target model will
have many overlapping parameters, and it is convenient to
have a mechanism for copying all of these automatically,
without modification. This can be done using the setValues

member function of the target ModelParameters object:

parentparams.setValues(myparams, true);

The second parameter is optional, and true by default. This
triggers an error if any of the parameters in myparams (from
my_model) are missing from parentparams (from parent), i.e.
if the source model parameter names are not a subset of the
target model parameter names. Setting this false causes
matching parameters to be copied but unmatched parame-
ters to be ignored.

A real-world example that make use of setValues is the
the CMSSM-to-NUHM1 translation function (which was
declared in Sect. 5.1):

#define MODEL CMSSM

void MODEL_NAMESPACE::CMSSM_to_NUHM1

(const ModelParameters &myP,

ModelParameters &targetP)

{

logger()<<"Running interpret_as_parent "

<<"calculations for CMSSM --> NUHM1."

<<LogTags::info<<EOM;

// Send all parameter values upstream
// to matching parameters in parent.
targetP.setValues(myP);

// Set NUHM1 parameter m H equal to m0.
targetP.setValue("mH", myP["M0"]);

}

#undef MODEL

This function can be found in Models/src/models/ CMSSM.

cpp.
To retrieve dependencies on externally-calculated quanti-

ties, one uses regular module function syntax

123

Eur. Phys. J. C (2017) 77 :784 Page 27 of 70 784

USE_MODEL_PIPE(target)
const type* my_variable = *Dep::capability;

where the USE_MODEL_PIPE macro simply expands to a
using statement that brings thepipes for the translation func-
tion into the current namespace, making the Dep::capability

pointer easily accessible. The argument should be the name of
the target (parent or friend) model, i.e.USE_MODEL_PIPE(friend)

or USE_MODEL_PIPE(PARENT) (remembering that PARENT is
a macro holding the actual parent model, defined in the model
header).

5.4 Models defined in GAMBIT 1.0.0

Here we list the models already defined in the first release
of GAMBIT, along with their parameters. The relationships
between these models can be seen in Fig. 2.

5.4.1 Standard model

The SM exists in two parts within GAMBIT. The Higgs
mass must be specified separately from the rest of the SM
parameters, as it is often contained within the definition of
BSM theories featuring BSM Higgs sectors. For those the-
ories that do not include their own Higgs sector, e.g. Sin-
gletDM, we therefore provide additional models containing
the Higgs mass as a parameter: StandardModel_Higgs
and StandardModel_Higgs_running. Typically, one of
these models should be scanned over in tandem with the rest
of the SM (StandardModel_SLHA2) and the BSM the-
ory in question. To investigate just the SM itself, one should
perform a simultaneous scan of StandardModel_SLHA2
and either StandardModel_Higgs or StandardModel_
Higgs_running.

StandardModel_SLHA2: CKM_A, CKM_etabar,CKM_

lambda, CKM_rhobar, GF, alpha1, alpha2,

alphaS, alphainv, delta13, mBmB, mCmC, mD,

mE,mMu, mNu1, mNu2, mNu3, mS, mT, mTau, mU,

mZ, theta12, theta13, theta23.
This model contains the SM parameters defined in the
SMINPUTS,VCKMIN andUPMNSIN blocks of the sec-
ond SUSY Les Houches Accord (SLHA2; [167]). This
includes the Z pole mass, the Fermi (weak) coupling
GF, the strong and electromagnetic couplings at scale
m Z in the M S renormalisation scheme, pole masses for
leptons, neutrinos and the top quark, running masses for
other quarks in the M S scheme (at scale mb for b, mc for
c and 2 GeV for u, d and s), the CKM mixing matrix in
Wolfenstein parameterisation, and the PMNS matrix,
characterised by three mixing angles and three C P-
violating phases. To convert the Wolfenstein parame-
ters into VCKM entries internally, we use the 9th-order

expansions of Ref. [32]. More detailed definitions of
these parameters can be found in Appendix C.

StandardModel_Higgs_running: QEWSB, mH.
This model provides a description of the SM Higgs
sector in terms of m2

H , the bare Higgs mass param-
eter in the SM Lagrangian at scale m Z . The vacuum
expectation value of the SM Higgs field at m Z can
be obtained from the StandardModel_SLHA2 as
v0 = (

√
2GF)−1/2. This model is intended for use in

situations where the Higgs potential is run to differ-
ent scales, e.g. for calculating pole masses or investi-
gating vacuum stability. It therefore also contains one
additional parameter: QEWSB, the scale at which the
electroweak symmetry-breaking (EWSB) consistency
condition that the Higgs potential possess a tree-level
minimum is imposed. Although in principle physical
properties should not depend on its value, typically one
prefers to take QEWSB ∼ mt in order to minimise errors
from neglecting higher-order loops. It is common to
vary this parameter by a factor of a few in order to
try to quantify the uncertainty in resulting pole masses
from missing loop terms.

StandardModel_Higgs: mH.
Unlike theStandardModel_Higgs_runningmodel,
the tree-level Higgs mass mh is taken as the free param-
eter ofStandardModel_Higgs, but interpreted direc-
tly as the pole mass for most calculations. This gener-
ally removes the need to calculate it via renormalisa-
tion group running in any higher-energy theory. For
simple calculations, this allows a cut-down GAMBIT
Spectrum object to be produced, with no ability to run,
and the Higgs ‘pole’ mass extracted from it by sim-
ply accessing the value of the tree-level parameter for
the given point in parameter space. When observables
are to be calculated that genuinely need to use running
parameters, the model point is up-translated to a param-
eter point in the StandardModel_Higgs_running
(the parent model), where m2

H at scale m Z is set equal
to the square of the tree-level mass, and QEWSB is
set to mt . This is useful for more detailed calculations
involving module functions that explicitly require the
running mass parameter ofStandardModel_Higgs_
running, and/or functions that need accurate pole
masses calculated by including the Higgs sector in
renormalisation calculations.

5.4.2 Scalar singlet

The scalar singlet is the simplest possible model for DM,
consisting of a single additional scalar field S uncharged
under the gauge symmetries of the SM, and stabilised by

123

784 Page 28 of 70 Eur. Phys. J. C (2017) 77 :784

a Z2 symmetry. The additional renormalisable Lagrangian
terms permitted by general symmetry arguments are

LSS = 1

2
μ2

S S2 + 1

2
λhS S2|H |2 + 1

4
λS S4 + 1

2
∂μS∂μS. (1)

From left to right, these are: the bare S mass, the dimension-4
Higgs-portal coupling, the S quartic self-coupling, and the
kinetic term. The latter plays no role in phenomenology, leav-
ing three free parameters of the theory: μ2

S , λhS and λS . After
EWSB, the singlet mass receives an additional contribution
from the Higgs-portal term, leading to a tree-level mass of

mS =
√

μ2
S + 1

2
λhSv

2
0 . (2)

This model has been subjected to global fits in Refs. [99,107,
121].

SingletDM_running: lambda_S, lambda_hS, mS.
This model has μ2

S , λhS and λS at scale m Z as free param-
eters, allowing full calculation of pole masses, renormal-
isation group running and vacuum stability.

SingletDM: lambda_hS, mS.
The relationship between SingletDM and SingletDM_
running is analogous to the one between
StandardModel_Higgs andStandardModel_Higgs_
running.SingletDM has mS as a free parameter, leading
to two use cases. The first is to interpret the model param-
eter directly as the pole mass for S and do phenomenology
without any spectrum calculation; the second is to take
the parameter mS as the tree-level estimate of the mass,
use Eq. 2 to recover μ2

S matched to the tree-level mass
at scale m Z , and calculate the pole mass accordingly in
the parent model SingletDM_running. One chooses
between these two options by selecting which function
from SpecBit to obtain a Spectrum object from. Sin-
gletDM includes the Higgs-portal coupling λhS identi-
cally to the parent model, which we also set the run-
ning coupling at m Z to when translating a SingletDM
model point to aSingletDM_running point. It however
does not include any description of the quartic coupling.
This is because the S self-coupling term only plays a
role in observables via RGE running, such as in the cal-
culation of pole masses and analysis of Higgs vacuum
stability. When translating to the parent model, we there-
fore explicitly choose the quartic coupling to be absent
at scale m Z (even though it will be regenerated at other
scales under RGE flow):

λS(m Z) = 0. (3)

5.4.3 Weak-scale MSSM

These models feature MSSM soft SUSY-breaking Lagrangian
parameters defined at a chosen scale Q, typically set to some-
thing near the weak scale.

The MSSM is the version of SUSY containing the least
additional field content beyond the SM. Its Lagrangian (see
e.g. [168])

LMSSM = LSUSY-SM + Lsoft, (4)

is obtained by supersymmetrising the (pre-EWSB) SM
Lagrangian to findLSUSY-SM, and augmenting it with all pos-
sible renormalisable soft SUSY-breaking terms that conserve
both baryon (B) and lepton number (L). These soft terms are

Lsoft = −1

2

[
M1

¯̃B0 B̃0 + M2
¯̃WAW̃A + M3 ¯̃gB g̃B

]
(5a)

− i

2

[
M ′

1
¯̃B0γ5 B̃0 + M ′

2
¯̃WAγ5W̃A + M ′

3
¯̃gBγ5g̃B

]
(5b)

− εab

[
bHa

u Hb
d + h.c.

]
− m2

Hu
|Hu |2 − m2

Hd
|Hd |2

(5c)

+ ∑
i, j=1,3

{
−

[
Q̃†

i (m
2
Q)i j Q̃ j + d̃†

Ri (m
2
d)i j d̃R j

+ ũ†
Ri (m

2
u)i j ũR j + L̃†

i (m
2
L)i j L̃ j + ẽ†

Ri (m
2
e)i j ẽR j

]
(5d)

− εab

[
(Tu)i j Q̃a

i Hb
u ũ†

R j − (Td)i j Q̃a
i Hb

d d̃†
R j

− (Te)i j L̃a
i Hb

d ẽ†
R j + h.c.

]
(5e)

− εab

[
(Cu)i j Q̃a

i H∗b
d ũ†

R j − (Cd)i j Q̃a
i H∗b

u d̃†
R j

− (Ce)i j L̃a
i H∗b

u ẽ†
R j + h.c.

]}
. (5f)

Here we explicitly sum over the generation indices i and
j , and imply summation over the gauge generator indices
A = 1 · · · 3 and B = 1 · · · 8, as well as the SU (2)L indices
a, b = 1, 2. Here εab is the two-dimensional completely anti-
symmetric tensor, defined such that ε12 = −ε21 = 1. Super-
particle fields are denoted by tilded operators (Q̃ j , ũ†

R j , etc.),

where B̃0, W̃A and g̃B are the superpartners of the SM gauge
bosons. Fields denoted with capital letters are SU (2)L dou-
blets (Qi ≡ (uLi , dLi)

T, etc), whereas lowercase fields are
SU (2)L singlets. The subscripts u and d refer to the two
Higgs doublets, which give masses separately to up- and
down-type quarks.

The first two terms in Eq. 5 (5a, 5b) are explicit gaug-
ino masses associated with the real parameters M1, M2, M3

and M ′
1, M ′

2, M ′
3. The second set of these violates C P , so

M ′
1, M ′

2 and M ′
3 should be very small to agree with exper-

123

Eur. Phys. J. C (2017) 77 :784 Page 29 of 70 784

iment. The Higgs sector (5c) includes explicit mass terms
with real parameters m2

Hu
and m2

Hd
, as well as a bilin-

ear coupling with complex parameter b. Explicit sfermion
masses (5d) come from the five 3 × 3 Hermitian mass-
squared matrices m2

Q , m2
u , m2

d , m2
L and m2

e . The final two
terms (5e, 5f) denote trilinear couplings between the Higgs
and squarks or sleptons, with general Yukawa-type complex
3 × 3 matrices Tu,Td ,Te and Cu,Cd ,Ce. The C terms are
often omitted from the definition of the MSSM, as they end
up strongly suppressed in many SUSY-breaking schemes.
SUSY-breaking scenarios often imply universality relations
between the Yukawa-scaled soft-breaking trilinear couplings
Au,Ad and Ae, which are defined as

(A f)i j ≡ (T f)i j/(Y f)i j f ∈ {u, d, e}, (6)

where i and j run over all three generations, but summation
is not implied.

LSUSY-SM contains derivatives of the superpotential

Ŵ = εab

{∑
i, j=1,3

[
(Yu)i j Q̂a

i Ĥ b
u Û c

j − (Yd)i j Q̂a
i Ĥ b

d D̂c
j

− (Ye)i j L̂a
i Ĥ b

d Êc
j

]
− μĤa

u Ĥb
d

}
. (7)

Here the indices i and j are again generation number, a
and b are SU (2)L indices and εab is the two-dimensional
antisymmetric tensor. Carets indicate superfields. The terms
Û c

j , D̂c
j and Êc

j are the left chiral superfields containing the
charge conjugates of the right-handed SU (2)L singlets: up-
type (s)quarks, down-type (s)quarks and (s)electrons, respec-
tively. Derivatives of Ŵ with respect to its scalar fields give
rise to all non-gauge interaction terms in LSUSY-SM. It plays
a similar role to the non-gauge part of the scalar potential in
non-supersymmetric theories, specifying the Higgs potential
via the complex parameter μ and the Higgs-fermion inter-
actions and fermion masses via the complex 3 × 3 Yukawa
coupling matrices Yu , Yd and Ye.

R parity is conserved in Eqs. 5 and 7 by construction, by
virtue of B and L being conserved individually. This makes
the lightest SUSY particle (LSP) absolutely stable; in general
we impose the condition that this must be the lightest neu-
tralino. Unless otherwise noted, we neglect the phenomenol-
ogy of the gravitino, assuming it to be sufficiently heavy that
it is not the LSP and its decays at early times are irrelevant.

MSSM63atQ: Ad_11, Ad_12, Ad_13, Ad_21, Ad_22,

Ad_23, Ad_31, Ad_32, Ad_33, Ae_11, Ae_12,

Ae_13,Ae_21, Ae_22, Ae_23, Ae_31, Ae_32, Ae_

33,Au_11, Au_12, Au_13, Au_21, Au_22, Au_23,

Au_31, Au_32, Au_33, M1, M2, M3, Qin, Sign

Mu, TanBeta, mHd2,mHu2, md2_11, md2_12, md2_

13, md2_22, md2_23, md2_33, me2_11, me2_12,

me2_13, me2_22, me2_23, me2_33, ml2_11,

ml2_12, ml2_13, ml2_22, ml2_23, ml2_33, mq2_

11, mq2_12, mq2_13, mq2_22, mq2_23, mq2_33,

mu2_11, mu2_12, mu2_13, mu2_22, mu2_23,

mu2_33.
This model contains 65 free parameters: the scale Q,
the sign of the μ parameter, and 63 parameters of the
MSSM Lagrangian. Because of their usual irrelevance
in (known) SUSY-breaking schemes, here we set the C
terms to zero. Apart from this omission, the MSSM63
is the most general formulation of the C P-conserving
MSSM: here the C P-violating gaugino masses M ′ and
complex phases are all also explicitly set to zero. This
leaves 3 free gaugino masses M1, M2 and M3, 6 real
parameters each from the mass-squared matrices m2

Q ,

m2
u , m2

d , m2
L and m2

e and a further 9 each from the trilin-
ear couplings Au,Ad and Ae. The final three parameters
come from the Higgs sector, where we have m2

Hu
and

m2
Hd

, and trade b and μ for the sign of μ and the ratio
of the up-type to down-type Higgs vacuum expectation
values tan β ≡ vu/vd. All parameters are defined in the
DR scheme at the scale Q, except for tan β, which is
defined at m Z .

Relative to the general MSSM, the additional con-
straints applied in this model are:

M ′
1 = M ′

2 = M ′
3 = 0, (8)

Cu = Cd = Ce = 0, (9)

m2
Q,m2

u,m2
d ,m2

L ,m2
e ,Au,Ad ,Ae all real. (10)

MSSM30atQ: Ad_1, Ad_2, Ad_3, Ae_1, Ae_2, Ae_3,

Au_1, Au_2, Au_3, M1, M2, M3, Qin, SignMu,

TanBeta, mHd2, mHu2, md2_1, md2_2, md2_3,

me2_1, me2_2, me2_3, ml2_1, ml2_2, ml2_3,

mq2_1, mq2_2, mq2_3, mu2_1, mu2_2, mu2_3.
As per the MSSM63atQ, but with all off-diagonal ele-
ments inm2

Q ,m2
u ,m2

d ,m2
L ,m2

e ,Au,Ad andAe set to zero,
in order to suppress flavour-changing neutral currents:

m2
Q,m2

u,m2
d ,m2

L ,m2
e ,Au,Ad ,Ae diagonal. (11)

MSSM25atQ: Ad_3, Ae_12, Ae_3, Au_3, M1, M2,

M3, Qin, SignMu, TanBeta, mHd2, mHu2, md2_1,

md2_2, md2_3, me2_1, me2_2, me2_3, ml2_1,

ml2_2, ml2_3, mq2_1, mq2_2, mq2_3, mu2_1,

mu2_2, mu2_3.
This was the model investigated in Ref. [169]. As per
the MSSM30atQ, but with first and second-generation
trilinear couplings degenerate in the slepton sector, and
set to zero for squarks:

(Ae)11 = (Ae)22, (12)

(Au)11 = (Au)22 = (Ad)11 = (Ad)22 = 0. (13)

123

784 Page 30 of 70 Eur. Phys. J. C (2017) 77 :784

MSSM24atQ: Ad_3, Ae_3, Au_3, M1, M2, M3, Qin,

SignMu, TanBeta, mHd2, mHu2, md2_1, md2_2,

md2_3, me2_1, me2_2, me2_3, ml2_1, ml2_2,

ml2_3, mq2_1, mq2_2, mq2_3, mu2_1, mu2_2,

mu2_3.
As per the MSSM25atQ, but with first and second-
generation trilinear couplings in the slepton sector also
set to zero:

(Au)i i = (Ad)i i = (Ae)i i = 0 ∀ i ∈ {1, 2}. (14)

MSSM20atQ: Ad_3, Ae_12, Ae_3, Au_3, M1, M2, M3,

Qin, SignMu, TanBeta, mHd2, mHu2, md2_12,

md2_3, me2_12, me2_3, ml2_12,

ml2_3, mq2_12, mq2_3, mu2_12, mu2_3.
As per the MSSM25atQ, but with degenerate first and
second-generation sfermion mass parameters:

(Ae)11 = (Ae)22, (15)

(Au)11 = (Au)22 = (Ad)11 = (Ad)22 = 0, (16)

(m2
X)11 = (m2

X)22 ∀ X ∈ {Q, u, d, L , e}. (17)

MSSM19atQ: Ad_3, Ae_3, Au_3, M1, M2, M3, Qin,

SignMu, TanBeta, mHd2, mHu2, md2_12, md2_3,

me2_12, me2_3, ml2_12, ml2_3, mq2_12, mq2_3,

mu2_12, mu2_3.
This is the model that is sometimes referred to as the
“phenomenological” MSSM (pMSSM). It has been the
focus of many non-statistical random parameter scans,
e.g. [2,118,170–172]. As per theMSSM20atQ, but with
first and second-generation trilinear couplings in the slep-
ton sector also set to zero:

(Au)i i = (Ad)i i = (Ae)i i = 0 ∀ i ∈ {1, 2}, (18)

(m2
X)11 = (m2

X)22 ∀ X ∈ {Q, u, d, L , e}. (19)

MSSM16atQ: Ad_3, Ae_3, Au_3, M1, M2, M3, Qin,

SignMu, TanBeta, mHd2, mHu2, md2_3, me2_3,

ml2_12, ml2_3, mq2_12, mq2_3, mu2_3.
As per the MSSM19atQ, but with all first and sec-
ond generation squark mass parameters degenerate, and
all first and second generation slepton mass parameters
degenerate:

(m2
Q)i i = (m2

u) j j = (m2
d)kk ∀ i, j, k ∈ {1, 2}, (20)

(m2
L)i i = (m2

e) j j ∀ i, j ∈ {1, 2}. (21)

MSSM15atQ: A0, At, M1, M2, M3, Qin, SignMu,

TanBeta, mHd2, mHu2, md2_3, me2_3, ml2_12,

ml2_3 mq2_12, mq2_3, mu2_3.
This is the model explored in Ref. [89], up to reparameter-
isation of the Higgs sector. As per the MSSM16atQ, but

with down-type and sleptonic trilinear couplings degen-
erate:

(Ad)33 = (Ae)33. (22)

MSSM11atQ: Ad_3, Ae_3, Au_3, M1, M2, M3, Qin,

SignMu, TanBeta, mHd2, mHu2, ml2, mq2.
As per the MSSM16atQ/MSSM19atQ, but with uni-
versal squark (m2

q̃) and slepton (m2
l̃
) mass parameters:

(m2
X)i i ≡ m2

q̃ ∀ i ∈ {1 · · · 3}, X ∈ {Q, u, d}, (23)

(m2
Y)i i ≡ m2

l̃
∀ i ∈ {1 · · · 3}, Y ∈ {L , e}. (24)

MSSM10atQ: Ad_3, Au_3, M1, M2, M3, Qin, SignMu,

TanBeta, mHd2, mHu2, ml2, mq2.
As per the MSSM11atQ, but with no sleptonic trilinear
coupings:

(Ae)33 = 0. (25)

MSSM10batQ: Ad_3, Ae_3, Au_3, M1, M2, M3, Qin,

SignMu, TanBeta, mHd2, mHu2, mf2.
As per the MSSM11atQ, but with a universal sfermion
mass parameter m2

f̃
:

m2
q̃ = m2

l̃
≡ m2

f̃
. (26)

MSSM10catQ: A0, M1, M2, M3, Qin, SignMu, Tan

Beta, mHd2, mHu2, ml2, mq2_12, mq2_3.
This is the model explored in Ref. [92], up to reparame-
terisation of the Higgs sector. As per the MSSM15atQ,
but with a universal trilinear coupling A0, 3rd generation
squark mass (m2

q̃3) and slepton mass (m2
l̃
) parameters:

(Au)33 = (Ad)33 = (Ae)33 ≡ A0, (27)

(m2
Q)33 = (m2

u)33 = (m2
d)33 ≡ m2

q̃3, (28)

(m2
L)i i = (m2

e) j j ≡ m2
l̃

∀ i, j ∈ {1 · · · 3}. (29)

MSSM9atQ: Ad_3, Au_3, M1, M2, M3, Qin, SignMu,

TanBeta, mHd2, mHu2, mf2As per theMSSM11atQ,
but with both the approximations introduced in the
MSSM10atQ andMSSM10batQ, i.e. universal sfermion
masses and no sleptonic trilinear couplings:

(Ae)33 = 0, (30)

m2
q̃ = m2

l̃
≡ m2

f̃
. (31)

MSSM7atQ: Ad_3, Au_3, M2, Qin, SignMu, TanBeta,

mHd2, mHu2, mf2.
This model has been used extensively in DarkSUSY
papers, e.g. [147,173,174]. As per the MSSM9atQ, but

123

Eur. Phys. J. C (2017) 77 :784 Page 31 of 70 784

assuming a Grand Unified Theory (GUT)-inspired rela-
tionship between the gaugino masses.

3

5
cos2 θW M1 = sin2 θW M2 = α

αs
M3. (32)

When implementing this relationship, we use sin2 θW

at the Z pole mass scale, which we calculate directly
from theStandardModel_SLHA2 parameters GF, m Z

(pole) and α−1
MS

(m Z).

5.4.4 GUT-scale MSSM

These models feature MSSM soft SUSY-breaking Lagrangian
parameters defined at the scale of gauge coupling unification,
typically referred to as the GUT scale.

MSSM63atMGUT: Ad_11, Ad_12, Ad_13, Ad_21,

Ad_22,Ad_23, Ad_31, Ad_32, Ad_33, Ae_11, Ae_

12, Ae_13,Ae_21, Ae_22, Ae_23, Ae_31, Ae_32,

Ae_33, Au_11, Au_12, Au_13, Au_21, Au_22,

Au_23, Au_31, Au_32, Au_33, M1, M2, M3, Sign

Mu, TanBeta, mHd2, mHu2,md2_11, md2_12, md2_13,

md2_22, md2_23, md2_33, me2_11, me2_12, me2_

13, me2_22, me2_23, me2_33, ml2_11, ml2_12,

ml2_13, ml2_22, ml2_23, ml2_33, mq2_11, mq2_

12, mq2_13, mq2_22, mq2_23, mq2_33, mu2_11,

mu2_12, mu2_13, mu2_22, mu2_23, mu2_33.
As per the MSSM63atQ, but with Q set to the GUT
scale. Translation to MSSM63atQ requires having
already solved the renormalisation group equations (RGEs)
for the model, in order to determine the value of the GUT
scale.

MSSM30atMGUT: Ad_1, Ad_2, Ad_3, Ae_1, Ae_2,

Ae_3, Au_1, Au_2, Au_3, M1, M2, M3, SignMu,

TanBeta, mHd2, mHu2, md2_1, md2_2, md2_3,

me2_1, me2_2, me2_3, ml2_1, ml2_2, ml2_3,

mq2_1, mq2_2, mq2_3, mu2_1, mu2_2, mu2_3.
This is the MSSM30atQ with Q = MGUT; as per the
MSSM63atMGUT, but with all off-diagonal elements
in m2

Q , m2
u , m2

d , m2
L , m2

e , Au,Ad and Ae set to zero, in
order to suppress flavour-changing neutral currents:

m2
Q,m2

u,m2
d ,m2

L ,m2
e ,Au,Ad ,Ae diagonal. (33)

NUHM2: A0, M0, M12, SignMu, TanBeta, mHd, mHu.
The second Non-Universal Higgs Mass model. Descended
from the MSSM63atMGUT. All off-diagonal elements
in m2

Q , m2
u , m2

d , m2
L and m2

e are set to zero, and all diag-
onal elements are set equal to a universal sfermion mass
m0. All gaugino masses are set to the universal mass m1/2,
and all entries in Au , Ad and Ae are set to a universal tri-
linear coupling A0. Global fits of this model have been

performed in Refs. [69,85,119].

m2
Q,m2

u,m2
d ,m2

L ,m2
e diagonal, (34)

M1 = M2 = M3 ≡ m1/2, (35)

(m2
X)i i ≡ m2

0 ∀ i ∈ {1 · · · 3}, X ∈ {Q, u, d, L , e}, (36)

(AY)i j ≡ A0 ∀ i, j ∈ {1 · · · 3}, Y ∈ {u, d, e}. (37)

NUHM1: A0, M0, M12, SignMu, TanBeta, mH.
The first Non-Universal Higgs Mass model, fitted in Refs.
[54,61,67,68,119]. As per theNUHM2, but with a single
Higgs mass parameter m H :

m2
Hu

= m2
Hd

≡ (m H)2. (38)

CMSSM: A0, M0, M12, SignMu, TanBeta.
The Constrained MSSM, most notably fitted in recent
years in Refs. [68,88,90,119]. As per the NUHM1, but
with m0 playing the role of a fully universal scalar mass
parameter:

m H = m0. (39)

mSUGRA: A0, M0, M12, SignMu, TanBeta.
The most common definition of the minimal supergravity
model; just a pseudonym for the CMSSM.12

5.4.5 Flavour EFT

The study of rare meson decays is typically done within the
framework of effective field theory (EFT), where squared
matrix elements for decays from initial states i to final states
f are calculated from |〈 f |Heff |i〉|2, using an interaction
Hamiltonian

Heff = −4G F√
2

VtbV ∗
ts

∑
x

Cx (μ)Ox (μ). (40)

Here μ specifies the scale of the process, V is the CKM
matrix and GF is the Fermi constant. Heff is decomposed
into a linear combination of effective interactions Ox with
Wilson coefficients Cx . Some such interactions exist already
in the SM, e.g.

