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Abstract Within the standard approach of effective field
theory of weak interactions for ΔB = 1 transitions, we
look for possibly unexpected subtle New Physics effects,
here dubbed “flavourful Easter eggs”. We perform a Bayesian
global fit using the publicly available HEPfit package, tak-
ing into account state-of-the-art experimental information
concerning these processes, including the suggestive mea-
surements from LHCb of RK and RK ∗ , the latter available
only very recently. We parametrise New Physics contribu-
tions to b → s transitions in terms of shifts of Wilson coeffi-
cients of the electromagnetic dipole and semileptonic oper-
ators, assuming CP-conserving effects, but allowing in gen-
eral for violation of lepton flavour universality. We show how
optimistic/conservative hadronic estimates can impact quan-
titatively the size of New Physics extracted from the fit. With
a conservative approach to hadronic uncertainties we find
nonzero New Physics contributions to Wilson coefficients at
the level of ∼ 3σ , depending on the model chosen. Further-
more, given the interplay between hadronic contributions and
New Physics effects in the leptonic vector current, a scenario
with nonstandard leptonic axial currents is comparable to the
more widely advocated one with New Physics in the leptonic
vector current.
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1 Introduction

Easter eggs nowadays also refer to inside jokes and/or secret
messages usually hidden e.g. in computer gaming and hi-tech
software. In this work, we take advantage of this terminology
to motivate the search for New Physics Beyond the Standard
Model in the radiative and in the (semi)leptonic channels of
rare B meson decays.

In the decades that have followed the original formulation
of flavour mixing [1], the flavour structure of the SM has been
experimentally tested and well established. The tremendous
progress of the experimental facilities has probed the flavour
of the SM to an exquisite level of precision [2], along with
the substantial effort on the part of the theoretical community
to go well beyond leading order computations [3]. From this
perspective of “precision tests”, radiative and (semi)leptonic
ΔB = 1 processes, related at the partonic level to b →
sγ, s�� transitions, occupy a special place in probing the SM
and its possible extensions in terms of New Physics (NP)
models [4,5].

Firstly, these rare B meson decays belong to the class of
flavour-changing neutral current (FCNC) processes, which
are well known to be sensitive probes of Physics Beyond
the Standard Model (BSM): in fact – within the SM – the
flavour structure of the theory allows FCNC to arise only
at loop level, as a consequence of the GIM mechanism [6].
This allows for significant room for heavy new degrees of
freedom to sizeably contribute to these rare processes.

Secondly, from the experimental side, the study of rare
B meson decays offers us some of the most precise mea-
surements amongst the |ΔF | = 1 processes. For instance,
the measurement of the inclusive branching fraction of B →
Xsγ is currently performed with a relative uncertainty of
a few percent [7–9], while the study of an exclusive mode
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such as B → K ∗�� allows for a detailed analysis of the angu-
lar distribution of the four final state particles, yielding rich
experimental information in terms of angular functions of the
dilepton invariant mass, with full kinematic coverage of the
latter [10] and – starting from Ref. [11] – also with available
experimental correlations among the angular observables.

In B Physics, the recent years have been characterised by
the emergence of a striking pattern of anomalies in multiple
independent studies of some of these rare b → s transi-
tions [12]. Of particular importance, the measurement of the
P ′

5 angular observable [13–16] stands out from all the other
ones related to the angular distribution of B → K ∗μμ ; first
realised by the LHCb collaboration [17,18] and later on also
by the Belle collaboration [19], the experimental analysis of
P ′

5 in the large recoil region of the decay points to a deviation
of about 3σ with respect to the SM prediction presented in
Ref. [20]. The latter, however, suffers from possible hadronic
uncertainties which are sometimes even hard to guesstimate
[21–24], and this observation has been at the origin of a quite
vivid debate in the recent literature about the size of (possi-
bly) known and (yet) unknown QCD power corrections to the
amplitude of this process in the infinite mass limit [25–28].
To corroborate even more the cumbersome picture of the “P ′

5
anomaly”, two new independent measurements of this angu-
lar observable (among others) have been recently released
by the ATLAS [29] and CMS [30] collaborations, showing,
respectively, an appreciable increase and reduction of the
tension between data and the SM prediction in Ref. [20], as
reported by these experiments.

For the sake of completeness, one should also remark that
other smaller tensions have been around, concerning the mea-
surement of differential branching fractions of B → Kμμ

[31,32] and Bs → φμμ [33]. It is worth noting that, while for
the latter mode an explanation in terms of hadronic physics
may easily be conceivable, the theoretical computation of the
former seems to be under control [34].

