
Eur. Phys. J. C (2017) 77:657
DOI 10.1140/epjc/s10052-017-5221-y

Regular Article - Theoretical Physics

Two component WIMP–FImP dark matter model with singlet
fermion, scalar and pseudo scalar

Amit Dutta Banik1,a, Madhurima Pandey1,b, Debasish Majumdar1,c, Anirban Biswas2,d

1 Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
2 Harish Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad, India

Received: 23 January 2017 / Accepted: 11 September 2017 / Published online: 3 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract We explore a two component dark matter model
with a fermion and a scalar. In this scenario the Standard
Model (SM) is extended by a fermion, a scalar and an addi-
tional pseudo scalar. The fermionic component is assumed
to have a global U(1)DM and interacts with the pseudo scalar
via Yukawa interaction while a Z2 symmetry is imposed on
the other component – the scalar. These ensure the stability
of both dark matter components. Although the Lagrangian
of the present model is CP conserving, the CP symmetry
breaks spontaneously when the pseudo scalar acquires a vac-
uum expectation value (VEV). The scalar component of the
dark matter in the present model also develops a VEV on
spontaneous breaking of the Z2 symmetry. Thus the vari-
ous interactions of the dark sector and the SM sector occur
through the mixing of the SM like Higgs boson, the pseudo
scalar Higgs like boson and the singlet scalar boson. We show
that the observed gamma ray excess from the Galactic Centre
as well as the 3.55 keV X-ray line from Perseus, Andromeda
etc. can be simultaneously explained in the present two com-
ponent dark matter model and the dark matter self interaction
is found to be an order of magnitude smaller than the upper
limit estimated from the observational results.

1 Introduction

The observational results from the satellite borne experiment
WMAP [1] and more recently Planck [2] have now firmly
established the presence of dark matter (DM) in the Universe.
Their results reveal that more than 80% matter content of the
Universe are in the form of mysterious unknown matter called
the dark matter. Until now, only the gravitational interactions
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of DM have been manifested by most of its indirect evi-
dences namely the flatness of rotation curves of spiral galax-
ies [3], gravitational lensing [4], the phenomena of the Bul-
let cluster [5] and other various colliding galaxy clusters etc.
However, the particle nature of DM still remains an enigma.
There are various ongoing dark matter direct detection exper-
iments such as LUX [6], XENON-1T [7], PandaX-II [8] etc.
which have been trying to investigate the particle nature as
well as the interaction type (spin dependent or spin indepen-
dent) of DM with the visible sector by measuring the recoil
energy of the scattered detector nuclei. However, the null
results of these experiments have severely constrained the
DM–nucleon spin independent scattering cross-section and
thereby at present, σSI > 2.2×10−46 cm2 has been excluded
by the LUX experiment [6] for the mass of a 50 GeV dark
matter particle at 90% C.L. Similarly, for spin independent
case, the present upper bound on DM–proton spin depen-
dent scattering cross-section is σSD ∼ 5 × 10−40 cm2 [9,10]
for a dark matter of mass ∼ 20–60 GeV. The DM–nucleon
scattering cross-sections are approaching towards the regime
of coherent neutrino–nucleon scattering cross-section and
within next few years σSI may hit the “neutrino floor”. There-
fore, it will be difficult to discriminate the DM signal from
that of background neutrinos. However, if the DM is detected
in direct detection experiments then that will be a “smoking
gun signature” of the existence of a beyond Standard Model
(BSM) scenario as the Standard Model of particle physics
does not have any viable cold dark matter candidate.

