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Abstract Quantum behavior of the John Lagrangian from
the Fab Four class of covariant Galileons is studied. We
consider one-loop corrections to the John interaction due to
cubic scalar field interaction. Counter terms are calculated,
one appears because of massless scalar field theory infrared
issues, another one lies in the George class, and the rest of
them can be reduced to the initial Lagrangian up to surface
terms. The role of quantum corrections in the context of cos-
mological applications is discussed.

1 Introduction

Scalar–tensor models of gravity belong to one of the simplest
classes of modified gravity models, dating back to the Brans–
Dicke theory [1]. Such models arise in different contexts and
possess a wide phenomenology. For instance, they appear
in the context of low-energy string models [2], models with
auxiliary dimensions [3], inflation [4] and wormholes [5,6].
Some scalar–tensor models can pass the Solar system tests
because of the screening mechanism [7,8], which makes
them even more attractive from the theoretical point of view.

In recent times a particular class of scalar–tensor mod-
els called Galileons has drawn a lot of attention; see [9] for
a detailed review. This class was first discovered by Horn-
deski [10] who searched for the most general scalar–tensor
model of gravity with second order field equations. Later
it was shown that the Horndeski theory is equivalent to the
theory of the so-called covariant Galileons [11]. Galileons
originate from a low-dimensional reduction of braneworld
models to a flat spacetime [12]. A compactification proce-
dure spawns an additional scalar field with the so-called gen-
eralized Galilean symmetry which protects the differential
order of field equations. Covariant Galileons are the most
simple generalization of the Galileons for a curved space-
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time [13,14]. The generalization is performed by the exten-
sion of the Galileons Lagrangian with curvature-related terms
that cancel out higher derivatives thus preserving the order of
the field equations. This generalization comes with the price
of the generalized Galilean symmetry, but it is possible to
construct models that at least partially preserve the symmetry
[15–17]. Covariant Galileons do not contain ghosts because
of the order of the field equations, but it is possible to con-
struct even more general ghost-free scalar–tensor model of
gravity with higher derivatives [18]. Such models are known
as beyond-Horndeski ones and they can be reduced to the
Galileons by a proper redefinition of the dynamical variables.

In four dimensions the covariant Galileons are generated
by the following Lagrangians:

L2 = G2, (1)

L3 = −G3�φ, (2)

L4 = G4R + G4X

[
(�φ)2 − (∇μ∇νφ)2

]
, (3)

L5 = G5Gμν∇μ∇νφ − 1

6
G5X

[
(�φ)3 − 3�φ(∇μ∇νφ)2

+2(∇μ∇νφ)3
]
, (4)

where G2, G3, G4, and G5 are arbitrary functions of
the Galileon field φ and the standard kinetic term X =
1/2 ∂μφ∂μφ; the subscript X denotes the derivative with
respect to the standard kinetic term; R is the Ricci curvature,
and Gμν is the Einstein tensor.

The covariant Galileons can be reduced to general rel-
ativity (GR) by setting G2 = G3 = G5 = 0 and
G4 = 1/16πG. At the same time, the cosmological constant
should be included in the model as a free parameter [19]
which is going to affect the cosmological properties of the
covariant Galileons. In Ref. [20] it was shown that there
exists a narrow subclass of the covariant Galileons which is
able to screen the cosmological constant completely on the
Friedmann–Lemaitre–Robertson–Walker background. This
class is known as the Fab Four one; it is generated by the
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following Lagrangians:

LJohn = VJ (φ)Gμν∇μφ∇νφ, (5)

LGeorge = VG(φ)R, (6)

LRingo = VR(φ)Ĝ, (7)

LPaul = VP (φ)Pμναβ∇μφ∇αφ∇ν∇βφ, (8)

where Ĝ is the Gauss–Bonnet term, Pμναβ = −1/2 εαβλτ

Rλτσρεσρμν is the double-dual Riemann tensor, and the func-
tions VJ , VG , VP , VR are interaction potentials.