O7 = e

(4π)2 mb(sσ
μν PRb)Fμν,

O9 = e2

(4π)2 (sγ μ PLb)(�̄γμ�), (41)

O10 = e2

(4π)2 (sγ μ PLb)(�̄γμγ5�),

12 Other authors define mSUGRA as a smaller subspace of the
CMSSM; see Ref. [175] for discussion and further references.

123

784 Page 32 of 70 Eur. Phys. J. C (2017) 77 :784

whereas others, such as

Q1 = e2

(4π)2 (s̄ PRb)(�̄ �),

Q2 = e2

(4π)2 (s̄ PRb)(�̄γ5�), (42)

are almost exclusively the purvey of new physics. In general,
the interesting quantities for new physics are therefore the
differences between the expected SM and BSM values,

ΔCx ≡ Cx,BSM − Cx,SM. (43)

More details can be found in the FlavBit paper [109] and
Ref. [135].

WC: Re_DeltaC7, Im_DeltaC7, Re_DeltaC9,

Im_DeltaC9, Re_DeltaC10, Im_DeltaC10,

Re_DeltaCQ1, Im_DeltaCQ1, Re_DeltaCQ2,

Im_DeltaCQ2.

This model incorporates enhancements and suppressions
to the real and imaginary parts of the Wilson coefficients
of the effective operators O7, O9, O10, Q1 and Q2 (Eqs.
41, 42).

5.4.6 Nuisance parameters

These models contain values with significant uncertainties
that can be essential for calculating signal rates (particularly
in DM searches), but which are not part of a BSM model or
the Standard Model.

Halo_gNFW: alpha, beta, gamma, r_sun, rho0,

rhos, rs, v0, vesc, vrot.
This as well as all other halo models specify the radial
dark matter distribution ρ(r) in the Milky Way and the
local properties of dark matter relevant for direct detec-
tion and capture in the Sun. Specifically, this model cor-
responds to the generalized NFW profile

ρ(r) = 2(β−γ)/αρs

(r/rs)γ [1 + (r/rs)α](β−γ)/α
, (44)

where γ (β) describes the inner (outer) slope of the pro-
file, α is the shape in the transition region around the
scale radius r = rs , and ρs ≡ ρ(rs) is the scale den-
sity. Furthermore, the local properties of dark matter are
described by means of the local density ρ0 as well as a
Maxwell-Boltzmann velocity distribution boosted to the
rest frame of the Earth,

f (u) = e
−

(u+vLSR+v�,pec+V⊕
v0

)2

π3/2v3
0 erf

(
vesc
v0

)
− 2πv2

0vesce
−

(
vesc
v0

)2 . (45)

Here, v0 is the most probable speed of a DM parti-
cle with respect to the galactic halo, while vesc denotes
the local escape velocity [176]. The remaining param-
eters describe the relative motion of the Earth and the
Galactic rest frame: vLSR = (0, vrot, 0) is the motion
of the Local Standard of Rest in Galactic coordinates,
with vrot being the local disk circular velocity, v�,pec =
(11, 12, 7)km s−1 is the peculiar velocity of the Sun
[177], and V⊕ = 29.78 km −1 is the Keplerian veloc-
ity of the Earth around the Sun. Notice that in this halo
model the scale density ρs and the local density ρ0 are
treated as independent parameters.

Halo_gNFW_rho0: alpha, beta, gamma, r_sun,

rho0, rs, v0, vesc, vrot.
Same as Halo_gNFW, but deriving the scale density
ρs ≡ ρ(rs) from a given value of the local density
ρ0 ≡ ρ(rsun) via Eq. 44. Here, rsun denotes the distance
from the solar system to the Galactic center.

Halo_gNFW_rhos: alpha, beta, gamma, r_sun,

rhos, rs, v0, vesc, vrot.
Same as Halo_gNFW, but deriving the local density
ρ0 ≡ ρ(rsun) from a given value of the scale density
ρs ≡ ρ(rs) via Eq. 44.

Halo_Einasto: alpha, r_sun, rho0, rhos, rs, v0,

vesc, vrot.
Same as Halo_gNFW, but assuming instead the Einasto
profile for the radial distribution of dark matter in the
Milky Way:

ρ(r) = ρs exp

{
− 2

α

[(
r

rs

)α

− 1

]}
, (46)

with rs referring to the scale radius, ρs to the scale density,
and α describing the shape of the profile.

Halo_Einasto_rho0: alpha, r_sun, rho0, rs, v0,

vesc, vrot.
Same as Halo_gNFW_rho0, but using the Einasto pro-
file given by Eq. 46.

Halo_Einasto_rhos: alpha, r_sun, rhos, rs, v0,

vesc, vrot.
Same as Halo_gNFW_rhos, but using the Einasto pro-
file given by Eq. 46.

nuclear_params_fnq: deltad, deltas, deltau, fnd,

fns, fnu, fpd, fps, fpu.
This model contains the nuclear matrix elements that
parameterise the quark content of protons and neutrons,
f (N)
Tq

, defined by

123

Eur. Phys. J. C (2017) 77 :784 Page 33 of 70 784

m N f (N)
Tq

≡ 〈N |mqq̄q|N 〉 , (47)

where N ∈ {p, n} and q ∈ {u, d, s} [178]. The model
also contains the parameters Δ

(p)
q that describe the spin

content of the proton.

nuclear_params_sigma0_sigmal: deltad, deltas,

deltau, sigma0, sigmal.
The same asnuclear_params_fnq, but with the 6 f (N)

Tq
parameters replaced by the light quark content of the
nucleon σl and the quantity σ0, defined as

σl ≡ ml〈N |ūu + d̄d|N 〉 , (48)

σ0 ≡ ml〈N |ūu + d̄d − 2s̄s|N 〉 , (49)

where ml ≡ (1/2)(mu + md). We take σl and σ0 to be
the same for protons and neutrons [179].

nuclear_params_sigmas_sigmal: deltad,

deltas, deltau, sigmal, sigmas.
The same asnuclear_params_fnq, but with the 6 f (N)

Tq
parameters replaced by σ0 from Eq. 49 and the strange
quark content of the nucleon σs , which is defined as

σs ≡ ms〈N |s̄s|N 〉 . (50)

Again, σ0 and σs are assumed to be the same for protons
and neutrons [179].

5.4.7 Toys

NormalDist: mu, sigma.
A simple test model consisting of two parameters: the
width and central value of a Gaussian distribution. This
model is used in most of the toy examples discussed in
this paper.

TestModel1D: x.
A one-dimensional test model, typically used for debug-
ging simple prior transformations, or when a dummy
model is required (as in the external model example of
the ColliderBit paper [108]).

demo_A, demo_B, etc:
These are additional example models available in the
same header asNormalDist andTestModel1D, but com-
mented out in order to keep from cluttering up the model
hierarchy with fake models.

6 User interface and input file

In this section we describe the general user interface of GAM-
BIT. This includes a description of the available command
line switches as well as a detailed walk-through of the struc-
ture and content of the main initialisation file. Further details

about the functionality of the dependency resolver, printers
and scanners are given in the following sections.

6.1 Command line switches and general usage

GAMBIT is run by executing the gambit executable. The
canonical way to launch a scan is to specify an initialisation
file myfile.yaml with the -f switch, as in

gambit -f myfile.yaml

The full set of command-line switches available is:

--version

Print the GAMBIT version number and exit.

-h/--help

Display usage information and exit.

-f file

Use instructions in file to start a scan.

-v/--verbose

Run with full verbose output.

-d/--dryrun

Perform a dry run of a scan. GAMBIT will resolve all
dependencies and backend requirements, then list the
function evaluation order to stdout, but won’t actually
start the scan. It will also produce necessary files and
instructions for plotting the dependency tree (see Sect.
7). Requires -f.

-r/--restart

Restart a scan, overwriting any existing output. Requires
-f. If -r is not specified and previous output exists
matching the instructions in file, GAMBIT will attempt
to resume scanning based on that output.

GAMBIT also has various diagnostic modes that provide
information about its current configuration from the com-
mand line. See Sect. 10.4 for further information.

6.2 The master initialisation file

The master initialisation file of GAMBIT is written in
the YAML format.13 YAML is a ‘human-friendly, cross-
language, Unicode-based data serialization language’ that
provides a general framework for setting up nested structures
of common native data types. The format is reminiscent of

13 See http://www.yaml.org for a definition of the standard. A compact
introduction can be found at http://en.wikipedia.org/wiki/YAML. Note
that GAMBIT is also fully compatible at the module level with the
SLHA1 [180] and SLHA2 [167] formats for SUSY models; see Refs.
[108–111] for details.

123

http://www.yaml.org
http://en.wikipedia.org/wiki/YAML

784 Page 34 of 70 Eur. Phys. J. C (2017) 77 :784

Python. As such, leading whitespace (i.e. the indentation
level) matters, and is part of the syntax.

The top node of the master initialisation file is a dictionary
that contains eight entries.

Parameters describes the scan parameters for different
models.

Priors describes the priors to be placed on the scan param-
eters.

ObsLikes describes observables and likelihoods that the
user would like to be calculated in a scan.

Rules specifies additional rules to guide the resolution of
dependencies and backend requirements.

Printer provides details about how and where to store the
results of the scan.

Scanner provides information about the scanning algo-
rithm to be adopted in a scan.

Logger chooses options for logging GAMBIT messages
during the scan.

KeyValues is an additional global option section.

Any number of other YAML files can be imported to any
section of the master initialisation file, using the !import

other_file.yaml directive. Imported files may import files of
their own, and so on.

6.3 Model and parameters

6.3.1 General setup and fast priors

Selecting models to scan and setting options for their param-
eters is done in the Parameters section of the master YAML
file, using the syntax:

Parameters:
model_1:

parameter_1:
optional fast prior statements

parameter_2:
optional fast prior statements

...
model_2:

content as above
model_3:
...

For example, in the scalar singlet YAML file that ships
with GAMBIT, yaml_files/SingletDM.yaml, this looks
like:

Parameters:

SM non-Higgs parameters.
StandardModel_SLHA2: !import
include/StandardModel_SLHA2_scan.yaml

Nuclear matrix parameters.
nuclear_params_sigmas_sigmal:

sigmas:
range: [19, 67]

sigmal:
range: [31, 85]

deltau: 0.842
deltad: -0.427
deltas: -0.085

SM Higgs-sector parameters
StandardModel_Higgs:

mH:
range: [124.1, 127.3]

Scalar singlet dark matter parameters
SingletDM:

mS:
range: [45., 10000.]
prior_type: log

lambda_hS:
range: [0.0001, 10.00]
prior_type: log

Dark matter halo parameters
Halo_gNFW_rho0:

rho0:
range: [0.2, 0.8]

v0: 235.0
vesc: 550.0
vrot: 235.0
rs: 20.0
r_sun: 8.5
alpha: 1
beta: 3
gamma: 1

Here we see that the SM parameters are imported from the
YAML fragment yaml_files/include/ StandardModel_

SLHA2_scan.yaml.
As this layout suggests, multiple models can be scanned

simultaneously; for example a particle physics model, plus a
DM halo model, plus a set of nuclear physics parameters. This
allows for arbitrary physics models to be combined easily
and fluidly. This makes it simple to add new observables to
existing scans even if they bring ‘baggage’ in the form of
additional free parameters. The typical example is that of
nuisance parameters. Adding an observable that depends not
only on the particle physics scenario, but also the assumed
value of the top mass, for example, is easy: one adds the
new observable to the ObsLikes section, and adds the value
or range of top masses to consider when calculating that
observable to the Parameters section. Broader examples of
the utility of this arrangement include observables with dual
implications for both particle physics and cosmology, or for
both BSM and neutrino physics.

The subsection following each parameter is an optional
‘fast prior’ definition. For the purposes of sampling parame-
ter values, a prior is the portion of the probability distribution
function for choosing parameter values that is independent
of the likelihood, i.e. the sampling distribution determined
prior to any contact with data. Many sampling algorithms

123

Eur. Phys. J. C (2017) 77 :784 Page 35 of 70 784

(indeed, essentially all useful ones) apply additional condi-
tions designed to preferentially sample points that constitute
better fits to data – but one must always choose what initial
prior to employ, independent of the sampling algorithm to be
employed. The simplest example would be assigning inde-
pendent flat distributions for each parameter, viz. ‘flat priors’.
When paired with a naive random scanner, this would lead
to simple uniform sampling of the parameter values.

Using the Prior section (see Sect. 6.3.2 and Ref. [112]),
GAMBIT makes it possible to use any arbitrary prior in a
scan – but in most cases a very simple prior will suffice. The
fast prior subsection provides a streamlined way to directly
set such simple priors in the Parameters section, for each
parameter.

Note that every parameter of every model mentioned
in the Parameters section must be associated with some
prior, either in the Priors section or via a fast prior in the
Parameters section. This applies even if the parameter is
not actually used in a given scan. In this case, the parame-
ter should normally simply be set to some arbitrary constant
value in the YAML file.

In it’s simplest form, the fast prior section can just specify
such a value to fix a parameter to during a scan (a so-called
‘delta-function prior’):

model_1:
parameter_1: 125.0
parameter_2: 750.0

The same thing can be achieved with

model_1:
parameter_1:

fixed_value: 125.0
parameter_2:

fixed_value: 750.0

This syntax naturally extends to specifying an ordered set of
points to cycle through, e.g.

model_1:
parameter_1: [125.0, 142.5, 119.0]
parameter_2:

fixed_value: [750.0, 2015.0, 38.0]

There may be cases where parameters spanning multi-
ple models are equivalent and should thus be described as a
single parameter. GAMBIT allows model parameters to be
combined using the same_as keyword. Thus, parameter_1 of
model_1 can be set to be equal to parameter_2 of model_2 via a
fast prior entry such as

model_1:
parameter_1:

same_as: model_2::parameter_2
scale: scale
shift: shift

Here, model_1::parameter_1 will be automatically set from the
value assigned to model_2::parameter_2 at each point in the

scan. The keywords scale and shift can also be optionally
specified; these scale the parameter by an amount scale and
shift it by shift. Thus, in the above example,

model_1 :: parameter_1 =
shift + scale ∗ model_2 :: parameter_2. (51)

When two models being scanned have parameter names
in common, extra care needs to be taken. ScannerBit
treats each parameter of each model as fully separate by
default, but any module functions that declare both mod-
els as allowed (either individually or in combination) will
trigger a runtime error when GAMBIT attempts to add
the values of all parameters in both models to the Params

pipe (cf. Sect. 3.2.3). Usually this indicates poor mod-
ule function design, although there are some use cases,
where the same_as directive is in use, when it may be
simplest to proceed without worrying which of the two
models’ common parameters appears in the Params pipe.
Users wishing to hack their way through such a situation
can set the ALLOW_DUPLICATES_IN_PARAMS_MAP precom-
piler variable in Elements/include/gambit/Elements/

module_macros_incore.hpp to 1.
Other fast priors can be chosen via the prior_type key-

word, which can be set to flat, log (uniform in the log
of the parameter value), or various trigonometric functions
(cos, sin, tan or cot), as in

model_1:
parameter_1:

prior_type: chosen_prior
range: [low, high]

parameter_2:
prior_type: log
range: [5, 75]

The allowed values of the parameters are given by setting
range. The scale and shift parameters also work with
prior_type, in just that same way as with same_as.

If no fixed value is given for a parameter, and both
prior_type and same_as are absent but range is given,
a flat prior is assumed.

Additional custom priors can be be written as plugins for
ScannerBit, and accessed by setting prior_type:plugin;
details can be found in Ref. [112].

6.3.2 More involved priors

Certain priors introduce correlations between parameters.
This makes specifying a separate, unique prior for each
parameter impossible. Such multidimensional priors, oper-
ating on multiple parameters simultaneously, can only be
declared in a separate Prior section of the main YAML file.

123

784 Page 36 of 70 Eur. Phys. J. C (2017) 77 :784

Priors:
prior_name:

parameters: [model_1::param1, model_1::param2,
...]

prior_type: prior_type_1
options

other_prior_name:
parameters: [model_2::paramA, model_2::paramB,

...]
prior_type: prior_type_2
options

...

A multidimensional prior is defined under a new user-defined
key such as prior_name. Each prior declared in this way
must specify a vector of input parameters, a prior type, and
any options required by the prior. A list of prior types and
their options can be obtained with the GAMBIT diagnostic
gambit priors (see Sect. 10.4.7). Available multidimen-
sional priors include Gaussian and Cauchy distributions, as
well as the ability to specify any additional ScannerBit prior
plugin present on a user’s system; these are discussed in detail
in Ref. [112].

6.4 ObsLikes: target observables and likelihoods

Entries in this section determine what is calculated during a
scan. Each entry lists a likelihood contribution or an observ-
able that should be calculated during the scan. (Likelihood
functions and observables are largely the same within GAM-
BIT, the main difference being that the former are used to
drive the scan, whereas the latter are simply recorded.) The
minimal allowed entry has the form

ObsLikes:
- capability: example_capability
purpose: example_purpose

- ...

Here, example_capability is the capability of the likelihood or
observable to be calculated, while example_purpose is its role
in the scan. The latter determines its treatment by the scanner
and the printer system. In the simplest cases, purpose will
be set to either LogLike or Observable.14 In the case of
a LogLike, the calculated quantity will be used as one of
the likelihoods in the scan. As a convention in GAMBIT, all
likelihoods are given in terms of logL = ln(likelihood). In
the case of an Observable, the calculated quantity will be
simply written as additional output and will be available for
later post-processing.

For example, the following entries from yaml_files/

SingletDM.yaml ensure that the likelihood from the dark
matter relic density is included in the overall likelihood func-
tion, and that the value of the relic density itself is saved in

14 Alternative purposes are relatively easy to arrange, but these are the
conventional ones. See Sect. 8 for further discussion.

the output of the scan, for every valid combination of model
parameters:

ObsLikes:

Relic density likelihood contribution
- capability: lnL_oh2
purpose: LogLike

Relic density prediction
- capability: RD_oh2
purpose: Observable

It will often happen that several module functions can
provide the same capability. In order to remove such ambi-
guities, it is possible to specify the requested quantity further
by adding one or more of the following optional arguments

ObsLikes:
- capability: capability
purpose: purpose
type: type
function: function
module: module

- ...

Here, type specifies the C++ type of the module function
that should be used to fulfil the requested capability, function

explicitly gives the name of a module function, and module

demands that the function must come from a specific mod-
ule. These additional specifications in the ObsLikes section
are in fact just a convenient shortcut for setting up the most
common rules for dependency resolution. Dependency reso-
lution rules can be set up in far more generality in the separate
Rules section, which we discuss below.

In the case of the purpose LogLike, the type of the mod-
ule function selected must be double, float, std::vector
<double>orstd::vector<float>, as the result will be sent
to the likelihood container to contribute to the total likeli-
hood function. (This applies regardless of whether the user
has specified the type explicitly, or left it to the dependency
resolver to work out.) In the case of vectors, the likelihood
container automatically sums all entries.

Finally, the additional option printme can be set for each
ObsLikes entry, for example

ObsLikes:
- capability: example_capability
purpose: example_purpose
printme: true

- ...

This option istrueby default, meaning that by defaultGAM-
BIT will attempt to record to disk (i.e. ‘print’; see Sect. 9) the
computed result of the each of the target observables/likeli-
hoods. This is the behaviour that one almost always wants
during a production scan, however by setting printme to
false the user can tell GAMBIT not to try to output the
result of the thusly-flagged computation. It is useful to do

123

Eur. Phys. J. C (2017) 77 :784 Page 37 of 70 784

this when testing and debugging new module functions, for
example, because these often produce results that are not of
a printable C++ type (and so attempting to print them would
cause a runtime error, see Sect. 9.3), yet one will often want
to set these functions as ObsLikes targets just to ensure that
GAMBIT will run them.

6.5 Rules: dependency resolution and module options

Entries in the Rules section determine the details of how
the likelihoods and observables listed in the ObsLikes sec-
tion are calculated in the scan. In the rather common case
that several different module functions can provide a capa-
bility requested in the ObsLikes section, or several mod-
ule functions can provide the neccessary capability-type pair
requested in another module function’s dependency, then
further specifications in the Rules section are required to
fully define the scan. The Rules section can likewise be used
to control the resolution of backend requirements, and to set
options for individual module functions, modules and back-
end initialisation functions.

6.5.1 Module function dependencies

In the rather common case that several different module func-
tions provide the same requested quantity, further rules are
necessary to define the scan. Note that with quantity, we refer
here specifically to capability/type pairs, quantity ≡ (capabil-

ity, type). These rules can be specified in the Rules section
of the initialisation file. Furthermore, this section is used to
control the resolution of backend dependencies, and to set
options for individual module functions, modules and back-
end initialisation functions. In this sense, the rules determine
how an individual point is calculated during the scan.

In the simplest case, a rule has the form

Rules:
- capability: capability
type: type
function: function
module: module

where capability is required, type is optional, and one or
both of the entries function and module must be given. This
entry translates into the rule: Any capability with C++ type
type should be resolved by module function function from the
module module. Assigning the empty string "" or the wildcard
character "*" to an entry is equivalent to omitting it. If regex
is activated (this is not the default; see Sect. 6.9), all entries
are actually treated as regular expressions, allowing rules to
be made arbitrarily complex.15

15 For details about regular expressions we refer the reader to https://
en.wikipedia.org/wiki/Regular_expression.

A simple example of such a rule is the one inyaml_files/

SingletDM.yaml that specifies that the observed relic den-
sity should be treated as an upper limit only when computing
the likelihood. This allows for the possibility that some of
the dark matter is not in the form of scalar singlet particles.

Choose to implement the relic density likelihood
as an upper bound, not a detection
- capability: lnL_oh2
function: lnL_oh2_upperlimit

This rule says that wherever the capability lnL_oh2 is needed
in a scan, GAMBIT must use a function with the name
lnL_oh2_upperlimit. As it turns out, there is only one func-
tion with such a name inGAMBIT 1.0.0, and it lives inDark-
Bit – so this rule forces DarkBit::lnL_oh2_upperlimit to
be used.

The simple form shown above applies a rule to the resolu-
tion of dependencies of any module functions matching the
specified capability and type. In order to set up rules that
only affect the dependency resolution of a specific module
function, one can add a dedicated dependencies subsection,
and optionally omit any of the top-level keys capability,
type, function and module (or equivalently, set them to ""

or "*").

Rules:
- capability: capability
type: type
function: function
module: module
dependencies:
- {capability: cap_A, type: type_A,

function: func_A, module: mod_A}
- {capability: cap_B, type: type_B,

function: func_B, module: mod_B}
- ...

- ...

If regex is activated, the values are treated as regular expres-
sions. The entry translates into the following rule: when
resolving dependencies of module function function in mod-
ule module, which provides capability capability with C++ type
type, apply the rules listed under the keyword dependencies.

If conflicting rules are found during dependency resolu-
tion, GAMBIT will throw an error. This is intended to reduce
side effects that changes in some parts of the initialisation
file can have on other parts. However, rules can be explicitly
declared as weak and over-rideable, by using the flag weak!,
as per

Rules:
- !weak
capability: capability
type: type
function: function
module: module

- ...

Note that the flag affects the entire rule for which it is set,
not only specific nearby keywords.

123

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

784 Page 38 of 70 Eur. Phys. J. C (2017) 77 :784

A special case can occur if several module functions
depend on the same quantity as they provide. In this case
these module functions can be chained, and setting up such
chains in the rules section is simplified by using the keyword
functionChain. This is illustrated in the following exam-
ple, where func1, func2 and func3 are supposed to provide as
well as depend on capability with type. These functions will
be chained together, with func1 fulfulling the depenencies of
func2 etc.

Rules:
- capability: capability
type: type
functionChain: [func1, func2, func3]
module: module

Finally, when performing type matching, the dependency
resolver takes all type equivalences defined in config/

resolution_type_equivalency_classes.yaml into acc-
ount. We discuss this type equivalency database for depen-
dency resolution in more detail in Sect. 10.5.

6.5.2 Backend requirements

After a module function has been selected to take part in
a scan, its backend requirements are resolved. This process
can be guided and controlled using rules for backend require-
ments, which have the form:

Rules:
- capability: capability
type: type
function: function
module: module
backends:
- {capability: cap_A, type: type_A,

function: func_A, backend: backend_A,
version: backend_A_version_number}

- {capability: cap_B, type: type_B,
function: func_B, backend: backend_B,
version: backend_B_version_number}

- ...

The usage is essentially identical to the one discussed above
for dependencies, except that backend may be specified
rather than module, and a specific version of a backend may
be requested, as e.g.

- capability: Higgs_Couplings
backends:
- {backend: FeynHiggs, version: 2.11.3}

There are also a number of other restrictions that can be
applied via rules declared in the module function’s rollcall
header entry (Sect. 3.1.3). These include backend require-
ments that are only activated for specific models (analogous
to model-conditional dependencies of module functions),
restricted lists of permitted backends and versions, and the
condition that certain combinations of backend requirements
must be resolved by the same version of the same backend.

6.5.3 Options for module functions

Besides setting rules for the resolution of dependencies and
backend requirements, the Rules section can also be used
to set options for module functions. This is done with the
options keyword, as

Rules:
- capability: capability
type: type
function: function
module: module
options:

key_A: value_A
key_B: value_B
...