Depending upon the production mechanism at the early
Universe, the dark matter can be called thermal or non-
thermal. In the former case, dark matter particles were in
both kinetic and chemical equilibrium with other particles
in the thermal soup at a very early epoch. However, the
number density of DM became exponentially suppressed (or
Boltzmann suppressed) as the temperature of the Universe
drooped below the dark matter mass (TUniverse � MDM)
which resulted in a reduced interaction rate (interaction rate
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is directly proportional to number density). Decoupling of
DM from the thermal bath occurred at around a temperature
∼ MDM

20 when the DM interaction rate became subdominant
compared to the expansion rate of the Universe. The corre-
sponding temperature is known as the freeze-out temperature
of DM. After decoupling DM became a thermal relic with a
constant density known as its relic density. The Weakly Inter-
acting Massive particle (WIMP) [11,12] is the most favourite
class for the thermal dark matter scenario. Some of the most
studied WIMPs in the existing literature are neutralino [13],
scalar singlet dark matter [14–17], inert doublet dark mat-
ter [18–30], singlet fermionic dark matter [31–33], hidden
sector vector dark matter [34–36] etc.

On the other hand, in the non-thermal scenario, the inter-
action strengths of DM particles were so feeble that they
never entered into thermal equilibrium with the other par-
ticles in the cosmic soup. As the Universe began to cool
down, these types of particles were started to produce mainly
from the decay of some heavy unstable particles at the early
epoch. However, in principle they could also be produced
from the annihilation of particles in the thermal bath, but in
the present framework these annihilation channels are sub-
dominant compared to the production from decay of heavy
particles.1 In this situation the DM relic density is gener-
ated from a different mechanism known as the “freeze-in”
[37,38] which is in a sense a opposite process to the usual
freeze-out mechanism. DM particles of this type are often
called Feebly Interacting Massive Particles or FIMPs. Ster-
ile neutrinos produced from the decay of some heavy scalars
[39–41] or gauge bosons [42] are a very good candidate of
FIMP. Moreover, various FIMP type DM candidates in dif-
ferent extensions of the Standard Model have been studied
in Refs. [43–46] and weakly coupled scenarios [47,48].

Besides the direct detection searches for dark matter,
another promising detection method of DM is to detect the
annihilation or decay products of dark matter trapped in the
heavy dense region of celestial objects namely core of the
Sun, Galactic Centre (GC), dwarf galaxies etc. These sec-
ondary particles which can reveal the information about the
particle nature of DM are gamma ray, neutrinos, charged cos-
mic rays including electrons, positrons, protons and antipro-
tons etc. This is known as the indirect detection of dark mat-
ter. Study of Fermi-LAT data [49] by independent groups
[50–60] have observed an excess of gamma ray in the energy
range 1–3 GeV, which can be interpreted as a result of dark
matter annihilation in the region of GC. Detailed study of
the excess by Calore et al. [60] also have reported that the
gamma ray excess in 1–3 GeV energy range can be explained
by dark matter annihilation into bb̄ with annihilation cross-

1 The production of DM can also be governed by s-channel annihilation
of SM particles. For further information see [43] and the references
therein.

section 〈σv〉bb̄ = 1.76+0.28
−0.27 × 10−26 cm3s−1 at GC hav-

ing mass 49+6.4
−5.4 GeV. Excess in GC gamma ray can also be

explained from point source considerations [61] or in terms
of millisecond pulsars [62]. The study of dwarf spheroidals
(dSphs) by Fermi-LAT and Dark Energy Survey (DES) pro-
vides a bound on the DM annihilation cross-section with
DM mass, which is in agreement with the GC excess results
for DM obtained from [63,64]. Recent observations of 45
dwarf satellite galaxies by Fermi-LAT and DES collaboration
[65] also do not exclude the possibility of DM origin of GC
gamma ray excess. Different particle physics model for dark
matter are explored in order to explain this 1–3 GeV gamma
ray excess at GC [66–98]. Apart from the GC excess gamma
ray, there is another observation of an unidentified 3.55 keV
X-ray line from the study of 73 galaxy clusters by Bulbul et al.
[99] and Boyarsky et al. [100] obtained from the XMM New-
ton observatory. This unknown X-ray line can be explained
as a DM signal and several dark matter models are invoked to
explain these phenomena [101–127]. There are also attempts
claiming that this 3.55 keV line can have some astrophysical
origin [128,129]. The Hitomi collaboration [130] also sug-
gest molecular interaction in nebula is responsible for this
3.55 keV signal which also requires further test to be con-
firmed. Study of colliding galaxy clusters can also provide
valuable information for dark matter self interaction. An ear-
lier attempt to calibrate the dark matter self interaction have
been made by [131]. Recently an updated measurement for
DM self interaction by Harvey et al. [132] have constrained
DM self interaction from the observations of 72 galaxy clus-
ter collisions. From their observations of spatial off set in
collisions of different galaxy cluster, DM self interaction is
found to be σ/m < 0.47 cm2/g with 95% confidence limit
(C.L.). DM self interaction observation from Abell 3827 clus-
ter performed by [133] also suggests that σ/m ∼ 1.5 cm2/g.
A study of dark matter self interaction by Campbell et al.
[134] has reported that a light DM of mass lesser than 0.1
GeV, whose production is followed by the freeze-in mecha-
nism, can explain the self interaction results from Abell 3827
by [133].

