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Abstract This paper deals with the viscous accretion flow
of a modified Chaplygin gas towards a black hole as the cen-
tral gravitating object. A modified Chaplygin gas is a partic-
ular type of dark energy model which mimics of radiation
era to phantom era depending on the different values of its
parameters. We compare the dark energy accretion with the
flow of adiabatic gas. An accretion disc flowing around a
black hole is an example of a transonic flow. To construct the
model, we consider three components of the Navier–Stokes
equation, the equation of continuity and the modified Chap-
lygin gas equation of state. As a transonic flow passes through
the sonic point, the velocity gradient being apparently sin-
gular there, it gives rise to two flow branches: one in-falling,
the accretion and the other outgoing, the wind. We show that
the wind curve is stronger and the wind speed reaches that of
light at a finite distance from the black hole when dark energy
is considered. Besides, if we increase the viscosity, the accre-
tion disc is shortened in radius. These two processes acting
together make the system deviate much from the adiabatic
accretion case. It shows a weakening process for the accre-
tion procedure by the work of the viscous system influencing
both the angular momentum transport and the repulsive force
of the modified Chaplygin gas.

1 Introduction

Accretion means enriching. Astrophysical accretion, either
in a protoplanetary disc or around a massive central engine,
means fall of mass towards a gravitating center. The present
article discusses the flow of diffused material towards a par-
ticular type of compact object, namely a black hole (BH).
Though first a theoretical prediction, BHs are nowadays
almost proved to be present in X-ray binaries, center of galax-
ies, especially in active galactic nucleis (AGNs) or in several
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sources of gravitational waves [1]. However, most of the evi-
dence is indirect, i.e., the critical behaviour of in-falling mat-
ter towards a steep gravitational well brings leads to infor-
mation. Due to the conservation of angular momentum, the
in-falling flow towards a BH forms a disc like structure. In the
disc, the accreting fluid simultaneously obeys ∂

∂r

(
�R2

)
> 0

and ∂�
∂R < 0, where � is the local angular velocity for Keple-

rian motion (i.e., �2R = GM
R2 , which implies � =

(
GM
R3

) 1
2
),

and R is the radial distance from the center. Physically which
means that angular momentum increases and angular veloc-
ity decreases outwards. This gives birth of the outward angu-
lar momentum transport. The outward force due to angular
momentum is of order 1

R3 and the inward gravitational pull is

of order 1
R2 , so when going towards a compact object, there is

a region where gravitational pull is defeated by the outward
force of angular momentum and forms a layer which is called
the CENtrifugal force driven BOundary Layer (CENBOL).
For a Keplerian orbit, the centrifugal force is balanced by the
gravitational force but once the system turns to be a transonic
one, the in-falling matter will be piled up at the CENBOL
and may create shock waves. Shock wave formation from
CENBOL is allowed for a large region of parametric space.
We can shrink the parameter space by adding viscosity. But
viscosity is such a property as to increase the temperature
and again the temperature causes the increment in viscosity.
So understanding viscosity in a direct way creates a loop.

The initial models of accretion with formation of a disc
around BH were due to Prendergust [2], Gorbatsky [3] and
Shakura [4]. The scenario, however, was modified after
Shakura and Sunyaev’s work [5] as they unified all the con-
cepts already discussed and proposed a mechanism of angular
momentum transport. The efficiency of this mechanism can
be parametrised by

αss = vt

cs
+ H2

4πρc2
s
, (1)
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where ρc2
s

2 = εr + 3
2ρ kBT

mp
is thermal energy density of matter,

εr is energy density of the radiation, cs and vt are the speed of
sound inside the fluid and turbulent velocity, respectively. kB,
T , mp, ρ and H are Boltzmann constant, temperature, mass
of proton, density and disk height, respectively. αss became
popularly known as the Shakura–Sunyaev parameter (SSP).
This idea worked quite well in several areas, where the value
of the SSP, αss , lies between 0.1 to 0.4. Yet it was unable
to predict some global changes of disc structure, e.g., irreg-
ularities in the observed Fe, Kα spectrum of active galactic
nuclei. We are to replace the shear velocity −ωrφ by the value
αssρc2

s .
Studies of accretion procedures with SSP changed the

whole way of thinking. A study of viscous accretion phenom-
ena around rotating gravitational objects with hard surfaces,
i.e., mostly around objects like neutron stars and strange
objects, has been made in [6]. Viscosity due to turbulence,
governed by magneto-rotational instability, especially when
the temperature T ≥ 105K , was studied in [7]. One has
shown that the values of vt and αss increase quite rapidly
as the disk becomes thinner and thinner. The same trend of
using αss as the representative of viscosity can be found in
various articles [8–10]. There is even another interesting fact.
There exists a theoretical lower bound of the ratio of the shear
viscosity to entropy density (according to string theory and
gauge/gravity duality), mathematically stating that η