Quite surprisingly, a possible smoking gun for NP in rare
B meson decays already came out in 2014, when the LHCb
collaboration presented for the first time the measurement of
the ratio of branching fractions [35]:

RK[1,6] ≡ Br(B+ → K+μ+μ−)

Br(B+ → K+e+e−)

= 0.745+0.090
−0.074 ± 0.036, (1)

where the subscript refers to the dilepton mass (denoted here-
after q2) range going from 1 to 6 GeV2. This experimental
value shows a deviation of about 2.6σ with respect to the stan-
dard theoretical prediction. Indeed, the SM value of RK in
the bin provided by the LHCb collaboration is expected to be
equal to unity beyond the percent level of accuracy [36,37].
In fact, contrary to observables such as P ′

5, it is important to
stress that RK may be, in general, regarded as insensitive to

QCD effects [36]. From the model building point of view,
RK can certainly be considered as quite informative, hinting
at a UV completion of the SM where lepton flavour univer-
sality violation (LFUV) takes place in the flavour-violating
couplings of new heavy degrees of freedom, e.g. leptoquarks
and/or Z ′ gauge bosons [38–67]. Most importantly, the tan-
talising correlation of this signature of LFUV with the P ′

5
anomaly, suggested by several global analyses [4,68–72] has
triggered different proposals of measurements of such effect
in the angular analysis of the K ∗�� channel [73,74]. Inter-
estingly enough, an analysis from the Belle collaboration
aiming at separating the leptonic flavours in B → K ∗�� [75]
shows a consistent ∼ 2.6σ deviation from the SM predic-
tion reported in Ref. [20] in the dimuon leptonic final state
only. This is compatible with previous experimental findings
related only to the mode with muonic final states.

Sitting on similar theoretical grounds to RK , another
intriguing ratio of B decay branching fractions can be mea-
sured in the K ∗ channel:

RK ∗[0.045,1.1] ≡ Br(B → K ∗μ+μ−)

Br(B → K ∗e+e−)

= 0.660+0.110
−0.070 ± 0.024, (2)

RK ∗[1.1,6] = 0.685+0.113
−0.069 ± 0.047. (3)

These measurements for the low-q2 bin and the central-q2

one have just been presented by the LHCb collaboration [76],
pointing again to a discrepancy of about 2σ with respect
to the expected SM prediction – again equal to 1 to a very
good accuracy for the central-q2 bin and close to 0.9 for the
low-q2 one – and yielding more than a 3σ deviation when
naively combined with the measurement of RK . Note that
with higher degree of braveness (or, depending on the taste
of the reader, of unconsciousness), the disagreement of the
SM with precision B physics may reach the exciting level of
� 5σ when one naively combines together the single signifi-
cances coming from RK ,K ∗ ratios, P ′

5 measurements and the
minor deviations observed in the other exclusive branching
fractions.

Given the excitement of these days for all the above hints
of a possible NP discovery in rare B meson decays, in this
work we take our first steps towards a positive attitude in the
search of a definite BSM pattern aimed at addressing these
B anomalies. We perform our study in a model-independent
fashion, within the framework of effective field theories for
weak interactions [77–79]. In particular, in Sect. 2 we define
the setup characterising the whole global analysis, presenting
six different benchmark scenarios for NP, together with a dis-
cussion as regards two different approaches in the estimate of
the hadronic uncertainties that can affect quantitatively our
final results. In Sect. 3, we list all the experimental measure-
ments we use to construct the likelihood in our fit, and we
discuss in detail our most important findings. The latter are
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effectively depicted in Figs. 1, 2, 3, 4, 5, 6, and collected in
Tables 2, 3, 4, 5 in Appendix A. In Sect. 4 we summarise our
conclusions.

2 Theoretical framework of the analysis

In this section we present the effective field theory framework
at the basis of this work and introduce the benchmark scenar-
ios we focus on for our study of NP effects in rare B decays.
We then illustrate the two distinct broad classes of assump-
tions that characterise our global analysis: the case where we
take an optimistic attitude towards the estimate of hadronic
uncertainty plaguing the amplitude of both B → K ∗��/γ
and Bs → φ��/γ channels, and a second one where we aim
at providing a more conservative approach. All the results in
Sect. 3.2 will be classified under these two different setups.

2.1 New Physics benchmarks for ΔB = 1

Integrating out the heavy degrees of freedom, the resulting
effective Hamiltonian of weak interactions for b → sγ, s��
transitions involves the following set of dimension six oper-
ators within the SM [80]:

Qp
1 = (s̄LγμT

a pL)( p̄Lγ μT abL),

Qp
2 = (s̄Lγμ pL)( p̄Lγ μbL),

P3 = (s̄LγμbL)
∑

q(q̄γ μq),

P4 = (s̄LγμT
abL)

∑
q(q̄γ μT aq),

P5 = (s̄Lγμ1γμ2γμ3bL)
∑

q(q̄γ μ1γ μ2γ μ3q),

P6 = (s̄Lγμ1γμ2γμ3T
abL)

∑
q(q̄γ μ1γ μ2γ μ3T aq), (4)

Q8g = gs
16π2 mbs̄LσμνG

μνbR,

Q7γ = e

16π2 mbs̄LσμνF
μνbR ,

Q9V = αe

4π
(s̄LγμbL)(�̄γ μ�),

Q10A = αe

4π
(s̄LγμbL)(�̄γ μγ 5�),

where � = e, μ, p = u, c and we have neglected the chirally
suppressed SM dipoles. The ΔB = 1 effective Hamiltonian
can be cast in full generality in the form of a combination of
two distinct parts:

HΔB=1
eff = Hhad

eff + Hsl+γ
eff , (5)

where, within the SM, the hadronic term involves the first
seven operators in Eq. (5):

Hhad
eff = 4GF√

2

[ ∑

p=u,c

λp

(
C1Q

p
1 + C2Q

p
2

)

− λt

( 6∑

i=3

Ci Pi + C8Q8g

)]
, (6)

while the second piece includes the electromagnetic dipole
and semileptonic operators:

Hsl+γ
eff = −4GF√

2
λt (C7Q7γ + C9Q9V + C10Q10A), (7)

with λi corresponding to the CKM combination VibV
∗
is for

i = u, c, t and where Ci=1,...,10 are the Wilson coefficients
(WCs) encoding the short-distance physics of the theory. All
the SM WCs in this work are evolved from the mass scale of
the W boson down to μb = 4.8 GeV, using state-of-the-art
perturbative QCD and QED calculations for the matching
conditions [81–83] and the anomalous dimension matrices
[83–86] relevant for the processes considered in this analysis.

While a general UV completion of the SM may enter in
the effective couplings present in both pieces of Eq. (5), gen-
eral NP effects in b → sγ, s�� can be phenomenologically
parametrised as shifts of the Wilson coefficients of the elec-
tromagnetic and semileptonic operators at the typical scale
of the processes, μb. In particular, the most general basis for
NP effects in radiative and (semi)leptonic B decays can be
enlarged by the presence of scalar, pseudo-scalar and tenso-
rial semileptonic operators, together with right-handed quark
currents as the analogue of Q7γ , Q9V , Q10A SM operators
[21,87]. In this work, motivated by previous interesting find-
ings concerning LFUV [69–71] and the measurement of RK

and RK ∗ , we focus on the contributions of NP appearing as
shifts of the SM WCs related to the electromagnetic dipole
and semileptonic operators with left-handed quark currents
only. A comprehensive analysis with different chiral struc-
tures as well as a more general effective theory framework
will be presented elsewhere [88]. Furthermore, we restrict
ourselves to CP-conserving effects, taking NP WCs to be
real.

For NP in semileptonic operators we discriminate between
couplings to muon and electron fields both in the axial and
vector leptonic currents. We characterise our phenomenolog-
ical analysis for NP through six different benchmark scenar-
ios, studying the impact of combinations of the following NP
WCs:

(I) CNP
9,μ and CNP

9,e varied in the range [−4, 4], i.e. adding
to the SM two NP parameters;

(II) CNP
9,μ and CNP

10,μ varied in the range [−4, 4], adding to
the SM again two NP parameters;

(III) CNP
9,μ and CNP

9,e varied in the range [−4, 4], and CNP
7

varied in the range [−0.5, 0.5], i.e. a scenario with
three NP parameters;

123



688 Page 4 of 16 Eur. Phys. J. C (2017) 77 :688

(IV) CNP
10,μ and CNP

10,e varied in the range [−4, 4], and CNP
7

varied in the range [−0.5, 0.5], i.e. adding again to the
SM three NP parameters;

(V) CNP
9,μ = −CNP

10,μ andCNP
9,e = −CNP

10,e varied in the range

[−4, 4], and CNP
7 varied in the range [−0.5, 0.5], i.e. a

NP scenario again described by three different param-
eters.

(VI) CNP
7 , CNP

9,μ, CNP
9,e , CNP

10,μ and CNP
10,e varied simultane-

ously in the respective ranges defined above, i.e. a NP
scenario described by five different parameters.

We remark that while benchmarks (I) and (II) have been
already studied in the literature, none of the other cases has
been analysed so far. In particular, NP scenarios (III) and (IV)
allow us to study, for the first time, the interesting impact of a
NP radiative dipole operator in combination with vector-like
and axial-like LFUV effects generated by NP. Most inter-
estingly, scenario (V) allows us to explore the correlation
CNP

9 = −CNP
10 , possibly hinting at a SU (2)L preserving BSM

theory. As an additional interesting case to explore, we even-
tually generalise to simultaneously nonvanishing CNP

7 , CNP
9,μ,

CNP
9,e , CNP

10,μ and CNP
10,e in case (VI).

We wish to stress that all of the six benchmarks defined
above will be studied for the first time under two different
approaches in the estimate of QCD hadronic power correc-
tions, as presented in next section.

2.2 Treatment of the hadronic uncertainties

In our previous work [24,27,89], we went into considerable
detail on the treatment of hadronic contributions in the angu-
lar analysis of B → K ∗��. Our approach there was to study
how large these contributions can be assuming that the LHCb
data on branching fractions and angular distributions of these
decay modes could be described within the SM. For that pur-
pose we considered four scenarios for the hadronic contribu-
tions, with increasing theoretical input from the phenomeno-
logical analysis presented in Ref. [90]. The underlying func-
tional form that we used for the hadronic contribution was
given by

hλ(q
2) = ε∗

μ(λ)

m2
B

∫
d4xeiqx 〈K̄ ∗|T { jμem(x)Hhad

eff (0)}|B̄〉

= h(0)
λ + q2

1 GeV2 h
(1)
λ + q4

1 GeV4 h
(2)
λ , (8)

where we fitted for the complex, helicity dependent, coeffi-
cients h(i)

λ , (i = 0, 1, 2) and (λ = 0,+,−) using the data
and the phenomenological model in [90]. Since h0 enters
the decay amplitude with an additional factor of

√
q2 with

respect to h±, we drop h(2)
0 in our analysis.