Hence, the above results clearly indicate that both of these
astrophysical signatures, GC excess (requires a heavier DM
candidate) and DM self interaction (prefers a light DM), can
be explained simultaneously with a multi component dark
matter model.2 Therefore, in order to explain the Galactic
Centre gamma ray excess and DM self interaction bound
from colliding galaxy clusters in a single framework of par-
ticle dark matter scenario, we propose a two component
dark matter model where the Standard Model is extended by
adding one extra singlet scalar and a fermion. An additional
pseudo scalar is also introduced to the SM. The dark fermion

2 In an earlier work [135], a self interacting DM scenario is explored
to explain the GC gamma ray excess results.
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has an additional global U(1)DM symmetry which prevents
its interaction with SM fermions. Although this dark fermion
can interact with the pseudo scalar through a fermion pseudo
scalar interaction involving γ5 operator. The Lagrangian of
the pseudo scalar is so chosen that there can be no explicit
CP violation; the CP symmetry can only be spontaneously
broken when the pseudo scalar acquires a non-zero VEV. We
show that, in this model, the dark fermion can play the role of
a WIMP type dark matter candidate. The other component,
namely the singlet scalar (assumed to be lighter DM candi-
date), in the present two component model has aZ2 symmetry
imposed on it to prevent its direct interaction with the SM
particles. This light scalar field can be a viable FImP (denoted
FImP instead of FIMP for being less massive) type dark mat-
ter candidate by assuming it has a sufficiently tiny interaction
strength with other particles in the model. A study of ther-
mal two component dark matter has been performed in the
literature [136–140]. There is also work relating non-thermal
multi component dark matter models explored to address the
GC gamma ray excess or dwarf galaxy excess along with
3.55 keV X-ray results [90,141]. However, our present work
deals with a two different types of DM candidates, namely
a WIMP (i.e., thermal DM) and a non-thermal DM candi-
date FImP. In order to compute the relic abundances of this
“WIMP–FImP” system, we have solved a coupled Boltz-
mann equation involving both the dark fermion and singlet
scalar and their self as well as mutual interactions. Since we
are considering a WIMP type dark fermion which interacts
with SM particles via a pseudo scalar mediator and FImP
type singlet scalar, we show that our model can easily evade
all the existing stringent bounds on the DM–nucleon spin
independent scattering cross-sections. We find that besides
satisfying the relic density criterion and other relevant exper-
imental bounds, the annihilation of the dark fermion to the
bb̄ (through pseudo scalar mediator) final state at the Galac-
tic Centre can explain the Fermi-LAT observed gamma ray
excess while self interaction of light FImP dark matter is
consistent with the upper bound on the DM self interaction
required to explain the spatial offset in the collision of differ-
ent galaxy clusters as obtained from [132,133] and appears to
be smaller by at least an order of magnitude. In addition, we
show that within the existing framework of “WIMP–FImP”
DM, the FImP dark matter component may also be able to
explain the XMM Newton observed 3.55 keV X-ray anomaly
from its decay to two photon final states via its tiny mixing
with SM like Higgs boson.