S� μh̄
4πkB

,
where h̄ is the reduced Planck constant and μ ≤ 1. Now, say,
for water this ratio is much higher than the prescribed lower
limit. We find some contributions in the literature where the
author of [11] has tried to reach the lower limit considering
the accretion process towards a BH to be the background. In
this work the shear viscosity part is represented with the help
of αss and it simplified the challenge a lot.

After giving a brief review of the local astrophysical phe-
nomena like accretion we will shift our focus towards the
great changes in cosmological studies from the late-1990s
onward. To justify the late time cosmic acceleration detected
by the Ia supernova observations [12], one is required to
modify either the ‘gravity part’ or the ‘matter/stress energy
part’ of the Einstein field equation. The latter initiated the
idea of modelling dark energy (DE) which is a kind of
exotic fluid, homogeneously filling the universe. This exerts
a negative pressure and violates the strong energy condition
(ρ + 3p > 0) and weak energy condition (ρ + p > 0)
as the universe keeps on expanding. The best fit DE model
ever proposed up to the present is the cosmological constant
� = −1 [13]. Except this, there are different proposed can-
didates of DE. Since 2004, different authors have studied
the properties of DE accretion towards a BH. The first ever
attempt among them was done by [14] where the authors have
made calculations like in Michel’s paper [15] in addition to
the Einstein field equation derived for the FLRW metric and

have shown that the mass of the BH can be reduced by the
accretion of phantom energy. Once the expanding universe
crosses the phantom barrier and the weak energy condition is
violated (ρ + p < 0), their predictions as regards the causes
of such mass reduction occurrences were the accretion of the
particles of phantom scalar field. They have compared this
with the negatively energised particle creation in the Hawk-
ing radiation process. However, they have ignored the back
reactions of phantom matter on the BH metric. If the back-
ground matter density is low, this ignorance does not make
any change. But once the density is comparable to the BH
density M

R3 ∼ M
M3 ∼ 1

M2 , the metric of the BH should be
modified significantly. This matter has been studied by [16]
and one has also shown that the horizon will shrink, but the
singularity never will become naked. Finite and infinite cos-
mic time, whenever it may be, the energy density of a cosmo-
logical BH will turn zero. These articles are quite sensitive
to find the fate of the BH at the future cosmological singu-
larity coined the ‘Big Rip’ [17]. Both of these authors have
predicted that even a long time before the big rip to occur,
the BHs will get evaporated away. Now the cyclic universe
is another scenario where the cosmos fluctuates but the BHs
are to radially increase only. Analysis of [18] indicates that
although through phantom energy accretion BHs do not dis-
appear before the cyclic universal cosmological turn around,
they do not cause problems. A recent study [19] says the pro-
cess of phantom acceleration is not as general as suggested
by [14]; rather the distribution of the scalar field remaining
outside the BH would be an interesting area for investigation.
In the literature we may find many other papers where DE
accretion on a compact object is studied [20–22].

Now we will look at the galactic rotational curve where
the missing mass problem is solved by introducing the idea
of some exotic matter, called dark matter (DM), which is
silently present in the galaxy’s outer layers and responsible
for the higher angular momentum observed there. The DM
density profile at the core areas of the galaxies is critical to
indirect searches but remains poorly constrained. In objects
such as M87, the DM profile may be significantly enhanced
on subspace scales by the central super massive BHs [23].
Currently we can find some papers where the presence of
DM, particularly even close to the core of the milky way, has
been studied [24]. A well-accepted theory of galaxy forma-
tion must account for the large amount of non-DM, which
apparently provides ≥ 80% of the virial mass in clusters like
Coma and which may constitute massive halos around large
galaxies. It has been known for over a decade that tiny gas
rich dwarfs favour central DM cores over cusps [25,26]. Silk
and Bloman [27–29] pointed out that the cos − B satellite
observations of the cosmic flux of γ -rays can place severe
constraints on the density of the DM near the center of the
galaxies. Although the precise form of the constraint depends
upon which kinds of interacting particles are considered (say
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photinos, higgsinos, shentrinos [26] and neutrinos [30–32]
with mass m in the GeV range [33]). It appears that the data
are sensitive to γ -ray signal from a lump of weakly interact-
ing DM with density of order 10−22 gm/cc over a region of
size 100–200 pc from the galactic center. The typical DM
density is in a range of order 10−24 gm/cc. However, the
DM density at the center of the galaxy is expected to be
much enhanced due to the gravitational attraction of the cen-
tral component of the galaxy. The central component having
mass of order 0.7 × 1010 M�, where M� is the mass of the
sun, then the DM density may reach 4 × 10−21 gm/cc.