In this work we proceed to study the possible existence
of NP contributions in semileptonic and radiative b → s

decays which requires a re-evaluation of the hadronic uncer-
tainties. For the sake of simplicity, to address hadronic con-
tributions we use the same functional parameterisation as
given in Eq. (8). However, we limit ourselves to only two
hadronic models. The first, corresponding to the most widely
used assumption, relies completely on the phenomenologi-
cal model in [90] below q2 < 4m2

c . The second is a more
conservative approach, where we impose the latter only in
the large recoil region at q2 ≤ 1 GeV2 while letting the data
drive the hadronic contributions in the higher invariant mass
region. We will refer to the first approach as phenomeno-
logical model driven (PMD) and the second as phenomeno-
logically and data driven (PDD). In our fit we vary the hiλ
parameters over generous ranges. More detailed discussion
of these can be found in [24,27].

In the present analysis we also need to address modes that
were not considered in our previous work, namely B → K��,
Bs → φ�� and Bs → φγ . The decay B → K�� has been
studied in detail in [34], where the authors show that the
hadronic uncertainties are smaller than in B → K ∗��. A
comparison of the LCSR estimate of the soft gluon contribu-
tion and the QCDF estimate of the hard gluon contribution
reveals that the soft gluon exchange is subdominant with
respect to QCDF hard gluon exchange. Therefore, although
in principle the same concerns on the soft gluon contribution
we raised for B → K ∗ apply in this case, in practice the over-
all effect of soft gluons can be reasonably neglected. In our
computation we therefore only include hard gluon exchange
computed using the QCDF formalism in Ref. [91].

The long distance contributions for Bs → φ�� and
Bs → φγ follow a similar theoretical derivation to those
for B → K ∗�� and B → K ∗γ , respectively, barring the fact
that the spectator quark in the former is different from that
in the latter. No theoretical estimates of power corrections
to the infinite mass limit are available for the Bs → φ��/γ

decays and one has to rely on the ones for the B → K ∗��/γ
decays to get a handle on the long distance contributions.
The spectator quark effects can come through the hard spec-
tator scattering involving matrix elements of Q2, P6 and
Q8g computable in QCD factorisation [91] which we include
in our computation. However, we do not include the sub-
leading, and numerically small, QCDF power corrections
to spectator scattering involving Q8g [92–94] and contri-
butions to weak spectator scattering involving Q8g beyond
QCDF computed in LCSR [95–97]. The effect of the dif-
ference in all these spectator contributions is expected to
be low firstly because they are numerically small and, sec-
ondly, because the effect is proportional to the small flavour
SU (3) breaking. Different approaches in relating the long
distance contributions in the B → K ∗��/γ channels to the
ones in the B → φ��/γ channels have been used in the lit-
erature [69,70,98], which vary in the degree of correlation
between the two. While Ref. [70] uses uncorrelated hadronic
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uncertainties, Refs. [69,98] have left the two contributions
highly correlated noting that the spectator contribution is
expected to be numerically small. We take an approach sim-
ilar to the latter considering the insensitivity of the current
data to such effects and use the same value of power cor-
rections in B → K ∗ and Bs → φ amplitudes, even though
this choice pertains to a quite oversimplifying optimistic atti-
tude. We leave a more detailed analysis of this assumption by
relaxing the correlation between the hadronic contributions
in the two modes to a future work [88].

3 Bayesian fit of the dipole and semileptonic operators

3.1 Experimental information considered

In this section we discuss the experimental measurements we
use in our fit. Note that for the exclusive modes we make use
of measurements in the large recoil region only. Our choice
harbours on the fact that the QCD long distance effects in the
low recoil region are substantially different from the large
recoil regime [99–102] and would require a dedicated analy-
sis. For the fit in this study we consider the following exper-
imental information:

– B → K ∗��
For the B → K ∗μμ channel we use the LHCb measure-
ments of CP-averaged angular observables extracted by
means of the unbinned maximum likelihood fit, along
with the provided correlation matrix [18]. Moreover,
we employ the recent results for CP-averaged angular
observables from ATLAS [29] and the ones measured
by CMS [30,103].1 Finally, we use the CP-averaged
optimised angular observables recently measured by
Belle [75]2. Regarding the differential branching frac-
tions, we use the recently updated measurements from
LHCb [104] and the ones from CMS [103]. For the
B → K ∗ee channel we consider the LHCb results
from [105] and the Belle results from [75]. RK ∗ observ-
able is considered according to the recently presented
measurements by LHCb [76] in both the low-q2 and the
central-q2 bins; see also Eq. (3).