Thus the covariant Galileons provide an opportunity to
extend GR in a way that might explain the smallness of the
cosmological constant. One may take a Lagrangian from the
Fab Four class and introduce some beyond-Fab Four terms.
Such a model is going to screen the cosmological constant
when Fab Four terms are dominant in the Lagrangian, so the
model has room for a matter-dominated phase of the uni-
verse expansion. When beyond-Fab Four terms cannot be
neglected, the model loses the ability to screen the cosmo-
logical constant and the universe enters the late-time acceler-
ation phase. In Ref. [21] the simplest example of such a model
is presented. The model includes the John Lagrangian with
a constant potential VJ , the George Lagrangian with a con-
stant potential VG = M2

Pl and the standard kinetic term for a
scalar field (which belongs to L2 of the covariant Galileons).
Following the aforementioned logic, the model provides a
uniform description of inflation, a matter-dominated phase
of expansion, and late-time acceleration of the universe.

The approach appears to be very fruitful, but it can be bro-
ken down at the quantum level, as was pointed out in the origi-
nal paper [20]. In the realms of a flat spacetime the Galileons
are protected from quantum corrections [22,23]; a similar
situation might appear in the realm of curved spacetime.
Counter terms associated with one-loop covariant Galileon
corrections to the Fab Four interaction might not lie in the
Fab Four class. In such a case quantum corrections might
spawn a number of terms that cannot be neglected and are
unable to screen the cosmological constant, thus ruining the
desirable feature of the Fab Four class. An example of a
similar behavior was recently found in the cubic covari-
ant Galileons [24,25], within the gauge-invariant regulariza-
tion scheme Galileons appears to receive additional higher-
derivative terms in one-loop effective Lagrangian.

In this paper we present a study of a simple model that
contains both Fab Four and covariant Galileons interactions.
We consider the John interaction because of the following.
First, as was pointed out in Ref. [20] the Ringo term is unable
to screen the cosmological constant, it just does not ruin the
screening features of a model. Second, only the John and
Paul terms provide an example of a non-minimal kinetic cou-
pling that might posses some interesting properties, but the
Paul term appears to demonstrate a pathological behavior in
star-like objects [26,27]. Finally, as we pointed out before,

the John Lagrangian provides a satisfactory description of
the evolution of the universe in a similar model [21], which
makes it the most perspective candidate for research. Fol-
lowing Ref. [21], we include the standard kinetic term for
a scalar field in the model. As the additional beyond-Fab
Four interaction that generates loop corrections we consider
a standard φ3 interaction as it is the most simple scalar field
self-interaction.

We consider scalar field cubic self-interaction because of
the following reasons. First, the original model, considered in
[21], contains no scalar field self-interaction, thus any quan-
tum correction to the Fab Four interactions can appear only
because of the virtual graviton exchange. Such corrections
are suppressed by the square of the gravitational coupling
and, despite having theoretical importance, can be neglected
on practical grounds. In such a way, if one wants to consider
the stability of the model with respect to quantum correc-
tions, they need to introduce a scalar field self-interaction.
Second, in the original paper [21] scalar field self-interaction
is neglected because of the cosmological consideration, as it
may violate the screening mechanism. But the model con-
tains no symmetry forbidding scalar field self-interaction.
Therefore, it appears to us, a model expanded with a mini-
mal scalar field self-interaction appears to be more realistic.

This paper is organized as follows. In Sect. 2 we formulate
the task and provide the solution to it. We show that correc-
tions to the John interaction require counter terms that lie
in the Fab Four class up to a surface turn. We discuss our
results in Sect. 3. In the appendices we present the full set
of Feynman rules for the model and a detailed discussion of
infrared divergences of the model.

2 Quantum corrections and renormalization

As we mentioned before, we consider the simplest scalar field
self-interaction φ3 along with the John interaction. We also
include the standard kinetic term for the scalar field following
Ref. [21]. In this way we consider the following set of Fab
Four parameters:

VR = VP = 0 , VJ = β0 + β1φ , VG = 1

16πG
. (9)

The case β1 = 0 corresponds to the simplest situation,
however, we consider β1 �= 0. The cubic scalar field self-
interaction results in the interaction of a graviton with three
scalar particles (the interaction of a graviton with a part of
the matter stress-energy tensor associated with a scalar field
potential); the John interaction with β1 �= 0 also describes
an interaction of a graviton with three scalar particles. Thus,
these interactions interfere with each other and might bring
about new divergences into the model, this is the reason for
taking the case β1 �= 0 into account. So, throughout the paper
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we consider the following action:

S =
∫

d4x
√−g

[
1

16πG
R + 1

2
∂μφ ∂μφ + λ

3!φ
3

+VJ (φ)Gμν ∂μφ∂νφ
]
. (10)

We are working within a low-energy regime and can treat the
action (10) as an effective one. Following the standard lin-
earization procedure within the harmonic gauge (gμνΓ λ

μν =
0) one obtains the following effective (linear) Lagrangian:

L = −1

2
hμνCμναβ�hαβ − 1

2
φ�φ + λ

3!φ
3

+ κ

2

λ

3! φ3h − κ

2
∂μφ ∂νφ Cμναβ(1

+β0� + φβ1�)hαβ, (11)

where hμν is a small metric perturbation, κ2 = 8πG is the
gravitational coupling and Cμναβ is defined as

Cμναβ = ημαηνβ + ημβηνα − ημνηαβ. (12)

For the sake of simplicity we use the following terminology
throughout the paper. We call Gμν∂μφ∂νφ the standard John
interaction, Gμνφ∂μφ∂νφ the cubic John interaction, and φ3

the cubic self-interaction. We present the expressions for the
Feynman rules of the model in Fig. 4 in the appendices.

At the first order of the perturbation theory beyond the
tree level one should consider only three one-loop ampli-
tudes that affect the standard John interaction; the corre-
sponding diagrams are presented in Figs. 1, 2, and 3. We
present the detailed expressions for the amplitudes for Fig. 5
in the appendices, while here we discuss their properties. In
the diagrams, the dotted vertices mark the interactions from
the John class. Amplitudes for Figs. 1 and 2 contain infrared
divergences which are canceled out by soft-particle radia-
tion processes. These divergences are generated by the cubic
self-interaction, they are not related to the John interaction
and can be treated easily. As a matter of fact, these diver-
gences are very similar to infrared divergences in quantum
electrodynamics (we provide a more detailed discussion in
Appendix B). We also would like to underline that there are
two types of interactions mixed in the calculation: the stan-
dard GR interaction and the Fab Four one. We discuss the
corresponding counter terms separately as they play differ-
ent roles in the task.

The amplitude corresponding to Fig. 2 describes a cor-
rection related to the scalar field self-energy and this correc-
tion by no means is related to the Fab Four. This correction
alone can be excluded from the consideration by a proper
(re)definition of the Galileon field asymptotic states. With-
out the John interaction the expression can be renormalized
by the standard kinetic counter term for the scalar field. When
the John interaction is taken into account the expression also
requires the John-like counter term for renormalization. In

Fig. 1 Diagram for the first one-loop amplitude

Fig. 2 Diagram for the second one-loop amplitude

such a way, the first amplitude can be renormalized com-
pletely within the original Lagrangian.

In the amplitude corresponding to Fig. 1, only R3 term (see
Appendix A for notations) contains ultraviolet divergences
that require renormalization. Without the John interaction
the amplitude requires only the standard scalar field mass-
like counter term to be renormalized. This result should be
understood as follows. First, without the John interaction the
process contributes to renormalization of the matter stress-
energy tensor, so it is not strongly related to the gravitational
interaction, rather to the behavior of a massless scalar field.
Second, it is well known that a quantum massless scalar field
requires the introduction of a mass scale in the realms of flat
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Fig. 3 Diagram for the third one-loop amplitude

spacetime [28]. So we treat the appearance of a mass-like
counter term as a standard feature of a massless scalar field
that is related neither with gravity nor with the Fab Four class.
We do not discuss this feature of the model below as it is not
related with the subject of our research and appears to be an
inalienable property of a massless scalar field.

