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Abstract In this work we evaluate analytically the ultra-
violet divergences of Lorentz-violating massive O(N ) λφ4

scalar field theories, which are exact in the Lorentz-violating
mechanism, firstly explicitly at next-to-leading order and lat-
ter at any loop level through an induction procedure based on
a theorem following from the exact approach, for computing
the corresponding critical exponents. For attaining that goal,
we employ three different and independent field-theoretic
renormalization group methods. The results found for the
critical exponents show that they are identical in the three
distinct methods and equal to their Lorentz-invariant coun-
terparts. Furthermore, we show that the results obtained here,
based on the single concept of loop order of the referred terms
of the corresponding β-function and anomalous dimensions,
reduce to the ones obtained through the earlier non-exact
approach based on a joint redefinition of the field and cou-
pling constant of the theory, in the appropriate limit.

1 Introduction

Lorentz symmetry is one of the most fundamental symme-
tries of nature and the possibility of its violation was a theme
of intense investigation in the last years, usually as a finite per-
turbative expansion at some Lorentz-violating (LV) param-
eters and loop number, both in high energy [1–8] as well as
in low energy [9–11] physics. In the latter realm, the crit-
ical exponents were computed, at least at first order in the
Lorentz-violating (LV) parameters Kμν and any loop level
for LV scalar field theories [9–11]. For this purpose, this
evaluation was possible by means of the application of a
non-exact approach based on a joint redefinition of the field
and coupling constant of the theory. In this work, we present

a e-mail: prscarvalho@ufpi.edu.br
b e-mail: marconesena@poli.br

an exact approach, which naturally takes into account the
effect of the LV parameters exactly and furthermore for all
loop orders. Moreover, we will show that the referred exact
approach gives expressions for the β-function as well as for
the corresponding fixed point and anomalous dimensions,
besides critical exponents, and that these expressions reduce
to the ones obtained in the earlier non-exact approach in the
appropriate limit.

In this work, we compute analytically the critical expo-
nents for massive O(N ) λφ4 scalar field theories with Lorentz
violation. This computation is exact in the LV mechanism.
For this purpose, we apply three distinct field-theoretic renor-
malization group methods and they involve the same theory
renormalized at different renormalization schemes. In this
field-theoretic formulation, if the critical exponents present
the same values when obtained through the three methods,
this means that they are universal quantities and we have the
confirmation of the universality hypothesis. These universal
quantities characterize the critical behavior of distinct sys-
tems as a fluid and a ferromagnet. When the critical behavior
of two or more distinct systems is characterized by the same
critical exponents, we say that they belong to the same uni-
versality class. The universality class inspected here is the
O(N ) one, which encompasses the particular models: Ising
(N = 1), XY (N = 2), Heisenberg (N = 3), self-avoiding
random walk (N = 0) and spherical (N → ∞) for short-
range interactions [12]. The critical exponents depend on
the dimension d of the system, N and symmetry of some
N -component order parameter (magnetization for magnetic
systems), and on whether the interactions present are of short-
or long-range type. Much work probing the dependence of the
critical exponents on the obvious parameters as d [13,14] and
N [15–17] was published. Just a few publications addressed
the symmetry of the order parameter [18,19]. The aim of this
work is to probe the exact effect of the LV mechanism on the
values for the critical exponents.
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This paper is organized as follows: In next three sections,
we compute analytically and explicitly the next-to-leading
loop order quantum corrections to the critical exponents for
LV O(N ) self-interacting λφ4 scalar field taking into account
the LV mechanism exactly, by applying three distinct field-
theoretic renormalization group methods. In Sect. 5 we gen-
eralize the results for all loop levels. At the end, we present
our conclusions.