1 For all CMS data we use the 7, 8 TeV combined results, which
can be found in https://twiki.cern.ch/twiki/bin/view/CMSPublic/
PhysicsResultsBPH13010 .
2 Belle measures the B0 → K ∗0μμ and B+ → K ∗+μμ channels
together, without providing the mixture ratio. On the theoretical side,
we can therefore use these measurements under the approximation that
QCD power corrections differentiating the amplitudes of the two chan-
nels are small. We have numerically checked that the impact of known
QCD power corrections [91] is indeed at the percent level in the observ-
ables of interest.

Our theoretical predictions are computed in the helicity
basis, whose relevant expressions can be found in [21];
the same framework is employed to study B → K ∗γ ,
Bs → φμμ, Bs → φγ and B → K�� channels. For
the latter, we use the full set of form factors extrapolated
from the lattice results, along with the provided correla-
tion matrix [106]; for the remaining channels, we use the
full set of form factors estimated combining LCSR and
lattice results, along with the correlation matrices [107].
For the factorisable and non-factorisable QCD power cor-
rections, we refer to Sect. 2.2.

– B → K ∗γ
We include in our analysis the HFAG average for the
branching fractions from [2].

– Bs → φμμ

We consider the LHCb CP-averaged angular observables
and differential branching fractions measurements, along
with the provided correlation matrix [33].

– Bs → φγ

We use the LHCb measurement of the branching fraction
from [108].

– B → K��

We employ the LHCb measurement of B → Kee differ-
ential branching fraction and RK from [35].

– B → Xsγ

We use the HFAG average from [2]. We perform our
theoretical computation at NNLO in αs and NLO in αem ,
following Ref. [109] and the references therein.

– Bs → μμ

We consider the latest measurement from LHCb [110]
and do not consider the measurement from CMS [111],
which has the same central value of LHCb, but larger
uncertainty. Moreover, we chose not to use results for
Bd → μμ, since there are only upper bounds for this
decay channel so far [110,111]. Our theoretical pre-
dictions include NLO EW corrections, as well as an
NNLO QCD correction, following the detailed expres-
sions obtained in Ref. [112].

3.2 Results of the global fit

In this section we present the main results of our work.
We perform this study using HEPfit [113] relying on its
Markov Chain Monte Carlo-based Bayesian analysis frame-
work implemented with BAT [114]. We fit to the data using
16 real free parameters that characterise the non-factorisable
power corrections, as was done in [24], along with the nec-
essary set of NP WCs. We assign to the hadronic parameters
and the NP WCs flatly distributed priors in the relevant ranges
mentioned in Sect. 2. The remaining parameters used in the
fit are listed in Table 1. To better compare different scenarios,
we use the Information Criterion [115,116], defined as
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Table 1 Parameters used in the analysis. The Gegenbauer parameters
and λB have flat priors with half width reported in the third column. The
remaining ones have Gaussian priors. Meson masses, lepton masses, s-
quark mass and electroweak couplings are fixed at the PDG value [117]

Parameters Mean value Uncertainty References

αs(MZ ) 0.1181 0.0009 [117,118]

μW (GeV) 80.385 −
mt (GeV) 173.34 0.76 [119]

mc(mc) (GeV) 1.28 0.02 [120]

mb(mb) (GeV) 4.17 0.05 [121]

fBs (MeV) 226 5 [122]

fBs / fBd 1.204 0.016 [122]

ΔΓs/Γs 0.129 0.009 [2]

λ 0.2250 0.0006 [123,124]

A 0.829 0.012 [123,124]

ρ̄ 0.132 0.018 [123,124]

η̄ 0.348 0.012 [123,124]

fK ∗,|| (MeV) 204 7 [107]

fK ∗,⊥(1 GeV) (MeV) 159 6 [107]

fφ,|| (MeV) 233 4 [107]

fφ,⊥(1 GeV) (MeV) 191 4 [107]

λB (MeV) 350 150 [125]

a1(K̄ ∗)⊥, || 0.04 0.03 [126]

a2(K̄ ∗)⊥, || 0.05 0.1 [127]

a2(φ)⊥, || 0.23 0.08 [128]

a1(K ) 0.06 0.03 [126]

a2(K ) 0.115 − [129]

IC = −2log L + 4σ 2
log L , (9)

where log L is the average of the log-likelihood and σ 2
log L is

its variance. The second term in Eq. (9) takes into account
the effective number of parameters in the model, allowing for
a meaningful comparison of models with different number
of parameters. Preferred models are expected to give smaller
IC values.

The results for NP WCs for the several cases that we study
can be found in Figs. 1, 2, 3, 4, 5 and 6, where the IC value for
each model is also reported, and in Tables 2 and 3 in Appendix
A. In Tables 4 and 5, we report the results of the fit for observ-
ables of interest. We observe that all cases have comparable
IC values except cases (IV) and (V), which are disfavoured
in the PMD approach while they remain viable in the PDD
one. The main difference between the two approaches is that
angular observables, in particular P ′

5, call for NP in CNP
9,μ in

the PMD approach, while they can be accommodated within
the SM in the PDD one.