- ...

This rule sets the option key_A to value_A and option key_B to
value_B, for any module function that matches the indicated
capability, type, function and module. Any of these keywords can
be omitted; if regex is activated, they are treated as regular
expressions. This allows, for instance, module-wide options
to be set using just the name of the module, whilst omitting
the other three keywords or setting them to wildcards:

Rules:
- module: DarkBit
options:
DM_is_made_of: axions

Here, the key DM_is_made_of is accessible by all module
functions in the module DarkBit.

This last example is a bit glib, as in realityDM_is_made_of

is not a recognised option of any functions in DarkBit, so
setting it doesn’t actually have any effect in GAMBIT 1.0.0.
A more realistic example is:

Rules:
Use the DarkBit native calculator
to compute the relic density
- capability: RD_oh2
function: RD_oh2_general
options:
fast: 1

This can be seen in e.g.yaml_files/SingletDM.yaml. This
rule specifically selects the RD_oh2_general function from
DarkBit for calculating capability RD_oh2 (i.e. the relic den-
sity), and passes it the option fast = 1, to set the accuracy
required when solving the Boltzmann Equation for the ther-
mal relic density of scalar singlet particles.

The key-value pairs specified in this way are easily
accessed by any module function that matches a given rule,
using runOptions->getValue (cf. Sect. 3.2.4).

123

Eur. Phys. J. C (2017) 77 :784 Page 39 of 70 784

In most cases, module functions will interpret option
values as simple C++ types (commonly float, int, bool

or std::string), but composite types like std::vector

<double> can also be set. The necessary syntax for doing
this is defined by the YAML standard. Options can also be
easily nested, with the C++ type of the top-level option to
be retrieved itself a YAML::Node,16 from which lower-level
options can then be retrieved.

Information about what options are available for which
module function can be found in the module function docu-
mentation. Options that are never requested by module func-
tions at runtime are silently ignored.

In case of ambiguity, such as when an option requested by
a module function is listed in several matching rules, GAM-
BIT throws an error during initialisation.

6.6 Printer

The GAMBIT “printer” system handles the output of all scan
results, whether to disk, a network resource or any other out-
put stream. This system allows all GAMBIT output to be
handled in an abstract way throughout the code, with the
actual format of the output being decided by the choice of an
output plugin (a printer) at runtime, via the master YAML
file. Therefore, setting upGAMBIT output consists primarily
of choosing a printer and setting options for it. In this section
we describe how to do this; full details of the printer system
can be found in Sect. 9.

Note that output handled by theGAMBIT printer system is
essentially independent of other output that might be created
by any backend or scanner codes. This allows the output to
remain as uniform as possible, regardless of the scanning
algorithm and external codes being used.

GAMBIT 1.0.0 ships with two printers: ascii and hdf5.
The ascii printer outputs data as a simple ASCII table,
whereas the hdf5 printer writes data to a binary file in HDF5
format.17 The former format is useful for its simplicity, how-
ever the latter is far superior when dealing with large datasets,
particularly in terms of disk usage and read/write speed. We
have also upgraded the external analysis tool pippi [181]
to accept GAMBIT input in these formats; it can be easily
retrieved via the GAMBIT build system (Sect. 11.3).

Most options that affect the output system are entered in
the Printer section of the master YAML file. The basic lay-
out of this section is:

16 This class is defined in the contributed package yaml-
cpp, which ships with GAMBIT. Documentation is available at
http://github.com/jbeder/yaml-cpp.
17 https://www.hdfgroup.org/HDF5/.

Printer:
printer: plugin_name
options:

option_1: value_1
option_2: value_2
...

That is, one chooses a plugin plugin_name and sets its options,
which vary with the plugin. In the next sections we describe
the options available in each printer.

6.6.1 Common options

These options are common to both the ascii and hdf5 print-
ers:

options:
output_path: default_output_path
output_file: filename

output_path specifies the directory in which the printer
output will be stored. By default it is set to the value of
default_output_path as set in the KeyValues section
of the input YAML file (see Sect. 6.9), however if a value
is set here it will override that default.

output_file specifies the name of the file in which to store
data generated during the run. If it does not exist then it
will be created.

6.6.2 Specific options: ascii printer

The only specific option for this plugin is buffer_length,
which defaults to a value of 100:

Printer:
printer: ascii
options:
buffer_length: 100

This specifies the size of the internal buffer used by the
printer. A value of N will cause output to be written to disk
every N model points. If model points are slow to eval-
uate, it can be useful (particularly during testing) to set
buffer_length to 1 so that output is generated frequently.
However, if model points are evaluated extremely rapidly
then frequent writing of output will create a significant bot-
tleneck, and a high value of buffer_length will be more
appropriate.

123

http://github.com/jbeder/yaml-cpp
https://www.hdfgroup.org/HDF5/

784 Page 40 of 70 Eur. Phys. J. C (2017) 77 :784

6.6.3 Specific options: hdf5 printer

There are three specific options for this plugin:

Printer:
printer: hdf5
options:
group: "/"
delete_file_on_restart: false

The first is group, which defaults to "/". This option
specifies the name of the group within the host HDF5
output_file in which data will be stored. HDF5 files
are structured similarly to a filesystem (i.e. hierarchically)
and a ‘group’ is analogous to a directory. Various objects
(such as datasets, and other groups) are then stored within
groups18 The default value of "/" specifies the root group,
and this option should rarely need to be set to any-
thing else. A deeper-layer group can be specified e.g. as
"/group1/group2/etc/". Absent groups at any layer will
be automatically created.

The second option is delete_file_on_restart. This
option is mainly a convenience for performing repeated test
scans, and causes the file specified by output_file to be
deleted if it already exists when a run restarts (i.e. if the -r

command line flag is used, see Sect. 6.1). By default this is
false, meaning that if a HDF5 file already exists matching
the name given in output_file then GAMBIT will attempt
to add the data for the run to this pre-existing file.

Further details of the HDF5 objects that GAMBIT writes
to disk via this printer can be found in Sect. 9. Note that results
from several runs can be stored inside the same HDF5 file
by storing the data in different groups, however it is safer
to use separate files because HDF5 files are vulnerable to
corruption from write errors (which in principle can occur
if GAMBIT terminates abnormally; see Sect. 10.8 for safe
early shutdown methods), and data recovery is difficult. If
delete_file_on_restart is false and the chosen group

already exists, GAMBIT will throw a runtime error telling
you to choose a different group or overwrite the whole file.
Groups can be deleted, however the disk space they occupy
cannot be reclaimed without copying the entire contents of
the HDF5 file into a new file, e.g. using the h5repack com-
mand line tool.19 We leave these kind of file manipulations
to the user.

6.6.4 Output selection

The outputs handled by the printer system are simply the
results of module function evaluations. However, not all mod-
ule function results are of a C++ type that can be ‘printed’

18 See https://www.hdfgroup.org/HDF5/doc/Glossary.html for further
description of ‘groups’ and ‘datasets’ in HDF5.
19 https://www.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Repack.

with every printer (see Sect. 9.3 for the restrictions), so
GAMBIT cannot automatically output all results. To instruct
GAMBIT to write the result of a calculation to an output
stream, the module function that computes a result must
be selected to fulfil one of the capabilities requested in
the ObsLikes section of the master YAML file. Intermedi-
ate results, computed by functions run by the dependency
resolver only in order to fulfil dependencies of other func-
tions, are not output.

6.7 Scanner

GAMBIT ships with a variety of scanner plugins that can be
used in a “plug and play” manner. A full list of scanner plu-
gins can be obtained from the GAMBIT scanners diagnostic
(Sect. 10.4.5). A scanner is selected by specifying one of
these plugins and any plugin-specific options in the Scanner

section of the YAML file, e.g.

Scanner:
use_scanner: nested_sampler
scanners:
nested_sampler:
plugin: MultiNest
like: LogLike
nlive: 4000
tol: 0.5
mmodal: 1

other_sampler:
plugin: ...
...

...

The Scanner section can contain multiple scanner defini-
tions with user-defined names, such as nested_sampler

and other_sampler in the above example. The scanner that
will actually be used in a given scan is specified with the
use_scanner key. Within the YAML scanner definitions, the
plugin option must be set to a valid scanner plugin known to
GAMBIT, and any necessary/desired options for that scanner
should also be set. Note that a typical scanner plugin requires
a purpose to use for its objective function, such as LogLike

or Observable; this is provided by setting the like option
in the example of the MultiNest plugin. Valid and required
plugin options, plugin descriptions, and the status of a plugin
can be obtained through the GAMBIT free-form diagnostic
(see Sect. 10.4.8),

gambit plugin_name

where plugin_name is the name of the scanner plugin.
GAMBIT also ships with a number of simple objective test

functions, which can be used as objective functions for a scan
in place of the regularGAMBIT likelihood container output,
for testing scanners and other parts of the code. These exist as
test function plugins in ScannerBit, and are accessed from
the main YAML file with similar syntax to scanners, e.g.

123

https://www.hdfgroup.org/HDF5/doc/Glossary.html
https://www.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Repack

Eur. Phys. J. C (2017) 77 :784 Page 41 of 70 784

Scanner:
use_objectives: my_test_function
objectives:
my_test_function:
plugin: uniform
parameter_A: 10
parameter_B: false

other_test_function:
plugin: ...
...

...

As the use_objectives directive suggests, multiple test
functions can be specified with the regular YAML[x,y] syn-
tax if desired, in which case all the listed objectives will be
multiplied to form the actual objective function to be used
in the scan. Details of the available test functions and their
options can be found in the ScannerBit paper [112].

6.8 Logger

The logging output of a scan can be directed to various output
files. This is done using entries of the form:

Logger:
prefix: output_path
redirection:

[Scanner, Warning] : "scanner_warnings.log"
[ExampleBit_A] : "ExampleBit_A.log"
...

Here prefix specifies the output location for log files
(defaulting to default_output_path; cf. Sect. 6.9), and the
entries in the redirection subsection dictate which logging
messages go to which file. These options are discussed fur-
ther in Sect. 10.2.

6.9 KeyValues: general purpose options

Most of the general behaviour of GAMBIT is controlled by
various options in the KeyValues section. The syntax is the
same as described above in the context of the module function
options. We provide here a complete list of available options.
Where we indicate concrete values, these are the default val-
ues that will be used if the option is omitted; where no default
is indicated, the option is required.

KeyValues:

likelihood:

The value of the log-likelihood to assign to

invalid points. Also the log-likelihood value

below which an otherwise valid point is declared

invalid.

model_invalid_for_lnlike_below: lnlike_min
Alternative value of the log-likelihood to

assign to invalid points later in a scan (e.g.

with the MultiNest scanner; see [112]).

model_invalid_for_lnlike_below_alt: #defaults to

0.5*lnlike_min.

Print likelihood debug information to stdout and

logs, including parameter values and

contributions of individual likelihood

components. Set true automatically if the master

debug flag (below) is true.

debug: false

exceptions:

Set the fatality of different exceptions (see

Sec. 10.3). By default, all

errors are fatal and all warnings non-fatal.

core_warning: non-fatal

core_error: fatal

ExampleBit_A_warning: non-fatal

ExampleBit_A_error: non-fatal

...

dependency_resolution:

If multiple module functions can resolve the

same dependency, prefer the one that is more

tailored for the scanned model. See Sec. 7.1.

prefer_model_specific_functions: true

Interpret rules in terms of regular expressions

use_regex: false

Print running average runtime for all functions

in dependency resolver logs

log_runtime: false

Print timing information into hdf5 output

print_timing_data: false

Root prefix to use in all output paths. The

default value is based on the input \YAML file

name, with the (final) file extension removed.

default_output_path: "runs/inifile_name/"

Call MPI_ABORT when attempting to shut down. Many

implementations of MPI_ABORT are buggy and do not

abort other MPI processes properly; in these

cases, set this option false to let GAMBIT try to

abort things its own way.

use_mpi_abort: true

Pick a random number generator engine.

See Sec. 10.6 for details.

rng: default # default = mt19937_64 in GAMBIT 1.0.0

Turn on master debug mode. Implies

Logger:debug=true and

KeyValues:likelihood:debug=true

debug: false

123

784 Page 42 of 70 Eur. Phys. J. C (2017) 77 :784

7 Dependency resolver

The dependency resolver runs during the initialisation stage
of a GAMBIT scan. It determines which module functions
are required for a specific scan, infers their initial evaluation
order, and connects their pipes. A major part of this plumb-
ing exercise is constructing the dependency tree of a scan,
a directed acyclic graph with dependency pipes as the con-
nectors (‘edges’ in graph language) and module functions as
the nodes. Roughly speaking, the dependency tree starts at
its ‘top’ with the scanned models and their parameters, and
terminates at the ‘bottom’ with functions that provide the
likelihoods and observables requested in the ObsLikes sec-
tion of the scan’s initialisation file (Sect. 6.4). An example
can be seen in Fig. 5. The construction of a valid dependency
tree will happen mostly automatically, and depends only on
the declarations in the module and backend rollcall headers.
However, it is rather common in GAMBIT that there are sev-
eral ways to calculate the same thing, in which case additional
rules have to be specified in the input file (Sect. 6.5).

7.1 General procedure

The steps of dependency resolution are:

1. Disable all module and backend functions not compatible
with the models being scanned.

2. Based on the entries of the ObsLikes section, make a list
of initially requested quantities; this is the initial depen-
dency queue.

3. Pick an unresolved quantity from the dependency queue,
along with a designated target. Entries in the initial depen-
dency queue can be thought of as having the chosen
printer as their target.

4. Make a list of module functions that can provide the
requested quantity.

5. If the KeyValues entry prefer_model_specific_

functions is true:

– If any module functions on the list are tailor-made for
the scanned models, remove all other module func-
tions from the list.

– If any module functions on the list are tailor-made
for ancestors of the scanned models, keep only the
module functions most closely related to the scanned
models.

6. Adopt the Rules specified in the initialisation file (see
Sect. 6.5), removing non-matching module functions
from the list.

7. If exactly one module function is left on the list, resolve
the quantity requested by the target function with the
capability provided by that module function. This auto-

matically connects the pipe of the target function to the
result of the resolving function.

8. If the resolving function was not already activated for the
scan, activate it and add its dependencies to the depen-
dency queue (with the resolving function as new target
function).

9. Resolve backend requirements, as described below.
10. Resolve module function options, as described below.
11. Repeat from step 3 until the dependency queue is empty.

7.2 Evaluation order

After building up the dependency tree of module functions,
the dependency resolver determines the initial runtime order-
ing of its chosen module functions. An obvious minimal
requirement is that if the output of module function A is
required by module function B, then A must be evaluated
before B. We do this by topologically sorting the directed
dependency tree, using graph-theoretic methods from the
Boost Graph Library.20

In most cases, the evaluation order of the observables
and likelihoods listed in the ObsLikes section (Sect. 6.4)
remains unconstrained by the topological sorting. The depen-
dency resolver first orders the likelihoods by estimating the
expected evaluation time for each one, including all depen-

20 http://www.boost.org/doc/libs/1_63_0/libs/graph/doc/. The reader
may wonder how mutually-dependent quantities should be dealt with,
i.e. in cases where the values of A and B are defined by a set of equa-
tions that must be solved simultaneously, by means of iteration. Take
the calculation of precision values of mW and mh in the MSSM for
example, where each depends on the other. GAMBIT does not provide
any option for doing such iterative calculations directly through the
dependency tree. Generally the way to deal with such a situation is to
either

1. write a module function that can compute the two quantities simul-
taneously and self-consistently (i.e. that does the iteration inter-
nally), returning them both as its result, or

2. use function pointers as return values of module functions.

For option 2, take the Higgs mass example. If a module author wishes
to permit the user to choose from two possible expressions for mh that
depend on mW , they would first write the two expressions as functions
of mW . Call these expressions f (mW) and g(mW). The author would
then write one or more module functions that return a pointer to f or g.
The module function that computes mW should then depend on a pointer
to a Higgs mass function, and then just call it (either f or g, depending
on which one the user chooses) whilst it does its iterative calculation
of mW . It should then return its final value of mW . Another module
function responsible for computing mh should then depend on both the
value of mW , and the pointer to the same Higgs mass function (f or
g). This module function then simply takes the previously computed
value of mW , passes it to the function pointed to by its dependency on
the Higgs mass function pointer, retrieves the final value of the Higgs
mass, and returns it as its own result.

123

http://www.boost.org/doc/libs/1_63_0/libs/graph/doc/

Eur. Phys. J. C (2017) 77 :784 Page 43 of 70 784

Fig. 5 An example dependency tree generated in the initialisation
stage of a GAMBIT scan. Each block corresponds to a single mod-
ule function, with the red text indicating its capability. Arrows indi-
cate resolution of dependencies of different module functions with the
results of others. The functions selected by the dependency resolver
to provide the observables and likelihoods requested in the ObsLikes
section of the scan’s input YAML file are shaded in green. Module

functions shown shaded in purple are nested module functions. These
run in an automatically-parallelised loop managed by a loop manager
function, which is shown shaded in blue. This example is included in
the GAMBIT distribution as spartan.yaml; see Sect. 12.1 for more
details. Figures like this can be generated for any scan by following the
instructions provided after calling GAMBIT with the -d switch; see
Sect. 6.1 for details

dent module functions, along with the probability that each
likelihood will invalidate a point. (A point may be invali-
dated if the likelihood is extremely close to zero, the point
is unphysical, etc.) These estimates are based on the run-
time and invalidation frequency of the previously calculated
points, and updated on the fly during the scan. The depen-
dency resolver then sorts the evaluation order of likelihoods
such that the expected average time until a point is invalidated
is minimised. In practice this means that, for instance, the
relatively fast checks for consistency of a model with phys-
icality constraints, such as perturbativity and the absence of
tachyons, would be automatically performed before the often

time-consuming evaluation of collider constraints. This gives
a significant efficiency gain in a large scan, because expen-
sive likelihoods are not even evaluated for points found to be
invalid or sufficiently unlikely on the basis of faster likeli-
hoods.

Observables not associated with likelihoods used to drive a
scan (cf. Sect. 6.4) are always calculated after the likelihood
components, as they do not have the power to completely
invalidate a model point. Invalid observable calculations can
still be flagged, but they will not trigger the termination of
all remaining calculations for that point in the way that an
invalid likelihood component will.

123

784 Page 44 of 70 Eur. Phys. J. C (2017) 77 :784

7.3 Resolution of backend requirements

Resolving backend requirements is in some sense a lot easier
than resolving module function dependencies, in that back-
end requirements cannot themselves have explicit backend
requirements nor dependencies, so there is no equivalent of
the dependency tree to build. However, the ability to specify
groups of backend functions from which only one require-
ment must be resolved, along with rules that apply to them
(Sect. 3.1.3), especially the declaration that backend require-
ments that share a certain tag must be resolved from the same
backend – without necessarily specifying which backend –
makes backend resolution a uniquely challenging problem.

The dependency resolver employs an iterative approach
to backend resolution. It performs multiple passes over the
list of backend requirements, choosing to defer resolution
of ambiguous requirements until resolution of other require-
ments makes it possible to uniquely resolve the initial require-
ments. The overall strategy proceeds as follows:

1. Create a new group of backend requirements, consist-
ing of all requirements that were declared in the rollcall
header without a group. This will be a special group;
unlike declared groups, all requirements in this group
must be resolved rather just one.

2. Create a queue of all groups of backend requirements.
3. Choose a group from the queue.
4. (a) If the group is a regular group, iterate through all

available backend functions and retain those that fulfil
all rules of the group. If no backend function exists
that satisfies all rules, throw a runtime error. If only
one such function exists, resolve the group backend
requirement with it. If multiple solutions are found,
but one or more of them is subject to a rule linking
it to another backend requirement, flag the group as
one whose resolution should be deferred until other
backends have been resolved.

(b) If instead the group is the special one, iterate over
all requirements in the group, attempting one by one
to find a unique backend function that fulfils each
requirement. Fail if no solution exists to any one of
these requirements. If just one solution exists to a
given requirement, resolve the requirement with it.
If no unique solution is found for some requirement,
but one or more candidates is subject to a rule linking
it to another requirement, flag the group for deferral
and come back to its unresolved members later.

5. If it has been flagged for deferral, add the group again to
the end of the queue.

6. Repeat from step 3 until either

(a) all groups have been fully resolved, or

(b) the queue stagnates, i.e. a full iteration has been car-
ried out through the entire queue of groups without
any successful backend resolutions. In this case, dis-
able the possibility to defer resolution, and try one last
iteration through the queue, ultimately failing if any
backend groups fail to resolve on the final attempt.

7.4 Resolution of loops and nested functions

As discussed in Sect. 3.1.4, it is possible to write special
module functions (loop managers) that control the parallel
execution of other module functions (nested module func-
tions). Nested functions explicitly declare a dependency on
a loop manager with a certain capability. The dependency
resolution proceeds then as for non-nested module func-
tions. The main difference is that loop managers have access
to pointers to the nested module functions that they con-
trol. The dependency resolver generates a miniature depen-
dency tree for each loop manager, consisting of all nested
functions assigned to run inside the loop managed by that
manager. The loop manager is then given responsibility for
executing the nested functions, in the order provided to it
by the dependency resolver. Further details can be found in
Sect. 3.1.4.

7.5 Option resolution

Each time a module function is activated during the process
of dependency resolution, the dependency resolver searches
the Rules section of the initialisation file for relevant option
entries (see Sect. 6.5.3 for the format of option entries). All
options matching the characteristics of the activated module
function are collected into a new object, which is then con-
nected to the function’s runOptions pipe (cf. Sect. 3.2.4). If
the same option is set to conflicting values in multiple entries
in the Rules section of the initialisation file, the dependency
resolver will throw an error.

8 Statistics and scanning

In this section we explain the statistical strategy employed
by GAMBIT (Sect. 8.1), how to obtain final inferences
from its outputs (Sect. 8.2), and the generic likelihood
forms available within GAMBIT for use by module func-
tions that do not define their own dedicated likelihoods
(Sect. 8.3).

8.1 The role of ScannerBit

To launch a GAMBIT run, a user requests a parameter scan
of a certain model, specifying ranges and priors of the model

123

Eur. Phys. J. C (2017) 77 :784 Page 45 of 70 784

parameters, how to sample them, and the quantities that
should be calculated and included in the scan. The GAM-
BIT model database activates the relevant model ancestry,
which the dependency resolver uses together with the capa-
bilities and types of the user’s requested quantities to select
and connect appropriate module and backend functions into a
dependency tree. Choosing which values of the model param-
eters to run through this dependency tree is the job of Scan-
nerBit, the sampling and statistics module [112]. Scanner-
Bit applies any prior transformations requested by the user,
and activates the appropriate scanner plugin in order to
run the requested sampling algorithm. ScannerBit presently
contains plugins for nested sampling (MultiNest [182]),
Markov Chain Monte Carlo (GreAT [183]), a population-
based Monte Carlo (T-Walk [112]), differential evolution
(Diver [112]), and various grid, random and other toy sam-
plers [112]. It also contains a dedicated postprocessor scan-
ner plugin, which can be used for reprocessing samples
obtained in a previous scan, either to recompute some output
quantities or add new ones. See Ref. [112] for details.

When requesting a quantity in a scan, users are required to
assign it a purpose in the context of that scan. The purpose
may be Observable or Test, indicating that the quantity
should be computed and output for every parameter com-
bination sampled during a scan. Alternatively, a user can
assign a purpose with a specific statistical meaning, such
as LogLike or Likelihood. Interfaces to parameter sam-
pling algorithms in ScannerBit allow the user to choose
which purpose to associate with the objective function for
the scanner at runtime. Following dependency resolution,
GAMBIT creates a likelihood container from the module
functions of the dependency tree that have been assigned
the purpose(s) associated with the sampling algorithm. The
likelihood container packages the module functions’ com-
bined results into a simple objective function for the sam-
pler to call. The sampler then chooses parameter combina-
tions to sample, sends each to the likelihood container, and
receives the final likelihood for the parameter combination
in return.

The GAMBIT convention is to assign purpose:LogLike

to each component of a fit that is to be associated with the
scanner, and for the module functions in question to return
the natural log of the likelihood lnL. The likelihood con-
tainer then combines the results of all such module functions
by simply summing their return values, returning the result
to the scanner as the total log-likelihood. All sampling algo-
rithms interfaced in ScannerBit 1.0.0 allow only a single
designated purpose to drive a scan, although other scanners
to be connected in future versions will make use of mul-
tiple, different purposes within a single scan, for example
to split likelihood calculations into ‘fast’ and ‘slow’ subsets
[184].

8.2 Analysing samples

As it samples different parameter values,ScannerBit ensures
that those values are output using whichever generalised print
stream the user has selected (see Sect. 9 for details), along
with all requested observables and likelihood components.
The final task of statistical interpretation then requires pars-
ing the printed samples and processing them into meaningful
statistical quantities, whether Bayesian (posterior probabil-
ity distribution functions, credible intervals and/or evidence
ratios) or frequentist (profile likelihoods, confidence intervals
and/or p values). Depending on the sampler employed, not
all of these options may be valid (we return to this discussion
in more detail in Ref. [112]).

Although processing the saved samples into statistical
measures and producing corresponding plots are tasks tech-
nically outside the scope of GAMBIT itself, we specifically
provide printer options that produce output compatible with
common parsing and plotting software such asGetDist [185]
and pippi [181]. We also provide a simple installer for pippi
from within the GAMBIT integrated build system (Sect. 11).
This allows GAMBIT to effectively produce profile likeli-
hoods, confidence intervals, posterior probability distribu-
tions and maximum-posterior-density credible intervals in
situ, by outsourcing the final step to pippi. Bayesian evi-
dences can also be obtained directly from relevant scanners
(e.g. MultiNest), or calculated after the fact with pippi. Cal-
culating p values requires the user to make their own ansatz
for the distribution of the GAMBIT log-likelihood (or other
test statistic that they might choose to employ in a GAM-
BIT scan), and then convert the best fit identified by pippi
to p. Future versions of ScannerBit are planned to include
features designed to aid in determining this distribution.

8.3 Available likelihood forms

GAMBIT ships with a number of centrally-implemented,
general purpose Gaussian and log-normal likelihood func-
tions. These can be found in Utils/src/statistics.cpp.
These are intended for use with simple observables and
uncorrelated data, for implementing, e.g., nuisance likeli-
hoods corresponding to well-measured SM parameters (see
[111]). Module functions responsible for more complicated
likelihood calculations typically contain their own imple-
mentations of appropriate test statistics, and corresponding
translations to a quantity that can be treated as equivalent to
lnL in a scan (see the indirect detection likelihoods in [110],
for example).