2 Exact Lorentz-violating next-to-leading order critical
exponents in the Callan–Symanzik method

We consider a massive LV O(N ) scalar field theory whose
bare Lagrangian density in Euclidean spacetime is given by
[6–8]

L = 1

2
(δμν + Kμν)∂

μφB∂νφB + 1

2
m2

Bφ2
B + λB

4! φ4
B . (1)

In the equation above, the bare parameters φB ,mB and λB are
the bare field, mass and coupling constant, respectively. The
entities responsible for the symmetry breaking mechanism
are the constant symmetric LV coefficients Kμν . We can now
expand the bare primitively 1PI vertex parts up to next-to-
leading loop order to obtain the desired expansion. But up
to this loop order, we have many diagrams. This number of
diagrams can be reduced. We see that the diagrams containing
tadpole insertions

(2)

and the one which is independent of external momenta

(3)

can be eliminated. It is well known that if we substitute the
bare mass mB,tree level in Eq. (1) initially at tree level for its
three-loop counterpart mB,three−loop [20,21] we can achieve
the desired aim. Now making mB,three−loop → mB from now
on we have

Γ
(2)
B (P 2 + KμνPμP ν ,mB , λB) = −1 −

λ2
B

6
−

P 2+KμνP μP ν=0
+

λ3
B

4
−

P 2+KμνP μP ν=0
,

(4)

Γ
(4)
B (Pi,mB , λB) = λB − λ2

B

2
+ 2 perm. +

λ3
B

4
+ 2 perm. +

λ3
B

2
+ 5 perm. ,

(5)

Γ
(2,1)
B (P1, P2, Q3,mB , λB) = 1− λB

2
+

λ2
B

4
+

λ2
B

2
(6)

where Q = −(P1 + P2). We can now define the dimensional
and the dimensionless renormalized coupling constants λ and
u as λ = umε , where m, at the loop level considered, is
used as an arbitrary momentum scale, thus we can consider
the momenta as dimensionless quantities. The same relation
between the corresponding bare quantities λB and u0 can be
also defined as λB = u0mε . We renormalize these correlation
functions multiplicatively

Γ (n,l)(Pi , Q j , u,m)= Zn/2
φ Zl

φ2Γ
(n,l)
B (Pi , Q j , λB,mB),

(7)

which satisfies the Callan–Symanzik equation(
m

∂

∂m
+ β

∂

∂u
− 1

2
nγφ + lγφ2

)
Γ

(n,l)
R (Pi , Q j , u,m)

= m2(2 − γφ)Γ
(n,l+1)
R (Pi , Q j , 0, u,m) (8)

where

β(u) = m
∂u

∂m
= −ε

(
∂ ln u0

∂u

)−1

, (9)

γφ(u) = β(u)
∂ ln Zφ

∂u
, (10)

γφ2(u) = −β(u)
∂ ln Zφ2

∂u
, (11)

where we use the function

γ φ2(u) = −β(u)
∂ ln Zφ2

∂u
≡ γφ2(u) − γφ(u) (12)

instead of γφ2(u), for reasons of convenience, by fixing the
external momenta through the normalization conditions

Γ (2)(P2 + Kμν P
μPν = 0;m, u) = m2, (13)

∂Γ (2)(P2 + Kμν PμPν;m2, u)

∂(P2 + Kμν PμPν)

∣∣∣∣
P2+Kμν PμPν=0

= 1,

(14)

Γ
(4)
R (Pi = 0;m, u) = u, (15)

Γ
(2,1)
R (Pi = 0, Q j = 0,m, u) = 1. (16)
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It is well known that we can further reduce the number of
diagrams to be evaluated [20] because some of them are not
independent. This makes this method simpler than the last
one which will be applied, the BPHZ one, where, for attaining
the same task, we have to compute around 14 diagrams. As
the computation of the 1PI vertex parts leads to momentum
integration involving just their internal bubbles and not their
external legs, all what matters in this evaluation are their
internal bubbles contents. Thus, without taking into account
the O(N ) symmetry factors, we have ∝ , ∝

, ∝ ∝ . Finally, the only diagrams to be

evaluated are the ones. Thus we can write

the 1PI vertex parts as

Γ
(2)
B (P2 + Kμν P

μPν, u0,mB)

= (P2 + Kμν P
μPν)(1 − B2u

2
0 + B3u

3
0), (17)