Fig. 1 The two NP parameter fit using CNP
9,μ and CNP

9,e . Here and in the
following, the left green panel shows the results for the PMD approach
and the right red panel shows that for the PDD one. In the 1D distri-
butions we show the 16th, 50th and 84th percentile marked with the
dashed lines. In the correlation plots we show the 1, 2 and 3σ con-
tours in decreasing degrees of transparency. The blue square and lines
identify the values of the NP WCs in the SM limit. The numbers at the
bottom left corner of the 2D plots refer to the correlation. We also report
IC values for the two approaches (see Eq. (9)). Preferred models are
expected to give smaller IC values
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Fig. 2 The two NP parameter fit using CNP
9,μ and CNP

10,μ. See caption of
Fig. 1 for the colour coding and further details

Let us discuss the various cases in more detail. It is impor-
tant to stress that the evidence of NP in our fit for cases (I)–(V)
is always larger than 3σ for one of the semileptonic NP WCs
used in the analysis, given the need of a source of LFUV pri-
marily from RK ,K ∗ measurements. In particular, we remark
that in the PMD scenarios of cases (I) and (II) we get evi-
dence for NP at more than 5σ . However, looking at the corre-
sponding PDD scenarios, the NP evidence gets significantly
reduced, roughly between 3σ and 4σ . The reduction in the

Fig. 3 The three NP parameter fit using CNP
7 , CNP

9,μ and CNP
9,e . See cap-

tion of Fig. 1 for the colour coding and further details

significance comes from the larger hadronic uncertainties in
the PDD approach which weaken the constraining power of
the angular observables on the NP WCs.

Concerning case (III), we observe very similar findings to
the ones obtained for case (I), since the effective coupling for
the radiative dipole operator is well constrained, especially
from the inclusive B → Xsγ branching fraction.

Regarding case (IV), in which we vary the three NP param-
eters CNP

7 ,CNP
10,μ and CNP

10,e, the model comparison between
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Fig. 4 The three NP parameter fit using CNP
7 , CNP

10,μ and CNP
10,e. See

caption of Fig. 1 for the colour coding and further details

the PDD and PMD realisation of this NP benchmark is quite
informative: NP effects in the dipole operator and in the axial
semileptonic currents cannot address at the same time RK ,K ∗
ratios and the P ′

5 anomaly in a satisfactory way when we stick
to small non-factorisable QCD power corrections; however,
this is no longer true when we allow for a more conser-
vative estimate of the hadronic uncertainties. In particular,
the tension in the fit coming from the angular analysis of
B → K ∗μμ can now be addressed by large QCD effects as

Fig. 5 The three NP parameter fit usingCNP
7 ,CNP

9,μ,CNP
9,e andCNP

10,μ,e =
−CNP

9,μ,e. See caption of Fig. 1 for the colour coding and further details

those given in Eq. (8), while a CNP
10,e �= 0 at about 3σ can

successfully describe all the observational hints of LFUV
showed by current measurements. This interesting possibil-
ity of axial lepton-flavour violating NP is not found in other
global analyses [69–72], as it proceeds from the conservative
treatment of hadronic uncertainties we proposed in Ref. [24].

Concerning Tables 4 and 5 of Appendix A, we would like
to point out the pattern displayed by the transverse ratios
RT
K ∗ and RT

φ : cases (I)–(III) predict these values to be ∼ 1
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Fig. 6 The five NP parameter fit using CNP
7 , CNP

9,μ, CNP
9,e , CNP

10,μ and

CNP
10,e. See caption of Fig. 1 for the colour coding and further details

with a small error, while the remaining cases give different
predictions with the central value ranging between ∼ 0.7
and ∼ 0.8. Therefore, obtaining experimental information on
transverse ratios may help in discerning between the different
NP scenarios.

We then show results for case (V), in which we vary CNP
7 ,

CNP
9,μ, CNP

9,e and correlate the semileptonic vector and axial

currents according to CNP
9,μ = −CNP

10,μ and CNP
9,e = −CNP

10,e.
In analogy with case (IV), only within the PDD approach we

find for this NP benchmark a fairly good description of data,
with CNP

9,μ = −CNP
10,μ compatible with zero at ∼ 2σ . Again,

we are presented with the case where deviations in angular
observables are addressed by large QCD power corrections,
while LFUV is driven by semielectronic operators. Looking
back at Tables 4 and 5, we note that, for this case, as well as
for case (IV) and (VI), both transverse and longitudinal muon
over electron ratios in the central-q2 bin, namely RT

K ,K ∗,φ
and RL

K ,K ∗,φ , are characterised by similar central values.
We close our presentation with an analysis of case (VI)

in which we float simultaneously CNP
7 , CNP

9,μ, CNP
9,e , CNP

10,μ,

and CNP
10,e. As can be seen from Fig. 6, current measurements

are informative enough to constrain, at the same time, all
the NP WCs both in the PMD and PDD approaches. In par-
ticular, within the latter case, a nontrivial interplay among
NP effects encoded both in CNP