The centrally-implemented likelihoods come in a number
of variants, allowing them to be used for detections, upper
limits and lower limits. They deal with systematic uncer-
tainties (theory errors, experimental systematics, related nui-
sance parameters, etc) by analytically profiling or marginal-

123

784 Page 46 of 70 Eur. Phys. J. C (2017) 77 :784

ising over an assumed distribution for an auxiliary param-
eter ε, which describes departures from a perfect mapping
between model parameters and predicted values of observ-
ables. The module author must choose an appropriate central
likelihood function to employ when computing a given like-
lihood. However, in every module function that uses one of
following likelihoods, we choose to implement a boolean
YAML option profile_systematics (default false) that
selects at runtime whether systematics will be profiled or
marginalised over.21

8.3.1 Profiled Gaussian

The basic Gaussian likelihood for data measured with some
mean x and standard deviation σ , given a prediction μ, is

LG(x |μ) = 1√
2πσ

exp

[
−1

2

(x − μ)2

σ 2

]
. (52)

Here μ may be a model parameter itself, or some complicated
function of the true underlying model parameters. Taking ε

to be an additive offset in μ induced by some source of error,
and modelling its distribution as also Gaussian, centred on
zero with standard deviation σε , the joint likelihood becomes

LG = 1

2πσσε

exp

[
−1

2

(x − μ − ε)2

σ 2 − 1

2

ε2

σ 2
ε

]
. (53)

Exactly how to denote L on the left of this equation depends
on whether ε and σε are to be interpreted to result from an
auxiliary, independent measurement (frequentist), or simply
some input systematic, possibly theoretical (Bayesian). In
the former case, L = L(x, ε|μ), and a final form of the
likelihood for x alone can be obtained by profiling over the
observed value of ε. To do this, we determine the value of ε

that maximises L(x, ε|μ), by differentiating Eq. 53 to find
the root

ε̂ = σ 2
ε

σ 2 + σ 2
ε

(x − μ). (54)

Substituting back into Eq. 53, the profiled version of the
Gaussian likelihood is

LG,prof(x |μ) = 1

2πσσε

exp

[
−1

2

(x − μ)2

σ 2 + σ 2
ε

]
. (55)

21 If the end user so desires, this can even be set differently for different
module functions, although the resulting composite likelihood would
arguably be inconsistent.

8.3.2 Marginalised Gaussian

If the quantity ε in Eq. 53 is instead interpreted as a direct
input from e.g. theory, its Gaussian distribution has the char-
acter of a prior and L = L(x |μ, ε, σε). Note that in this case,
σε has the character of a model parameter (or a quantity
derived from the model parameters), indicating that it may
vary as a function of the underlying model across the param-
eter space, independent of any considerations from data.

In this case, the appropriate likelihood for x alone instead
comes from marginalising Eq. 53 over the possible values of
ε, as

LG,marg(x |μ, σε) = 1

2πσσε

∫ ∞

−∞
e
− (x−μ−ε)2

2σ2 − ε2

2σ2
ε dε, (56)

giving

LG,marg(x |μ, σε) = 1√
2π(σ 2 + σ 2

ε)
exp

[
−1

2

(x − μ)2

σ 2 + σ 2
ε

]
.

(57)

We compare the marginalised and profiled forms of the
Gaussian likelihood for a toy problem with x = 10 and σ = 1
in the first panel of Fig. 6, assuming σε = 0.5 or σε = 2.

8.3.3 Profiled Gaussian limits

The simplest reasonable approximation to the underlying
likelihood associated with an upper limit on an observable
μ is to assume flatness below some canonical ‘observed’ or
limiting value x , and to model the drop-off at μ > x with a
Gaussian of width σ . This defines the piecewise function

LG↑(x |μ) =
⎧⎨
⎩

1√
2πσ

, if μ ≤ x

1√
2πσ

exp
[
− 1

2
(x−μ)2

σ 2

]
, if μ ≥ x .

(58)

This treatment can be used to directly convert a measured
value into a limit likelihood. An example is the relic den-
sity of dark matter Ωχ h2, which has been measured rather
precisely, but may not consist exclusively of the dark matter
candidate present in any particular BSM theory under inves-
tigation. The same treatment can also be used to implement
likelihoods associated with published upper limits, but addi-
tional modelling is required to recover the equivalent central
value x and falloff width σ from a published limit. Typically
limits at two different CLs are needed to uniquely determine
both x and σ .

123

Eur. Phys. J. C (2017) 77 :784 Page 47 of 70 784

−2
0

−1
5

−1
0

−5
0

G
au

ss
ia
n
lo
g-
lik

el
ih
oo

d
ln
L G

(x
|μ

,σ
)

0 5 10 15 20

Prediction μ

x = 10, σ = 1

σ = 1
2 , profiled

σ = 1
2 , marginalised

σ = 2, profiled

σ = 2, marginalised

− 7
−6

−5
−4

−3
− 2

−1
0

U
pp

er
lim

it
G
au

ss
ia
n
lo
g-
lik

el
ih
oo

d
ln
L G

(x
|μ

,σ
)

6 8 10 12 14 16

Prediction μ

x = 10, σ = 1

σ = 1
2 , profiled

σ = 1
2 , marginalised

σ = 2, profiled

σ = 2, marginalised

−2
0

−1
5

− 1
0

− 5
0

L
og

-n
or
m
al

lo
g-
lik

el
ih
oo

d
ln
L L

N
(x
|μ

,σ
)

0 5 10 15 20

Prediction μ

x = 10, σ = 1

σ = 1
2 , profiled

σ = 1
2 , marginalised

σ = 2, profiled

σ = 2, marginalised

−2
0

−1
5

− 1
0

− 5
0

L
og

-n
or
m
al

lo
g-
lik

el
ih
oo

d
ln
L L

N
(x
|μ

,σ
re
l)

0 5 10 15 20

Prediction μ

x = 10, σ = 1

σ rel = 5%, profiled

σ rel = 5%, marginalised

σ rel = 20%, profiled

σ rel = 20%, marginalised

Fig. 6 The different generic likelihood functions available in GAM-
BIT, described in Sect. 8.3: Gaussian (top left), Gaussian limit (top
right) and log-normal (bottom). Here we show the log-normal likeli-
hood computed with a fixed absolute systematic uncertainty (bottom
left), and instead with a fixed fractional (relative) systematic uncer-
tainty (bottom right). Each curve is computed assuming an observed

central value of x = 10 and standard deviation σ = 1, for two different
assumed values of the systematic error. Two potential pitfalls are visi-
ble: the profiled upper limit likelihood shows a strong dependence on
σε at low values of μ, and adopting an absolute systematic uncertainty
can introduce additional features in the log-normal likelihood at low μ

Including an uncertainty from some auxiliary nuisance
observable ε proceeds similarly to the pure Gaussian case,

LG↑,prof(x |μ) = 1

2πσσε

max

{
max

ε≤x−μ
exp

[
− ε2

2σ 2
ε

]
,

× max
ε≥x−μ

exp

[
− (x − μ − ε)2

2σ 2 − ε2

2σ 2
ε

]}
. (59)

Despite the need to carefully piecewise maximise in the
different regimes, this leads to the simple result

LG↑,prof(x |μ) =
⎧⎨
⎩

1
2πσσε

, if μ ≤ x

1
2πσσε

exp
[
− 1

2
(x−μ)2

σ 2+σ 2
ε

]
, if μ ≥ x .

(60)

The corresponding expressionLG↓,prof(x |μ) for a lower limit
is identical, except that the inequalities relating x and μ are
reversed.

The simplicity of Eq. 60 is somewhat beguiling. Incor-
rectly using this expression when ε and σε are interpreted in
a Bayesian manner can lead to behaviour of the test statistic

123

784 Page 48 of 70 Eur. Phys. J. C (2017) 77 :784

that is undesirable in a frequentist analysis. For example, if
σε varies over the parameter space, the likelihood function
will not actually be flat for μ ≤ x , despite the fact that the
data make no statement about neighbouring values of μ in
this region, and therefore neither should a sensible profile
likelihood. An example of this behaviour can be seen in the
second panel of Fig. 6. In such cases, it is important to care-
fully decide on the interpretation of ε and σε from the outset.
If they cannot be interpreted in a strict frequentist sense, then
the marginalised variants of the likelihoods discussed here
should be adopted instead, even when the final goal of a
BSM scan is to produce profile likelihood results.

8.3.4 Marginalised Gaussian limits

To produce the marginalised form of Eq. 58, we again inte-
grate the joint likelihood over all possible ε,

LG↑,marg(x |μ, σε) = 1

2πσσε

∫ x−μ

−∞
exp

[
− ε2

2σ 2
ε

]
dε

+
∫ ∞

x−μ

exp

[
− (x − μ − ε)2

2σ 2 − ε2

2σ 2
ε

]
dε, (61)

leading to

LG↑,marg(x |μ, σε) = 1

23/2
√

π

⎡
⎣ 1√

σ 2 + σ 2
ε

e
− 1

2
(x−μ)2

σ2+σ2
ε

× erfc

(
σ

σε

x − μ√
2(σ 2 + σ 2

ε)

)
+ 1

σ
erfc

(
μ − x√

2σε

) ⎤
⎥⎦ , (62)

where erfc(x) = erf(1−x) is the complementary error func-
tion. We can now see that

lim
μ→−∞LG↑,marg(x |μ, σε) = 1√

2πσ
, (63)

regardless of σε , and precisely as one would prefer a sensibly-
behaved profile likelihood to do. This behaviour can be seen
in the second panel of Fig. 6.

The corresponding marginalised likelihood for a lower
limit LG↓,marg(x |μ, σε) is obtained by making the replace-
ments x → −x and μ → −μ in Eq. 62.

8.3.5 Profiled log-normal

A log-normal likelihood describes the situation where the
distribution of the logarithm of some observation is expected
to be Gaussian over repeated experiments. This may occur in
cases where, for example, observations must return positive
values by construction. The likelihood takes the form

LLN(x |μ) = 1√
2πσ ′x

exp

[
−1

2

(ln x
μ
)2

σ ′2

]
. (64)

Here x and μ remain the observed and predicted values of the
observable, and the Gaussian distribution for ln x is centred
on ln μ. The Gaussian width is σ ′, which is related to σrel,
the relative uncertainty on x , as

σ ′ ≡ ln(1 + σrel) = ln(1 + σ/x). (65)

This likelihood describes statistical variation in the scale
of an observable, and is therefore most prone to the effects of
systematics also able to impact that scale. In this case, ε takes
the form of an auxiliary multiplicative source of error, with
the corresponding additive offset given by ln ε. It is therefore
appropriate to model the distribution of ε with a log-normal
centred on 1. The corresponding width σ ′

ε is then given by

σ ′
ε ≡ ln(1 + σε,rel) = ln(1 + σε/μ). (66)

The joint likelihood is then

LLN = 1√
2πσ ′σ ′

εxε
exp

[
− (ln x

εμ
)2

2σ ′2 − (ln ε)2

2σ ′2
ε

]
. (67)

This has its maximum at

ε̂ = exp

[
σ ′2

ε (ln x
μ

− σ ′2)
σ ′2 + σ ′2

ε

]
, (68)

leading to the profiled likelihood

LLN,prof(x |μ)

= 1

x
√

2πσ ′σ ′
ε

exp

⎡
⎢⎣−1

2

(
ln x

εμ

)2 + σ ′2
ε ln x

μ
− σ ′2σ ′2

ε

σ ′2 + σ ′2
ε

⎤
⎥⎦ .

(69)

8.3.6 Marginalised log-normal

Integrating Eq. 67 over ε instead of maximising it gives the
marginalised log-normal likelihood:

LLN,marg(x |μ) = 1

x
√

2π(σ ′2 + σ ′2
ε)

exp

[
−1

2

(ln x
μ
)2

σ ′2 + σ ′2
ε

]
.

(70)

In the lower panels of Fig. 6, we compare the marginalised
and profiled forms of the log-normal likelihood, for the same
toy problem as discussed previously (x = 10 and σ = 1). As
in the Gaussian case, the profiled and marginalised versions
show very similar behaviour, despite the fact that unlike the
Gaussian case, they posses somewhat different functional

123

Eur. Phys. J. C (2017) 77 :784 Page 49 of 70 784

forms. Here we also show the additional features that can be
induced at low μ if a constant value of the absolute systematic
σε is employed with the log-normal likelihood, rather than a
constant relative uncertainty σε,rel.

9 Output

Output from GAMBIT scans is handled by the Printer sub-
system, which generalises the writing of scan data to disk or
any other output medium. It is designed so that the output
format can be chosen at runtime with options in the master
YAML file. Print commands within GAMBIT are issued via
a general abstract interface, while the actual writing of data
to the chosen output medium is handled by one of several
derived classes, known as printers.

The actual print commands are automatically issued by
GAMBIT whenever it runs a module function, so writers of
new module functions need not concern themselves with how
to send information to the printer system. Most users only
need to know how to set up a printer via the master YAML
file, and what the format of the output is. Section 6.6 covers
the YAML setup. We deal with the main output format in
Sect. 9.1, and the output formats of specific printers in Sect.
9.2.

There are three main scenarios that require additional
knowledge of the printer system. One is writing a scanner
plugin, where one must use the printer interface class to
output e.g. probability weights or likelihoods. We discuss
this briefly in Sect. 9.2.1, but we refer readers to the Scan-
nerBit paper [112] for a full exposition. Another is when
a user wishes to make an existing printer emit a new C++

type, to e.g. allow a new module function returning a cus-
tom type to print its result. We deal with this in Sect. 9.3.
The final scenario is writing a new printer, for outputting
GAMBIT data in a new format. This is a straightforward but
quite specialised task, requiring complete knowledge of the
class structure of the printer subsystem. The requisite details
are left to documentation shipped with the code (found in
doc/writing_printers.pdf)

9.1 Overview of the output format

Other than in scanner plugin code (see Ref. [112]), print com-
mands are issued automatically to the GAMBIT printer sys-
tem. This occurs after the evaluation of each module function
that has been requested for printing from the master YAML
file (see Sect. 6.6). Nonetheless, it useful to know how this
system works when interpreting its output. The printer sys-
tem receives print commands via functions with the signature

void _print(type const& result,
const std::string& label,
const int IDcode,

const unsigned int MPIrank,
const unsigned long pointID);

These contain the following information:

result The result computed by the module function (print-
able only if type is registered as printable and has an appro-
priate function overload defined; see Sect. 9.3).

label A string describing the result of the module func-
tion. It typically has the format

"#capability @module::function"

where capability, module and function are respectively the
capability, host module and actual name of the module
function that issued the print command. It is left to indi-
vidual printers to decide what to do with this information
(see Sects. 9.2.1, 9.2.2).

IDcode A unique integer automatically assigned to each
module function for the duration of a scan. This allows
printers to identify the origin of each print command
without parsing the label string. Generally this number
will not be passed on to the output file.

MPIrank The process rank assigned by MPI. Along with
pointID this is needed to identify which parameter space
point triggered a given print command.

pointID A unique integer automatically assigned to every
parameter combination evaluated by a given MPI process
in a scan. The pointID is not unique across processes,
so both MPIrank and pointID need to be used in com-
bination to obtain a globally unique identifier.

These arguments are the totality of information known to the
printer at the time of each print command. It is then the job
of the printer to assemble this information, from many print
commands, into a coherent set of outputs.

Print commands can also be issued by ScannerBit or
its plugins. By default, ScannerBit prints the final result
returned to it for each model point (i.e. the total log-likelihood
returned by the likelihood container).22 However, scanners
will often have other information that they want to record
about each model point, and this can be added via manual
calls to the print commands. Details can be found in the
ScannerBit paper [112].

In addition to the module function, likelihoood container
and scanner plugin outputs sent to the printer, the MPIrank

and pointID are also automatically printed for every point.
This allows printers the option of writing new data back to

22 Technically, what is returned to the scanner is actually determined by
the purpose(s) that the user has associated with their chosen scanner or
test function plugin in the master YAML file (see Sect. 8). When using
ScannerBit standalone however, anything can actually be connected
to the scanner as its main objective function, and it will still be printed
by default.

123

784 Page 50 of 70 Eur. Phys. J. C (2017) 77 :784

previous points. For example, the MultiNest scanner plugin
computes posterior probability weights for a subset of points,
long after the likelihood function is evaluated at those points.
With this setup, such information can be inserted directly
into the existing output medium at the position associated
with those points, rather than having to write an entirely new
output stream, as occurs in the native MultiNest output. It
is up to the individual printers exactly how they handle this;
for example, the ascii printer will write out a new file as
MultiNest itself does, but the hdf5 printer will automatically
update existing HDF5 files with new data about old points.

9.2 Available printers

Here we give specific details of how print commands are
translated into files on disk by the ascii and hdf5 printers.
This is essential information for interpreting the output of
each printer.

9.2.1 ASCII output

The output file produced by the ascii printer (as named by
the output_file option; see Sect. 6.6.1) consists of a simple
whitespace-separated table of floating point numbers. The
table is produced as follows. First, the GAMBIT module
functions that are registered for printing issue print com-
mands to the primary print stream, as they are each evaluated,
and the result data is stored in a buffer. The print commands
contain the MPIrank and pointID (see Sect. 9.1) identifying
the model point that produced the data. By monitoring when
these identifiers change, the printer detects when the scanner
has moved to a new model point. Upon detecting a new point,
the buffer begins a new line. Once the buffer is filled with a
preset maximum number of lines, it is written to disk.

The structure of the ASCII output table (i.e. which data
should be assigned to which column) is determined exclu-
sively from the contents of the buffer immediately before
the first dump. This imposes some extra restrictions on the
data that the ascii printer can handle. For example, variable-
length vectors of data can be printed, but at least one example
with the maximum length expected in an entire scan must
be sent to the printer before the first buffer dump, otherwise
there will be insufficient space allocated in the output table to
accommodate the longest such vectors in subsequent dumps.

To interpret the contents of the resulting ASCII file, an
accompanying “info” file is produced at the time of the first
buffer dump. The info file contains a list of labels identifying
the columns of the output data file. If the data file is named
output.data, then the info file will be output.data_info.
When running GAMBIT via MPI, a separate output file will
be produced for each process, with the rank of the host pro-
cess appended to the root filename. An example info file

describing output generated by fitting a normal distribution
with MultiNest [182]23 is shown below:

Column 1: unitCubeParameters[0]
Column 2: unitCubeParameters[1]
Column 3: MPIrank
Column 4: pointID
Column 5: LogLikelihood
Column 6: #NormalDist_parameters \

@NormalDist::primary_parameters::mu
Column 7: #NormalDist_parameters \

@NormalDist::primary_parameters::sigma
Column 8: #normaldist_loglike \

@ExampleBit_A::normaldist_loglike

In this example the LogLikelihood (column 5) contains the
global log-likelihood used to drive MultiNest. It consists of
only one component, given in column 8: the log-likelihood
returned by the normal distribution log-likelihood func-
tion normaldist_loglike from the module ExampleBit_
A. Model parameter values are given in columns 6 and 7.
The first two columns contain “unit hypercube” parameters,
which are the raw unit-interval samples produced by Multi-
Nest, before being transformed into the actual model param-
eter values byScannerBit [112]. The MPIrank and pointID

entries contain the model point identification data (Sect. 9.1).
Print statements originating from scanner plugins can be

issued directly to the main printer – in which case they will
be treated the same as module function output – or they can
be issued to an auxiliary print stream if the data are not syn-
chronised with the likelihood evaluations. Instructions for
correctly handling this kind of data when writing scanner
plugins are given elsewhere [112]. In the example above,
unlike in the the native MultiNest output format, there are
no posterior weights. These are issued to an auxiliary print
stream in the MultiNest scanner plugin, so they end up in a
different output file. The auxiliary file is also a plain ASCII
table, and it comes with its own info file describing its con-
tents:

Column 1: Posterior
Column 2: MPIrank
Column 3: pointID

The Posterior column contains the posterior weights,
and the MPIrank and pointID contain the point identifica-
tion data as before. BecauseMPIrank andpointID are shared
between output files, they can be used to correlate Posterior
weights with other data about the point during post-run anal-
ysis. GAMBIT could in principle perform this combination
automatically at the end of a run, however it is currently left
up to user’s preferred post-run analysis tools. Note that the
hdf5 printer does automatically combine the auxiliary print
stream data with the primary print stream data, so it is the

23 See the ScannerBit paper [112] for details of the GAMBIT interface
to MultiNest.

123

Eur. Phys. J. C (2017) 77 :784 Page 51 of 70 784

more convenient format to use when working with auxiliary
print data like posterior weights.

9.2.2 HDF5 output

The output file produced by the hdf5 printer is set with
the output_file option (Sect. 6.6.3). It contains a sepa-
rate data record for every output quantity, each of length
equal to the number of parameter space points evaluated
during the scan. These datasets are located according to the
group option (Sect. 6.6.3). The command-line utility h5ls

(included in most HDF5 library distributions) can be used
to probe the internal layout of an HDF5 file. This can be
useful for inspecting the names given to each dataset, which
are derived from the label supplied via the print commands
(see Sect. 9.1). The same information can also be obtained
using the probe command in pippi [181].

All datasets in the resulting HDF5 files are synchronised,
meaning that items at index i in every dataset have been
obtained from the same model point. Each dataset comes with
a second dataset of matching length, containing a flag indicat-
ing whether the data at the given index of the host dataset has
been identified as valid or not. The labels for these datasets
match their hosts, with _isvalid appended. For example, if
an observable quantity some_obs was registered as invalid
by GAMBIT for that point (perhaps because the result was
unphysical), then the entry in thesome_obs_isvaliddataset
will be set to 0 (false). The _isvalid entries can thus be used
as a mask for filtering out invalid or missing entries from the
main dataset. This is done automatically in pippi— but a
simple example Python script that uses h5py to inspect the
HDF5 output of a GAMBIT run serves to illustrate the above
concepts:

import h5py

import numpy as np

#Open the hdf5 file

f = h5py.File("output_filename","r")

#Retrieve the log-likelihoods

logL_label = "group/LogLikelihood"
logL = f[logL_label]

#Retrieve flags indicating log-likelihood validity

isvalid_label = "group/LogLikelihood_isvalid"
mask = np.array(f[isvalid_label], dtype = np.bool)

print "Successful LogLikelihood evaluations:"

print np.sum(mask)

#Apply flags to print only valid log-likelihoods

print "Valid LogLikelihood values:"

print logL[mask]

Note that the output format described here applies only to
the final, combined output of a GAMBIT scan. During a run,
the information will be structured differently, and there will

be one output file for every MPI process involved in the scan.
This output is combined when scans resume (so that new
temporary output can be written), and when they complete.
To examine the output of a scan in the format described here
before the scan completes, it is necessary to stop the scan and
then resume it (see Sect. 10.8) to trigger the combination.

9.3 Expanding the printable types

A module function result can only be printed if itsC++ type is
in the set of printable types. In order for a type to be printable,
the printer chosen for a scan must have an appropriate print
function overload defined for the type. The internal details
of these function overloads must vary with the printer, as
they describe how to translate the C++ type into the output
format specific to each printer. Here we outline the general
requirements.

The process is best illustrated with an example. Suppose
one wishes to make the result typestd::map<std::string,
int> printable via the ascii printer. First, in order for the type
to even be potentially printable by any printer, it must be listed
in the PRINTABLE_TYPES macro in Elements/include/

gambit/Elements/printable_types.hpp. Note that com-
mas confuse the macro, so in this example the new type
should first be aliased with a typedef, e.g.

typedef std::map<std::string,int> map_str_int

Next, one needs to add a new overload of the print

function to the printer class (in this case the ascii printer).
This requires a new declaration to be added to the class
asciiPrinter. This can be acheived automatically by
putting the type into one of the two lists of types to be found in
Printers/include/gambit/Printers/printers

/asciitypes.hpp:

#define ASCII_TYPES \

(std::string) \

// etc

#define ASCII_MODULE_BACKEND_TYPES \

(DM_nucleon_couplings) \

(Flav_KstarMuMu_obs) \

(map_str_int) // <--- New printable type.

Here the type should be added to ASCII_MODULE_BACKEND

_TYPES if it is defined specifically as a module type or a
backend type, and to ASCII_TYPES otherwise. Users unsure
whether their type is a backend type, module type or some
other type should be able to find the answer by studying Sects.
4.4, 10.5 and 11.1.

The corresponding function definition should then be
added toPrinters/src/printers/asciiprinter/print_

overloads.cpp:

123

784 Page 52 of 70 Eur. Phys. J. C (2017) 77 :784

void asciiPrinter::_print(map_str_int const&

result, const std::string& label, const int

IDcode, const unsigned int MPIrank, const

unsigned long pointID)

{

std::vector<std::string> names;

std::vector<double> values;

names.reserve(result.size());

values.reserve(result.size());

for (std::map<std::string, int>::iterator

it = result.begin(); it != result.end(); it++)

{

std::stringstream ss;

ss << label << "::" << it->first;

names.push_back(ss.str());

values.push_back(it->second);

}

addtobuffer(values,names,IDcode,MPIrank,

pointID);

}

Note that if the type appears in the ASCII_TYPES macro
above, then the function definition should just go in the
main body of print_overloads.cpp. If the type is instead
part of ASCII_MODULE_BACKEND_TYPES, the function def-
inition needs to be surrounded by the preprocessor direc-
tives #ifndef SCANNER_STANDALONE ... #endif in order
to retain the ability to use ScannerBit without GAMBIT
modules or backends.

Data can be supplied to the ascii printer buffer as a vector
of values plus a matching vector of labels, so in this exam-
ple the input string/integer map is simply converted into two
vectors and sent to the print buffer. Of course, to fully under-
stand the detail of the function body above one needs to
understand the interior workings of the asciiPrinter class;
those details can be found for each printer in the main code
documentation (located in the doc directory).

In general, any expansion of the types printable by a given
printer should also involve expanding the types readable by
the corresponding ‘inverse printer’, which is used by the
postprocessor scanner. See Ref. [112] for details.

10 Utilities

10.1 Particle database

The GAMBIT particle database provides standardised par-
ticle definitions for use throughout the code, in particular
for referring to states in GAMBIT Spectrum, DecayTable
and ProcessCatalog objects, which catalogue particle
masses, decay and annihilation rates. It can be found in
Models/src/particle_database.cpp.

Declaring new particles can be done either in singular form

add_particle("∼g", (1000021,0))

or in sets, as

add_particle_set("h0", ((25, 0), (35, 0)))

In the first example, the gluino is declared with name "∼g",
PDG code 1000021, and context integer 0. The context
integer provides an additional index beyond the PDG code.
This can be used to distinguish different particles that might
employ the same PDG code under different circumstances,
e.g. (s)fermion mass and gauge eigenstates.