Several works have been done towards unification of DE
and DM. Based on the modelling of the speed of sound as a
function of the parameter of EoS [34], via superfluid Chap-
lygin gas modelling [35], consideration of the dynamics of a
generalised Born–Infeld theory [36] and many other contri-
butions in the literature may be found where the unification
or interaction of DM and DE is studied. Very particularly a
modified Chaplygin gas (MCG) is found to be the type of
DE representative which efficiently fits when the unification
or interactions is to be achieved. MCG is a DE model which
suits well enough for different data. For different values of
parameters it shows radiation to phantom phenomena. The
EoS is given by [37–39]

p = αρ − β

ρn
(2)

where α, β and n are constants. This is why for DE accre-
tion towards a BH, the MCG is one of the best models to be
considered. Previously, Biswas et al. [40] have studied the
accretion of MCG on BH and found that the wind is dom-
inating rather than the accretion and they have commented
that the BH accretion disc may get fainter by this process
and will ultimately weaken the BH feeding-up process. In
another work [41] one depicted the change in flow density
through accretion and wind branch. This work even pointed
towards the formation of a CENBOL.

Many authors have tried to constrain the MCG parameter
with the various observational data available. We will recall
particularly two among them. The first one [42] used type
Ia supernovae and the BAO dataset to predict the best fit
parameter values. The values are:

Parameter Best fit values for consti-
tution + CMB + BAO

Best fit values for Union2
+ CMB + BAO

α 0.061 ± 0.079 0.110 ± 0.097
n 0.053 ± 0.089 0.089 ± 0.099

However, another article [43] the authors used Union2,
SNIa, OHD, CBF, BAO and CMB data to constrain the MCG
model and the best fit parameter values with 1σ and 2σ con-
fidence level are:

Parameter Best fit values

α 0.00189+0.00583+0.00660
−0.00756−0.00915

n 0.1079+0.3397+0.4678
−0.2539−0.0.2911

In the present work we wish to incorporate the viscosity.
With the MCG EoS, the viscous accretion towards a BH
will be studied. We will roughly take α to be very small
∼ 0.05 and n to be nearly equal to 0.1. Along with this we
will compare the whole system with the adiabatic fluid case
where we will take the EoS to be P = Kρ� , where the value
of � will be in general taken as 1.6.

In the next section we will construct the mathematics of
the model, i.e., the construction of a first order ODE along
with initial values. In the next section, we will solve the sys-
tem numerically and will analyse the case thoroughly. In the
penultimate section, we shall incorporate a variety of astro-
physical data and results derived from them to give some
physical estimates of the parameters used by us. A brief sum-
mary and conclusion will be given in the final section.

2 Mathematical construction of the model

Bondi formulated spherical accretion and wind for a non-
rotating star in the Newtonian approach [44]. Here we assume
a steady and axisymmetric disc. In Ref. [40] the authors
described accretion and wind flow for an inviscid fluid around
a compact object, in a pseudo-Newtonian approach. We here
try to study the accretion and the wind flow with viscous
fluid parametrised by the parameter αss . The general disc out-
flow equations are mainly based on the well-known Navier–
Stokes equation, treating the system as fluid flow;

∂ �V
∂t

+
( �V . ��

) �V = �F − 1

ρ
��p + γ �2 �V , (3)

where �V is the velocity vector, t is the classical time, �� is
the classical divergence operator, p is the pressure of the
fluid, �F is the force vector, ρ is the density of the fluid, γ

is the kinematic viscosity and �2 is the classical Laplacian
operator. General relativistic equations are highly non-linear
and very difficult. To simplify we assume the system is in

steady state, ∂ �V
∂t = 0, but to keep the force factor equivalent

to the general relativistic one we will replace it by a pseudo-
Newtonian force and for the corresponding components we
get the following.

