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Abstract In this paper we consider a model which exhibits
explicit Lorentz symmetry breaking due to the presence of
a single background vector vμ coupled to the gauge field.
We investigate such a theory in the vicinity of a perfectly
conducting plate for different configurations of vμ. First we
consider no restrictions on the components of the background
vector and we treat it perturbatively up to second order. Next,
we treat vμ exactly for two special cases: the first one is when
it has only components parallel to the plate, and the second
one when it has a single component perpendicular to the plate.
For all these configurations, the propagator for the gauge field
and the interaction force between the plate and a point-like
electric charge are computed. Surprisingly, it is shown that
the image method is valid in our model and we argue that it
is a non-trivial result. We show there arises a torque on the
mirror with respect to its positioning in the background field
when it interacts with a point-like charge. It is a new effect
with no counterpart in theories with Lorentz symmetry in the
presence of a perfect mirror.

1 Introduction

In the last decades the searches for Lorentz violations induced
by Planck scale physics became an active field of theoreti-
cal and experimental research, since it offers the hope of an
observational window into quantum gravity. In order to facil-
itate the searches for Lorentz violation at lower energy scales,
Kostelecký et al. developed the Standard Model Extension
(SME) [1,2], which is a very systematic approach for the
introduction of Lorentz violation in the Standard Model
(SM). The SME incorporates in the SM structure all the
Lorentz- and CPT-violating terms which respect renormaliz-
ability and gauge invariance. In this context, the pure photon
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sector has been modified by CPT-odd [3] and CPT-even [4–7]
Lorentz-violating terms.

Possible effects of Lorentz symmetry violation have been
investigated in many contexts, for example, the Casimir effect
[8–11], QED [12–16], hydrogen atom [17,18], noncommu-
tative field theories [19–21], space-times with a non-trivial
topology [22], gravity theory [23–28], electromagnetic wave
propagation [29–32], studies of photon field quantization
[33–35], effects on the classical electrodynamics [36–41],
among others.

There is a gap in the literature regarding studies of Lorentz-
violating theories in the presence of boundary conditions.
That is a remarkable subject in any abelian gauge theory,
since the experimental apparatus commonly used to test elec-
tromagnetic phenomena is, usually, surrounded by conduc-
tors. In addition, it is also important to search for physical
phenomena in theories with Lorentz symmetry breaking with
no counterpart in Maxwell electrodynamics, and the presence
of conductors can create suitable scenarios for this kind of
search.

The main purpose of this paper is to start a discussion of
this subject, not yet considered in the literature, to the best of
the authors’ knowledge. To this end, we perform an investi-
gation regarding some consequences of a Lorentz-violating
electrodynamics due to the presence of a perfectly conduct-
ing plate. We consider the model studied in Refs. [17,36],
where the Lorentz symmetry is broken in the CPT-even sec-
tor of the SME, due to the presence of a single background
vector vμ. We consider different configurations for the back-
ground vector. First we consider the background vector with
no restrictions and we treat it perturbatively up to second
order. Next, we treat vμ exactly for two special cases: the
first one is when it has only components parallel to the plate,
and the second one when it has a single component perpen-
dicular to the plate. For all these configurations of the back-
ground vector, we obtain the propagator for the gauge field
and the interaction force between the plate and a point-like
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electric charge. We also compare the interaction forces with
the ones obtained in the free theory (theory without the plate)
and we verify that the image method is valid in all the situ-
ations considered in this paper, which is a surprising result
because Lorentz violations, usually, impose different effects
in comparison with theories with Lorentz symmetry.

We show that a new effect arises when a point-like charge
is placed in the vicinity of the mirror. Namely, the mirror
undergoes a torque with respect to its positioning relative to
the background vector. This torque tends to make the mirror
perpendicular to the background vector. It is an effect due
to the Lorentz symmetry breaking, with no counterpart in
Maxwell electrodynamics, and it is not simply a small cor-
rection to an existing effect. Maybe this could be a way to
measure some signals of possible Lorentz symmetry break-
ing in setups with mirrors. This fact also suggests that the
subject of mirrors in gauge theories with Lorentz symmetry
breaking must be well investigated.

The paper is structured as follows: in Sect. 2 we compute
the propagator for the gauge field in the presence of a per-
fectly conducting plate considering different configurations
for the background vector. We employ methods of Quantum
Field Theory with boundary conditions in order to obtain the
functional generator for the gauge sector. In Sect. 3, from the
propagators obtained previously, we calculate the interacting
forces between the conducting plate and a point-like electric
charge and show that there arises a torque on the mirror. We
also compare the results with the free theory in order to verify
the validity of the image method. Finally, Sect. 4 is dedicated
to our final remarks and conclusions.