In the second example, two new particles are declared,
corresponding to the two neutral Higgses in the MSSM. The
names of the new particles are constructed from the string
"h0" and the indices of the individual particles in the set, such
that "h0_1" is created with PDG code 25 and context zero,
and "h0_2" is created with PDG code 35 and context zero.
Essentially any number of particles can be placed together
into a set in this manner.

Equivalent versions of both add_particle and
add_particle_set exist for adding SM particles in particu-
lar; these areadd_SM_particle andadd_SM_particle_set.
SM particles are given special treatment and saved as such
inside the database, so that filters to e.g. decay final states
can be applied according to whether one of the final states is
or is not part of the SM.

A special version of add_particle also exists for defin-
ing broad particle classes like ‘quarks’, ’baryons’, ‘mesons’,
etc,

add_generic_particle("quark", (9900084, 0))

These generic states have rather limited applicability, as they
cannot participate in mass spectrum calculations, but they
can prove useful for specifying generic decay channels.

Within the rest of GAMBIT, particles defined in the par-
ticle database can be referred to in three equivalent ways:

1. using their full name (e.g. "∼g", "h0_1", "h0_2", etc)
2. using their PDG-context integer pair (e.g. {35, 0})
3. using their short name and set index (e.g. {"h0", 2})

The particle database itself contains various other helper
functions for converting between these three conventions,
and for converting particles into their corresponding anti-
particles. It can be accessed using the functionParticleDB(),
which returns a reference to the (singleton) database object.

The particle database in GAMBIT 1.0.0 contains entries
for all SM and MSSM particles, as well as the singlet DM
candidate, various significant SM mesons and generic parti-
cle classes.

123

Eur. Phys. J. C (2017) 77 :784 Page 53 of 70 784

10.2 Logging

The GAMBIT logging system provides a mechanism for
writing important messages that occur during a run to disk,
so that they can be examined when diagnosing problems
or simply trying to understand a scan. Module writers can
access the central logging singleton object via the accessor
function logger(), which can be included via the header
Logs/include/gambit/Logs/log.hpp. Log messages are
sent to the logger object via the stream operator <<. Strings
fed into the logger are concatenated until the special object
EOM is received, which marks the end of each log message
and causes it to be written to disk. A simple example is:

logger() << "Hello world" << EOM;

Log messages can be assigned tags depending on the
nature and origin of the message. Tags can be used for auto-
matically sorting log messages into different output files. For
example, the tag LogTags::info can be attached to a mes-
sage by inserting it via the stream operator at any point before
the EOM object is received. A list of the available tags along
with their string names used in the log output is given below:

// Message types
debug = "Debug"
info = "Info"
warn = "Warning"
err = "Error"
// Flags
fatal = "Fatal"
nonfatal = "Non-fatal"
// Component tags
def = "Default"
core = "Core"
logs = "Logger"
models = "Models"
dependency_resolver = "Dependency Resolver"
scanner = "Scanner"
inifile = "IniFile"
printers = "Printers"
utils = "Utilities"
backends = "Backends"

Note that that namespace qualifier LogTags is required to
access the tags.

If GAMBIT is compiled with MPI and run with more than
one process, the MPI rank of the process that creates each
log file is appended to its filename, separating log messages
from different processes into different files.

By default, all log messages are delivered to the files
runs/yaml_filename/logs/default.log_rank, where yaml_

filename is the root name of the YAML file used to run
GAMBIT, and rank is the MPI rank. There are two ways
to change this default path. The first is to specify an over-
ride default_output_path in the KeyValues section of
the YAML file (see Sect. 6.9). The second is to specify a new
prefix in the Logger section of the YAML file, which spec-
ifies a directory in which to store log files, and overrides any

default_output_path. Log messages having a chosen set
of tags can then be redirected into files in that directory using
the redirection subsection under Logger. For example, to
redirect all log messages to the files new_def.log_rank in
the directory /my_dir, and all messages tagged with both
Error and Fatal into the file err_fatal.log_rank in the
same directory, the following Logger setup could be used:

Logger:
prefix: "/my_dir/"
redirection:

[Default] : "new_def.log"
[Error,Fatal] : "err_fatal.log"

The tag matching is inclusive, so any message contain-
ing the tags Error or Fatal will be directed to the file
err_fatal.log, regardless of what other tags it also has.
Such messages will also go to new_def.log, seeing as all
messages have the Default tag.

By default, messages with theDebug tag will not be logged
at all. The Logger option debug can be used to turn on debug
log output, e.g.

Logger:
debug: true
redirection:

[Debug] : "debug_log_messages.log"

The Logger:debug flag is automatically activated if the cen-
tral KeyValues:debug flag is set true (cf. Sect. 6.9).

Messages delivered to the logger from within a module
are automatically tagged with the name of the module, allow-
ing messages originating from different modules to be easily
isolated using the redirection system.

The log system does not capture regular print statements
sent to stdout nor stderr. This means that any statements
printed to the screen in backends or modules will appear in
stdout and stderr as usual. This can be frustrating when
working with a massively parallel MPI job. We advise users
to take advantage of options for sending stdout and stderr

to separate files for eachMPI process, or tagging outputs with
the MPI rank; these are available in the launcher applications
(mpiexec, mpirun, etc) of essentially all MPI implementa-
tions, and in some batch schedulers as well.

10.3 Exceptions

GAMBIT has separate exceptions for errors, warnings and
invalid parameter points, all of which derive from the C++

STL exception class. There is a single invalid_point_

exception object created at initialisation for use throughout
the code, along with a single error and a single warning

object for each GAMBIT subsystem and each module. These
are accessed by reference with the functions

123

784 Page 54 of 70 Eur. Phys. J. C (2017) 77 :784

invalid_point();

core_error();
dependency_resolver_error();
utils_error();
backend_error();
logging_error();
model_error();
Printers::printer_error();
IniParser::inifile_error();
DarkBit_error();
ScannerBit_error();
...

core_warning();
dependency_resolver_warning();
utils_warning();
backend_warning();
logging_warning();
model_warning();
Printers::printer_warning();
IniParser::inifile_warning();
DarkBit_warning();
ScannerBit_warning();
...

Flagging an invalid point is as simple as invoking the
raise method with an appropriate explanation, e.g.

invalid_point().raise("Tachyon detected");

This causes the present parameter combination and the expla-
nation to be logged, and the current module function evalu-
ation to be terminated.

If an invalid point exception is raised during the calcula-
tion of the likelihood (or other purpose matching the scan-
ner’s requirements, cf. Sect. 8), it short-circuits the likeli-
hood container. This causes all subsequent calculations in
the dependency tree to be skipped, and the point declared
invalid. In this way, by placing the module functions that are
most likely to invalidate points earliest in the dependency
tree, the dependency resolver can help to optimise a scan by
preventing unnecessary calculations from being performed
on points that turn out to be invalid for other reasons.

If the invalid point exception is raised during an observ-
able calculation that is not needed for the likelihood, then the
likelihood container simply notes that the calculated observ-
able is invalid, and moves on to the next observable, without
invalidating the actual likelihood value of the point.

Raising an error or a warning follows in a similar way to
an invalid point, but also provides the possibility to provide
an additional context string to facilitate future debugging,
e.g.

DecayBit_error().raise(LOCAL_INFO,"Negative
width!");

GAMBIT defines the macro LOCAL_INFO for this purpose,
which unrolls to give a string with the exact file and line

number in which it appears. Users can of course pass different
context information if they prefer.

By default, errors are considered fatal and warnings non-
fatal. Fatal exceptions cause a scan to terminate, printing the
error message to stdout, whereas non-fatal ones are sim-
ply logged and the module function is allowed to continue.
Invalid point exceptions, as well as errors and warnings set
to be fatal, all eventually throw themselves in the manner of
regular C++ exceptions; non-fatal errors and warnings never
throw. Which errors and warnings are considered fatal can
be modified from the KeyValues section of the input file,
using options such as

exceptions:
dependency_resolver_error: fatal
dependency_resolver_warning: non-fatal
core_warning: fatal

Sometimes, module writers will want to deliberately
raise and then catch a GAMBIT exception. Invalid point
exceptions always throw themselves, and if not caught ear-
lier, are always caught and logged by the likelihood container.
Module writers who wish to raise and catch invalid point
exceptions within their own module functions can therefore
safely do so using the regular raise function, under the
understanding that any logging of the error is the respon-
sibility of the catching routine.

The optional fatility of GAMBIT errors and warnings
makes it impossible to do the same thing with them, how-
ever; despite being raised, an error or warning that is
deemed non-fatal will never actually be thrown, let alone
caught. GAMBIT errors and warnings therefore also pro-
vide forced_throw and silent_forced_throw methods
as alternatives to raise. The forced_throw function raises
and logs the exception as usual, but always throws it onwards,
regardless of whether or not the exception is deemed fatal.
The silent version does the same, but does no logging.

As throwing exceptions across OpenMP boundaries con-
stitutes undefined behaviour, GAMBIT exceptions cannot be
employed as usual from within nested module functions.
To get around this problem, GAMBIT also includes global
threadsafe deferred exception objectspiped_invalid_point,
piped_errors and piped_warnings. By calling request

from these objects within a nested module function, an excep-
tion can be queued up for raising by the nested function’s
loop manager at the next opportunity. Developers of loop
managers should therefore make a habit of calling enquire

(inside OpenMP blocks) on the piped exception objects at
regular intervals to see if any piped exceptions have been
requested, and/or check (outside OpenMP blocks) to raise
any queued exceptions.

123

Eur. Phys. J. C (2017) 77 :784 Page 55 of 70 784

Fig. 7 Example output of the backends diagnostic mode, showing the statuses and locations of different backend libraries configured for use with
GAMBIT

10.4 Diagnostics

GAMBIT features extensive diagnostic tools, allowing users
to quickly check which backends, scanners, modules and
models are available at any given time, as well as which
module and backend functions offer what capabilities for
use in a scan.

10.4.1 Modules diagnostic

gambit modules

GAMBIT lists the modules present and available in the user’s
current configuration, indicating how many functions each
module contains. Modules that are present on the user’s sys-
tem but have been excluded at configuration time from the
compilation of GAMBIT are also listed, but are shown as
ditched (see Sect. 11 for details on the Ditch process).

10.4.2 Capabilities diagnostic

gambit capabilities

GAMBIT lists all capabilities published by module func-
tions, backend functions and backend variables, along with
the modules and/or backends in which functions with each
capability can be found.

10.4.3 Backends diagnostic

gambit backends

GAMBIT lists the backends for which it has frontend inter-
faces, by backend name and version. An example is shown
in Fig. 7.

For each version of each backend, the diagnostic shows
the path to the shared library containing the backend, the
number of functions and variables published to GAMBIT by
the frontend interface, the number of classes provided by the
backend, and the number of different constructors it provides.
The diagnostic also gives the overall status of the shared
library of each backend. If the library has been located and
loaded successfully, the status is OK; if it cannot be loaded
or there was an error when loading it, the status is shown
as absent/broken; if there was a problem finding the
necessary symbols for any of the member functions of any
of the classes provided by the backend, the status is shown
as bad types.

In the case of a BOSSed library, any status other than
OK causes GAMBIT to disable all module functions that are
declared to need classes from that backend. Refer to the dis-
cussion of the rollcall declaration NEEDS_CLASSES_FROM in
Sect. 4.5 for details.

Note that unlike constructor problems, symbol lookup
errors for non-constructor backend functions or variables do
not prevent a backend from presenting status OK overall.
The status of individual functions and variables in a backend

123

784 Page 56 of 70 Eur. Phys. J. C (2017) 77 :784

backend_name can be probed using the free-form diagnostic
gambit backend_name. Symbol errors from non-constructor
backend functions and variables cause the individual func-
tions/variables themselves to be disabled, but not the entire
backend.

10.4.4 Models diagnostic

gambit models

GAMBIT lists the contents of the model database, giving the
name of each model, its parent (if any), and the dimensional-
ity of its parameter space. This diagnostic also produces the
necessary files to generate a graph of the model hierarchy
(e.g. Fig. 2).

10.4.5 Scanners diagnostic

gambit scanners

GAMBIT lists the names and versions of different parameter
samplers for which it has interfaces defined in ScannerBit,
and gives a status report on its efforts to load each of their
shared libraries.

10.4.6 Test-functions diagnostic

gambit test-functions

GAMBIT lists the names and versions of different objective
test functions known toScannerBit, and gives a status report
on its efforts to load each of their shared libraries.

10.4.7 Priors diagnostic

gambit priors

GAMBIT lists its known prior transformations for parameter
sampling, giving a brief description of each along with the
input file options that it accepts.

10.4.8 Free-form diagnostics

Further information can be found about essentially any com-
ponent of GAMBIT by simply typing

gambit component

where component is a capability or the name of a module,
backend, scanner plugin, test function plugin or model. The
nature of the information subsequently provided depends
on the type of component under investigation, but usually
includes a short description, a status report and listings of

the component’s relationship to other components. Modules
come with a list of the functions they contain, including func-
tion names, capabilities, types, dependencies and backend
requirements. Backends come with similar information, as
well as the individual status of each backend function. Scan-
ners and test functions come with status reports, header and
link info, and details of their accepted options. Models report
detailed information about their family tree and the identi-
ties of their parameters. Asking about a capability generates
a list of all module and backend functions able to compute
that quantity.

10.5 Type handling

Dependency resolution works by matching module function
capabilities and types to dependencies, and backend func-
tion capabilities and types to backend requirements. The
types involved can be C++ intrinsic types, GAMBIT intrin-
sic types, or types associated specifically with a GAMBIT
module, model or backend.

Types associated with specific backends are automatically
made available to all GAMBIT modules and frontend rou-
tines, as all module functions can in principle have a back-
end requirement filled from any backend. In contrast, module
types are used exclusively by functions associated with that
module, and are not available to functions outside the mod-
ule. The same is true of model types and their accessibility
outside model-associated functions.

Adding a new type is relatively straightforward. General
utility types that will be used throughout GAMBIT, and types
with mixed backend, module and/or model character, should
be declared in a new header, and that header included from
Utils/ include/gambit/Utils/shared_types.hpp.

Backend types associated with backend x should be
declared in a new header Backends/include/ gambit/

↪→Backends/backend_types/x_types.hpp. This header
will then be automatically included in Backends/ include/

gambit/Backends/backend_types_rollcall.hppby the
GAMBIT build system (Sect. 11).

Types associated with model y should be declared in
Models/include/gambit/Models/models/y.hpp, which
will then also be picked up and included by the build
system, this time in Models/include/gambit/Models/

model_types_rollcall.hpp.
Types for module z should be placed in a new header

z/include/gambit/z/z_types.hpp, which must then be
included from z/include/gambit/z/z_rollcall.hpp. The
build system will automatically include the new header
in Elements/include/gambit/Elements/module_types

_roll-call.hpp.
The above discussion applies not only to new types, but

also to typedefs associated with different components of
GAMBIT. One challenge in performing dependency reso-

123

Eur. Phys. J. C (2017) 77 :784 Page 57 of 70 784

lution is that types are matched entirely as strings at run-
time, meaning that the dependency resolver cannot recog-
nise typedefs a priori. To allow it to understand typedefs
and treat two types as equivalent for dependency resolu-
tion purposes,GAMBIT features a type equivalency database
config/resolution_type_equivalency_classes.yaml.
Entries in this file are equivalency classes of different types,
such that the dependency resolver considers each type within
an equivalency class to be identical to all the others in the
same class.

10.6 Random numbers

Random numbers in GAMBIT are provided via a threadsafe
wrapper to the random number generators of the C++11 STL
<random>. Whether inside or outside an OpenMP block,
single uniform random variates can be obtained by calling

double myran = Random::draw();

GAMBIT seeds and maintains a separate random number
generator for each thread, so the resulting deviates are uncor-
related across threads. The seed for each generator is the sum
of the system clock time and the thread index.

The underlying random number generator used by Random

::draw() can be configured from the KeyValues section of
the input file, as

KeyValues:
rng: chosen_rng_engine

where chosen_rng_engine can be any of the recognised C++

random engines: default_random_engine, minstd_rand,
minstd_rand0, mt19937, mt19937_64, ranlux24_base,
ranlux48_base, ranlux24, ranlux48 or knuth_b.24 It can
also be simply default, which selects the GAMBIT default
generator; in GAMBIT 1.0.0 this is the 64-bit Mersenne
Twister mt19937_64.

10.7 Component databases and documentation

Although this paper serves as a user and design guide to
GAMBIT, as do Refs. [108–112] for each module, GAMBIT
also features two additional documentation systems.

The first is a standard Doxygen documentation system,
which gives basic information about classes, functions, vari-
ables, namespaces and macros defined in GAMBIT. The doc-
umentation can be generated with make docs, and is also
available online at http://gambit.hepforge.org.

The second is a set of descriptive databases, which doc-
ument individual models, capabilities, scanners, objective
test functions and priors. These are the descriptions that are

24 See http://www.cplusplus.com/reference/random/ for details.

brought up by the GAMBIT free-form diagnostic (cf. Sect.
10.4.8) when querying individual components with e.g.

gambit DarkBit
gambit NUHM1
gambit MultiNest
gambit SingletDM_spectrum

These can be edited or added to by modifying the text files

config/models.dat
config/capabilities.dat
config/scanners.dat
config/objectives.dat
config/priors.dat

These files are in fact written in YAML, albeit much sim-
pler YAML than the input file. When adding a new model,
scanner, test function or prior, or a module function with a
capability that does not already exist in GAMBIT, it is good
practice to also add a description of it to one of these files. If
any component in GAMBIT is missing a description in these
databases, a warning is raised whenever gambit is invoked.

10.8 Signal handling and resuming a scan

A GAMBIT scan can be terminated prematurely by sending
it an appropriate POSIX signal, either SIGINT, SIGTERM,
SIGUSR1, or SIGUSR2. Upon receiving one of these signals,
GAMBIT will attempt to shut down cleanly, preserving out-
put files and all information required for resuming the scan.
The preservation of information required to resume scan-
ning with a particular scan algorithm is the responsibility of
ScannerBit, and more specifically each individual scanner
plugin. This is described in detail in the ScannerBit paper
[112].

To resume a scan, one simply re-launches GAMBIT using
the same YAML file that was used to launch the original scan
(making sure that the -r flag is not present in the argument
list; if -r is present it will cause the scan to restart, deleting
existing output). For example, a prematurely terminated scan
that was launched using the YAML file myrun.yaml can be
resumed simply by launching GAMBIT as:

gambit -f myrun.yaml

where -f indicates the input file to use (cf. Sect. 6.1).

10.8.1 Shutdown behaviour

There are two possible responses that GAMBIT might make
when told to halt a run using a system (POSIX) signal. Which
one it chooses depends on whether or not the scanner plugin
in use can be instructed to stop by setting a quit flag. A scan-
ner’s ability to interpret a quit flag is automatically inferred
by GAMBIT, on the basis of whether or not the scanner plu-
gin calls like_ptr::disable_external_shutdown() in
its constructor (see Appendix D of Ref. [112]).

123

http://gambit.hepforge.org
http://www.cplusplus.com/reference/random/

784 Page 58 of 70 Eur. Phys. J. C (2017) 77 :784

First we discuss the case where the scanner can understand
a quit flag. In this instance each GAMBITMPI process will,
upon receiving a shutdown signal, take the following actions:

1. Allow the current likelihood evaluation to complete as
normal.

2. Broadcast a stop command via MPI to all other processes
in the job. This triggers this same shutdown procedure
in all other processes, and is necessary in case not all
processes receive the original POSIX signal.

3. Finalise all printer output.
4. Set the quit flag for the scanner plugin.
5. Pass control back to the scanner plugin.

At this point the GAMBIT core system has completed its
shutdown tasks, and assumes that the scanner plugin will do
the same. The plugin should then complete its own shutdown
tasks and return control to GAMBIT, which will then shut
down MPI and exit the program.

The second case is where the scanner plugin has no way
to recognise a quit flag. This is a less-than-ideal situation,
as it makes performing a clean shutdown much more diffi-
cult, and indeed it is not possible to guarantee that shutdown
will succeed in 100% of cases. However, some third-party
scanning algorithms do not provide any mechanism to signal
a premature end to a scan, so we have designed the shutdown
system to work around this restriction.

In this case the shutdown procedure will operate as fol-
lows:

1. Allow the current likelihood evaluation to complete as
normal.

2. Broadcast a stop command via MPI to all other processes
in the job.

3. Enter a custom MPI barrier, and wait for for all other
processes to signal that they have also entered the barrier.

4. If the synchronisation in 3 succeeds, skip to step 7.
5. If the synchronisation does not succeed within a set time

interval, disable all future printer output and return con-
trol to the scanner plugin (which cannot be told to stop),
and await the next likelihood evaluation request.

6. Upon being requested to evaluate another likelihood,
immediately invalidate the model point and return to step
3.

7. Finalise all printer output.
8. Terminate the program.

The repeated synchronisation attempts are required because
the scanner plugin may also be using MPI; because GAM-
BIT has no control over how MPI is used in third-party scan-
ning algorithms, there is a high probability that a deadlock
will occur between our synchronisation attempt and a block-
ing MPI command (from e.g. MPI_Barrier) in the third-

party code. We must therefore abandon our synchronisation
attempt if takes too long, and return control to the scan-
ning algorithm to allow deadlocks to resolve. However, more
blocking calls can easily be initiated in some other process
before we attempt to synchronise again, so we have to repeat-
edly attempt to find a window between these calls in which
we can gain control over all MPI processes simultaneously.
Once this succeeds, we can cleanly finalise the output, shut
down MPI, and terminate the program.

It is possible that the synchronisation attempts never suc-
ceed. Because of this possibility, GAMBIT will only attempt
the procedure a fixed number of times before giving up. In
this case, each process will attempt to finalise its output and
stop independently. In many cases this will succeed and there
will be no problem. However, if a process has been left in a
blocking call by a sampling algorithm, the process will fail to
terminate, and will hang until killed by the operating system.
This also has the potential to corrupt the printer output for
that process. This is particularly true in the case of HDF5 out-
put, as HDF5 files are highly vulnerable to corruption if not
closed properly. This can result in data loss, and make a scan
impossible to resume. Processes can also hang when running
under certain MPI implementations if MPI is not finalised
correctly, which cannot be done when processes are left to
terminate independently.

We remind the reader that this second procedure is not
the ideal case. The shutdown should always work smoothly
if a quit flag can be set for the scanner plugin, so for large
scans that produce valuable data we recommend using scan-
ner plugins that have this feature (e.g. Diver; see [112] for
details).

11 Configuration and automatic component registration

GAMBIT uses the open-source cross-platform build sys-
tem CMake25 to configure and build the package. The con-
figuration step identifies the system architecture, available
compilers, libraries and GAMBIT components present on a
user’s system, and creates appropriate makefiles.CMake and
GAMBIT support in-source and out-of-source builds, but we
recommend the latter for ease of organisation. The canonical
way to configure and make GAMBIT is therefore

mkdir build
cd build
cmake ..
make

The build system also incorporates a series of Python
harvester scripts for code generation. These are used at
both configuration and compile time to automatically detect

25 http://www.cmake.org.

123

http://www.cmake.org

Eur. Phys. J. C (2017) 77 :784 Page 59 of 70 784

modules, models, backends, printers, scanners, priors, test
functions and associated types present in a user’s personal
GAMBIT configuration. The harvesters automatically write
the header, configuration and CMake files required to reg-
ister the various components in GAMBIT, and include them
in the build. In this way, users wishing to add a GAMBIT
component need only write the source/header files contain-
ing the component-specific content they wish to add, and
place them in the appropriate folder, relying on the harvester
scripts to generate the necessary boilerplate code required to
incorporate the component into GAMBIT.

Compilation of GAMBIT module standalone executables
is also handled by the same build system, but these are dealt
with in Sect. 12.1.

11.1 Adding new models, modules, backends and other
components to GAMBIT

Here we give a quick reference guide to the new files needed
when adding new components, along with any notable mod-
ifications needed to existing files. Note that adding any new
files to GAMBIT (or moving existing ones) necessitates re-
running CMake before rebuilding.

modules Add a rollcall header MyBit/include/gambit

/MyBit/MyBit_rollcall.hpp and source files in MyBit

/include. See Sect. 3.1 for more details.
models Add a model declaration header Models/inclu-

de/gambit/Models/models/my_model.hpp. If needed,
add translation function source files to Models/src/

models. See Sect. 5.1 for more details. Adding a new
model with no parent typically also requires either adding
new module functions or verifying that existing ones are
safe to use with the new model, and declaring them as
such in their rollcall headers. See Sect. 3.1 for more
details.

backends We strongly encourage backend authors to go
through the following simple steps, to provide official ver-
sions of the resulting GAMBIT interface files within the
regular releases of their software.

Add a frontend header Backends/include/gambit/
Backends/frontends/backend_name_backend_version.

hpp. Add the default location of the backend’s shared
library toconfig/backend_locations.yaml.default.
If needed, add backend convenience and/or initialisation
function source files in Backends/src/frontends. If
needed, add a backend type header inBackends/include

/gambit/Backends/backend_types/ backend_name

_types.hpp. If you want GAMBIT to manage the
compilation of the backend, add an entry in cmake/

backends.cmake (see Sect. 11.2).
If only adding the latest version of an existing backend,

then the new frontend header, any new frontend source

files, the new entry in config/backend_locations.

yaml.default and any new entry in cmake/backends.

cmake can usually just be copied from the previous ver-
sions and adapted. Be sure to update any #include state-
ments in the copied source files to include the new fron-
tend header rather than the previous one. Any new back-
end types, or modifications to old backend types, are gen-
erally best dealt with by adding the new and revised types
to the existing backend types header, and declaring any
revised types with entirely new names, in order to avoid
breaking the frontend interface to previous versions of
the backend.

printers Add a printer declaration header Printers/

include/gambit/Printers/printers/my_printer.hpp.
If needed, add source files in Printers/src/printers/

my_printer. See Sect. 9 for more details.
scanners Add a scanner plugin declaration header Scanner

Bit/include/gambit/ScannerBit/scanners/ scanner_

name/scanner_name.hpp. Add any additional headers requi-
red to the same directory. If needed, add source files
to ScannerBit/src/scanners/scanner_name. See Ref.
[112] for more details. If you want GAMBIT to manage
the compilation of the scanner, add an entry in cmake/

↪→scanners.cmake (see Sect. 11.2).
priors Add a prior declaration header in ScannerBit/

include/gambit/ScannerBit/priors. If needed, add
source files in ScannerBit/src/priors. See Ref. [112]
for more details.

objective test functions Add source files to ScannerBit/

src/objectives/test_functions. See Ref. [112] for
more details.

types Exactly what to do depends on which component(s)
the type is associated with; see the above entries and
Sects. 4.4 and 10.5 for more information.