(a) Radial momentum balance equation:

u
du

dx
+ 1

ρ

dp

dx
− λ2

x3 + Fg (x) = 0, (4)
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where all the variables are expressed in dimensionless
units u = ur = v

c , x = r
rg

, rg = GM
c2 , λ= s where

M and c are the mass of the BH and speed of light,
respectively. r , v and λ are radial co-ordinate and radial
velocity and angular momentum of the disc, p and ρ are
the dimensionless isotropic pressure and density;

Fg (x) =
(
x2 − 2 j

√
x + j2

)2

x3{√x (x − 2) + j}2
(5)

is the gravitational force corresponding to the pseudo-
Newtonian potential [45], where j is the dimensionless
specific angular momentum for the rotating BH.

(b) Azimuthal momentum balance equation:

u
dλ

dx
= 1

x�

d

dx

[
x2αs

(
p + ρu2

)
h (x)

]
, (6)

where � is the vertically integrated density given by

� = Icρeh (x) , (7)

when Ic is a constant (related to the equation of state of
the fluid) equal one [40], ρe is the density at the equatorial
plane, h (x) is the half thickness of the disc. Assuming
the vertical equilibrium from the vertical component of
Eq. (3) we get the expression for h(x):

h (x) = cs

√
x

Fg
. (8)

(c) The vertically integrated mass conservation relation, i.e.,
the equation of continuity for disc accretion:

d

dx
(xu�) = 0. (9)

Differentiating Eq. (2) with respect to ρ we have

c2
s = ∂p

∂ρ
= α + βn

ρn+1 . (10)

Thus we get from Eqs. (9) and (10)

1

ρ

dp

dx
= − 2c3

s

(n + 1)
(
c2

s − α
)

dcs

dx

= − 1

n + 1

d

dx

(
c2

s

)
− α

n + 1

d

dx

{
ln

(
c2

s − α
)}

.

(11)

Now integrating Eq. (9) we get the mass conservation equa-
tion

Ṁ = �ρcs
x

3
2

F
1
2

g

u, (12)

where � is a geometrical constant. Replacing the value of ρ

from Eq. (10) in (12) and differentiating the whole term we
get a differential equation for cs,

dcs

dx
=

(
3

2x
− 1

2Fg

dFg

dx
+ 1

u

du

dx

)

×
{

(n + 1) cs
(
c2

s − α
)

(1 − n) c2
s + α (n + 1)

}

, (13)

and from Eqs. (6) and (2) we get

dλ

dx
= xαs

u

[
1

2

(
5

x
− 1

Fg

dFg

dx

){
(n + 1) α − c2

s

n
+ u2

}

+2u
du

dx
+

{(
(n + 1) α − c2

s

n
+ u2

)
1

cs

−
(
c2

s + u2
) (

1

n + 1

2cs

c2
s − α

)}
dcs

dx

]
. (14)

Thus we get all the needed values to replace 1
ρ

dp
dx in Eq. (4);

hence we obtain

du

dx
=

λ2

x3 − Fg (x) +
(

3
x − 1

Fg

dFg
dx

)
c4

s
{(1−n)c2

s +α(n+1)}
u − 2c4

s
u{(1−n)c2

s +α(n+1)}
. (15)

As unlike a neutron star, the BH does not posses any hard
surface (rather there is an event horizon), the flow towards a
BH is necessarily transonic. Far from the BH the accretion
speed must be very low and close to the horizon this should
be equal to the speed of light. So it is clear that somewhere
in between the fluid flow velocity must be equal to the speed
of sound inside it. This point is called the sonic point. We
can observe that the denominator of (15) will be zero at a
particular value of u and cs. Therefore for the sake of the
stability of the disc the numerator also has to be zero. This
point of the disc is called the critical point. Now applying the
L’Hospital rule in Eq. (15) at the critical point (say x = xc)
we get a quadratic equation of du

dx in the form

A

(
du

dx

)2

x=xc

+ B

(
du

dx

)

x=xc

+ C = 0. (16)

Here

A = 1 + 1

c2
sc

− 4 (n + 1)
(
c2

sc − α
)

{
(1 − n) c2

sc + α (n + 1)
}2 ,

B = 4λu

x3
c

+ 2uccsc (1 − n)
{
(1 − n) c2

sc + α (n + 1)
}

− 2uc (n + 1)
(
c2

sc − α
)

{
(1 − n) c2

sc + α (n + 1)
}2

×
(

3

xc
− 1

Fg

(
dFg

dx

)

x=xc

)