Γ
(4)
B (Pi , u0,mB)

= mε
Bu0[1 − A1u0 + (A(1)

2 + A(2)
2 )u2

0], (18)

Γ
(2,1)
B (P1, P2, Q3, u0,mB)

= 1 − C1u0 + (C (1)
2 + C (2)

2 )u2
0, (19)

where

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

and in the Callan–Symanzik method, the two-loop dia-
gram and the three-loop one given

by do not contribute to the subse-

quent computations, since we evaluate them at fixed vanish-
ing external momenta. In the right-hand side (rhs) of Eq. (8),
the referred 1PI vertex part is one of l + 1 composite field
insertions and the one in the left-hand side (lhs) has l such
insertions. As is well known, an extra composite field inser-
tion is responsible for one additional power of the propagator
in the corresponding 1PI vertex part. We can then work in the
ultraviolet limit, i.e., in the limit where the external momenta
Pi/m → ∞. After taking this limit, the rhs can be neglected
in comparison with the lhs, order by order in perturbation the-
ory. This is, in essence, the content of Weinberg’s theorem
[22]. Therefore the 1PI vertex parts satisfy the renormaliza-
tion group equation, thus permitting us to apply the theory
of scaling for these functions and evaluate the β-function
and anomalous dimensions as well as the corresponding crit-
ical exponents. The LV coefficients can now be considered
exactly by noting that q2 + Kμνqμqν ≡ (δμν + Kμν)qμqν

= qt (I + K)q, where q is a d-dimensional vector whose
representation is a column matrix and qt is a row matrix
and I and K are matrix representations of the identity and
Kμν , respectively. Thus setting q ′ = √

I + Kq, the LV
mechanism is shown explicitly through two contributions.
The first of them is displayed through the volume elements
of d-dimensional integrals ddq ′ = √

det(I + K)ddq; thus
ddq = ddq ′/

√
det(I + K). This LV full or exact contribu-

tion � = 1/
√

det(I + K) reduces to its perturbative coun-
terpart Π � Π(0) + Π(1) + Π(2) for small violations of
the Lorentz symmetry, where Π(i) is the LV contribution of
order i in Kμν [6–11]. The other LV modification of the the-
ory is that involving the external momenta. It can be seen
in the momentum-dependent d-dimensional integrals when
evaluated in dimensional regularization in d = 4 − ε that

∫
ddq

(2π)d

1

(q2 + 2Pq + M2)α

= Ŝd
1

2

Γ (d/2)

Γ (α)

Γ (α − d/2)

(M2 − P2)α−d/2 , (28)

where Ŝd = Sd/(2π)d = 2/(4π)d/2Γ (d/2), and Sd =
2πd/2/Γ (d/2) is the surface area of a unit d-dimensional
sphere. Its finite value in four-dimensional spacetime is
Ŝ4 = 2/(4π)2. This definition is convenient as to each loop
integration we have a factor of Ŝ4 at four dimensions, thus
avoiding the appearance of Euler–Mascheroni constants in
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the middle of the calculations [20]. Now setting q ′ → P ′
and q → P , P ′2 = P2 + Kμν PμPν . As is well known,
from all diagrams displayed above, we need to compute only
four of them [20]. They are shown in Appendix A. When
we absorb Ŝ in a redefinition of the coupling constant and
use the Feynman diagrams for computing the β-function and
anomalous dimensions by writing the Laurent expansion

u0 = u

(
1 +

∞∑
i=1

ai (ε)u
i

)
, (29)

Zφ = 1 +
∞∑
i=1

bi (ε)u
i , (30)

Zφ2 = 1 +
∞∑
i=1

ci (ε)u
i , (31)

β(u) = −εu[1 − a1u + 2(a2
1 − a2)u

2], (32)

γφ(u) = −εu[2b2u + (3b3 − 2b2a1)u
2], (33)

γ φ2(u) = εu[c1 + (2c2 − c2
1 − 2a1c1)u], (34)

where the constant coefficientsa1, . . ., c2 depend on the Feyn-
man diagrams, evaluated in Appendix A [20], we obtain