When the John interaction is taken into account the expres-
sion corresponding to Fig. 1 also requires the following
counter term:

C1 = Rφ2, (13)

where R is the scalar curvature. The detailed expression
for the diagram in Fig. 1 is given in Fig. 5 (see (19), (20)
and (21) for notation). The expression contains both infrared
divergences (given by the factors R1 and R2) and ultravio-
let divergences (given by the factor R3). The regularization
of infrared divergences is discussed in Appendix B, while
the ultraviolet one results in the counter term (13). This
counter term belongs to the George class of the Fab Four.
Our model already contains one term from the George class,
namely the standard GR Lagrangian which is generated by
VG = 1/16πG. Thus, our result indicates that one has to
expand the George potential up to the second order terms:

VG = 1

16πG
+ αφ2, (14)

where α is a new coupling. The appearance of (13) does not
change the desirable features of the model, it rather points
to a deep physical connection between the John and George
classes.

The expression corresponding to Fig. 3 without the John
interaction requires only the standard scalar field mass-like
counter term. The situation is identical to the previous case

and the same logic is applied. When the John interaction
enters the consideration, the amplitude requires three more
counter terms. The interaction of a graviton with three scalar
particles belongs to the John class and has a structure similar
to the standard John interaction. However, because of the
difference in the structure of interactions, the corresponding
counter terms can be reduced to the standard John (counter)
term up to the surface term,

C2 = ∂μ

(√−g Gμν φ∇νφ
)
. (15)

In the context of our task the term may be neglected, but
it may play an important role in a cosmological task. Thus
we showed that the Standard John interaction appears to be
renormalizable up to the surface turn.

3 Discussion and conclusion

In the paper we showed that the simplest quantum correc-
tion to the John Lagrangian of the Fab Four class appears to
be renormalizable. We considered the John Lagrangian as it
provides the simplest example of scalar–tensor gravity with
second order field equations and with the ability to screen
the cosmological constant. The model is fruitful as it pro-
vides a uniform description of the evolution of the universe
from inflation till late-time accelerated expansion [21]. The
model has this feature because of the ability to screen the
cosmological constant at a certain epoch of the evolution
providing room to the matter-dominated phase of the expan-
sion. In such a way the ability to screen the cosmological
constant becomes crucial for the cosmological applications
of the model.

At the same time, the model is not protected from quan-
tum corrections and they might ruin that desirable feature.
We studied the simplest case of such quantum corrections
coming from the standard cubic scalar field self-interaction.
Our results show that such corrections require the introduc-
tion of one counter term (13) that does not belong to the
initial Lagrangian.

The counter term (13) belongs to the Fab Four class, thus
it cannot ruin the desirable property of the model. Moreover,
(13) belongs to the George class, which is already present
in the model; thus it only indicates the necessity to take into
account higher order terms of the George potential expansion
into account:

VG = 1

16πG
+ αφ2. (16)

This result shows that the John and George classes have a
non-trivial physical connection and the standard John inter-
action requires the presence of the George interaction for
renormalization.
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Because of the massless scalar field infrared issues [28]
the model requires the standard mass-like counter term for
renormalization. However, the issue is related with the prop-
erties of the scalar field and by no means related with gravity;
therefore we did not discuss this issue of the model. The rest
of the counter terms can be reduced to the standard John
Lagrangian up to the surface term (15).

Summarizing all of the above, we demonstrated that the
John and George classes of the Fab Four have a physical con-
nection through the standard scalar field self-interaction. A
proper choice of the George potential may lead to the renor-
malizability of the model at the level of one-loop amplitudes.

To present a more detailed judgment as regards the sta-
bility of the particular model, and as regards the Fab Four
in general, one still needs to go beyond three-particle ampli-
tudes. However, this task is much more sophisticated and
lies beyond the scope of this article. The task is compli-
cated by two issues. First, if one considers high multiplicity
amplitudes, that would require one to introduce multi-particle
interactions in the model. In the realm of flat spacetime
such interactions may contribute beyond Galileon counter
terms [22,23]. That phenomenon requires a special treat-
ment, which goes beyond this study. Second, the considera-
tion of high multiplicity amplitudes requires the introduction
of multi-particle interaction terms in the model. In this case
the number of diagrams required for the calculation increases
rapidly and the task becomes overcomplicated from the com-
putational point of view.
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Appendix A. Feynman rules and one-loop amplitudes