+
[(

c2
sc + u2

c

) (
1

n + 1

2csc

c2
sc − α

)
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−
(

3

xc
− 1

Fg

(
dFg

dx

)

x=xc

)

× 4uc

csc
{
(1 − n) c2

sc + α (n + 1)
}

−
(

(n + 1) α − c2
sc

n
+ u2

)
1

csc

]

×
{
uc (n + 1)

(
c2

sc − α
)

2c3
sc

}

,

and C = D + E + F . The values of D, E and F are

D =
[(

c2
sc + u2

c

)(
1

n + 1

2csc

c2
sc − α

)

−
(

3

xc
− 1

Fg

(
dFg

dx

)

x=xc

)

× 4uc

csc
{
(1 − n) c2

sc + α (n + 1)
}

−
(

(n + 1) α − c2
sc

n
+ u2

)
1

csc

]

×
(

3

2xc
− 1

2Fg

(
dFg

dx

)

x=xc

)

×
{

(n + 1) csc
(
c2

sc − α
)

(1 − n) c2
sc + α (n + 1)

}

,

E =
(

3

xc
− 1

Fg

(
dFg

dx

)

x=xc

)
uccsc (1 − n)

{
(1 − n) c2

sc + α (n + 1)
}

+
(

dFg

dx

)

x=xc

+
{

1

F2
g

(
dFg

dx

)2

x=xc

− 1

Fg

(
d2Fg

dx2

)

x=xc

− 3

x2
c

}
u2

c

2
,

F = λαss

x2
c uc

(
1

Fg

(
dFg

dx

)

x=xc

− 5

xc

)

×
{

(n + 1) α − c2
sc

n
+ u2

c

}
.

While we are working with a particular type of EoS
we supply n and α, i.e., by the vanishing denomina-
tor, D (uc, csc, n, α) = 0 will be reduced to an equa-
tion D (uc, csc) = 0, which tells us the relation between
uc and csc; on the other hand by a vanishing numera-
tor, i.e., N (λc, xc, j, csc, n, α) = 0, it will be reduced to
N (λc, xc, csc) = 0 once we provide the information as
regards the accreting fluid and the rotation of the BH. We
will choose where the sonic point will be formed and adjust
the value of angular momentum at the critical point, which
ultimately forms an algebraic equation of csc, N (csc = 0).
Thus we can easily solve csc and hence calculate the value
of uc. These will be used as the initial values to solve (16).

As we proceed towards the BH from the critical point we can
have two solutions due to the quadratic nature of (16). The
same will happen if we recede far from the BH. From these
new four points (13), (14), (15) we can build the whole of the
solution sets. In the next section we will plot the solutions
and analyse them physically.

3 Numerical solutions and their physical interpretations

We will plot the numerically derived solutions in this section.
Figure 1a, b are the plots of log(u) vs. log(x) for adiabatic flow
and MCG flow, respectively. The solid line is for accretion
and the dotted line is showing the behaviour of the wind. The
set of Figs. 1a to 3b is drawn for a nonrotating BH and the
viscosity is increased gradually.

A popular explanation of angular momentum transporta-
tion entails that whenever a particle is falling into a BH
the momentum lost by it is gained by a farthest point par-
ticle, which starts just to rotate, i.e., enters in the disc. We
think every layers’ rotation is a cause of the rotation of just
the adjacent next layer to it. If we go outwards the angular
momentum increases but the angular velocity decreases. This
causes the increment of the radial inward velocity towards
the central engine. When a particle starts up at a distance of
103 Schwarzschild radii, the inward radial velocity is low.
This increases gradually and at some point, close to the cen-
tral gravitating object, the flow velocity meets the speed of
sound inside the fluid, i.e., it reaches the sonic point. Now
how far from the BH the sonic point will be formed is man-
ually chosen for this figure. If we get close to the BH, the
density ρ is high and the speed of sound is also high. This

shows that ρc2
s

2 , i.e., the energy of the accreting fluid should
be high. To set the sonic point close to the BH means we
are giving it a high amount of energy. For if we set the sonic
point far away, the less energy is given to it. After crossing
the sonic point speed, as BH accretion is a transonic process,
the radial inward speed steeply increases and close to the
BH event horizon it is almost equal to the speed of light. In
the accretion branch at the farthest point, where the radial
velocity is almost zero, we can find that the specific angular
momentum is nearly equal to the Keplerian angular momen-
tum there. So once we cross the radial distance and go further
the centrifugal force created will defeat the inward attraction.
We will analyse the wind branch which is less close to the
BH, which is obviously due to the strong gravitational force
there. This strong inward force will not allowed anything to
get out. As we increase our radial distance from the BH, this
wind speed increases and it reaches a local maximum at a
distance xwind