β(u) = −εu + N + 8

6

(
1 − 1

2
ε

)
�u2

−3N + 14

12
�2u3, (35)

γφ(u) = N + 2

72

(
1 − 1

4
ε + Iε

)
�2u2

− (N + 2)(N + 8)

432
(I + 1)�3u3, (36)

γ φ2(u) = N + 2

6

(
1 − 1

2
ε

)
�u − N + 2

12
�2u2. (37)

We observe that the expression for the β-function of Eq. (35)
can be read off based on a single concept, that of loop order
of the referred term of the corresponding function. As we can
see, its first term does not originate from a loop integral and
the exact approach demands that it has not to be accompanied
of a LV full � factor, although it is a term of first order in
u. This term is fundamental for making possible expansions
in quantum field theory and is essential in the renormaliza-
tion group and ε-expansion techniques developed by Wilson,
specially with applications to critical phenomena [23–25] in
d < 4. Its second one-loop term is of second order in u, but it
has acquired only a linear power of �. The last one, although
being of third order in u, must be of second order in �, since
it is of two-loop order. Similar arguments can be utilized to
the other terms of the anomalous dimensions of Eqs. (36)
and (37) as well. Thus, the exact approach permit us to see
that each loop term is accompanied of a power of the LV
full � factor as it is shown by the general theorem displayed
in last section. This procedure is valid at all intermediate

steps of the program. Another interesting point is that, in this
method, the β-function and anomalous dimensions depend
on the LV coefficients at its exact form only through the LV
� factor and on the symmetry point employed. We need to
compute the nontrivial solution of the β-function. The triv-
ial one leads to the mean field or Landau critical exponents
and can be obtained mathematically by a factorization pro-
cedure resulting in the factorization of a single power of u in
the equation for the β-function. This procedure results in the
nontrivial fixed point given by

u∗ = 6ε

(N + 8)�

{
1 + ε

[
3(3N + 14)

(N + 8)2 + 1

2

]}
. (38)

It can be written as u∗ = u∗(0)/�, where u∗(0) is its Lorentz-
invariant (LI) counterpart. Now the LV corrections to the
mean field or Landau approximation to the critical exponents
are given through the application of definitions η ≡ γφ(u∗)
and ν−1 ≡ 2−η−γ φ2(u∗). They can be applied to obtain, to
next-to-leading order, the two respective critical exponents,

η = (N + 2)ε2

2(N + 8)2

{
1 + ε

[
6(3N + 14)

(N + 8)2 − 1

4

]}
≡ η(0), (39)

ν = 1

2
+ (N + 2)ε

4(N + 8)
+ (N + 2)(N 2 + 23N + 60)ε2

8(N + 8)3

≡ ν(0), (40)

where η(0) and ν(0) are their corresponding Lorentz-invariant
(LI) counterparts [23]. As there are six critical exponents
and four scaling relations among them, there are only two
independent ones. Thus the two ones above are enough for
evaluating the four remaining ones. In next section we will
perform the same task but now in a distinct renormalization
method and will compare the results.

3 Exact Lorentz-violating next-to-leading order critical
exponents in the Unconventional minimal subtraction
scheme

This method is characterized by its elegance as compared
with the earlier one since the external momenta remain at
arbitrary values along all the renormalization program. This
implies that we do not have to compute any parametric inte-
gral because they cancel out in the final expressions for the
β-function and anomalous dimensions. Now we have

(41)

(42)

(43)
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(44)

(45)

(46)

(47)

(48)

where the poles are minimally eliminated, thus being
absorbed in the renormalization constants for the field Zφ

and composite field Zφ2 , respectively. Now absorbing Ŝ in a
redefinition of the coupling constant and using the Feynman
diagrams computed in Appendix B, we find

β(u) = −εu + N + 8

6
�u2 − 3N + 14

12
�2u3, (49)

γφ(u) = N + 2

72
�2u2 − (N + 2)(N + 8)