Throughout the paper we shall deal with a model in a 3
+ 1 dimensional space-time and use Minkowski coordinates
with the diagonal metric with signature (+,−,−,−).

2 The propagator in the presence of a conducting plate

In this paper we consider a model for the electromagnetic
field which exhibits explicit Lorentz symmetry breaking due
to the presence of a single background vector; such a model
is described by the following Lagrangian density [17,36]:

L = −1

4
FμνF

μν − 1

2γ

(
∂μA

μ
)2

−1

2
vμvνFμλF

νλ − JμAμ, (1)

where Aμ is the electromagnetic field, Fμν = ∂μAν −∂ν Aμ

is the field strength, Jμ is the external source, γ is a gauge
parameter and vμ is the background vector, responsible
for introducing the Lorentz violation in our model. As the
Lorentz symmetry breaking must be very tiny, the back-
ground vector vμ, which is a dimensionless quantity, must
be small (its components are much smaller than 1).

The model (1) is a particular case of the Lagrangian
proposed in [39], where we have a tensorial parameter
controlling the Lorentz symmetry breaking with a term
∼ k(F)μναβFαβFμν . That is, when k(F)μναβ ∼ ημαvνvβ −
ηναvμvβ + ηνβvμvα − ημβvνvα the model discussed in [39]
is the same as proposed by (1).

The propagator which describes the model (1) for γ = 1
is given by [36]

Dμν(x, y) = −
∫

d4 p

(2π)4

e−i p·(x−y)

[p2 + (p · v)2]
[
ημν − vμvν

1 + v2

− v2

1 + v2

(p · v)2

p2

pμ pν

p2

+ 1

1 + v2

(p · v)

p2 (pμvν + vμ pν)

]
. (2)

Now we have to see how the electromagnetic field is mod-
ified in the presence of a conducting surface in the model
(1). To answer this question, we start by noticing that, in the
model (1), the coupling between the gauge field and matter
is the same as the one found in Maxwell electrodynamics, so
the Lorentz forces acting on a charged particle are the same

in both theories, namely,
dpp
dt = qE + qu × B, where pp

is the spatial component of the particle momentum, q is the
particle charge, E and B are the electric and magnetic fields,
respectively, and u stands for the particle velocity.

The presence of a conducting surface in the Maxwell elec-
trodynamics imposes a boundary condition on the gauge
field in such a way that the Lorentz force on the surface
must vanish. This condition is attained by taking the com-
ponents of the dual field strength normal to the surface as
being equal to zero. Therefore, if nμ is the four-vector nor-
mal to the conducting surface, we must have nμF∗

μν = 0 on
it, where F∗

μν = (1/2)εμναβFαβ , and εμναβ stands for the
Levi-Civita tensor with ε0123 = 1. Since the Lorentz force in
the Lorentz-violating model (1) is the same as the one found
in the Maxwell electrodynamics, the condition above must
be satisfied by both theories.

Now, we consider the presence of a single perfectly con-
ducting plate. We perform the calculations in a reference
frame where the plate is steady. We take a coordinate sys-
tem where the plate is perpendicular to the x3 axis, located
on the plane x3 = a, so that nμ = η

μ
3 = (0, 0, 0, 1) is

the Minkowski vector perpendicular to the plate. Thus, the
boundary condition on the gauge field Aμ becomes

F∗
3ν (x) |x3=a = ε

αβ
3ν ∂αAβ (x) |x3=a = 0, (3)

where the sub-index means that the boundary conditions are
taken on the plane x3 = a.

We must obtain the functional generator for the gauge
field submitted to the boundary conditions (3). For this task
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we will use the functional formalism employed in [42]. We
start by writing the functional generator as follows:

ZC [J ] =
∫

DAC ei
∫

d4x L, (4)

where the sub-index C indicates that we are integrating out
all the field configurations which satisfy the conditions (3).
This restriction is attained by introducing, in the free-field
functional, a functional delta that is not equal to zero only
where the restrictions (3) are satisfied, as follows:

ZC [J ] =
∫

DA δ
[
F∗

3ν (x) |x3=a

]
ei

∫
d4x L, (5)

where we integrate over all field configurations.
Now we use the functional Fourier representation for the

delta functional,

δ
[
F∗

3ν (x) |x3=a

]