When adding any of these components, developers should
also add a description of the new component to the relevant
component database (see Sect. 10.7).

11.2 Building backends and scanners

Although not strictly necessary for running GAMBIT, we
also provide helpful preconfigured methods within the con-
figuration and build system for downloading, configuring,
patching (where necessary) and compiling essentially all of
the backends and scanners for which GAMBIT has fron-
tend or scanner plugin interfaces. Although it is straightfor-
ward to just manually download and compile backends and
scanners as usual, and then enter their shared library loca-
tions in custom config/backend_locations.yaml and
config/scanner_locations.yaml files, using the auto-
matic installers in the GAMBIT build system ensures that
GAMBIT and all backends and scanners employ consistent

123

784 Page 60 of 70 Eur. Phys. J. C (2017) 77 :784

compiler and library settings. As with the C++ configuration
of GAMBIT itself, for the compilation of backends written
in C or Fortran, CMake automatically searches for the nec-
essary compilers and libraries. Codes written in Python and
other languages can only be backended by GAMBIT 1.0.0 if
they ship with a C API; supporting ‘native language’ back-
ending of such codes is a high priority for future versions.

This system provides a make target for each installed ver-
sion of each scanner and backend, along with a correspond-
ing make clean-name target (where name is the name of the
backend or scanner), which calls distclean or similar in
the backend source. Each scanner and backend also gets a
target make nuke-name, which completely erases all down-
loaded and installed content for the component in question.
The make scanners target installs and builds the latest ver-
sions of all registered external scanning algorithms, and the
make backends target does the same for backends. All scan-
ners or backends can be cleaned or nuked in one command
with the make targets clean-scanners, nuke-scanners,
clean-backends or nuke-backends. For the true nihilist,
there is also nuke-all.

Adding a new backend or scanner to the GAMBIT auto-
matic build management system is fairly straightforward.
One adds a new ‘external project’ entry in either cmake/

↪→backends.cmakeorcmake/scanners.cmake, using some
of the built-in macros that can be seen demonstrated in
those files, for setting up the clean targets and indicating
if a given backend requires BOSSing. The minimum infor-
mation required for a functional entry in either of these
files is: the URL from which the package can be down-
loaded, the MD5 checksum of the download (obtainable for
any file via cmake -E md5sum filename), and basic config-
ure and build commands for the package. If required, spe-
cific build flags can be easily added to whatever GAM-
BIT passes to the backend. Custom patches can also be
applied. If a backend should be BOSSed as part of the
build process, a BOSS configuration file must be placed
in the Backends/scripts/BOSS/configs directory, as
described in Sect. 4.5. The configuration file should be
named according to the backend name and safe version, e.g.
MyBackend_1_2.py.

One important vagary of the build system for scanners: for
GAMBIT to properly register a scanner as built and available,
it is necessary to re-run cmake after making the external scan-
ner, and then rebuild GAMBIT. The most efficient way to get
GAMBIT started from scratch with e.g. MultiNest [182] or
Diver [112] is therefore

mkdir build
cd build
cmake ..
make scanners
cmake ..
make

This particular requirement has its roots in the two-step
shared library strategy that ScannerBit uses to dynamically
load its plugins [112]. This will probably disappear in future
versions.

11.3 Miscellaneous build targets

make get-pippi retrieves the latest development ver-
sion of the analysis and plotting tool pippi [181] from
GitHub26, and places it in the GAMBIT root directory.

make docs builds the GAMBIT doxygen documentation.
make clean removes all compiled and automatically-

generated source and header files for GAMBIT itself,
but leaves backends and scanners untouched.

make distclean does the same as clean, but also cleans
the GAMBIT doxygen documentation, clears out the
GAMBIT scratch directory, and removes all downloaded,
installed or compiled backend and scanner content.

11.4 Configuration options

Here we list the most useful commandline switches for pass-
ing to CMake when configuring GAMBIT, by

cmake -D OPTION_NAME = value

Often none of these is required, but they can be helpful for
hinting or forcing CMake to use specific versions of com-
pilers or libraries, or for simply disabling components or
features of GAMBIT at the build stage.

11.4.1 CMake standard variables

CMAKE_BUILD_TYPE Sets the build type. Possible val-
ues are Debug, Release, Release_O3, MinSizeRel,
RelWithDebInfo and None. The default is None, which
results in the fastest build time, but no debug symbols
and the slowest execution. Release includes optimisa-
tion seetings designed to result in the fastest run time;
build time is correspondingly longer. Release_O3 is a
GAMBIT-specific build type that differs from Release

in that it passes -O3 rather than -O2 to the compiler.27

CMAKE_CXX_COMPILER Full path to the C++ compiler.
Alternatively you can specify the environment variable
CXX before invoking cmake.

CMAKE_C_COMPILER Full path to the C compiler. Alter-
natively you can specify the environment variable CC

before invoking cmake.

26 http://github.com/patscott/pippi.
27 In this sense, Release_O3 in GAMBIT is actually closer to
the traditional CMake definition of Release. It is not clear that
Release_O3 offers any significant advantage over Release, how-
ever, and -O3 may cause instability in some backends. Use this option
with caution.

123

http://github.com/patscott/pippi

Eur. Phys. J. C (2017) 77 :784 Page 61 of 70 784

CMAKE_Fortran_COMPILER Full path to the Fortran
compiler. Alternatively you can specify the environment
variable FC before invoking cmake.

CMAKE_CXX_FLAGS Extra flags to use when compiling
C++ source files.

CMAKE_C_FLAGS Extra flags to use when compiling C
source files.

CMAKE_Fortran_FLAGS Extra flags to use when com-
piling Fortran source files.

11.4.2 CMake library and GAMBIT-specific variables

EIGEN3_INCLUDE_DIR The full path to a local installa-
tion of Eigen. Note that Eigen can be installed automat-
ically from many standard repositories, so a local instal-
lation may not be necessary.

MPI If MPI=OFF, MPI is manually disabled even if CMake
successfully locates MPI libraries. Defaults to ON.

MPI_INCLUDE The full include path of the MPI distribu-
tion to be used (e.g. in case it is not detected automati-
cally).

MPI_LIBRARY The full path to the MPI library file(s) to
link against (e.g. in case they are not detected automati-
cally).

LAPACK_LINKLIBS The full path to the LAPACK library
file(s) to link against (e.g. in case they are not detected
automatically).

PYTHIA_OPT If PYTHIA_OPT=OFF and the Intel compiler
is in use, turn off cross-file interprocedural optimisation
when compiling the BOSSed Pythia backend (some sys-
tems do not have enough memory to perform this opti-
misation step). Defaults to ON.

Werror If True, the build system treats all warnings as
errors, and halts the build.

(D)itch Manually selects GAMBIT components to exc-
lude from the build. Practically anything can be ditched
with this command, from modules to models, backends,
printers and scanners. The value should be set to a semi-
colon separated list of the beginnings of component
names to match for ditching. For example,

cmake -Ditch = "Dark;FeynHiggs_2_11_";

would ditch the moduleDarkBit, all versions of the back-
end DarkSUSY, and versions 2.11.* of the FeynHiggs
backend. Note that ditching a GAMBIT component does
not ‘clean’ any compiled code, so it will not e.g. remove
backend shared libraries that have already been compiled.
It will however exclude all interfaces to the ditched com-
ponents the next time GAMBIT is built, making it com-
pletely indifferent to the presence or absence of any com-
piled or uncompiled code associated with those compo-
nents.

12 Examples, releases and support

12.1 Minimal examples

GAMBIT ships with a number of different examples. These
include two minimal example modules (ExampleBit_A and
ExampleBit_B) and some minimal backend examples in C
(LibFirst) and Fortran (LibFortran and LibFarrayTest). A
minimal toy model (NormalDist) can be found declared
in Models/include/gambit/Models/models/demo.hpp.
This file also contains a fully self-contained hierarchy of
example models illustrating all the concepts of Sect. 5
(note that these are commented out by default, to avoid
cluttering the model hierarchy). There is also a match-
ing pair of example YAML files that use these modules
and backends to run rudimentary scans of NormalDist
(yaml_files/spartan.yaml) or theCMSSM (yaml_files
/spartan_CMSSM.yaml). These two files each contain some
simple additional entries, commented out by default, that can
be used for experimenting with different printers and scan-
ners. Most of the features and options outlined in this paper
can be found demonstrated in one or another of these example
components or scans.

The minimal spartan example also include a corre-
sponding pip file (yaml_files/spartan.pip) for plotting
the hdf5 results of yaml_files/spartan.yaml with pippi
[181]. (This file will need to be altered if yaml_files/

spartan.yaml is altered from its default.)
For more complete and realistic examples, users should

refer to the full YAML files corresponding to the MSSM
and scalar singlet scans described in Refs. [119–121],
which also ship with GAMBIT and can be found in
the yaml_files directory. These are SingletDM.yaml,
CMSSM.yaml, NUHM1.yaml, NUHM2.yaml and MSSM7.yaml.

There are also a number of module-specific example
YAML files to be found in the yaml_files folder: WC.yaml
and FlavBit_CMSSM.yaml (for FlavBit), ColliderBit_

CMSSM.yaml and ColliderBit_ExternalModel.yaml (for
ColliderBit), DecayBit_MSSM20.yaml (for DecayBit),
PrecisionBit_MSSM20.yaml (for PrecisionBit), SpecBit
_MSSM.yaml and SpecBit_vacuum_stability.yaml

(for SpecBit), DarkBit_MSSM7.yaml and DarkBit_

SingletDM.yaml (forDarkBit), andScannerBit.yaml (for
ScannerBit).

The full GAMBIT distribution also includes a series of
example driver programs that use the different modules as
standalone libraries, without the rest of GAMBIT. Using
GAMBIT modules in this manner requires some extra work
due to the absence of the dependency resolver and related
GAMBIT core components, but allows direct manual con-
trol of the functions in a given module, using only a minimal
set of GAMBIT components. In certain cases, using GAM-
BIT modules as standalone libraries can be a lightweight and

123

784 Page 62 of 70 Eur. Phys. J. C (2017) 77 :784

even more flexible alternative to employing the fullGAMBIT
machinery.

The simplest standalone example is ExampleBit_A_
standalone, found in ExampleBit_A/examples/Example

Bit_A _standalone.cpp. Here the driver program carries
out breezy versions of many of the tasks performed byGAM-
BIT in a full-blown scan. It first sets up some files to print
log information to, and chooses which model to investigate.
It identifies which module functions in ExampleBit_A it
wants to run, then sets their internal options and connects
their pipes to other functions within ExampleBit_A, and
to relevant backends. It declares and defines an additional
QUICK_FUNCTION (cf. Sect. 3.1.5) directly in the same file, to
fill a missing dependency. It then chooses what parameter val-
ues to run through the resulting pipeline, gathers the results
and prints them to stdout. Authors of standalone programs
have the possibility to intervene in any of these steps, provid-
ing the necessary inputs from whatever source they like, or
using the outputs directly in whichever manner they prefer.

For many models, the biggest challenge associated with
using a module in standalone mode will be fulfilling depen-
dencies on a GAMBIT Spectrum object, as these objects
are typically created exclusively by SpecBit in a regular
GAMBIT scan. For standalone purposes, each model with a
Spectrum specialisation in SpecBit is expected to also have
a correspondingly stripped-down simple spectrum defined
inModels/include/gambit/Models/SimpleSpectra. The
simple spectra are essentially mass container objects, devoid
of any interface to an actual spectrum generator, which can
be used in standalone executables in place of a true GAM-
BIT Spectrum. The GAMBIT Spectrum class and its simple
spectrum variants are discussed in more detail in Ref. [111].

12.2 Releases

GAMBIT releases are assigned version numbers of the form
major.minor.revision. Each version is available from
theGAMBITwebpage: http://gambit.hepforge.org. The code
can be downloaded either directly as a tarball, or accessed
through a git repository, newly forked from the development
branch at each minor version update.

As a convenience, for each release we also provide down-
loadable tarballs of each module, bundled with the minimal
number of GAMBIT components required to use it in stan-
dalone mode. For physics modules, these components are
the models, backend interfaces, logs and all other utilities
except printers. The required components for ScannerBit
are the printers, logs and a smaller subset of the utilities.

12.3 Support

Data used in GAMBIT observable and likelihood functions
are generally available within regular releases of GAMBIT

or relevant backends. If in any future cases this is not possible
for some reason, we will make them available from the main
GAMBIT webpage.28 Output samples from scans discussed
in GAMBIT results papers (such as Refs. [119–121]) are also
available from the main GAMBIT webpage.

General support information and relevant links are col-
lected in the Support section of the GAMBIT webpage.29

This includes the doxygen documentation for the latest
GAMBIT release, a known issues page, and an FAQ dealing
mostly with common configuration, compilation and back-
end questions.

GAMBIT will be supported with regular version updates
and revisions. In general bug fixes will be applied in
revision increments, and new features mostly in minor

version increments. New major version increments will be
reserved for substantial new features. After releasing a new
majorversion, we will continue to support the lastminor ver-
sion of the superseded major version with bug fix updates
(typically backported from the new major).

We welcome and encourage bug reports on GAMBIT.
These should be submitted via the TRAC ticket system on
theGAMBITwebpage.30 To prevent spam, bug reporters will
need to first sign up for an account with HEPforge.31

We also welcome enquiries from authors of existing or
future backend codes about GAMBIT compatibility; we are
willing to work with you to help optimise interoperability of
your code with GAMBIT.

Users are also very welcome to suggest contributed code
for release in a future version of GAMBIT, particularly new
models, observables, likelihood functions, printers, scanners
and backend interfaces. These suggestions will undergo a
careful code review before being integrated into the main
codebase. Submitters are expected to pay attention to the
coding style of adjacent routines.

13 Summary

GAMBIT is a powerful, general, flexible and extensible
tool for phenomenological and statistical analysis of parti-
cle theories Beyond the Standard Model. It includes mod-
ules specialised for spectrum and decay calculations, col-
lider, flavour, DM and precision physics, a hierarchical model
database of popular BSM theories, flexible interfaces to many
of the most popular existing phenomenology codes, exten-
sive statistical and parameter scanning options, and an auto-
matic system for connecting different calculations to their
required inputs, outputs and models. Here we have outlined

28 http://gambit.hepforge.org.
29 http://gambit.hepforge.org/support.
30 http://gambit.hepforge.org/trac/report.
31 https://www.hepforge.org/register.

123

http://gambit.hepforge.org
http://gambit.hepforge.org
http://gambit.hepforge.org/support
http://gambit.hepforge.org/trac/report
http://www.hepforge.org/register

Eur. Phys. J. C (2017) 77 :784 Page 63 of 70 784

the main features of the GAMBIT package itself; accom-
panying papers lay out the details of the individual mod-
ules [108–112] and present first BSM results [119–121]. The
package is fully open source, and can be downloaded from
gambit.hepforge.org.

Acknowledgements We warmly thank the Casa Matemáticas Oaxaca,
affiliated with the Banff International Research Station, for hospitality
whilst part of this work was completed, and the staff at Cyfronet, for
their always helpful supercomputing support. GAMBIT has been sup-
ported by STFC (UK; ST/K00414X/1, ST/P000762/1), the Royal Soci-
ety (UK; UF110191), Glasgow University (UK; Leadership Fellow-
ship), the Research Council of Norway (FRIPRO 230546/F20), NOTUR
(Norway; NN9284K), the Knut and Alice Wallenberg Foundation (Swe-
den; Wallenberg Academy Fellowship), the Swedish Research Coun-
cil (621-2014-5772), the Australian Research Council (CE110001004,
FT130100018, FT140100244, FT160100274), The University of Syd-
ney (Australia; IRCA-G162448), PLGrid Infrastructure (Poland), Pol-
ish National Science Center (Sonata UMO-2015/17/D/ST2/03532),
the Swiss National Science Foundation (PP00P2-144674), European
Commission Horizon 2020 (Marie Skłodowska-Curie actions H2020-
MSCA-RISE-2015-691164, European Research Council Starting Grant
ERC-2014-STG-638528), the ERA-CAN+ Twinning Program (EU
& Canada), the Netherlands Organisation for Scientific Research
(NWO-Vidi 016.149.331), the National Science Foundation (USA;
DGE-1339067), the FRQNT (Québec) and NSERC/The Canadian Tri-
Agencies Research Councils (BPDF-424460-2012).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: Quick start guide

To configure and build GAMBIT on a machine with n logical
cores, retrieve the git repository or the tarball and unpack it,
then

cd gambit
mkdir build
cd build
cmake ..
make -jn scanners
cmake ..
make -jn gambit

To build all backends supported for automatic download:

make -jn backends

You can also build individual backends with

make -jn backend_name

and clean them with

make clean-backend_name.

To see which backends and scanners have been installed cor-
rectly, do

gambit backends

and

gambit scanners

To run gambit using the included example YAML files
spartan.yaml or MSSM7.yaml, do

gambit -f yaml_files/spartan.yaml
gambit -f yaml_files/MSSM7.yaml

To make a standalone example using any one of the modules:

make module_name_standalone

and run the resulting executable module_name _standalone.
For more details on the configuration and build options,

please see Sects. 11.2–11.4.

Appendix B: Supported compilers and library
dependencies

GAMBIT builds and runs under Linux and Mac OS X; the
architecture is automatically detected by the build system.

GAMBIT is written in C++ and requires a compiler that
supports a minimal subset of the ISO C++11 standard. For
compiling Fortran backends, a Fortran compiler is also
required. GAMBIT supports GNU32 and Intel33 C/C++ and
Fortran compilers. The Clang34 C/C++ compiler is not sup-
ported due to its lack of historical support for OpenMP.
When newer versions supporting OpenMP become the
default in OS X, we will add support for clang in GAM-
BIT.

The following prerequisite libraries and packages must be
installed to configure and to build GAMBIT:

– gcc/gfortran 4.7.1 or greater, or icc/ifort 12.1.0 or
greater

– Python 2.7 or greater (Python 3 is not supported)
– Python modules yaml, os, re, datetime, sys, getopt,
shutil and itertools. Also h5py if using the hdf5 printer
with pippi.

– Boost35 1.41 or greater
– GNU Scientific Library (GSL)36 1.10 or greater

32 https://gcc.gnu.org/.
33 https://software.intel.com/en-us/intel-compilers.
34 http://clang.llvm.org/.
35 http://www.boost.org/.
36 http://www.gnu.org/software/gsl/.

123

http://gambit.hepforge.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://gcc.gnu.org/
https://software.intel.com/en-us/intel-compilers
http://clang.llvm.org/
http://www.boost.org/
http://www.gnu.org/software/gsl/

784 Page 64 of 70 Eur. Phys. J. C (2017) 77 :784

Two additional linear algebra libraries are also currently
required, but will become optional in future releases (where
FlexibleSUSY will become a full backend, rather than ship-
ping in the GAMBIT contrib directory):

– Eigen37 3.1.0 or greater: required only if usingFlexible-
SUSY from SpecBit or GM2Calc from PrecisionBit

– LAPACK38: required only if using FlexibleSUSY from
SpecBit or MultiNest from ScannerBit

The following are optional libraries and packages:

– MPI: required only if parallelised sampling is desired
– axel39: if available, will be used to speed up downloads

of backends and scanners wherever possible
– graphviz40: required only if model hierarchy and depen-

dency tree plots are desired
– HDF541: required only if using the hdf5 printer
– ROOT42 5.*: required if using Delphes from Collider-
Bit, or GreAT from ScannerBit

If any optional package is missing, the build system auto-
matically -Ditches the corresponding component or feature
relying on the missing package.

Users should note that whilstGAMBIT itself compiles and
runs with a wide range of compiler versions, some backend
and scanner codes are not compatible with certain newer
compilers. A continually-evolving list of compiler versions
tested to date with different backends can be found at http://
gambit.hepforge.org/compilers. Whilst we obviously cannot
assume responsibility for the portability of codes maintained
by other members of the community, we are actively working
with the authors of the different codes to help improve this
situation.

Appendix C: Standard Model definitions

The parameters of theStandardModel_SLHA2model are:

CKM_A (A): Wolfenstein parameter defined in M S scheme
at scale m Z . Converted into VCKM entries using the 9th-
order expansions of Ref. [32].

CKM_etabar (η̄): Wolfenstein parameter defined in M S
scheme at scale m Z . Converted into VCKM entries using
the 9th-order expansions of Ref. [32].

37 http://eigen.tuxfamily.org.
38 http://www.netlib.org/lapack/.
39 http://axel.alioth.debian.org/.
40 http://www.graphviz.org/.
41 https://www.hdfgroup.org/HDF5/.
42 https://root.cern.ch/.

CKM_lambda (λ): Wolfenstein parameter defined in M S
scheme at scale m Z . Converted into VCKM entries using
the 9th-order expansions of Ref. [32].

CKM_rhobar (ρ̄): Wolfenstein parameter defined in M S
scheme at scale m Z . Converted into VCKM entries using
the 9th-order expansions of Ref. [32].

GF (GF): Fermi coupling, in units of GeV−2.
alpha1 (α1): First Majorana CP-violating phase of the

PMNS matrix, in radians.
alpha2 (α2): Second Majorana CP-violating phase of the

PMNS matrix, in radians.
alphaS (αs(m Z)M S): Strong coupling in M S scheme at

scale m Z .
alphainv (α−1

EM(m Z)M S): Inverse electromagetic coupling
in 5-flavour M S scheme at scale m Z .

delta13 (δ13): Majorana CP-violating phase of the PMNS
matrix, in radians.

mBmB (mb(mb)
M S): M S mass of the b quark at scale mb, in

GeV.
mCmC (mc(mc)

M S): M S mass of the c quark at scale mc, in
GeV.

mD (md(2 GeV)M S): M S mass of the d quark at scale of
2 GeV, in GeV.

mE (me): Pole mass of the electron, in GeV.
mMu (mμ): Pole mass of the muon, in GeV.
mNu1 (m ν̃1): Pole mass of first left-handed neutrino mass

eigenstate, in GeV.
mNu2 (m ν̃2): Pole mass of second left-handed neutrino mass

eigenstate, in GeV.
mNu3 (m ν̃3): Pole mass of third left-handed neutrino mass

eigenstate, in GeV.
mS (ms(2 GeV)M S): M S mass of the s quark at scale of

2 GeV, in GeV.
mT (mt): Pole mass of the t quark, in GeV.
mTau (mτ): Pole mass of the τ lepton, in GeV.
mU (mu(2 GeV)M S): M S mass of the u quark at scale of

2 GeV, in GeV.
mZ (m Z): Pole mass of the Z boson, in GeV.
theta12 (θ12): Solar neutrino mixing angle of the PMNS

matrix, in radians.
theta23 (θ23): Atmospheric neutrino mixing angle of the

PMNS matrix, in radians.
theta12 (θ13): Reactor neutrino mixing angle of the PMNS

matrix, in radians.

Appendix D: Glossary

Here we explain some terms that have specific technical def-
initions in GAMBIT.

123

http://gambit.hepforge.org/compilers
http://gambit.hepforge.org/compilers
http://eigen.tuxfamily.org
http://www.netlib.org/lapack/
http://axel.alioth.debian.org/
http://www.graphviz.org/
https://www.hdfgroup.org/HDF5/
https://root.cern.ch/

Eur. Phys. J. C (2017) 77 :784 Page 65 of 70 784

backend An external code containing useful functions (or
variables) that one might wish to call (or read/write) from
a module function.

backend convenience function A function constructed
purely from calls to backend functions and/or using
backend variables from a single backend, wrapped by
the backend’s frontend in such a way as to appear to
GAMBIT as just another function in that backend. It cal-
culates a specific quantity indicated by its capability. Its
capability and call signature are defined in the backend’s
frontend header.

backend function A function contained in a backend. It
calculates a specific quantity indicated by its capability.
Its capability and call signature are defined in the back-
end’s frontend header.

backend initialisation function A function that automati-
cally runs for each parameter combination, before any
functions or variables from a given backend are used. It
is defined as part of the backend’s frontend interface.
Although they are each associated with a specific back-
end, backend initialisation functions are actually techni-
cally module functions belonging to a system-defined
module called BackendIniBit.

backend requirement A declaration that a given module
function needs to be able to call a backend function or
use a backend variable, identified according to its capa-
bility and type(s). Backend requirements are declared in
module functions’ entries in rollcall headers.

backend variable A global variable contained in a back-
end. It corresponds to a specific quantity indicated by
its capability. Its capability and type are defined in the
backend’s frontend header.

BOSS The Backend-On-a-Stick script, used for pre-
processing C++ backend code to allow GAMBIT to
dynamically load classes from it.

capability A name describing the actual quantity that is
calculated by a module or backend function. This is
one possible place for units to be noted; the other
is in the documented description of the capability
(see Sect. 10.7).

child model A model that descends from a parent model,
implying that any point in the parameter space of the child
model can be expressed as a physically-equivalent point
in the parent model’s parameter space.

conditional dependency A dependency that only applies
under specific circumstance, such as when a particular
model or backend is in use.

context integer An integer assigned to a particular particle
definition in the GAMBIT particle database, in order
to distinguish it from another similar particle having the
same PDG code.

dependency A declaration that a given module function
needs to be able to access the result of another module

function, identified according to its capability and type.
Dependencies are declared in module functions’ entries
in rollcall headers.

dependency resolution The process by which GAMBIT
determines the module functions, backend functions
and backend variables needed and allowed for a given
scan, connects them to each others’ dependencies and
backend requirements, and determines the order in
which they must be called.

dependency resolver The component of theGAMBITCore
that performs dependency resolution.

dependency tree A result of dependency resolution; a
directed acyclic graph of module functions connected
by resolved dependencies. See Fig. 5 for an example.

friend model A model into which points from another
model can be translated, even though the friend model
is not a direct ancestor of the other model.

frontend The interface betweenGAMBIT and a givenback-
end, consisting of a frontend header plus optional
source files and type headers.

frontend header The C++ header in which the frontend to
a given backend is declared.

harvester script One of a set of Python scripts that runs
duringGAMBIT configuration, and harvests information
about the modules, models, backends, printers, scan-
ners, priors, test functions and associated types present
in the local installation of GAMBIT.

likelihood container The interface between ScannerBit
and the graph ofmodule functions created by the depen-
dency resolver. It returns the total combined likelihood
for any given set of model parameter values.

loop manager A type of module function, able to run
nested module functions in parallel using OpenMP,
from within its own function body.

model AGAMBITmodel is defined as a collection of named
parameters, intended for sampling by a scanning algo-
rithm according to some prior. The scanner and prior are
both chosen at runtime.

model group A set of models defined for easy reference
when setting rules about what combinations of models
are required for using a given module function. A model
group is declared within the declaration of a module func-
tion in a rollcall header.

module A subset of GAMBIT functions following a com-
mon theme, able to be compiled into a standalone
library. Although module often gets used as shorthand
for physics module, this term technically also includes
the GAMBIT scanning module ScannerBit.

module function A function contained in a physics mod-
ule. It calculates a specific quantity indicated by its capa-
bility and type, as declared in the module’s rollcall
header. It takes only one argument, by reference (the
quantity to be calculated), and has a void return type.