1728
�3u3, (50)

γ φ2(u) = N + 2

6
�u − N + 2

12
�2u2. (51)

The renormalization program proceeds so elegantly that
all the momentum-dependent integrals, namely the ones
L(P2 +Kμν PμPν,m2

B), L3(P2 +Kμν PμPν,m2
B), ĩ(P2 +

Kμν PμPν,m2
B) have disappeared. Now, the only LV depen-

dence of the theory is that through the LV full � factor. The
the integrals canceled aforementioned are associated with the
renormalization of the field and composite field. In fact, tech-
nically, the renormalization of these parameters comes from
the terms proportional to P2 + Kμν PμPν in the diagrams

and . But, unfortunately, we are yet left with a

residual divergence and it originates from the terms propor-
tional to m2 in the diagrams and . It is shown

below that

Γ (2)(P2 + Kμν P
μPν, u,m)

= P2 + Kμν P
μPν

+m2
{

1 + (N + 2)

24
Ĩ (P2 + Kμν P

μPν,m2
B)

− (N + 2)(N + 8)

108ε
Ĩ (P2 + Kμν P

μPν,m2
B)u3

}
, (52)

where

Ĩ (P2 + Kμν P
μPν ,m2

B) =
∫ 1

0
dx

∫ 1

0
dylny

d

dy

×

⎧⎪⎨
⎪⎩(1 − y) ln

⎡
⎢⎣
y(1 − y) P2+Kμν PμPν

m2
B

+ 1 − y + y
x(1−x)

1 − y + y
x(1−x)

⎤
⎥⎦

⎫⎪⎬
⎪⎭ .

(53)

The reduction of the number of diagrams to be computed
through the redefining of the initial bare mass at tree level to
its three-loop order counterpart produces this residual diver-
gence. We can overcome this problem subtracting this pole
minimally by redefining the two-point function as

Γ̃ (2)(P2 + Kμν P
μPν, u,m)

= Γ (2)(P2 + Kμν P
μPν, u,m)

+m2
{

(N + 2)(N + 8)

108ε
Ĩ (P2 + Kμν P

μPν,m2
B)u3

}
. (54)

This turns out to be connected with the unconventional mini-
mal subtraction scheme to the conventional one in the mass-
less theory [20], once the terms proportional to m2 vanish
in the latter case. The final check of this redefinition can be
shown by showing that it satisfies the normalization condi-
tion used in Sect. 2,

Γ̃ (2)(P2 + Kμν P
μPν = 0, u,m)

= Γ (2)(P2 + Kμν P
μPν = 0, u,m) = m2. (55)

Once again, for computing the LV loop quantum corrections
to the critical exponents, we need to evaluate the nontrivial
fixed point though the nontrivial solution for the equation
β(u∗) = 0. It is given by

u∗ = 6ε

(N + 8)�

{
1 + ε

[
3(3N + 14)

(N + 8)2

]}
. (56)

This value for the nontrivial fixed point when used for evalu-
ating the critical exponents leads to the same ones as those of
the earlier section. Spending some more time we may con-
firm the universality hypothesis, that the critical exponents
are universal quantities, thus being the same as obtained in
different renormalization schemes. Now we proceed to com-
pute the critical exponents in a third renormalization scheme.

4 Exact Lorentz-violating next-to-leading order critical
exponents in the BPHZ method

The BPHZ (Bogoliubov-Parasyuk-Hepp-Zimmermann)
method [26–28] is the most general of all known renormal-
ization methods. It does not include any trick for reducing
the total number of diagrams to be evaluated. Thus we have
to compute all diagrams in the original expansion for a given

123



753 Page 6 of 9 Eur. Phys. J. C (2017) 77 :753

loop order. As opposed to the earlier ones, in the BPHZ
method, we start from the renormalized theory,

L = 1

2
Zφ(gμν + Kμν)∂

μφ∂νφ + μεu

4! Zuφ
4 + 1

2
t Zφ2φ2,

(57)

where

φ = Z−1/2
φ φB, u = μ−ε

Z2
φ

Zu
λB, t = Zφ

Zφ2
tB . (58)