=
∫

DB exp

[
i
∫

d4x δ
(
x3 − a

)
Bν

(
x‖

)
F∗ ν

3 (x)

]
,

(6)

where Bν

(
x‖

)
is an auxiliary vector field and xμ

‖ =
(
x0, x1, x2

)
means that we have only the coordinates par-

allel to the plate.
The auxiliary field Bν

(
x‖

)
exhibits the gauge symmetry

B(k)
ν

(
x‖

) → B(k)
ν

(
x‖

) + ∂ν‖�(k) (
x‖

)
. (7)

In order to eliminate the infinite gauge volume from the
integral (6), we use the Faddeev–Popov method and the
’t Hooft trick. Carrying out some manipulations, we write
the functional generator as follows (for more details see
Appendix A):

ZC [J ] = N Z [J ] Z̄ [J ] , (8)

where N is a constant which does not depend on the gauge
fields and Z [J ] is the usual functional generator for the gauge
field Aμ (x)

Z [J ] =
∫

DA ei
∫

d4x L

= Z [0] exp

[
− i

2

∫
d4x d4y Jμ (x) Dμν (x, y) Jν (y)

]
.

(9)

Here Z̄ [J ] is a contribution due to the vector field Bν

(
x‖

)
,

Z̄ [J ] =
∫

DB exp

[
i
∫

d4x δ
(
x3 − a

)
I ν (x) Bν

(
x‖

)]

× exp

[
− i

2

∫
d4x d4y δ

(
x3 − a

)
δ
(
y3

−a) Bν

(
x‖

)
W νπ (x, y) Bπ

(
y‖

) ]
, (10)

where we defined

I ν (x) = −
∫

d4y ε
νγα

3

(
∂

∂xγ
Dαμ (x, y)

)
Jμ (y) ,

(11)

W νπ (x, y) = ε ναλ
3 ε

πγρ
3

∂2Dλρ (x, y)

∂xα∂yγ
+ 1

ξ

∂2Q (x, y)

∂xν‖∂yπ‖
,

(12)

and ξ is a gauge fixing term related to the symmetry (7) of the
auxiliary field and Q (x, y) is a scalar function which must
be chosen conveniently.

2.1 The propagator in lowest order

Since vμ is very tiny, let us treat it as a small quantity and
perform the calculations perturbatively up to second order in
vμ, which is the lowest order in the background vector.

Expanding the propagator (2) up to second order in vμ,
we obtain

Dμν(x, y) = −
∫

d4 p

(2π)4

e−i p·(x−y)

p2

[(
1 − (p · v)2

p2

)
ημν

−vμvν

+ (p · v)

p2 (pμvν + vμ pν)

]
. (13)

Notice that the integral (10) is Gaussian, so it can be cal-
culated exactly. For this task it is convenient to make the
following choice:

Q(x, y)=−
∫

d4 p

(2π)4 e−i p·(x−y)

[
(1 − v2‖)

p2 − (p · v)2

p4

]

,

(14)

and work in the gauge where ξ = 1 (for the auxiliary field in
the symmetry (7)), with v

μ
‖ = (

v0, v1, v2
)

standing for the
background vector parallel to the plate. Using the propagator
(13), substituting (11), (12), (14) into (10), using the fact that

∫
dp3

2π

ei p
3(x3−y3)

p2 = − i

2�
ei�|x3−y3| ,

∫
dp3

2π

ei p
3(x3−y3)

p4 = − 1

4p2‖

(
i

�
+ | x3 − y3 |

)
ei�|x3−y3|,

(15)

where p3 stands for the momentum perpendicular to the

plate, and � =
√
p2‖ , with pμ

‖ = (
p0, p1, p2

)
standing for

the momentum parallel to the plate, defining the parallel met-
ric

η
μν
‖ = ημν − η

μ
3η

ν3, (16)
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and performing some usual manipulations, we are able to
rewrite Eq. (10) in the following form:

Z̄ [J ]

= Z̄ [0] exp

[
− i

2

∫
d4x d4y Jμ (x) D̄μν (x, y) J ν (y)

]
,

(17)

where we defined the function

D̄μν (x, y)

= − i

2

∫
d3 p‖
(2π)3 e−i p‖·(x‖−y‖)

{(

η
μν
‖ − pμ

‖ pν‖
p2‖

)

×
[

1 + 1

2

(p‖ · v‖)2

p2‖

[
i�

(
| x3 − a |

+ | y3 − a |
)