max > xc, the sonic point distance. If x > xwind
max

the graph of the velocity gradually decreases and the rate of
it is low. This shows even far from a BH we can feel the
outward throwing force.
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Fig. 1 a, b are plots of log(u) vs. log(x) for non-viscous accretion disc flow around a non-rotating BH for adiabatic and MCG, respectively.
Accretion and wind curves are depicted by solid and dotted lines, respectively
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Fig. 2 a, b are plots of log(u) vs. log(x) for viscous (αss = 10−4) accretion disc flow around a non-rotating BH for adiabatic and MCG, respectively.
Accretion and wind curves are depicted by solid and dotted lines, respectively

This scenario changed a lot when we change the type of
the EoS and use the equation of MCG. First, for the radial
velocity to get started, the fluid has to come closer to the BH.
DE is something which exerts negative pressure and tries not
to be bound in some predicted volume – it tries to expand. So
to bind it in an astrophysical phenomenon like an accretion
disc, we need to go close to the BH to feel a larger force
of attraction. Once it starts to accrete its inward radial speed
increases and becomes almost equal to the speed of light near
the BH. So the inner region properties of the accretion branch
for DE are more or less matching with that of the adiabatic
flow. The huge difference we can follow in the wind branch.
Wind speed, unlike for the accretion branch, in spite of being
almost constant after a distance, becomes almost equal to
the speed of light at a finite distance. This says the matter is
thrown apart from the BH accretion disc with a speed equal
to light there. This again supports the nature of the DE which
would be exerting negative pressure enhancing the outwards
motion. Up to this point we have rebuilt and enriched the
result found by Ref. [40].

Next we have added viscosity to the system. The param-
eter αss will regulate the value of the viscosity throughout.
First we take the very low αss = 10−4. We have plotted the
viscous accretion cases in the Fig. 2a, b. The first change we
can see in the plot of log(u) vs. log(x) in Fig. 2a where the
fluid is adiabatic and j = 0. We see the accretion disc last up
to several hundreds of Schwarzschild radii only. Why is this
shortening? We can explain this in two ways. Firstly, from
the outward angular momentum transportation idea we can
say that as the momentum is transported layer after layer out-
wards, due to the viscosity some more part of it is transported
than the inviscid one and soon it becomes Keplerian. To revise
the angular momentum more radial velocity is lost and closer
than the inviscid case we find the edge of the disc. Secondly,
the matter which is coming from outwards whenever it tries
to get in the accretion process it is opposed by the opposite
viscous force/ frictional force between two outer layer com-
ing from the viscosity. This incidence forces the accretion
particle to come closer to the region to get the accretion phe-
nomenon started. The accretion of MCG is showing the same
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Fig. 3 a, b are plots of log(u) vs log(x) for viscous (αss = 10−2) accretion disc flow around a non-rotating BH for adiabatic and MCG, respectively.
Accretion and wind curves are depicted by solid and dotted lines respectively
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Fig. 4 a, b are plots of log(u) vs. log(x) for non-viscous accretion disc flow around a rotating BH (with specific angular velocity j = 0.5) for the
adiabatic and MCG cases, respectively. Accretion and wind curves are depicted by solid and dotted lines, respectively

pattern in Fig. 1b. The difference is only that the radius of
the accretion disc is more reduced than the adiabatic one.

We plot log(u) vs. log(x) for αss = 10−2 in Fig. 3a, b. We
see the accretion disc length getting shortened. This happens
only due to the high rate of outward transportation of angular
momentum and after that λ

λk
exceeds unity. This means that

beyond the distance the disc is super-Keplerian. For the wind
branch of the MCG we see as we increase the viscosity the
inner part of the wind branches are able to get close to the
BH. On the other hand, adiabatic flow, as we go far from the
BH, decreases rapidly. But for the MCG case, even if we go
far, we can see a mild amount of accretion continuing.