The paper is organised as follows. The two component
“WIMP–FImP” dark matter model is developed in Sect. 2.
The multi component dark matter Boltzmann equation in the
present model is addressed in Sect. 3. In Sect. 4 we provide
the bounds from collider physics. Dark matter self interac-
tion and bounds from the 3.55 keV X-ray are discussed in
Sect. 5. Phenomenology of the two component dark matter

model is explored in Sect. 6 along with direct detection mea-
surements. The results for GC gamma ray excess and DM
self interaction are presented in Sect. 7. Finally in Sect. 8 the
paper is summarised with concluding remarks.

2 Two component dark matter model

The two component dark matter model having a fermionic
component as well as a scalar component, considered in this
work, is a renormalisable extension of the Standard Model
(SM) by a real scalar field S, a singlet Dirac fermion χ and
a pseudo scalar field �. Therefore, in the present scenario
the dark sector is composed of a Dirac fermion χ and a real
scalar S. The Dirac fermion is a singlet under the SM gauge
group and it has a global U(1)DM charge. This prevents χ to
couple with any Standard Model fermions which ensures its
stability. On the other hand, we impose a discrete Z2 sym-
metry on the real scalar field S, which forbids the appearance
of any term in the Lagrangian containing an odd number of
S fields.3 The discrete symmetry Z2 breaks spontaneously
when S gets a vacuum expectation value (VEV). Also, we
have assumed that the Lagrangian is CP invariant and the CP
symmetry is subjected to a spontaneous breaking when the
pseudo scalar acquires a VEV. After the breaking of all the
imposed symmetries (e.g. SU(2)L × U(1)Y, Z2 and CP) of
the Lagrangian through the VEVs of the scalar fields, the real
components of H , � and S will mix among each other. The
lightest one with suitable mass and sufficiently low values of
the mixing angles with other scalars can serve as the FImP
component of dark matter.

The Lagrangian of the model thus can be written as

L = LSM + LDM + L� + Lint, (1)

where the Lagrangian for the SM particles including the usual
kinetic term as well as the quadratic and quartic terms for
the Higgs doublet H , is represented by LSM. As mentioned
above, the dark sector Lagrangian LDM has two parts namely
the fermionic and the scalar, which are given by

LDM = χ̄(iγ μ∂μ − m)χ + LS, (2)

with

LS = 1

2
(∂μS)(∂μS) − μ2

S

2
S2 − λS

4
S4. (3)

3 Instead of imposing a global U(1) on the singlet fermion and assuming
a Z2 on the scalar field, one can also assume two different discrete
Z2 symmetries on the scalar and the fermion. This would result in a
framework withZA

2 ×Z
B
2 . However, we did not consider this framework

in our model.
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The Lagrangian L� for the pseudo scalar boson � is given
by

L� = 1

2
(∂μ�)2 − μ2

�

2
�2 − λ�

4
�4. (4)

Note that the above Lagrangian (Eq. (4)) does not have any
term in odd power of �. This is to make L� CP invari-
ant. The interaction Lagrangian contains the Yukawa type
term between pseudo scalar � and Dirac fermion χ . In addi-
tion to that, it also contains all possible mutual interaction
terms among the scalar fields H , � and S. The interaction
Lagrangian is given as

Lint = − i g χ̄γ5χ � − V ′(H,�, S), (5)

where scalars and pseudo scalar mutual interaction terms are
denoted by V ′(H, S, �). The expression of V ′ is given as

V ′(H, S, �) = λH�H†H �2 + λHSH
†H S2

+λ�S�
2 S2. (6)

Note that as in Eq. (5) we have a Yukawa term involving γ5

only; hence the Lagrangian is CP invariant and does not con-
tain any explicit CP symmetry breaking term. Moreover, it is
also assumed in the model that the pseudo scalar � acquires
a non-zero VEV. As a consequence of this assumption, the
CP symmetry of the Lagrangian is broken spontaneously. In
the present work the discrete Z2 symmetry is imposed on
the scalar S; it has been broken spontaneously with a VEV
v3. This would result in domain walls in the Universe. One
possible way to avoid such domain wall is to include a term
∼ |a| expi�a S in the Lagrangian, i.e., to break the Z2 sym-
metry explicitly as suggested in Ref. [142]. However, another
way out to circumvent this problem requires the VEV v3 to
be small ([143] and the references therein). Such an approach
to avoid the domain wall has been explored in the literature
[114,144]. In Ref. [114], it has been reported that the VEV
of the scalar S considered in our work should be v3 ≤ 10.7
MeV to be consistent with CMB anisotropy measurements.
Hence, we consider v3 values within the above mentioned
limit in our work to avoid the domain wall problem.