− 1
]

+ i(p‖ · v‖)v3(x3 − y3) + 1

2
(v3)2

×
[
i�

(
| x3 − a | + | y3 − a |

)
+ 1

]]

+ (p‖ · v‖)2

p2‖

pμ
‖ pν‖
p2‖

− (p‖ · v‖)
p2‖

×
[
(vν‖ − vν)pμ

‖ + (v
μ
‖ − vμ)pν‖

]

+v
μ
‖ (vν‖ − vν) − vμvν‖

}
ei�(|x3−a|+|y3−a|)

�
, (18)

with v3 being component of the background vector perpen-
dicular to the plate.

Substituting (17) and (9) in (8), the functional generator
in the presence of a perfectly conducting plate reads

ZC [J ] = ZC [0] exp

[
− i

2

∫
d4x d4y Jμ (x)

(
Dμν (x, y)

+D̄μν (x, y)
)
J ν (y)

]
. (19)

From Eq. (19), we can identify the propagator of the theory
in the presence of a conducting plate up to second order in
vμ, as follows:

Dμν
C = Dμν (x, y) + D̄μν (x, y) . (20)

We can check the results by taking the field generated by
an external source,

Aβ(x) =
∫

d4y Dβρ
C (x, y)Jρ(y). (21)

Substituting Eq. (21) into (3) we rewrite the conducting
plate condition in the following form:
∫

d4y

[

ε3ναβ

∂Dβρ
C (x, y)

∂xα

]

Jρ(y)|x3=a = 0

⇒ ε3ναβ

∂Dβρ
C (x, y)

∂xα

∣∣∣
x3=a

= 0. (22)

Substituting Eq. (20) into (22) and then, using Eqs. (13),
(15) and (18), after some simple manipulations, we can verify
that the conducting plate condition (22) is satisfied.

At this point some comments are in order. The propagator
(20) is composed of the sum of the free propagator (13) with
the correction (18), which accounts for the presence of the
conducting plate. In the limit when vμ → 0 the propagator
(18) reduces to the same one as that found with the Maxwell
electrodynamics in the presence of a conducting plate.

2.2 Exact propagators

There are two special cases for which we carry out the cal-
culations without the necessity of treating the background
vector perturbatively: the first one is when vμ has only com-
ponents parallel to the plate, namely vμ = v

μ
‖ , and the second

one when it has a single component which is perpendicular
to the plate, namely vμ = v3. In this subsection we obtain
the exact propagator in the presence of a conducting plate in
both cases mentioned above.

2.2.1 The first case, vμ = v
μ
‖

For the case where the component of the background vector
perpendicular to the plate is equal to zero, it is convenient to
perform the following choice:

Q (x, y) = − 1

1 + v2‖
I (x, y) |v3=0, (23)

where

I (x, y) =
∫

d4 p

(2π)4

e−i p·(x−y)

[
p2 + (p · v)2] , (24)

and the sub-index in (23) indicates that I (x, y) must be eval-
uated only in the coordinates parallel to the plate. Using the
propagator (2), substituting Eqs. (11), (12), (23) into (10),
using the fact that (see Appendix B)

I (x, y) |v3=0 = − i

2

∫
d3 p‖
(2π)3 e−i p‖·(x‖−y‖) 1

L
ei L|x3−y3|,

(25)

where L =
√
p2‖ + (

p‖ · v‖
)2, and carrying out some manip-

ulations, we can identify the correction to the propagator

D̄μν (x, y) = − i

2

∫
d3 p‖
(2π)3 e−i p‖·(x‖−y‖)

×
(

η
μν
‖ − pμ

‖ pν‖
L2 − v

μ
‖ vν‖

1 + v2‖

)
ei L

(|x3−a|+|y3−a|)

L
. (26)

We point out that expanding Eq. (26) up to second order
in vμ and comparing with Eq. (18) for v3 = 0, we can easily
verify that these propagators become equal to each other.
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2.2.2 The second case, vμ = v3

For the case where the Lorentz-violation parameter vμ has
only the component perpendicular to the plate, or equiva-
lently v

μ
‖ = 0, we make the choice

Q (x, y) = −I (x, y) |vμ
‖ =0 , (27)

where the sub-index in (23) indicates that I (x, y) must be
evaluated taking the coordinates of the background vector
parallel to the plate equal to zero. Following the same steps
employed previously and using the fact that (see Appendix
B)

I (x, y) |vμ
‖ =0= − i

2

1
√

1 − (
v3

)2

∫
d3 p‖
(2π)3 e−i p‖·(x‖−y‖)

×e
i�

(√
1−(v3)

2
)−1

|x3−y3|

�
, (28)

we obtain exactly the correction to the propagator

D̄μν (x, y)

= − i

2

1
√

1 − (
v3

)2

∫
d3 p‖
(2π)3 e−i p‖·(x‖−y‖)

×
(

η
μν
‖ − pμ

‖ pν‖
p2‖

)
e
i�

(√
1−(v3)

2
)−1(|x3−a|+|y3−a|)

�
.