The next set of curves are drawn for the specific angular
velocity j = 0.5. Figure 4a, b is for the inviscid cases for the
adiabatic and MCG cases, respectively. An increment in rota-
tion of the BH decreases the gravitating inward force. This is
because the pseudo-Newtonian force is a decreasing function
of j . This attracts the particle less. So angular momentum is
transported more vigorously outward and sooner it reaches
the point where λ

λk
becomes unity. This is why we see the

accretion to stop closer than in the non-rotating case. We
plot the αss = 10−4 and 10−2 cases for a BH with rotation
j = 0.5 in Figs. 5a and 6a (adiabatic) and Figs. 5b and 6b
(MCG), respectively. Overall trends follow the trend of the
figures drawn in Figs. 1a to 3b.

We plot Figs. 7a, 8 and 9b for j = 0.9. Keeping the
general trends the same we see that the accretion disc length
is reduced as we increase the rotation parameter j . As a whole
we can conclude that viscosity shortens the physical length
of the accretion disc the same is done by the DE accretion.
again if the rotation parameter of the BH is high the disc
length reduces more.

4 Observational evidence and results from different
simulation models

The estimation of αss in a BH accretion disc was studied in
[46] for the fast time where the mass of the central engine was
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Fig. 5 a, b are plots of log(u) vs. log(x) for viscous (αss = 10−4) accretion disc flow around a rotating BH (with specific angular velocity j = 0.5)
for adiabatic and MCG, respectively. Accretion and wind curves are depicted by solid and dotted lines, respectively
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Fig. 6 a, b are plots of log(u) vs. log(x) for a viscous (αss = 10−2) accretion disc flow around a rotating BH (with specific angular velocity
j = 0.5) for adiabatic and MCG, respectively. Accretion and wind curves are depicted by solid and dotted lines, respectively
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Fig. 7 a, b are plots of log(u) vs. log(x) for non-viscous accretion disc flow around a rotating BH (with specific angular velocity j = 0.9) for
adiabatic and MCG, respectively. Accretion and wind curves are depicted by solid and dotted lines, respectively

taken to be 107M�–109M� and the sub-Eddington accretion
rates such that L

LEDD
= 1–0.01 were considered (Table 1).

The viscosity parameter αss in AGN accretion discs is
required to be greater than 0.001 for most cases but it may
be smaller than 0.1. For different dynamic power spectrum

emitted from different X-ray sources, like ESO 243 − 49
HLX-I , Holmberg I X X − 1, M81 X − 6 and NGC5408
X − 1. We can find the accretion power to be decreased
with time. During 500 days of observations, the signal for
first 112 days was strong, becoming weaker during the latter
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Fig. 8 a, b are plots of log(u) vs. log(x) for viscous (αss = 10−4) accretion disc flow around a rotating BH (with specific angular velocity j = 0.9)
for adiabatic and MCG cases, respectively. Accretion and wind curves are depicted by solid and dotted lines, respectively
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Fig. 9 a, b are plots of log(u) vs. log(x) for viscous (αss = 10−2) accretion disc flow around a rotating BH (with specific angular velocity j = 0.9)
for adiabatic and MCG cases, respectively. Accretion and wind curves are depicted by solid and dotted lines, respectively

Table 1 Model parameter for the Palomar–Green data, with corre-
sponding mass and accretion rate range of 107 < M < 108.5M� and
0.02 < Ṁ < 0.70 (M� yr) [47]

Model L
LEDD

αssmin αssmean αssmax

Disc blackbody 0.01 0.010 0.011 0.012

Disc blackbody 0.1 0.015 0.017 0.018

Disc blackbody 0.25 0.017 0.019 0.021

Disc blackbody 0.5 0.020 0.022 0.025

Disc blackbody 0.75 0.022 0.024 0.027

Disc blackbody 1.0 0.023 0.026 0.028

Modified blackbody 0.01 0.010 0.011 0.012

Modified blackbody 0.1 0.015 0.017 0.018

Modified blackbody 0.25 0.017 0.018 0.020

Modified blackbody 0.5 0.019 0.021 0.023

Modified blackbody 0.75 0.020 0.024 0.024

Modified blackbody 1.0 0.021 0.023 0.026

period. The quasi-periodic signal near 112 days has signif-
icantly decreased after 800 days and evolved into a quasi-

periodicity of 190 days [48]. We can speculate that the latter
period accretion is dominated by DE accretion (Table 2).