After the spontaneous symmetry breaking of the SM
gauge symmetry, Higgs acquires a VEV, v1 (∼ 246 GeV)
and the fluctuating scalar field about this minimum (v1) is
denoted by h. Denoting by v2 the VEV of the pseudo scalar
� and by v3 the VEV that the singlet scalar S is assumed to
acquire, we have

H = 1√
2

(
0

v1 + h

)
, � = v2 + φ, S = v3 + s. (7)

It is to be noted that the global U(1)DM symmetry is con-
served even after the spontaneous symmetry breaking.4 Let
us consider the scalar potential term V

V = μ2
H H†H + λH (H†H)2 + μ2

�

2
�2 + λ�

4
�4

+μ2
S

2
S2 + λS

4
S4

+ λH�H†H �2 + λHSH
†H S2 + λ�S�

2 S2. (8)

After symmetry breaking, the scalar potential Eq. (8) takes
the following form:

V = μ2
H

2
(v1 + h)2 + λH

4
(v1 + h)4 + μ2

�

2
(v2 + φ)2

+ λ�

4
(v2 + φ)4 + μS

2
(v3 + s)2 + λS

4
(v3 + s)4

+ λH�

2
(v1 + h)2(v2 + φ)2 + λHS

2
(v1 + h)2(v3 + s)2

+ λ�S(v2 + φ)2(v3 + s)2. (9)

Using the minimisation condition that

(
∂V

∂h

)
,

(
∂V

∂φ

)
,

(
∂V

∂s

) ∣∣∣∣
h=0, φ=0, s=0

= 0, (10)

we obtain the three following conditions:

μ2
H + λHv2

1 + λH�v2
2 + λHSv

2
3 = 0,

μ2
� + λ�v2

2 + λH�v2
1 + 2λ�Sv

2
3 = 0,

μ2
S + λSv

2
3 + λHSv

2
1 + 2λ�Sv

2
2 = 0. (11)

The mass matrix with respect to the h–φ–s basis can now be
constructed by evaluating ∂2V

∂h2 , ∂2V
∂φ2 , ∂2V

∂s2 , ∂2V
∂h∂φ

, ∂2V
∂h∂s , ∂2V

∂s∂φ

at h = φ = s = 0 and we obtain

M2
scalar = 2

⎛
⎝ λH v2

1 λH� v1 v2 λHS v1 v3

λH� v1 v2 λ� v2
2 2λ�S v2 v3

λHS v1 v3 2λ�S v2 v3 λS v2
3

⎞
⎠ .

(12)

Diagonalising the symmetric mass matrix (Eq. (12)) by a
unitary transformation we obtain the three eigenvectors h1,
h2 and h3, which represent three physical scalars. Each of
the new eigenstates is a mixture of old basis states h, φ and
s depending on the mixing angles θ12, θ23 and θ13, i.e.⎛
⎝h1

h2

h3

⎞
⎠ = U (θ12, θ13, θ23)

⎛
⎝h

φ

s

⎞
⎠ , (13)

where U (θ12, θ23, θ13) is the usual PMNS matrix with the
mixing angles θ12, θ23, θ13 and the complex phase δ = 0. In
this work, we choose h1 as the SM like Higgs boson which

4 In fact global symmetry is also unbroken at the Planck scale to provide
a stable DM canidate [145].
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has been discovered few years ago by the LHC experiments
[146,147] at CERN. Therefore, throughout this work we keep
the mass (m1) of h1 ∼ 125.5 GeV.5 On the other hand as
mentioned at the beginning of this section, we consider h2

to be also heavy scalar and the lightest scalar h3 to be a
component of dark matter (FImP candidate). For simplicity,
Eq. (13) can be rewritten as
⎛
⎝h1

h2

h3

⎞
⎠ =

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

⎛
⎝h

φ

s

⎞
⎠ , (14)

where ai j are elements of PMNS matrix.
Further, in order to obtain a stable vacuum we have the

following bounds on the quartic couplings derived following
[148]:

λH , λ�, λS > 0

λH� + √
λHλ� > 0,

λHS + √
λHλS > 0

2λ�S + √
λ�λS > 0, (15)

and√
2(λH� + √

λHλ�)(λHS + √
λHλS)(2λ�S + √

λ�λS)

+√
λHλ�λS + λH�

√
λS + λHS

√
λ� + 2λ�S

√
λH > 0.

(16)

In this model the fermionic dark matter (WIMP DM can-
didate) has an interaction with the pseudo scalar �, which
should not be very large and be within the perturbative limit.
For this purpose we consider g ≤ 4π in our work.

It is to be noted that, in general, spontaneous CP viola-
tion does not occur when the singlet scalar acquires a VEV
[149,150]. However, in the present work, we consider a pseu-
doscalar field �, which acquires a VEV v2. Consequently this
would result in mixing between scalar and pseudoscalar fields
and hence CP is violated [142]. Although the Lagrangian in
Eq. (5) is CP conserving, any mixing between scalar and
pseudoscalar (terms with λH� and λ�S) would break the CP
symmetry of the Lagrangian. Hence Eq. (5) is the source of
CP violation in the model.

3 Relic density

The relic densities for the two component dark matter consid-
ered in the paper are obtained by solving the coupled Boltz-
mann equations for each of the dark matter components and
total DM relic abundance is given by adding up the relic
densities of each of the components.

5 We assume the mass of physical scalars h j to be m j , j = 1 − 3.

The Boltzmann equation for the fermionic component χ

in the present model is given by

dYχ

dz
= −

√
πg�(T )

45G

mχ

z2

(
〈σv〉χ̄χ→x x̄

(
Y 2

χ − (Y eq
χ )2

)

+〈σv〉χ̄χ→h3h3

(
Y 2

χ − (Y eq
χ )2

(Y eq
h3

)2
Y 2
h3

))
, (17)

where G is the gravitational constant. The fermionic dark
matter in the present model follows the usual freeze-out
mechanism and becomes a relic which behaves as a WIMP
dark matter. However, evolution of the light dark matter h3

is different. We assume that the mixings between the scalars
h j , j = 1–3 are very small. Therefore the scalar h3 is pro-
duced from the decay or annihilation of heavier particles
such as Higgs or gauge bosons which never reaches thermal
equilibrium (therefore becomes non-thermal in nature) and
its production saturates as the Universe expands and cools
down. This is also referred to as freeze-in production of the
particle [37,38] and the light dark matter resembles a FImP
like DM. Hence the initial abundance of h3, Yh3 = 0 in the
present model. Thus Eq. (17) takes the form

dYχ

dz
= −

√
πg�(T )

45G

mχ

z2

×
(

〈σv〉χ̄χ→x x̄

(
Y 2

χ − (Y eq
χ )2

)
+ 〈σv〉χ̄χ→h3h3Y

2
χ

)
,

(18)

where x = f, W, Z , h1, h2, denotes the final state particles
produced due to annihilation of the dark matter candidate χ .
The Boltzmann equation for the scalar component h3 in the
present framework is given by

dYh
3

dz
= − 2Mpl z

1.66m2

√
g�(T )

gs(T )

(∑
i

〈h
i
→h

3
h

3
〉
(
Yh

3
− Y eq

h
i

) )

− 4π2

45

Mplm

1.66

√
g�(T )

z2

( ∑
x=W,Z , f,h1,h2

〈σvx x̄→h
3
h

3
〉

×(Y 2
h3

− Y eq
x

2) − 〈σvχ̄χ→h
3
h

3

(
Y 2

χ − (Y eq
χ )2

(Y eq
h3

)2
Y 2
h3

) )
.