(29)

In the same way, expanding Eq. (29) up to second order in
vμ and comparing with Eq. (18) for v

μ
‖ = 0, we verify that

these propagators become equal to each other.

3 Charge–plate interaction

In this section we consider the interaction between a point-
like charge and the conducting plate. We can show that the
interaction energy between a conducting surface and an exter-
nal source J ν (x) is given by [36,37,43–48]

E = 1

2T

∫
d4x d4y Jμ (x) D̄μν (x, y) J ν (y) , (30)

where T is the time variable and the limit T → ∞ is implicit.
With no loss of generality and for simplicity, we choose

a point-like charge placed at position perpendicular to the
plate, namely b = (0, 0, b). The external source is given by

Jμ (x) = qημ0δ3 (x − b) , (31)

where the parameter q is a coupling constant between the
field and the delta function, which can be seen as the electric
charge.

3.1 Results in lowest order

Substituting Eqs. (31) and (18) in (30), carrying out the inte-
grals in d3x, d3y, dx0, dp0, dy0 and then performing some
manipulations, we obtain

EPC ∼= − q2

16π2

∫
d2p‖

e
−2R

√
p2‖

√
p2‖

[
1 − (v0)2

+1

2
(1 + 2R

√
p2‖)

(p‖ · v‖)2

p2‖

+1

2
(v3)2(1 − 2R

√
p2‖)

]
, (32)

where R =| a − b | is the distance between the plate and the
charge. The sub-index PC means that we have the interaction
energy between the conducting plate and the charge.

Equation (32) can be simplified by using polar coordinates
and integrating out the angular variables,

EPC ∼= − q2

16π

[
2

(
1 − (v0)2 + 1

2
(v3)2 + 1

4
v2‖

)

×
∫ ∞

0
dp e−2Rp + R[v2‖ − 2(v3)2]

×
∫ ∞

0
dp p e−2Rp

]
. (33)

Using the fact that
∫ ∞

0
dp e−2Rp = 1

2R
,

∫ ∞

0
dp p e−2Rp = 1

4R2 , (34)

the interaction energy between the plate and the charge, up
to second order in vμ, reads

EPC = − q2

16πR

[
1 − (v0)2 + 1

2
v2‖

]
. (35)

Equation (35) is a perturbative result and gives the inter-
action energy between a point-like charge and a conducting
plate for the model (1). The first term on the right hand side is
the plate–charge interaction obtained in Maxwell electrody-
namics, where the image method is valid; it does not involve
the Lorentz-violation parameter vμ. The second and third
terms are corrections due to the Lorentz symmetry breaking.

Let us make a cautious analysis of Eq. (35).
First we focus only on the dependence of the energy (35)

with respect to the distance R. In this case, Eq. (35) exhibits
the same behavior found in the usual Coulomb interaction
between the point-like charge and its image charge. The cor-
responding interaction force between the point-like charge
and the plate is given by

FPC = −∂EPC

∂R
= − q2

16πR2

[
1 − (v0)2 + 1

2
v2‖

]
. (36)
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Equation (36) is the usual Coulombian interaction between

an effective charge q
√

1 − (v0)2 + (1/2)v2‖ and its image,

placed at a distance 2R apart. Thus, the Lorentz violation
generates a correction to the charge q in this specific setup.

In Eq. (18) of Ref. [36] we have the interaction force
between two point-like charges for the model (1) up to second
order in vμ. From this expression, we can obtain the interac-
tion force for the special case where we have two opposite
charges, σ1 = q and σ2 = −q, placed at a distance 2R apart.
In this specific situation, this energy turns out to be equivalent
to Eq. (36).