Initially, considering the bare theory at one-loop order,
we absorb that divergence by adding terms to the initial
Lagrangian density. Then a finite Lagrangian density is
found. For considering the bare theory at the next loop level,
we apply the same procedure and so on, order by order in
perturbation theory. Thus we absorb the divergences in the
renormalization constants. We expand the renormalization
constants as

Zφ = 1 +
∞∑
i=1

ciφ, (59)

Zu = 1 +
∞∑
i=1

ciu, (60)

Zm2 = 1 +
∞∑
i=1

cim2 . (61)

The ciφ , cig and cim coefficients are the i-th loop order renor-
malization constants for the field, renormalized coupling con-
stant and composite field, respectively. They are given by

(62)

(63)

(64)

where S is the symmetry factor for the corresponding
diagram and so on when some N -component field is consid-
ered. By using the diagrams in Appendix C, we see that the
β-function and anomalous dimensions are given by

β(u) = −εu + N + 8

6
�u2 − 3N + 14

12
�2u3, (65)

γφ(u) = N + 2

72
�2u2 − (N + 2)(N + 8)

1728
�3u3, (66)

γm2(u) = N + 2

6
�u − 5(N + 2)

72
�2u2. (67)

One more time, we have to compute the nontrivial solution
of Eq. (65). This procedure yields the value

u∗ = 6ε

(N + 8)�

{
1 + ε

[
3(3N + 14)

(N + 8)2

]}
. (68)

Now by applying the relations η ≡ γφ(u∗) and ν−1 ≡ 2 −
γm2(u∗), we once again see that the LV critical exponents are
identical to their LV counterparts. Now we evaluate the LV
critical exponents for any loop levels.

5 Exact Lorentz-violating all-loop order critical
exponents

For computing the critical exponents for all loop levels, we
can employ any of the methods aforementioned since the
critical exponents, being universal quantities, must be the
same if evaluated at any renormalization scheme. For this
purpose, we will employ the BPHZ method which is the
most general one. Before that, we need to assert the following
theorem.

Theorem 1 Consider a given Feynman diagram in momen-
tum space of any loop order in a theory represented by the
Lagrangian density of Eq. (1). Its evaluated expression in
dimensional regularization in d = 4 − ε can be written as
a general functional �LF(u, P2 + Kμν PμPν, ε, μ) if its
LI counterpart is given by F(u, P2, ε, μ,m), where L is the
number of loops of the corresponding diagram.

Proof A general Feynman diagram of loop level L is a mul-
tidimensional integral in L distinct and independent momen-
tum integration variables q1, q2, ..., qL , each one with volume
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element given by ddqi (i = 1, 2, ..., L). As showed in the
last section, the substitution q ′ = √

I + Kq transforms each
volume element: ddq ′ = √

det (I + K)ddq. Thus ddq =
ddq ′/

√
det (I + K) ≡ �ddq ′, � = 1/

√
det (I + K). Then

the integration in L variables results in a LV overall fac-
tor of �L . Now setting q ′ → P ′ in the substitution above,
where P ′ is the transformed external momentum, we have
P ′2 = P2 + Kμν PμPν . So a given Feynman diagram, eval-
uated in dimensional regularization in d = 4 − ε, assumes
the expression �LF(u, P2 + Kμν PμPν, ε, μ), where F is
associated to the corresponding diagram if the LI Feynman
diagram counterpart evaluation results in F(u, P2, ε, μ).