123

784 Page 66 of 70 Eur. Phys. J. C (2017) 77 :784

printer The main object handling GAMBIT output. Mul-
tiple versions of this object exist (and new ones can be
written), for handling output to different formats. Users
select which printer they want to use via the master ini-
tialisation file (Sect. 6.6)

purpose A tag attached to a request made by a user in the
ObsLikes section of their YAML file. The tag is used
by the scanner and likelihood container to select which
module functions to include in the combined likelihood
and use for directing the scan.

nested module function A module function that must be
run by a loop manager rather than directly by GAMBIT
itself — usually in parallel inside an OpenMP block
managed by the loop manager.

parent model A model from which a childmodel descends,
implying that any point in the parameter space of the child
model can be interpreted as a point in (some subspace of)
the parent parameter space.

particle database An internal database in GAMBIT con-
taining the names and PDG codes of all particles recog-
nised by GAMBIT.

physics module Any module other than ScannerBit, con-
taining a collection of module functions following a
common physics theme.

pipe A pointer to another function or variable created for
allowing a specific module function to exchange infor-
mation with other parts of the code. The pointer is set at
runtime by the dependency resolver.

quantity This term is often used as short-hand for the com-
bination of a capability with a certain type.

rollcall header The C++ header in which a given physics
module and its module functions are declared.

rule A directive given in the input YAML file that spec-
ifies options for one or more module functions and/or
constraints on how the functions’ dependencies or back-
end requirements may be resolved by the dependency
resolver.

safe version A backend version number, but with all peri-
ods replaced by underscores (so as to be usable in
automatically-generated namespaces, variables names,
etc).

scanner plugin An interface in ScannerBit to an external
code for parameter sampling, i.e. a scanner.

simple spectrum A minimal GAMBITSpectrum object,
designed to simply act as a container for pole masses and
other spectrum data. Unlike a fully-fledged Spectrum

object, it specifically does not provide RGE functional-
ity or an interface to a spectrum generator. Designed to
facilitate basic standalone use of modules.

test function plugin An interface in ScannerBit to a test
function, which may be used for testing purposes as the
objective function for a scan, in place of the output from
the likelihood container.

type A general fundamental or derivedC++ type, often refer-
ring to the type of the capability of a module function.

References

1. ATLAS Collaboration, Search for resonances decaying to photon
pairs in 3.2 fb−1 of pp collisions at

√
s = 13 TeV with the ATLAS

detector. ATLAS-CONF-2015-081 (2015)
2. ATLAS Collaboration, Summary of the ATLAS experiment’s

sensitivity to supersymmetry after LHC Run 1—interpreted
in the phenomenological MSSM. JHEP 10, 134 (2015).
arXiv:1508.06608

3. CMS Collaboration, Search for supersymmetry in the multijet
and missing transverse momentum final state in pp collisions at
13 TeV. Phys. Lett. B 758, 152–180 (2016). arXiv:1602.06581

4. G.W. Bennett, B. Bousquet et al., Final report of the E821 muon
anomalous magnetic moment measurement at BNL. Phys. Rev.
D 73, 072003 (2006). arXiv:hep-ex/0602035

5. T. Abe, I. Adachi et al., Belle II technical design report.
arXiv:1011.0352

6. CMS and LHCb Collaborations, Observation of the rare B0
s →

μ+μ− decay from the combined analysis of CMS and LHCb data.
Nature 522, 68–72 (2015). arXiv:1411.4413

7. XENON100 Collaboration, E. Aprile, M. Alfonsi et al., Dark mat-
ter Results from 225 live days of XENON100 data. Phys. Rev.
Lett. 109, 181301 (2012). arXiv:1207.5988

8. C. Amole, M. Ardid et al., Dark matter search results from the
PICO-60 CF3 I bubble chamber. Phys. Rev. D 93, 052014 (2016).
arXiv:1510.07754

9. D.S. Akerib, H.M. Araújo et al., Improved limits on scattering of
weakly interacting massive particles from reanalysis of 2013 LUX
data. Phys. Rev. Lett. 116, 161301 (2016). arXiv:1512.03506

10. Planck Collaboration, P.A.R. Ade et al., Planck 2015 results.
XIII. cosmological parameters. A&A 594, A13 (2016).
arXiv:1502.01589

11. T.R. Slatyer, Indirect dark matter signatures in the cosmic dark
ages. I. Generalizing the bound on s-wave dark matter anni-
hilation from Planck results. Phys. Rev. D 93, 023527 (2016).
arXiv:1506.03811

12. R. Adhikari, M. Agostini et al., A white paper on keV sterile
neutrino dark matter. arXiv:1602.04816

13. T. Bringmann, C. Weniger, Gamma ray signals from dark mat-
ter: concepts, status and prospects. Phys. Dark Univ. 1, 194–217
(2012). arXiv:1208.5481

14. Fermi-LAT Collaboration, M. Ackermann, A. Albert et al.,
Searching for dark matter annihilation from milky way dwarf
spheroidal galaxies with six years of Fermi large area telescope
data. Phys. Rev. Lett. 115, 231301 (2015). arXiv:1503.02641

15. IceCube Collaboration, M.G. Aartsen et al., Improved limits
on dark matter annihilation in the Sun with the 79-string Ice-
Cube detector and implications for supersymmetry. JCAP 04, 022
(2016). arXiv:1601.00653

16. DAMA Collaboration, R. Bernabei, P. Belli et al., First results
from DAMA/LIBRA and the combined results with DAMA/NaI.
Eur. Phys. J. C 167 (2008). arXiv:0804.2741

17. L. Goodenough, D. Hooper, Possible evidence for dark matter
annihilation in the inner milky way from the Fermi gamma ray
space telescope. arXiv:0910.2998

18. O. Adriani, G.C. Barbarino et al., An anomalous positron abun-
dance in cosmic rays with energies 1.5–100 GeV. Nature 458,
607–609 (2009). arXiv:0810.4995

123

http://arxiv.org/abs/1508.06608
http://arxiv.org/abs/1602.06581
http://arxiv.org/abs/hep-ex/0602035
http://arxiv.org/abs/1011.0352
http://arxiv.org/abs/1411.4413
http://arxiv.org/abs/1207.5988
http://arxiv.org/abs/1510.07754
http://arxiv.org/abs/1512.03506
http://arxiv.org/abs/1502.01589
http://arxiv.org/abs/1506.03811
http://arxiv.org/abs/1602.04816
http://arxiv.org/abs/1208.5481
http://arxiv.org/abs/1503.02641
http://arxiv.org/abs/1601.00653
http://arxiv.org/abs/0804.2741
http://arxiv.org/abs/0910.2998
http://arxiv.org/abs/0810.4995

Eur. Phys. J. C (2017) 77 :784 Page 67 of 70 784

19. CoGeNT Collaboration, C.E. Aalseth, P.S. Barbeau et al., Search
for an annual modulation in a p-type point contact germa-
nium dark matter detector. Phys. Rev. Lett. 107, 141301 (2011).
arXiv:1106.0650

20. T. Bringmann, X. Huang, A. Ibarra, S. Vogl, C. Weniger, Fermi-
LAT search for internal bremsstrahlung signatures from dark mat-
ter annihilation. JCAP 7, 54 (2012). arXiv:1203.1312

21. E. Bulbul, M. Markevitch et al., Detection of an unidentified emis-
sion line in the stacked X-ray spectrum of galaxy clusters. ApJ
789, 13 (2014). arXiv:1402.2301

22. A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, J. Franse, Uniden-
tified line in X-ray spectra of the andromeda galaxy and
Perseus galaxy cluster. Phys. Rev. Lett. 113, 251301 (2014).
arXiv:1402.4119

23. A.C. Vincent, P. Scott, A. Serenelli, Possible indication of
momentum-dependent asymmetric dark matter in the sun. Phys.
Rev. Lett. 114, 081302 (2015). arXiv:1411.6626

24. ATLAS Collaboration, G. Aad, B. Abbott et al., Search for high-
mass diboson resonances with boson-tagged jets in proton-proton
collisions at

√
s = 8 TeV with the ATLAS detector. JHEP 12, 55

(2015). arXiv:1506.00962
25. CDMS Collaboration, Z. Ahmed et al., Search for annual modu-

lation in low-energy CDMS-II data. arXiv:1203.1309
26. R. Bartels, S. Krishnamurthy, C. Weniger, Strong support for the

millisecond pulsar origin of the Galactic center GeV excess. Phys.
Rev. Lett. 116, 051102 (2015). arXiv:1506.05104

27. S.K. Lee, M. Lisanti, B.R. Safdi, T.R. Slatyer, W. Xue, Evidence
for unresolved γ -ray point sources in the inner galaxy. Phys. Rev.
Lett. 116, 051103 (2016). arXiv:1506.05124

28. T. Jeltema, S. Profumo, Deep XMM observations of Draco rule
out at the 99 per cent confidence level a dark matter decay
origin for the 3.5 keV line. MNRAS 458, 3592–3596 (2016).
arXiv:1512.01239

29. G. Angloher, A. Bento et al., Limits on momentum-dependent
asymmetric dark matter with CRESST-II. Phys. Rev. Lett. 117,
021303 (2016). arXiv:1601.04447

30. A.B. Arbuzov, M. Awramik et al., ZFITTER: a semi-analytical
program for fermion pair production in e+e− annihilation, from
version 6.21 to version 6.42. Comput. Phys. Commun. 174, 728–
758 (2006). arXiv:hep-ph/0507146

31. M. Baak, M. Goebel et al., Updated status of the global elec-
troweak fit and constraints on new physics. Eur. Phys. J. C 72,
2003 (2012). arXiv:1107.0975

32. J. Charles, A. Höcker et al., CP violation and the CKM matrix:
assessing the impact of the asymmetric B factories. Eur. Phys. J.
C 41, 1–131 (2005). arXiv:hep-ph/0406184

33. F. Capozzi, G.L. Fogli et al., Status of three-neutrino oscilla-
tion parameters, circa 2013. Phys. Rev. D 89, 093018 (2014).
arXiv:1312.2878

34. D.V. Forero, M. Tórtola, J.W.F. Valle, Neutrino oscillations refit-
ted. Phys. Rev. D 90, 093006 (2014). arXiv:1405.7540

35. J. Bergström, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz,
Bayesian global analysis of neutrino oscillation data. JHEP 9,
200 (2015). arXiv:1507.04366

36. E.A. Baltz, P. Gondolo, Markov chain Monte Carlo exploration
of minimal supergravity with implications for dark matter. JHEP
10, 52 (2004). arXiv:hep-ph/0407039

37. B.C. Allanach, C.G. Lester, Multidimensional mSUGRA
likelihood maps. Phys. Rev. D 73, 015013 (2006).
arXiv:hep-ph/0507283

38. R. Lafaye, T. Plehn, D. Zerwas, SFITTER: SUSY parameter anal-
ysis at LHC and LC. arXiv:hep-ph/0404282

39. R. Ruiz de Austri, R. Trotta, L. Roszkowski, A Markov
chain Monte Carlo analysis of CMSSM. JHEP 5, 2 (2006).
arXiv:hep-ph/0602028

40. R. Trotta, R.R. de Austri, L. Roszkowski, Prospects for direct dark
matter detection in the constrained MSSM. New Astron. Rev. 51,
316–320 (2007). arXiv:astro-ph/0609126

41. L. Roszkowski, R. Ruiz de Austri, R. Trotta, Implications for the
constrained MSSM from a new prediction for b → sγ . JHEP 7,
75 (2007). arXiv:0705.2012

42. L. Roszkowski, R. Ruiz de Austri, J. Silk, R. Trotta, On prospects
for dark matter indirect detection in the constrained MSSM. Phys.
Lett. B 671, 10–14 (2009). arXiv:0707.0622

43. R. Trotta, F. Feroz, M. Hobson, L. Roszkowski, R. Ruiz de Austri,
The impact of priors and observables on parameter inferences in
the constrained MSSM. JHEP 12, 24 (2008). arXiv:0809.3792

44. G.D. Martinez, J.S. Bullock, M. Kaplinghat, L.E. Strigari, R.
Trotta, Indirect Dark Matter detection from Dwarf satellites: joint
expectations from astrophysics and supersymmetry. JCAP 6, 14
(2009). arXiv:0902.4715

45. L. Roszkowski, R. Ruiz de Austri, R. Trotta, Y.-L.S. Tsai, T.A.
Varley, Global fits of the nonuniversal Higgs model. Phys. Rev. D
83, 015014 (2011). arXiv:0903.1279

46. L. Roszkowski, R. Ruiz de Austri, R. Trotta, Efficient reconstruc-
tion of constrained MSSM parameters from LHC data: a case
study. Phys. Rev. D 82, 055003 (2010). arXiv:0907.0594

47. P. Scott, J. Conrad et al., Direct constraints on minimal supersym-
metry from Fermi-LAT observations of the dwarf galaxy Segue
1. JCAP 1, 31 (2010). arXiv:0909.3300

48. G. Bertone, D.G. Cerdeño, M. Fornasa, R. Ruiz de Austri, R.
Trotta, Identification of dark matter particles with LHC and direct
detection data. Phys. Rev. D 82, 055008 (2010). arXiv:1005.4280

49. M. Bridges, K. Cranmer et al., A coverage study of CMSSM
based on ATLAS sensitivity using fast neural networks tech-
niques. JHEP 3, 12 (2011). arXiv:1011.4306

50. C. Strege, G. Bertone et al., Updated global fits of the
cMSSM including the latest LHC SUSY and Higgs searches and
XENON100 data. JCAP 3, 30 (2012). arXiv:1112.4192

51. G. Bertone, D. Cumberbatch, R. Ruiz de Austri, R. Trotta,
Dark matter searches: the nightmare scenario. JCAP 1, 4 (2012).
arXiv:1107.5813

52. G. Bertone, D.G. Cerdeño et al., Complementarity of indirect and
accelerator dark matter searches. Phys. Rev. D 85, 055014 (2012).
arXiv:1111.2607

53. P. Scott, C. Savage, J. Edsjö, the IceCube Collaboration, R. Abbasi
et al., Use of event-level neutrino telescope data in global fits for
theories of new physics. JCAP 11, 57 (2012). arXiv:1207.0810

54. C. Strege, G. Bertone et al., Global fits of the cMSSM and NUHM
including the LHC Higgs discovery and new XENON100 con-
straints. JCAP 4, 13 (2013). arXiv:1212.2636

55. G. Bertone, D.G. Cerde no et al., Global fits of the cMSSM
including the first LHC and XENON100 data. JCAP 1, 15 (2012).
arXiv:1107.1715

56. G. Bertone, F. Calore et al., Global analysis of the pMSSM in
light of the Fermi GeV excess: prospects for the LHC Run-II and
astroparticle experiments, arXiv:1507.07008

57. P. Bechtle, K. Desch, P. Wienemann, Fittino, a program for deter-
mining MSSM parameters from collider observables using an
iterative method. Comput. Phys. Commun. 174, 47–70 (2006).
arXiv:hep-ph/0412012

58. P. Bechtle, K. Desch, M. Uhlenbrock, P. Wienemann, Constrain-
ing SUSY models with Fittino using measurements before, with
and beyond the LHC. Eur. Phys. J. C 66, 215–259 (2010).
arXiv:0907.2589

59. P. Bechtle, T. Bringmann et al., Constrained supersymmetry after
two years of LHC data: a global view with Fittino. JHEP 6, 98
(2012). arXiv:1204.4199

60. O. Buchmueller, R. Cavanaugh et al., Predictions for supersym-
metric particle masses using indirect experimental and cosmolog-
ical constraints. JHEP 9, 117 (2008). arXiv:0808.4128

123

http://arxiv.org/abs/1106.0650
http://arxiv.org/abs/1203.1312
http://arxiv.org/abs/1402.2301
http://arxiv.org/abs/1402.4119
http://arxiv.org/abs/1411.6626
http://arxiv.org/abs/1506.00962
http://arxiv.org/abs/1203.1309
http://arxiv.org/abs/1506.05104
http://arxiv.org/abs/1506.05124
http://arxiv.org/abs/1512.01239
http://arxiv.org/abs/1601.04447
http://arxiv.org/abs/hep-ph/0507146
http://arxiv.org/abs/1107.0975
http://arxiv.org/abs/hep-ph/0406184
http://arxiv.org/abs/1312.2878
http://arxiv.org/abs/1405.7540
http://arxiv.org/abs/1507.04366
http://arxiv.org/abs/hep-ph/0407039
http://arxiv.org/abs/hep-ph/0507283
http://arxiv.org/abs/hep-ph/0404282
http://arxiv.org/abs/hep-ph/0602028
http://arxiv.org/abs/astro-ph/0609126
http://arxiv.org/abs/0705.2012
http://arxiv.org/abs/0707.0622
http://arxiv.org/abs/0809.3792
http://arxiv.org/abs/0902.4715
http://arxiv.org/abs/0903.1279
http://arxiv.org/abs/0907.0594
http://arxiv.org/abs/0909.3300
http://arxiv.org/abs/1005.4280
http://arxiv.org/abs/1011.4306
http://arxiv.org/abs/1112.4192
http://arxiv.org/abs/1107.5813
http://arxiv.org/abs/1111.2607
http://arxiv.org/abs/1207.0810
http://arxiv.org/abs/1212.2636
http://arxiv.org/abs/1107.1715
http://arxiv.org/abs/1507.07008
http://arxiv.org/abs/hep-ph/0412012
http://arxiv.org/abs/0907.2589
http://arxiv.org/abs/1204.4199
http://arxiv.org/abs/0808.4128

784 Page 68 of 70 Eur. Phys. J. C (2017) 77 :784

61. O. Buchmueller, R. Cavanaugh et al., Likelihood functions
for supersymmetric observables in frequentist analyses of the
CMSSM and NUHM1. Eur. Phys. J. C 64, 391–415 (2009).
arXiv:0907.5568

62. O. Buchmueller, R. Cavanaugh et al., Frequentist analysis of the
parameter space of minimal supergravity. Eur. Phys. J. C 71, 1583
(2011). arXiv:1011.6118

63. O. Buchmueller, R. Cavanaugh et al., Implications of initial LHC
searches for supersymmetry. Eur. Phys. J. C 71, 1634 (2011).
arXiv:1102.4585

64. O. Buchmueller, R. Cavanaugh et al., Supersymmetry and dark
matter in light of LHC 2010 and XENON100 data. Eur. Phys. J.
C 71, 1722 (2011). arXiv:1106.2529

65. O. Buchmueller, R. Cavanaugh et al., Supersymmetry in light
of 1/fb of LHC data. Eur. Phys. J. C 72, 1878 (2012).
arXiv:1110.3568

66. O. Buchmueller, R. Cavanaugh et al., Higgs and supersymmetry.
Eur. Phys. J. C 72, 2020 (2012). arXiv:1112.3564

67. O. Buchmueller, R. Cavanaugh et al., The CMSSM and NUHM1
in light of 7 TeV LHC, Bs → μ+μ− and XENON100 data. Eur.
Phys. J. C 72, 2243 (2012). arXiv:1207.7315

68. O. Buchmueller et al., The CMSSM and NUHM1 after LHC run
1. Eur. Phys. J. C 74, 2922 (2014). arXiv:1312.5250

69. O. Buchmueller et al., The NUHM2 after LHC run 1. Eur. Phys.
J. C 74, 3212 (2014). arXiv:1408.4060

70. E. Bagnaschi et al., Likelihood analysis of supersymmetric SU(5)
GUTs. Eur. Phys. J. C 77, 104 (2017). arXiv:1610.10084

71. E. Bagnaschi et al., Likelihood analysis of the minimal AMSB
model. Eur. Phys. J. C 77, 268 (2017). arXiv:1612.05210

72. B.C. Allanach, K. Cranmer, C.G. Lester, A.M. Weber, Natural
priors. CMSSM fits and LHC weather forecasts. JHEP 08, 023
(2007). arXiv:0705.0487

73. S.S. Abdussalam, B.C. Allanach, F. Quevedo, F. Feroz, M. Hob-
son, Fitting the phenomenological MSSM. Phys. Rev. D 81,
095012 (2010). arXiv:0904.2548

74. S.S. Abdussalam, B.C. Allanach, M.J. Dolan, F. Feroz, M.P. Hob-
son, Selecting a model of supersymmetry breaking mediation.
Phys. Rev. D 80, 035017 (2009). arXiv:0906.0957

75. B.C. Allanach, Impact of CMS multi-jets and missing energy
search on CMSSM fits. Phys. Rev. D 83, 095019 (2011).
arXiv:1102.3149

76. B.C. Allanach, T.J. Khoo, C.G. Lester, S.L. Williams, The impact
of ATLAS zero-lepton, jets and missing momentum search on a
CMSSM fit. JHEP 6, 35 (2011). arXiv:1103.0969

77. A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski, Y.L.S.
Tsai, Bayesian implications of current LHC and XENON100
search limits for the constrained MSSM. Phys. Rev. D 85, 075012
(2012). arXiv:1111.6098

78. L. Roszkowski, E.M. Sessolo, Y.-L.S. Tsai, Bayesian implica-
tions of current LHC supersymmetry and dark matter detection
searches for the constrained MSSM. Phys. Rev. D 86, 095005
(2012). arXiv:1202.1503

79. C. Balázs, A. Buckley, D. Carter, B. Farmer, M. White, Should
we still believe in constrained supersymmetry? Eur. Phys. J. C 73,
2563 (2013). arXiv:1205.1568

80. M.E. Cabrera, J.A. Casas, R. Ruiz de Austri, The health of SUSY
after the Higgs discovery and the XENON100 data. JHEP 07, 182
(2013). arXiv:1212.4821

81. A. Fowlie, K. Kowalska, L. Roszkowski, E.M. Sessolo, Y.-L.S.
Tsai, Dark matter and collider signatures of the MSSM. Phys.
Rev. D 88, 055012 (2013). arXiv:1306.1567

82. S. Henrot-Versillé, R. Lafaye et al., Constraining supersymmetry
using the relic density and the Higgs boson. Phys. Rev. D 89,
055017 (2014). arXiv:1309.6958

83. D. Kim, P. Athron, C. Balázs, B. Farmer, E. Hutchison, Bayesian
naturalness of the CMSSM and CNMSSM. Phys. Rev. D 90,
055008 (2014). arXiv:1312.4150

84. A. Fowlie, M. Raidal, Prospects for constrained supersymmetry at√
s = 33 TeV and

√
s = 100 TeV proton-proton super-colliders.