It is interesting to notice that the image method is valid
for the Lorentz-violation theory (1) up to second order in vμ

for the conducting plate condition (3).
Now we consider the dependence of the energy (35) as a

function of the positioning of the mirror with respect to the
background vector. Designating by α the angle between the
normal to the mirror and the background vector v (defined
for 0 ≤ α ≤ π ), we have v2‖ = v2 cos2(α) and the energy
(35) reads

EPC = − q2

16πR

[
1 − (v0)2 + 1

2
v2 cos2(α)

]
. (37)

In addition to the force between the charge and the mirror,
the energy (37) also leads to a torque acting on the mirror, as
follows:

τPC = −∂EPC

∂α
= − q2v2

32πR
sin(2α). (38)

This torque depends just on the angle between the normal
to the plate and the background vector v, as well as on the
distance between the charge and the plate, R, but it does not
depend on the position of the charge. This is a new effect with
no counterpart in Maxwell electrodynamics in the presence
of a conducting surface.

Maybe this torque could be a way to measure possible
effects of Lorentz symmetry breaking in setups with mirrors.
Although it is a small effect, in order v2, there is no other
similar effect found in the standard theories with Lorentz
symmetry. So the torque (38) is not simply a very small cor-
rection to a given effect, but it is an authentic effect by itself
which arises in a Lorentz-violating scenario.

In Fig. 1 we have a plot for the torque (38) as a function of
α, which exhibits three zeros, corresponding to the extreme
values for the energy (37). For α = 0, and π , we have a
minimum for the energy, so these are points of stable equi-
librium. For α = π/2, the energy has a maximum, so it is an
unstable equilibrium point. In the region 0 ≤ α ≤ π/2 the
torque is negative, which means that it is a restoring torque
which tends to diminish the angle α between the normal to
the plate and the background vector. For α = π/4, this torque
has a minimum. Thus, in the region 0 ≤ α ≤ π/2 the mirror

Fig. 1 Plot for τPC , with q2v2/(32πR) = 1, as a function of α. The
torque vanishes for α = 0, π/2, π and two extrema values for α =
π/4, 3π/4

tends to be normal to the background vector. In the region
π/2 ≤ α ≤ π the torque is always positive, which means
that the angle between the normal to the mirror and the back-
ground vector tends to increase till its maximum value π ,
where the mirror is, again, normal to the background vector.
In this region, the maximum value for the torque occurs for
α = 3π/4.

For α = π/2, where we have an unstable equilibrium, the
mirror is parallel to the background vector. Any small change
in this configuration shall make the mirror rotate to one of its
stable equilibrium points α = 0, π .

3.2 Exact results

3.2.1 The first case, vμ = v
μ
‖

Substituting Eqs. (31) and (26) in (30), following the same
steps as previously, we obtain

EPC = − q2

16π2

1 − v2‖
1 + v2‖

∫
d2p‖

e
−2R

√
p2‖−(p‖·v‖)2

√
p2‖ − (p‖ · v‖)2

. (39)

In Eq. (39), performing a change in the integration vari-
ables similar to the one we have made in Appendix B, and
then using polar coordinates, we obtain

EPC = − q2

16πR

√
1 − v2‖

1 + v2‖
. (40)

Equation (40) gives the exact expression for the interaction
energy between a point-like charge and a conducting plate
for the special case where the background vector has only
the parallel components to the plate.

The interaction force reads

FPC = −∂EPC

∂R
= − q2

16πR2

√
1 − v2‖

1 + v2‖
, (41)
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which is the usual result found in Maxwell electrodynamics

with an effective charge q

√
(1−v2‖)1/2

1+v2‖
.

Expanding Eq. (41) up to second order in vμ we obtain
the result (36). This occurs because Eq. (36) does not depend
on the component of the background vector perpendicular to
the plate v3.

In Eq. (17) of Ref. [36] we have the exact interaction
force between two point-like charges. For the special situa-
tion where v3 = 0, σ1 = q, σ2 = −q and | a |= 2R, this
result turns out to be equivalent to Eq. (41) above. Thus, for
this special case (v3 = 0), the image method is valid for the
conducting plate condition (3).

3.2.2 The second case, vμ = v3

Substituting Eqs. (31) and (29) in (30) and performing some
simple manipulations, we verify that the interaction force
between a point-like charge and a conducting plate for the
special case where the background vector has only the per-
pendicular component to the plate is equivalent to the result
obtained in Maxwell electrodynamics, whose corresponding
force is given by

FPC = − q2

16πR2 . (42)

Therefore, we have no effect due to the Lorentz symmetry
breaking in this case.