Now using the result of the theorem above and the one in
which all momentum-dependent integrals cancel out order
by order in perturbation theory for all levels in the renormal-
ization process [26–28], we see that the only LV dependence
of β-function and anomalous dimensions is due to the LV
full � factor, which comes from the volume elements of the
diagrams contributing with a �L factor, where L is the num-
ber of loops of the corresponding graph. Thus we can write
the β-function and anomalous dimensions for all loop levels

β(u) = −εu +
∞∑
n=2

β(0)
n �n−1un, (69)

γ (u) =
∞∑
n=2

γ (0)
n �nun, (70)

γm2(u) =
∞∑
n=1

γ
(0)

m2,n
�nun, (71)

where β
(0)
n , γ

(0)
n and γm2,n are the LI nth-loop corrections

to the referred functions. By applying the same factorization
process employed in the finite loop scenario for the any loop
realm, we obtain u∗ = u∗(0)/� where u∗(0) is the LI fixed
point for all loop levels. Then we can substitute this all-loop
order fixed point in the β-function and anomalous dimen-
sions to obtain the LV critical exponents valid for any loop
levels as being identical to their LI counterparts of any loop
order.

6 Conclusions

We have evaluated analytically the ultraviolet divergences
of Lorentz-violating massive O(N ) λφ4 scalar field theories,
which are exact in the Lorentz-violating mechanism, firstly
explicitly at next-to-leading order and later at any loop level
through an induction procedure based on a theorem follow-
ing from the exact approach, for computing the correspond-
ing critical exponents. For this purpose, we have employed
three different and independent field-theoretic renormaliza-
tion group methods. We have found equal critical exponents

in the three methods and these are furthermore identical to
their Lorentz-invariant counterparts. We have also showed
that the exact approach, which reduces to the non-exact one
in its limited range of applicability, besides being exact, is
capable of furnishing the expressions for the all-loop LV
radiative quantum corrections to the β-function and anoma-
lous dimensions considering just a single concept, that of
the loop number of the corresponding terms of these func-
tions. Furthermore, the present exact approach, when applied
to the referred theory, is the first one in the literature to the
best of our knowledge. Thus it can inspire the exact solu-
tion of problems involving considering the exact effect of
LV mechanisms in many physical phenomena ranging from
high (standard model extension for example) to low energy
physics (corrections to scaling, finite-size scaling, amplitude
ratios, critical exponents in geometries subject to different
boundary conditions, Lifshitz points etc. [29–32].
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Appendix A: Integrals of Callan–Symanzik method

(A.1)

(A.2)

(A.3)

(A.4)

where the integral I [31–33]

I =
∫ 1

0

{
1

1 − x(1 − x)
+ x(1 − x)

[1 − x(1 − x)]2

}
(A.5)

is a residual number and is a consequence of the symmetry
point chosen.
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Appendix B: Integrals of unconventional minimal sub-
traction scheme

(B.6)

(B.7)

(B.8)

(B.9)

where

L(P2 + Kμν P
μPν,m2

B)

=
∫ 1

0
dx ln[x(1 − x)(P2 + Kμν P

μPν) + m2
B], (B.10)

L3(P
2 + Kμν P

μPν,m2
B) =

∫ 1

0
dx(1 − x)

×ln[x(1 − x)(P2 + Kμν P
μPν) + m2

B], (B.11)

ĩ(P2 + Kμν P
μPν,m2

B)

=
∫ 1

0
dx

∫ 1

0
dy ln y

d

dy
((1 − y)

× ln

{
y(1 − y)P2 +

[
1 − y + y

x(1 − x)

]
m2

B

})
.

(B.12)

Appendix C: Integrals of BPHZ method

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)
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(C.23)

(C.24)

(C.25)

(C.26)

where

J (P2 + Kμν P
μPν)

=
∫ 1

0
dx ln

[
x(1 − x)(P2 + Kμν PμPν) + m2

μ2

]
,

(C.27)

J3(P
2 + Kμν P

μPν) =
∫ 1

0

∫ 1

0
dx dy (1 − y)

× ln

{
y(1 − y)(P2 + Kμν PμPν)

μ2

+
[

1 − y + y

x(1 − x)

]
m2

μ2

}
, (C.28)

J4(P
2 + Kμν P

μPν)

= m2

μ2

∫ 1

0
dx

(1 − x)
x(1−x)(P2+Kμν PμPν )

μ2 + m2

μ2

. (C.29)
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