9,μ and CNP
10,e, together with

the hadronic contributions reported in Table 3, produces the
weakest hint in favour of NP provided by our global anal-
ysis – sitting between 2σ and 3σ level – while allowing
for a very good description of the entire data set, similar
to the other cases. The power corrections we found are larger
than those obtained in Ref. [90], but smaller than those
required by the SM fit of B → K ∗μμ [24]. As discussed
in detail in Refs. [27,89], the size obtained for the power
corrections is compatible with the naive power counting rel-
ative to the leading amplitude. We stress (once again) that a
more optimistic attitude towards the estimate of QCD power
corrections (PMD approach) leads to the a much stronger
claim in favour of NP, at a statistical significance larger
than 5σ .

In Tables 2 and 3 we report mean and standard deviation
for the NP WCs and absolute values of hλ for all the cases
considered in the analysis. It is also relevant to observe that,
once we switch on NP effects throughCNP

9,μ in order to attempt
at simultaneously explaining observables such as RK ,K ∗ and
P ′

5 in the PDD approach we find values for |h(1,2)
λ | compatible

with zero at ∼ 1σ . Conversely, if we set CNP
9,μ = 0 then

a nonvanishing |h(2)
− | is needed to account for the angular

observables, as found in Ref. [24], showing that one cannot
disentangle hadronic uncertainties and NP in B → K ∗μμ at
present.

4 Discussion

In this work, we critically examined several BSM scenar-
ios in order to possibly explain the growing pattern of B
anomalies, recently enriched by the RK ∗ measurement per-
formed by the LHCb collaboration [76]. We carried out our
analysis in an effective field theory framework, describing
the non-factorisable power corrections by means of 16 free
parameters in our fit along the lines of Ref. [24].
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We performed all our fits using two different hadronic
models. The first approach, labelled PMD, relies completely
on the phenomenological model from Ref. [90] and corre-
sponds to the more widely used choice in the literature. The
second one, named PDD, imposes the result of Ref. [90] only
at q2 ≤ 1,3 allowing the data to drive the hadronic contribu-
tions in the higher invariant mass region.

Regarding the NP contributions, we analyse six different
benchmark scenarios, differentiated by distinct choices of
NP WCs employed in the fits. Case (I) allows for CNP

9,μ and

CNP
9,e , while case (II) considers the scenario with CNP

9,μ and

CNP
10,μ; case (III) studies NP effects coming as CNP

7 , CNP
9,μ and

CNP
9,e , and case (IV) is the same as the latter but with CNP

10

instead of CNP
9 ; case (V) studies the possibility described

in the third case with CNP
10,μ = −CNP

9,μ and CNP
10,e = −CNP

9,e
enforced; finally, case (VI) considers the general case with
all the five NP WCs being allowed to float independently.
Our main results are collected in Figs. 1, 2, 3, 4, 5 and 6 and
also reported in Tables 2, 3 and 5.

The comparison of different scenarios using the IC shows
that all the considered cases are on the same footing except for
cases (IV) and (V). These cases are strongly disfavoured in
the PMD approach, as there is noCNP

9,μ in case (IV) to account

for the deviation in P ′
5, whileCNP

9,μ is constrained by its corre-

lation with CNP
10,μ and the measured value of BR(Bs → μμ)

in case (V).
In fact, from our analysis of radiative and (semi)leptonic

B decays we identify two classes of viable NP scenarios:

– The widely studied CNP
9,μ �= 0 scenario: from Figs. 1, 2

and 3, we find a remarkable � 5σ evidence in favour
of CNP

9,μ �= 0 in the PMD approach. It is indeed non-
trivial that a single NP WC can explain all the present
anomalies in b → s transitions [4,68–72]. However, in
the more conservative PDD approach, the significance of
a nonvanishing CNP

9,μ drops to about 3σ , mainly driven by
LFUV.

– An alternative scenario with nonvanishing CNP
10,e, which

emerges in the presence of large hadronic corrections to

3 This choice is motivated in Ref. [24].

the infinite mass limit, namely our PDD approach. To our
knowledge, a NP electronic axial current has not been
studied in the literature, since it does not provide a satis-
factory description of the angular observables within the
commonly used PMD approach. We think that the present
theoretical status of power correction calculations is not
robust enough to discard this interesting NP scenario.

Finally the most general fit we performed, namely case
(VI), confirms in the PDD approach that both scenarios above
are viable, although a slight preference forCNP

9,μ �= 0 is found.
More data are needed to assess what kind of NP scenario (if
the anomalies persist) is realised in Nature.
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Appendix A: Numerical results

In this appendix we present the tables with the most relevant
numerical results obtained from our global analysis. Mean
and standard deviation for the NP WCs and hλ absolute val-
ues are reported in Table 2 for the PMD approach and in
Table 3 for the PDD one.4 In Table 4 we list the results in the
PMD approach obtained for the key observables in the six
NP scenarios. Analogous results for the PDD approach can
be found in Table 5.