In the same way, taking v
μ
‖ = 0, σ1 = q, σ2 = −q and

| a |= 2R in Eq. (17) of Ref. [36], we obtain the result
(42). Thus, the image method is valid for the case where
vμ = (

0, 0, 0, v3
)
.

It is important to mention that the validity of the image
method in a Lorentz-violating scenario, as shown in this sub-
section, is a highly non-trivial result, which suggests that the
presence of conductors in Lorentz-violating scenarios is a
subject which deserves more investigation.

This very non-intuitive result can be more evinced if we
consider a similar situation in a gauge theory which exhibits
Lorentz symmetry; the Podolsky–Lee–Wick electrodynam-
ics [49–53]. In this case, it is shown that the image method
is not valid [43,54], in spite of the gauge and Lorentz sym-
metries.

4 Conclusions and perspectives

In this paper some consequences of the Lorentz-violation the-
ory (1) due to the presence of a single perfectly conducting
plate were studied. We argued what the role is of a perfectly
conducting plate in a Lorentz-violation theory and obtained
the functional generator for the gauge sector. We consid-
ered different configurations of the background vector. First
we took into account all the components of the background

vector and we treated it perturbatively up to second order.
Next, we treated the theory exactly for two special cases: the
first one, when the background vector has only components
parallel to the plate and the second one, when it has a sin-
gle component which is perpendicular to the plate. For all
these configurations of the background vector, we obtained
the propagator for the gauge field and the interaction force
between the plate and a point-like electric charge. We showed
that the image method is valid in the considered theory, which
exhibits Lorentz symmetry violation, which is a non-trivial
result.

We also showed that a new effect arises from the obtained
results, a torque acting on the mirror according to its posi-
tioning with respect to the background vector. This torque
tends to make the mirror normal to the background vector
and, maybe, it could be a way to measure possible effects of
Lorentz symmetry breaking in systems with the presence of
mirrors; it is not simply a very small correction to a given
effect, but it is an authentic effect by itself which arises in a
scenario with Lorentz symmetry breaking.

An interesting extension of this work would be the inves-
tigation of the interaction force between two parallel plates
(Casimir effect) [55] in the model considered in this paper,
which would be a much more complicated problem.

We hope that this paper could be a start in the discussion
regarding the role of conductors in scenarios with Lorentz
symmetry breaking.
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Appendix A: functional generator

In this appendix we obtain Eq. (8). First we must eliminate
the infinite gauge volume from the integral (6) due to the
gauge invariance (7). In order to accomplish this task we use
the Faddeev–Popov trick, fixing the covariant gauge,

F
[
Bν

(
x‖

)] = ∂ν‖ Bν

(
x‖

) = f
(
x‖

)
, (A1)

where f
(
x‖

)
is an arbitrary function. Since the Faddeev–

Popov determinant is independent of the field Bk
ν

(
x‖

)
, it does

not contribute to the integral. Thus, we can write Eq. (6) as
follows:
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δ
[
F∗

3ν (x) |x3=a

] ∼
∫

DB δ
[
F[Bν(x‖)] − f

(
x‖

)]

× exp

[
i
∫

d4x δ
(
x3 − a

)
Bν

(
x‖

)
F∗ ν

3 (x)

]
. (A2)

Now we integrate by parts the argument of the exponential
and use the ’t Hooft trick, multiplying both sides of Eq. (A2)
by a convergent functional of f

(
x‖

)
and integrating over

f
(
x‖

)
,

δ
[
F∗

3ν (x) |x3=a

] = N
∫

D f
∫

DBδ
[
F[Bν(x‖)] − f

(
x‖

)]

× exp

[
−i

∫
d4x δ

(
x3 − a

)
Aβ (x) ε

ναβ
3 ∂αBν

(
x‖

)]

× exp

[
− i

2ξ

∫
d4x d4y δ

(
x3

−a) f
(
x‖

)
Q (x, y) f

(
y‖

)
δ
(
y3 − a

) ]
, (A3)

where Q (x, y) is an arbitrary function, N is a constant, and
ξ is an arbitrary gauge constant.