To support the viscosity parameter’s value we will take
the choice of αss = 0.02 as a reference value w, moti-
vated by observations of AGNs. Siemiginowska and Czerny
(1989) interpreted the quasar variability as the local thermal
timescale at a radius corresponding to the observed wave-
length in the accretion disk, and they determined the value of
0.1 for a small sample of quasars. The same method, when
applied for larger sample objects (the Palomar–Green quasar
sample) gave the constraints 0.01 < αss < 0.03 for sources
with luminosities 0.01LEDD < L < LEDD [47]. For blazars,
the values in the range 0.104 < αss < 0.337 were formed
from their intra day variability (Xie et al. [49]). Kelly et al.
have given the value of the viscosity parameter αss = 10−3

estimated at a distance of 100Rschw. Kozlowski [50] sam-
pled an accretion disc to be of temperature 20,000K, and the
corresponding viscosity parameter is 0.044 for the BH mass
8.0X108M� and 0.015 for 8.0 X 104M�. Next we will tab-
ulate different values of αss for known micro quasars: GRS
1915 + 165 and IGR 17091 − 324 [51–53].
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Table 2 Determination of αss values based on the known IGR and
GRS mass values [51–53] and mass-αss relation presented in the table.

*Mass-αss factor
(

M
M�

(
αss
0.02

)−1.88
)

, **IGR mass estimation from [51]

and [52]. ***IGR mass estimation from [53]

Source ID M M
M� αss

IGR ν1 6.38 3.95–4.45** 0.0155–0.0165

IGR ρ1A 3.52 3.95–4.45** 0.0213–0.0227

IGR ρ1B 3.198 3.95–4.45** 0.0223–0.0238

IGR ν1 6.38 8.7–15.6*** 0.0235–0.0321

IGR ρ1A 3.52 8.7–15.6*** 0.0323–0.0441

IGR ρ1B 3.198 8.7–15.6*** 0.0330–0.0446

GRS νg 8.31 9.5–10.7 0.0214–0.0228

GRS ρGA 3.87 9.5–10.7 0.0322–0.0343

GRS ρGB 3.77 9.5–10.7 0.0327–0.0348

We can clearly observe from the tables that the values
of the different viscosity parameters we have used are com-
pletely supported by astrophysical data. Thus, we can say
that our model may be valid. Besides we will like to mention
again Ref. [54] where the presence of the dark matter or, more
broadly, exotic matters can be found near the central regions
of a galaxy. Now as the accretion rates are very prominent
there, we can take our results to be a better modelling of dark
energy accretion with a viscous nature towards a black hole.

5 Brief summary and conclusion

This paper deals with MCG accretion on BHs. We have stud-
ied the viscous and non-viscous flows of both adiabatic and
MCG. The central engine has been treated to be both non-
rotating and rotating. We have incorporated the viscosity via
the introduction of SSP. Mainly we have solved the three
components of the Navier–Stokes equation along with the
equation of continuity and the equation of state numerically.
We make the transonic flow continuous throughout the radial
distance traversed from very far region to very close to a BH.
We have taken two branches – accretion and wind, which
will coincide at the sonic point. The accretion branch shows
the radial inward velocity of accreting matter towards the
BH. The wind on the other hand shows the velocity with
which the fluid goes far from the central engine. For adia-
batic flow we see the radial inward velocity increases as we
go towards the BH and the wind decreases towards the BH.
For the MCG case, the wind increases as we go far from
the BH and it becomes equal to the speed of light at a finite
distance. This says MCG throws out material from the accre-
tion disc and weakens that. When we include rotation for the
central engine, i.e., a BH, we see that for adiabatic cases the
behaviour of the viscous accretion flow is the same as the

non-rotating case until some distance, then it suddenly falls.
For MCG accretion with viscosity, while the central BH is
rotating, both accretion and wind flow reaches the maximum
earlier, which means the length of the disc is shortened. So
we can say the specific angular velocity of the central engine
helps MCG to weaken the disc. We have also seen how the
specific angular momentum of the disc flow affects accre-
tion and wind. The behaviour of accretion and wind flow is
on average the same when we increase the specific angular
momentum up to a limit, but for extremely high values the
accretion discs no longer exist for both the adiabatic and the
MCG cases.

The accretion process feeds up the BH and thus the mass
increases. If MCG is throwing the accreting material out of
the disc, it weakens the BH indirectly as we increase the
viscosity, outward angular momentum transport is more effi-
cient along with the negatively pressure creating fluid, MCG.
So viscosity catalyses the effect of the MCG. This supports
previous work with DE accretion showing that in the future
towards the Big-Rip it will weaken the BH so much that the
BH may not exist at that point.
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