4 Percentiles for the NP WCs are reported in Figs. 1, 2, 3, 4, 5 and 6.
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Table 2 Results from the fit for WCs and hadronic contributions in the PMD approach. See Sect. 2.1 for details of the six NP scenarios

Par. (I) (II) (III) (IV) (V) (VI)

CNP
7 − − 0.015 ± 0.014 −0.011 ± 0.013 0.003 ± 0.013 0.015 ± 0.014

CNP
9,μ −1.58 ± 0.28 −1.53 ± 0.25 −1.66 ± 0.29 − −0.54 ± 0.17 −1.64 ± 0.29

CNP
9,e −0.10 ± 0.45 − −0.18 ± 0.46 − 0.09 ± 0.25 −1.6 ± 1.0

CNP
10,μ − 0.03 ± 0.16 − −0.12 ± 0.22 0.54 ± 0.17 0.009 ± 0.200

CNP
10,e − − − −1.22 ± 0.37 −0.09 ± 0.25 −0.91 ± 0.76

|h(0)
0 | · 104 2.1 ± 1.2 2.0 ± 1.2 2.2 ± 1.3 1.8 ± 1.2 1.3 ± 1.0 2.0 ± 1.3

|h(0)
+ | · 104 0.079 ± 0.067 0.079 ± 0.067 0.076 ± 0.065 0.083 ± 0.069 0.086 ± 0.072 0.076 ± 0.064

|h(0)
− | · 104 0.53 ± 0.19 0.54 ± 0.19 0.52 ± 0.19 0.56 ± 0.20 0.60 ± 0.21 0.52 ± 0.19

|h(1)
0 | · 104 0.30 ± 0.23 0.30 ± 0.22 0.30 ± 0.23 0.45 ± 0.26 0.32 ± 0.24 0.28 ± 0.22

|h(1)
+ | · 104 0.22 ± 0.20 0.22 ± 0.19 0.22 ± 0.19 0.21 ± 0.19 0.26 ± 0.22 0.22 ± 0.19

|h(1)
− | · 104 0.23 ± 0.19 0.23 ± 0.19 0.23 ± 0.20 0.30 ± 0.21 0.32 ± 0.22 0.23 ± 0.19

|h(2)
+ | · 104 0.052 ± 0.045 0.053 ± 0.045 0.052 ± 0.044 0.046 ± 0.042 0.064 ± 0.053 0.050 ± 0.044

|h(2)
− | · 104 0.046 ± 0.038 0.046 ± 0.039 0.046 ± 0.039 0.092 ± 0.050 0.070 ± 0.047 0.045 ± 0.038

Table 3 Results from the fit for WCs and hadronic contributions in the PDD approach. See Sect. 2.1 for details of the six NP scenarios

Par. (I) (II) (III) (IV) (V) (VI)

CNP
7 − − 0.013 ± 0.014 0.008 ± 0.014 0.011 ± 0.014 0.014 ± 0.014

CNP
9,μ −1.47 ± 0.63 −1.17 ± 0.46 −1.58 ± 0.64 − −0.43 ± 0.23 −1.43 ± 0.64

CNP
9,e 0.007 ± 0.620 − −0.08 ± 0.63 − 0.21 ± 0.29 −1.2 ± 1.2

CNP
10,μ − 0.26 ± 0.23 − 0.27 ± 0.26 0.43 ± 0.23 0.20 ± 0.25

CNP
10,e − − − −0.86 ± 0.4 −0.21 ± 0.29 −0.60 ± 0.99

|h(0)
0 | · 104 2.6 ± 1.6 2.3 ± 1.4 2.6 ± 1.6 1.7 ± 1.3 1.7 ± 1.3 2.6 ± 1.6

|h(0)
+ | · 104 0.075 ± 0.066 0.081 ± 0.070 0.077 ± 0.067 0.086 ± 0.075 0.087 ± 0.075 0.077 ± 0.067

|h(0)
− | · 104 0.52 ± 0.21 0.55 ± 0.22 0.52 ± 0.21 0.60 ± 0.23 0.59 ± 0.23 0.53 ± 0.21

|h(1)
0 | · 104 0.40 ± 0.32 0.41 ± 0.34 0.39 ± 0.32 0.50 ± 0.36 0.46 ± 0.37 0.40 ± 0.33

|h(1)
+ | · 104 0.40 ± 0.29 0.42 ± 0.30 0.40 ± 0.29 0.39 ± 0.29 0.42 ± 0.30 0.41 ± 0.30

|h(1)
− | · 104 0.47 ± 0.35 0.52 ± 0.38 0.48 ± 0.36 0.82 ± 0.46 0.73 ± 0.43 0.50 ± 0.37

|h(2)
+ | · 104 0.138 ± 0.087 0.160 ± 0.099 0.131 ± 0.086 0.139 ± 0.094 0.160 ± 0.100 0.145 ± 0.095

|h(2)
− | · 104 0.112 ± 0.085 0.126 ± 0.098 0.111 ± 0.083 0.190 ± 0.100 0.170 ± 0.110 0.124 ± 0.094
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