Performing the functional integral in f and two integra-
tions by parts in Eq. (A3), we obtain

δ
[
F∗

3ν (x) |x3=a

]

= N
∫

DB exp

[
− i

∫
d4x δ

(
x3 − a

)

×Aβ (x) ε
ναβ

3 ∂αBν

(
x‖

)
]

× exp

[
− i

2ξ

∫
d4x d4y δ

(
x3 − a

)

×Bμ

(
x‖

) ∂2Q (x, y)

∂xμ‖∂yν‖
δ
(
y3 − a

)
Bν

(
x‖

) ]
. (A4)

Substituting Eq. (A4) in (5) we have

ZC [J ]

= N
∫

DADB ei
∫

d4x L exp

[
−i

∫
d4x δ

(
x3 − a

)

×Aβ (x) ε
ναβ

3 ∂αBν

(
x‖

) ]

× exp

[
− i

2ξ

∫
d4x d4y δ

(
x3 − a

)

×Bμ

(
x‖

) ∂2Q (x, y)

∂xμ‖∂yν‖
δ
(
y3 − a

)
Bν

(
x‖

)]
. (A5)

In the first exponential we have only the Aμ field, and in
the third one only the presence of Bμ. The second exponential
contains a coupling between A and B. In order to decouple
the fields A and B we perform the translation

Aβ (x) → Aβ (x)

+
∫

d4yDβ
α (x, y) δ

(
y3 − a

)
ε

νγα
3 ∂γ Bν (y) , (A6)

which allows us to write Eq. (A5) as follows:

ZC [J ] = N Z [J ] Z̄ [J ] , (A7)

where Z [J ] is given by Eq. (9) and Z̄ [J ] by Eq. (10).

Appendix B: Integral

In this appendix we compute the following integral:

I (x, y) =
∫

d4 p

(2π)4

e−i p·(x−y)

[
p2 + (p · v)2] . (B1)

In order to put I (x, y) in an appropriate form, we have to
carry out a change of the integration variables. We split the
four-vector momentum pμ into two parts, one parallel, pμ

p ,
and the other normal, pμ

n , to the Lorentz-violation parameter
vμ, namely

pμ = pμ
n + pμ

p , pμ
p =

(v · p
v2

)
vμ, pμ

n

= pμ −
(v · p

v2

)
vμ, (B2)

where pn · v = 0 and (p · v)2 = p2
p v2. Now we define the

four-vector qμ

qμ = pμ
n + pμ

p

√
1 + v2

= pμ +
(v · p

v2

)
(
√

1 + v2 − 1)vμ . (B3)

With definitions (B2) and (B3), we have

pμ
p = (v · q)

v2

vμ

√
1 + v2

, pμ
n = qμ − (v · q)

v2 vμ

⇒ pμ = qμ + (v · q)

v2

(
1√

1 + v2
− 1

)
vμ, (B4)

q2 = p2 + (p · v)2. (B5)

With the aid of the definition

bμ = (
xμ − yμ

) +
(

1 − √
1 + v2

√
1 + v2

)(
v · (x − y)

v2

)
vμ

(B6)

and Eq. (B4), we have

p · (x − y) = b · q. (B7)

The Jacobian of the transformation from pμ to qμ can be
calculated from Eq. (B4),

det

[
∂pμ

∂qν

]
= − 1√

1 + v2
. (B8)
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Substituting Eqs. (B5), (B7), (B8) in (B1), we obtain

I (x, y) = − 1√
1 + v2

∫
d4q

(2π)4

e−ib·q

q2

= − 1√
1 + v2

∫
d3q‖
(2π)3 e−ib‖·q‖

∫
dq3

2π

eiq
3b3

q2 .

(B9)

The last integral in the expression above is given by

∫
dq3

2π

eiq
3b3

q2 = − i

2L
ei L|b3|, (B10)

where L =
√
q2‖ or, from Eq. (B3), L =

√
p2‖ + (

p‖ · v‖
)2

and b3 is found by taking μ = 3 in (B6), as follows:

b3 =
(
x3 − y3

)
+

(
1 − √

1 + v2
√

1 + v2

) (
v · (x − y)

v2

)
v3.

(B11)

The second integral in Eq. (B9) is given by
∫

d3q‖
(2π)3 e−ib‖·q‖ = −

√
1 + v2‖

∫
d3 p‖
(2π)3 e−i p‖·(x‖−y‖),

(B12)

where we used Eqs. (B7) and (B8).
Collecting terms, we write

I (x, y) = − i

2

√
1 + v2‖
1 + v2

∫
d3 p‖
(2π)3 e−i p‖·(x‖−y‖) 1

L
ei L|b3|.

(B13)

Finally, taking v3 = 0 in Eq. (B13) we obtain Eq. (25).
In the same way, taking v

μ
‖ = 0 in Eq. (B13), we obtain Eq.

(28).
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