Eur. Phys. J. C 74, 2948 (2014). arXiv:1402.5419
85. L. Roszkowski, E.M. Sessolo, A.J. Williams, What next for the

CMSSM and the NUHM: improved prospects for superpartner
and dark matter detection. JHEP 08, 067 (2014). arXiv:1405.4289

86. K. Kowalska, L. Roszkowski, E.M. Sessolo, A.J. Williams, GUT-
inspired SUSY and the muon g − 2 anomaly: prospects for LHC
14 TeV. JHEP 06, 020 (2015). arXiv:1503.08219

87. M.E. Cabrera, J.A. Casas, A. Delgado, S. Robles, R. Ruiz de
Austri, Naturalness of MSSM dark matter. JHEP 08, 058 (2016).
arXiv:1604.02102

88. C. Han, K.-I. Hikasa, L. Wu, J. M. Yang, Y. Zhang, Sta-
tus of CMSSM in light of current LHC run-2 and LUX data.
arXiv:1612.02296

89. C. Strege, G. Bertone et al., Profile likelihood maps of a 15-
dimensional MSSM. JHEP 9, 81 (2014). arXiv:1405.0622

90. P. Bechtle, J.E. Camargo-Molina et al., Killing the cMSSM softly.
Eur. Phys. J. C 76, 96 (2016). arXiv:1508.05951

91. M.E. Cabrera-Catalan, S. Ando, C. Weniger, F. Zandanel, Indi-
rect and direct detection prospect for TeV dark matter in
the nine parameter MSSM. Phys. Rev. D 92, 035018 (2015).
arXiv:1503.00599

92. K.J. de Vries, E.A. Bagnaschi et al., The pMSSM10 after LHC
run 1. Eur. Phys. J. C 75, 422 (2015). arXiv:1504.03260

93. E.A. Bagnaschi, O. Buchmueller et al., Supersymmetric dark
matter after LHC run 1. Eur. Phys. J. C 75, 500 (2015).
arXiv:1508.01173

94. C. Balázs, D. Carter, Discovery potential of the next-to-minimal
supergravity-motivated model. Phys. Rev. D 78, 055001 (2008).
arXiv:0808.0770

95. D.E. Lopez-Fogliani, L. Roszkowski, R.R. de Austri, T.A. Varley,
A Bayesian analysis of the constrained NMSSM. Phys. Rev. D 80,
095013 (2009). arXiv:0906.4911

96. K. Kowalska, S. Munir et al., Constrained next-to-minimal super-
symmetric standard model with a 126 GeV Higgs boson: a global
analysis. Phys. Rev. D 87, 115010 (2013). arXiv:1211.1693

97. A. Fowlie, Is the CNMSSM more credible than the CMSSM? Eur.
Phys. J. C 74, 3105 (2014). arXiv:1407.7534

98. G. Bertone, K. Kong, R.R. de Austri, R. Trotta, Global fits of the
minimal universal extra dimensions scenario. Phys. Rev. D 83,
036008 (2011). arXiv:1010.2023

99. K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan, A. Zee, Global
study of the simplest scalar phantom dark matter model. JCAP
1210, 042 (2012). arXiv:1207.4930

100. A. Arhrib, Y.-L.S. Tsai, Q. Yuan, T.-C. Yuan, An updated analysis
of inert Higgs doublet model in light of the recent results from
LUX, PLANCK, AMS-02 and LHC. JCAP 1406, 030 (2014).
arXiv:1310.0358

101. S. Matsumoto, S. Mukhopadhyay, Y.-L.S. Tsai, Singlet Majorana
fermion dark matter: a comprehensive analysis in effective field
theory. JHEP 10, 155 (2014). arXiv:1407.1859

102. D. Chowdhury, O. Eberhardt, Global fits of the two-loop renor-
malized two-Higgs-doublet model with soft Z 2 breaking. JHEP
11, 52 (2015). arXiv:1503.08216

103. S. Liem, G. Bertone et al., Effective field theory of dark matter: a
global analysis. JHEP 9, 77 (2016). arXiv:1603.05994

104. X. Huang, Y.-L .S. Tsai, Q. Yuan, LikeDM: likelihood calculator
of dark matter detection. Comput. Phys. Commun. 213, 252–263
(2017). arXiv:1603.07119

105. S. Banerjee, S. Matsumoto, K. Mukaida, Y.-L.S. Tsai, WIMP dark
matter in a well-tempered regime: a case study on singlet-doublets
Fermionic WIMP. JHEP 11, 070 (2016). arXiv:1603.07387

123

http://arxiv.org/abs/0907.5568
http://arxiv.org/abs/1011.6118
http://arxiv.org/abs/1102.4585
http://arxiv.org/abs/1106.2529
http://arxiv.org/abs/1110.3568
http://arxiv.org/abs/1112.3564
http://arxiv.org/abs/1207.7315
http://arxiv.org/abs/1312.5250
http://arxiv.org/abs/1408.4060
http://arxiv.org/abs/1610.10084
http://arxiv.org/abs/1612.05210
http://arxiv.org/abs/0705.0487
http://arxiv.org/abs/0904.2548
http://arxiv.org/abs/0906.0957
http://arxiv.org/abs/1102.3149
http://arxiv.org/abs/1103.0969
http://arxiv.org/abs/1111.6098
http://arxiv.org/abs/1202.1503
http://arxiv.org/abs/1205.1568
http://arxiv.org/abs/1212.4821
http://arxiv.org/abs/1306.1567
http://arxiv.org/abs/1309.6958
http://arxiv.org/abs/1312.4150
http://arxiv.org/abs/1402.5419
http://arxiv.org/abs/1405.4289
http://arxiv.org/abs/1503.08219
http://arxiv.org/abs/1604.02102
http://arxiv.org/abs/1612.02296
http://arxiv.org/abs/1405.0622
http://arxiv.org/abs/1508.05951
http://arxiv.org/abs/1503.00599
http://arxiv.org/abs/1504.03260
http://arxiv.org/abs/1508.01173
http://arxiv.org/abs/0808.0770
http://arxiv.org/abs/0906.4911
http://arxiv.org/abs/1211.1693
http://arxiv.org/abs/1407.7534
http://arxiv.org/abs/1010.2023
http://arxiv.org/abs/1207.4930
http://arxiv.org/abs/1310.0358
http://arxiv.org/abs/1407.1859
http://arxiv.org/abs/1503.08216
http://arxiv.org/abs/1603.05994
http://arxiv.org/abs/1603.07119
http://arxiv.org/abs/1603.07387

Eur. Phys. J. C (2017) 77 :784 Page 69 of 70 784

106. S. Matsumoto, S. Mukhopadhyay, Y.-L.S. Tsai, Effective theory of
WIMP dark matter supplemented by simplified models: singlet-
like Majorana fermion case. Phys. Rev. D 94, 065034 (2016).
arXiv:1604.02230

107. A. Cuoco, B. Eiteneuer, J. Heisig, M. Krämer, A global fit of the
γ -ray galactic center excess within the scalar singlet Higgs portal
model. JCAP 6, 050 (2016). arXiv:1603.08228

108. GAMBIT Collider Workgroup: C. Balázs, A. Buckley et al., Col-
liderBit: a GAMBIT module for the calculation of high-energy
collider observables and likelihoods. arXiv:1705.07919

109. GAMBIT Flavour Workgroup, F. U. Bernlochner, M. Chrzaszcz
et al., FlavBit: a GAMBIT module for computing flavour observ-
ables and likelihoods. arXiv:1705.07933

110. GAMBIT Dark Matter Workgroup, T. Bringmann, J. Conrad et al.,
DarkBit: a GAMBIT module for computing dark matter observ-
ables and likelihoods. arXiv:1705.07920

111. GAMBIT Models Workgroup, P. Athron, C. Balázs et al., SpecBit,
DecayBit and PrecisionBit: GAMBIT modules for computing
mass spectra, particle decay rates and precision observables.
arXiv:1705.07936

112. GAMBIT Scanner Workgroup, G. D. Martinez, J. McKay et al.,
Comparison of statistical sampling methods with ScannerBit, the
GAMBIT scanning module. arXiv:1705.07959

113. R. Ruiz de Austri, R. Trotta, F. Feroz, SuperBayeS. http://www.
superbayes.org

114. Y. Akrami, P. Scott, J. Edsjö, J. Conrad, L. Bergström, A profile
likelihood analysis of the constrained MSSM with genetic algo-
rithms. JHEP 4, 57 (2010). arXiv:0910.3950

115. F. Feroz, K. Cranmer, M. Hobson, R. Ruiz de Austri, R. Trotta,
Challenges of profile likelihood evaluation in multi-dimensional
SUSY scans. JHEP 6, 42 (2011). arXiv:1101.3296

116. Y. Akrami, C. Savage, P. Scott, J. Conrad, J. Edsjö, Statisti-
cal coverage for supersymmetric parameter estimation: a case
study with direct detection of dark matter. JCAP 7, 2 (2011).
arXiv:1011.4297

117. C. Strege, R. Trotta, G. Bertone, A.H.G. Peter, P. Scott, Funda-
mental statistical limitations of future dark matter direct detection
experiments. Phys. Rev. D 86, 023507 (2012). arXiv:1201.3631

118. C.F. Berger, J.S. Gainer, J.A.L. Hewett, T.G. Rizzo, Supersym-
metry without prejudice. JHEP 2, 23 (2009). arXiv:0812.0980

119. GAMBIT Collaboration, P. Athron, C. Balázs et al., Global fits of
GUT-scale SUSY models with GAMBIT. arXiv:1705.07935

120. GAMBIT Collaboration, P. Athron, C. Balázs et al., A global fit
of the MSSM with GAMBIT. arXiv:1705.07917

121. GAMBIT Collaboration, P. Athron, C. Balázs et al., Status of the
scalar singlet dark matter model. arXiv:1705.07931

122. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys.
J. C 72, 1896 (2012). arXiv:1111.6097

123. P. Athron, J.-H. Park, D. Stöckinger, A. Voigt, FlexibleSUSY—a
spectrum generator generator for supersymmetric models. Com-
put. Phys. Commun. 190, 139–172 (2015). arXiv:1406.2319

124. B.C. Allanach, SOFTSUSY: a program for calculating supersym-
metric spectra. Comput. Phys. Commun. 143, 305–331 (2002).
arXiv:hep-ph/0104145

125. T. Sjostrand, S. Ask et al., An introduction to PYTHIA 8.2. Com-
put. Phys. Commum. 191, 159–177 (2015). arXiv:1410.3012

126. S. Ovyn, X. Rouby, V. Lemaitre, DELPHES, a framework for fast
simulation of a generic collider experiment. arXiv:0903.2225

127. J. de Favereau et al., DELPHES 3, a modular framework for
fast simulation of a generic collider experiment. JHEP 1402, 057
(2014). arXiv:1307.6346

128. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams,
HiggsBounds: confronting arbitrary Higgs sectors with exclusion
bounds from LEP and the tevatron. Comput. Phys. Commun. 181,
138–167 (2010). arXiv:0811.4169

129. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams,
HiggsBounds 2.0.0: confronting neutral and charged Higgs
sector predictions with exclusion bounds from LEP and the
tevatron. Comput. Phys. Commun. 182, 2605–2631 (2011).
arXiv:1102.1898

130. P. Bechtle, O. Brein et al., Higgs Bounds − 4: improved tests
of extended Higgs sectors against exclusion bounds from LEP,
the tevatron and the LHC. Eur. Phys. J. C 74, 2693 (2014).
arXiv:1311.0055

131. P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein,
HiggsSignals: confronting arbitrary Higgs sectors with measure-
ments at the tevatron and the LHC. Eur. Phys. J. C 74, 2711 (2014).
arXiv:1305.1933

132. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, Mad-
Graph 5: going beyond. JHEP 06, 128 (2011). arXiv:1106.0522

133. J. Alwall, R. Frederix et al., The automated computation of
tree-level and next-to-leading order differential cross sections,
and their matching to parton shower simulations. JHEP 07, 079
(2014). arXiv:1405.0301

134. F. Mahmoudi, SuperIso: a program for calculating the isospin
asymmetry of B → K ∗γ in the MSSM. Comput. Phys. Commun.
178, 745 (2008). arXiv:0710.2067

135. F. Mahmoudi, SuperIso v2.3: a program for calculating flavor
physics observables in supersymmetry. Comput. Phys. Commun.
180, 1579 (2009). arXiv:0808.3144

136. F. Mahmoudi, SuperIso v3.0, flavor physics observables calcula-
tions: extension to NMSSM. Comput. Phys. Commun. 180, 1718
(2009)

137. H. Bahl, S. Heinemeyer, W. Hollik, G. Weiglein, Reconciling EFT
and hybrid calculations of the light MSSM Higgs-boson mass.
arXiv:1706.00346

138. H. Bahl, W. Hollik, Precise prediction for the light MSSM Higgs
boson mass combining effective field theory and fixed-order cal-
culations. Eur. Phys. J. C 76, 499 (2016). arXiv:1608.01880

139. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, High-
precision predictions for the light CP-even Higgs boson mass of
the minimal supersymmetric standard model. Phys. Rev. Lett.112,
141801 (2014). arXiv:1312.4937

140. M. Frank, T. Hahn et al., The Higgs boson masses and mixings
of the complex MSSM in the Feynman-diagrammatic approach.
JHEP 02, 047 (2007). arXiv:hep-ph/0611326

141. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein,
Towards high precision predictions for the MSSM Higgs sector.
Eur. Phys. J. C 28, 133–143 (2003). arXiv:hep-ph/0212020

142. S. Heinemeyer, W. Hollik, G. Weiglein, The masses of the
neutral CP-even Higgs bosons in the MSSM: accurate analy-
sis at the two loop level. Eur. Phys. J. C 9, 343–366 (1999).
arXiv:hep-ph/9812472

143. S. Heinemeyer, W. Hollik, G. Weiglein, FeynHiggs: a program for
the calculation of the masses of the neutral CP even Higgs bosons
in the MSSM. Comput. Phys. Commun. 124, 76–89 (2000).
arXiv:hep-ph/9812320

144. F. Mahmoudi, S. Neshatpour, J. Virto, B → K ∗μ+μ− opti-
mised observables in the MSSM. Eur. Phys. J. C 74, 2927 (2014).
arXiv:1401.2145

145. W. Altmannshofer, D.M. Straub, New physics in B → K ∗μμ?
Eur. Phys. J. C 73, 2646 (2013). arXiv:1308.1501

146. S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, Global analysis
of b → s�� anomalies. JHEP 06, 092 (2016). arXiv:1510.04239

147. P. Gondolo, J. Edsjö et al., DarkSUSY: computing supersym-
metric dark matter properties numerically. JCAP 7, 8 (2004).
arXiv:astro-ph/0406204

148. G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov,
MicrOMEGAs: a program for calculating the relic density
in the MSSM. Comput. Phys. Commun. 149, 103–120 (2002).
arXiv:hep-ph/0112278

123

http://arxiv.org/abs/1604.02230
http://arxiv.org/abs/1603.08228
http://arxiv.org/abs/1705.07919
http://arxiv.org/abs/1705.07933
http://arxiv.org/abs/1705.07920
http://arxiv.org/abs/1705.07936
http://arxiv.org/abs/1705.07959
http://www.superbayes.org
http://www.superbayes.org
http://arxiv.org/abs/0910.3950
http://arxiv.org/abs/1101.3296
http://arxiv.org/abs/1011.4297
http://arxiv.org/abs/1201.3631
http://arxiv.org/abs/0812.0980
http://arxiv.org/abs/1705.07935
http://arxiv.org/abs/1705.07917
http://arxiv.org/abs/1705.07931
http://arxiv.org/abs/1111.6097
http://arxiv.org/abs/1406.2319
http://arxiv.org/abs/hep-ph/0104145
http://arxiv.org/abs/1410.3012
http://arxiv.org/abs/0903.2225
http://arxiv.org/abs/1307.6346
http://arxiv.org/abs/0811.4169
http://arxiv.org/abs/1102.1898
http://arxiv.org/abs/1311.0055
http://arxiv.org/abs/1305.1933
http://arxiv.org/abs/1106.0522
http://arxiv.org/abs/1405.0301
http://arxiv.org/abs/0710.2067
http://arxiv.org/abs/0808.3144
http://arxiv.org/abs/1706.00346
http://arxiv.org/abs/1608.01880
http://arxiv.org/abs/1312.4937
http://arxiv.org/abs/hep-ph/0611326
http://arxiv.org/abs/hep-ph/0212020
http://arxiv.org/abs/hep-ph/9812472
http://arxiv.org/abs/hep-ph/9812320
http://arxiv.org/abs/1401.2145
http://arxiv.org/abs/1308.1501
http://arxiv.org/abs/1510.04239
http://arxiv.org/abs/astro-ph/0406204
http://arxiv.org/abs/hep-ph/0112278

784 Page 70 of 70 Eur. Phys. J. C (2017) 77 :784

149. G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov,
micrOMEGAs: version 1.3. Comput. Phys. Commun. 174,
577–604 (2006). arXiv:hep-ph/0405253

150. G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov,
MicrOMEGAs 2.0: a program to calculate the relic density
of dark matter in a generic model. Comput. Phys. Commun. 176,
367–382 (2007). arXiv:hep-ph/0607059

151. G. Bélanger, F. Boudjema et al., Indirect search for dark matter
with micrOMEGAs2.4. Comput. Phys. Commun. 182, 842–856
(2011). arXiv:1004.1092

152. G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov,
micrOMEGAs 3: a program for calculating dark matter
observables. Comput. Phys. Commun. 185, 960–985 (2014).
arXiv:1305.0237

153. G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov,
micrOMEGAs4.1: two dark matter candidates. Comput.
Phys. Commun. 192, 322–329 (2015). arXiv:1407.6129

154. W. Porod, SPheno, a program for calculating supersymmetric
spectra, SUSY particle decays and SUSY particle production at
e+e− colliders. Comput. Phys. Commun. 153, 275–315 (2003).
arXiv:hep-ph/0301101

155. W. Porod, F. Staub, SPheno 3.1: extensions including flavour, CP-
phases and models beyond the MSSM. Comput. Phys. Commun.
183, 2458–2469 (2012). arXiv:1104.1573

156. B.C. Allanach, M.A. Bernhardt, Including R-parity violation in
the numerical computation of the spectrum of the minimal super-
symmetric standard model: SOFTSUSY. Comput. Phys. Com-
mun. 181, 232–245 (2010). arXiv:0903.1805

157. B.C. Allanach, C.H. Kom, M. Hanussek, Computation of neutrino
masses in R-parity violating supersymmetry: SOFTSUSY3.2.
Comput. Phys. Commun. 183, 785–793 (2012). arXiv:1109.3735

158. B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt, A.G. Williams,
Next-to-minimal SOFTSUSY. Comput. Phys. Commun. 185,
2322–2339 (2014). arXiv:1311.7659

159. B.C. Allanach, A. Bednyakov, R. Ruiz de Austri, Higher order cor-
rections and unification in the minimal supersymmetric standard
model: SOFTSUSY3.5. Comput. Phys. Commun. 189, 192–206
(2015). arXiv:1407.6130

160. A. Djouadi, M.M. Mühlleitner, M. Spira, Decays of super-
symmetric particles: the program SUSY-HIT (SUspect-SdecaY-
Hdecay-InTerface). Acta Phys. Polon. 38, 635–644 (2007).
arXiv:hep-ph/0609292

161. M. Muhlleitner, A. Djouadi, Y. Mambrini, SDECAY: a For-
tran code for the decays of the supersymmetric particles in
the MSSM. Comput. Phys. Commun. 168, 46–70 (2005).
arXiv:hep-ph/0311167

162. A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: a Fortran
code for the supersymmetric and Higgs particle spectrum in
the MSSM. Comput. Phys. Commun. 176, 426–455 (2007).
arXiv:hep-ph/0211331

163. A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for
Higgs boson decays in the standard model and its supersym-
metric extension. Comput. Phys. Commun. 108, 56–74 (1998).
arXiv:hep-ph/9704448

164. P. Athron, M. Bach et al., GM2Calc: precise MSSM prediction for
(g-2) of the muon. Eur. Phys. J. C 76, 62 (2016). arXiv:1510.08071

165. Message Passing Forum, MPI: A Message-Passing Interface Stan-
dard (University of Tennessee, Knoxville, 1994)

166. L. Dagum, R. Menon, OpenMP: an industry standard API for
shared-memory programming. IEEE Comput. Sci. Eng. 5, 46–55
(1998)

167. B.C. Allanach et al., SUSY Les Houches accord 2. Comput. Phys.
Commun. 180, 8–25 (2009). arXiv:0801.0045

168. H. Baer, X. Tata, Weak Scale Supersymmetry (Cambridge Univer-
sity Press, Cambridge, 2006)

169. H. Silverwood, P. Scott et al., Sensitivity of IceCube-DeepCore
to neutralino dark matter in the MSSM-25. JCAP 3, 27 (2013).
arXiv:1210.0844

170. R.C. Cotta, A. Drlica-Wagner et al., Constraints on the pMSSM
from LAT observations of dwarf spheroidal galaxies. JCAP 4, 16
(2012). arXiv:1111.2604

171. J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le, T.G. Rizzo, Super-
symmetry without prejudice at the LHC. Eur. Phys. J. C 71, 1697
(2011). arXiv:1009.2539

172. A. Arbey, M. Battaglia, F. Mahmoudi, Implications of LHC
searches on SUSY particle spectra. The pMSSM parameter space
with neutralino dark matter. Eur. Phys. J. C 72, 1847 (2012).
arXiv:1110.3726

173. L. Bergström, P. Gondolo, Limits on direct detection of neutralino
dark matter from b → sγ decays. Astropart. Phys. 5, 263–278
(1996). arXiv:hep-ph/9510252

174. M. Berg, J. Edsjö, P. Gondolo, E. Lundström, S. Sjörs, Neutralino
dark matter in BMSSM effective theory. JCAP 8, 35 (2009).
arXiv:0906.0583

175. E. Dudas, Y. Mambrini, A. Mustafayev, K.A. Olive, Relating the
CMSSM and SUGRA models with GUT scale and super-GUT
scale supersymmetry breaking. Eur. Phys. J. C 72, 2138 (2012).
arXiv:1205.5988. [Erratum: Eur. Phys. J. C 73, 2430 (2013)]

176. Y. Akrami, C. Savage, P. Scott, J. Conrad, J. Edsjö, How well will
ton-scale dark matter direct detection experiments constrain min-
imal supersymmetry? JCAP 1104, 012 (2011). arXiv:1011.4318

177. R. Schoenrich, J. Binney, W. Dehnen, Local kinematics
and the local standard of rest. MNRAS 403, 1829 (2010).
arXiv:0912.3693

178. J.R. Ellis, K.A. Olive, C. Savage, Hadronic uncertainties in the
elastic scattering of supersymmetric dark matter. Phys. Rev. D 77,
065026 (2008). arXiv:0801.3656

179. R. D. Young, Strange quark content of the nucleon and dark matter
searches. PoS LATTICE2012, 014 (2012). arXiv:1301.1765

180. P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY
spectrum calculators, decay packages, and event generators. JHEP
07, 036 (2004). arXiv:hep-ph/0311123

181. P. Scott, Pippi—painless parsing, post-processing and plotting
of posterior and likelihood samples. Eur. Phys. J. Plus 127, 138
(2012). arXiv:1206.2245

182. F. Feroz, M.P. Hobson, M. Bridges, MULTINEST: an efficient
and robust Bayesian inference tool for cosmology and particle
physics. MNRAS 398, 1601–1614 (2009). arXiv:0809.3437

183. A. Putze, L. Derome, The Grenoble Analysis Toolkit (GreAT)—a
statistical analysis framework. Phys. Dark Univ. 5, 29–34 (2014)

184. A. Lewis, Efficient sampling of fast and slow cosmological param-
eters. Phys. Rev. D 87, 103529 (2013). arXiv:1304.4473

185. A. Lewis, S. Bridle, Cosmological parameters from CMB and
other data: a Monte Carlo approach. Phys. Rev. D 66, 103511
(2002). arXiv:astro-ph/0205436

123

http://arxiv.org/abs/hep-ph/0405253
http://arxiv.org/abs/hep-ph/0607059
http://arxiv.org/abs/1004.1092
http://arxiv.org/abs/1305.0237
http://arxiv.org/abs/1407.6129
http://arxiv.org/abs/hep-ph/0301101
http://arxiv.org/abs/1104.1573
http://arxiv.org/abs/0903.1805
http://arxiv.org/abs/1109.3735
http://arxiv.org/abs/1311.7659
http://arxiv.org/abs/1407.6130
http://arxiv.org/abs/hep-ph/0609292
http://arxiv.org/abs/hep-ph/0311167
http://arxiv.org/abs/hep-ph/0211331
http://arxiv.org/abs/hep-ph/9704448
http://arxiv.org/abs/1510.08071
http://arxiv.org/abs/0801.0045
http://arxiv.org/abs/1210.0844
http://arxiv.org/abs/1111.2604
http://arxiv.org/abs/1009.2539
http://arxiv.org/abs/1110.3726
http://arxiv.org/abs/hep-ph/9510252
http://arxiv.org/abs/0906.0583
http://arxiv.org/abs/1205.5988
http://arxiv.org/abs/1011.4318
http://arxiv.org/abs/0912.3693
http://arxiv.org/abs/0801.3656
http://arxiv.org/abs/1301.1765
http://arxiv.org/abs/hep-ph/0311123
http://arxiv.org/abs/1206.2245
http://arxiv.org/abs/0809.3437
http://arxiv.org/abs/1304.4473
http://arxiv.org/abs/astro-ph/0205436

	GAMBIT: the global and modular beyond-the-standard-model inference tool
	Abstract
	1 Introduction
	2 Design overview
	2.1 Modularity
	2.1.1 Physics modules, observables and likelihoods
	2.1.2 Backends
	2.1.3 Models

	2.2 Adaptability and flexibility
	2.3 Performance and parallelisation
	2.4 Available examples

	3 Modules
	3.1 Module function declaration
	3.1.1 Model compatibility
	3.1.2 Dependencies
	3.1.3 Backend requirements
	3.1.4 Parallel module functions
	3.1.5 One-line module function declaration

	3.2 Pipes
	3.2.1 Accessing dependencies
	3.2.2 Accessing backend requirements
	3.2.3 Accessing model parameters
	3.2.4 Accessing options from the input file
	3.2.5 Managing parallel module functions

	4 Backends
	4.1 Backend function declaration
	4.2 Convenience functions
	4.3 Backend initialisation functions
	4.4 Backend types
	4.5 Loading C++ classes at runtime with BOSS
	4.6 Backend information utility

	5 Hierarchical model database
	5.1 Model declaration
	5.2 Model capabilities
	5.3 Defining translation functions
	5.4 Models defined in GAMBIT 1.0.0
	5.4.1 Standard model
	5.4.2 Scalar singlet
	5.4.3 Weak-scale MSSM
	5.4.4 GUT-scale MSSM
	5.4.5 Flavour EFT
	5.4.6 Nuisance parameters
	5.4.7 Toys

	6 User interface and input file
	6.1 Command line switches and general usage
	6.2 The master initialisation file
	6.3 Model and parameters
	6.3.1 General setup and fast priors
	6.3.2 More involved priors

	6.4 !ObsLikes!: target observables and likelihoods
	6.5 Rules: dependency resolution and module options
	6.5.1 Module function dependencies
	6.5.2 Backend requirements
	6.5.3 Options for module functions

	6.6 Printer
	6.6.1 Common options
	6.6.2 Specific options: ascii printer
	6.6.3 Specific options: hdf5 printer
	6.6.4 Output selection

	6.7 Scanner
	6.8 Logger
	6.9 !KeyValues!: general purpose options

	7 Dependency resolver
	7.1 General procedure
	7.2 Evaluation order
	7.3 Resolution of backend requirements
	7.4 Resolution of loops and nested functions
	7.5 Option resolution

	8 Statistics and scanning
	8.1 The role of ScannerBit
	8.2 Analysing samples
	8.3 Available likelihood forms
	8.3.1 Profiled Gaussian
	8.3.2 Marginalised Gaussian
	8.3.3 Profiled Gaussian limits
	8.3.4 Marginalised Gaussian limits
	8.3.5 Profiled log-normal
	8.3.6 Marginalised log-normal

	9 Output
	9.1 Overview of the output format
	9.2 Available printers
	9.2.1 ASCII output
	9.2.2 HDF5 output

	9.3 Expanding the printable types

	10 Utilities
	10.1 Particle database
	10.2 Logging
	10.3 Exceptions
	10.4 Diagnostics
	10.4.1 Modules diagnostic
	10.4.2 Capabilities diagnostic
	10.4.3 Backends diagnostic
	10.4.4 Models diagnostic
	10.4.5 Scanners diagnostic
	10.4.6 Test-functions diagnostic
	10.4.7 Priors diagnostic
	10.4.8 Free-form diagnostics

	10.5 Type handling
	10.6 Random numbers
	10.7 Component databases and documentation
	10.8 Signal handling and resuming a scan
	10.8.1 Shutdown behaviour

	11 Configuration and automatic component registration
	11.1 Adding new models, modules, backends and other components to GAMBIT
	11.2 Building backends and scanners
	11.3 Miscellaneous build targets
	11.4 Configuration options
	11.4.1 CMake standard variables
	11.4.2 CMake library and GAMBIT-specific variables

	12 Examples, releases and support
	12.1 Minimal examples
	12.2 Releases
	12.3 Support

	13 Summary
	Acknowledgements
	Appendix A: Quick start guide
	Appendix B: Supported compilers and library dependencies
	Appendix C: Standard Model definitions
	Appendix D: Glossary
	References