Quantities used in the article have the following mass dimen-
sions: [φ] = [λ] = 1, [κ] = −1, [β0] = −2, [β1] = −3.
Feynman rules are given in Fig. 4. In all diagrams the
momenta are pointed right and the following definitions for
C and D-symbols are used [29]:

Cμναβ = ημαηνβ + ημβηνα − ημνηαβ, (17)

Dμναβ(k1, k2) = ημνk1αk2β − [
ημαk1νk2β + ημβk1αk2ν

− ηαβk1μk2ν + (μ ↔ ν)
]
. (18)

Expressions for one-loop amplitudes discussed in the paper
are presented in Fig. 5 and the following set of definitions is
used:

∫
d4k

(2π)4

1

k2(k − p1)2(k + p2)2 = i

16π2

1

(p1 + p2)2R1 ,

(19)∫
d4k

(2π)4

kμ

k2(k − p1)2(k + p2)2 = i

16π2

(p1 − p2)μ

(p1 + p2)2 R2 ,

(20)∫
d4k

(2π)4

Cμναβkαkβ

k2(k − p1)2(k + p2)2 = −1

2
ημν

i

16π2R3 , (21)

∫
d4k

(2π)4

1

k2(k + p)2 = i

16π2R4 , (22)

∫
d4k

(2π)4

kμ

k2(k + p)2 = −1

2
pμ

i

16π2R4 , (23)

R1 = Γ (1 − ε)Γ 2(ε)

2εΓ (2ε)

(
− 1

4π

(p1 + p2)
2

μ2

)ε

, (24)

R2 = Γ (1 − ε)Γ (ε)Γ (1 + ε)

(1 + 2ε)Γ (1 + 2ε)

(
− 1

4π

(p1 + p2)
2

μ2

)ε

, (25)

R3 = Γ (ε)Γ 2(1 − ε)

Γ (2 − ε)

(
− 1

4π

(p1 + p2)
2

μ2

)ε

, (26)

R4 = 1

εΓ (2 + ε)

(
1

4π

Λ2

μ2

)ε

. (27)

The factors R1 and R2 contain infrared-divergent parts of the
amplitudes, while R3 and R4 contain ultraviolet ones. The
parameter Λ is used as the ultraviolet cut-off.

Appendix B. Infrared stability

The amplitude corresponding to Fig. 1 contains the following
infrared-divergent part:

− κ

2
(1 − β0q

2)λ2Cμναβ(p1)α(p2)β

∫
d4k

(2π)4

1

k2(k − p1)2(k − p2)2.

(28)

In this expression integration over k0 should be performed:

∫
d4k

(2π)4

1

k2(k − p1)2(k − p2)2

= i

8

∫
d3k

(2π)3

1

k0

1

k · p1 k · p2

∣∣∣∣∣
k2=0

− i

8

∫
d3k

(2π)3

1

k0

{
1

(k · p1)(k · (p1 − p2) + p1 · p2)

+[p1 ↔ p2]
}∣∣∣∣∣

k2=0

. (29)

In (29) only the first term diverges in the infrared sector. The
divergent integral is the standard one that appears in soft-
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Fig. 4 Feynman rules for the model

Fig. 5 Expressions for one-loop amplitudes
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particle radiation amplitudes, therefore the divergent part of
the amplitude is regularized by soft-particle radiation.

The same logic holds for the amplitude corresponding to
Fig. 2. The divergent part of the expression is given by the
following:

i
κ

2
(1 − β0q

2)Cμναβ(p1)α(p2)β i
λ2

p2
1

∫
d4k

(2π)4

1

k2(k − p1)2.

(30)

In a similar way integration over k0 can be performed:

1

p2
1

∫
d4k

(2π)4

1

k2(k − p1)2= − i

4

∫
d3k

(2π)3

1

k0

1

(k · p1)2

∣∣∣∣∣
k2=0

.

(31)

In full analogy with the previous result we obtain the standard
integral for the soft-particle radiation amplitude. At the same
time, Eq. (31) looks as if a factor 1/2 is missing, but this is
not the case. All scalar particles in our theory are identical,
thus additional permutation of outgoing particles is neces-
sary. As a consequence, the corresponding soft-particle radi-
ation amplitude receives the additional factor 2 and exactly
compensates by the infrared-divergent term.
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