(19)

With Yh3 = 0, Eq. (19) takes the form

dYh
3

dz
= − 2Mpl z

1.66m2

√
g�(T )

gs(T )

( ∑
i

〈h
i
→h

3
h

3
〉
(
−Y eq

h
i

) )

− 4π2

45

Mplm

1.66

√
g�(T )

z2

×
( ∑

x=W,Z , f,h1,h2

〈σvx x̄→h
3
h

3
〉 (−Y eq

x
2)

−〈σvχ̄χ→h
3
h

3
〉Y 2

χ

)
. (20)
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χ

χ̄

h1,2

f

f̄

χ

χ̄

h1,2

h1,2,3

h1,2,3

χ

χ̄

h1,2

W, Z

W, Z

h1,2

h3

h3

h1,2

h1,2

h1,2

h3

h3

f

f̄

h1,2

h3

h3

W, Z

W, Z

h1,2

h3

h3

h1,2

h1,2

h3

h3

Fig. 1 Feynman diagrams for the fermionic dark matter χ and scalar dark matter h3

In Eqs. (17)–(20), Yx = nx
S is the comoving number den-

sity of dark matter candidate x = χ, h3 while Y eq
x is

the equilibrium number density, z = m/T where T is the
photon temperature and S is the entropy of the Universe.
Mpl = 1.22×1019 GeV in Eqs. (19)–(20) denotes the Planck
mass and the term g� is expressed as [11]

√
g�(T ) = gS(T )√

gρ(T )

(
1 + 1

3

d lngS(T )

d lnT

)
(21)

where gS and gρ are the degrees of freedom corresponding
to entropy and energy density of the Universe and written as
[11]

S = gS(T )
2π2

45
T 3, ρ = gρ(T )

π2

30
T 4. (22)

Thermal average of various annihilation cross-sections (〈σv〉)
and decay widths (〈〉) are given as

〈σv〉aa→bb = 1

8m4
a T K 2

2 (ma/T )

×
∫ ∞

4m2
a

ds σaa→bb(s) (s − 4m2
a)

√
s K1(

√
s/T )

〈a→bb〉 = a→bb
K1(z)

K2(z)
. (23)

In Eq. (23) K1 and K2 are modified Bessel functions and s
represents the centre of momentum energy. Using Eqs. (18),
(20) and (21)–(23) we solve for relic abundances of the dark
matter candidates given as

� j h
2 = 2.755 × 108

( m j

GeV

)
Y j (T0), j = χ, h3, (24)

where T0 is the present photon temperature and h is the Hub-
ble parameter expressed in units of 100 km s−1 Mpc−1. It is
to be noted that the relic densities of these two dark matter
components must satisfy the condition for total dark mat-
ter density obtained from Planck [2] when added up, i.e.,

�DMh2 = �χh
2 + �h3h

2, 0.1172 ≤ �DMh2 ≤ 0.1226.

(25)

The expressions of different annihilation cross-sections and
decay processes along with the relevant couplings are given
in Appendix A. Feynman diagrams that contribute to the
annihilations of χ along with the production of scalar dark
matter h3 via decay and annihilation channels are shown in
Fig. 1. It is to be noted that the diagram χχ → h3h3 will
also contribute to the production of light scalar dark mat-
ter.

4 Bounds from collider physics

ATLAS and CMS have confirmed their observations of a
Higgs like scalar with mass ∼ 125.5 GeV [146,147]. In the
present model described in Sect. 2, we introduced three scalar
particles. As mentioned earlier we assume h1 as the Higgs
like scalar and h2 to be the non-SM scalar (85 GeV ≤ m2 ≤
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110 GeV), while h3 is the light dark matter candidate. Since
h1 is the Higgs like scalar with mass ∼ 125.5 GeV, we expect
it to satisfy the collider bounds on the signal strength of SM
scalar. We define the signal strength as

R1 = σ(pp → h1)

σ SM(pp → h)

Br(h1 → xx)

BrSM(h → xx)
. (26)

In the above, σ(pp → h1) defines the production cross-
section of h1 due to gluon fusion, while σ SM(pp → h) is
the same for SM Higgs. Similarly Br(h1 → xx) is defined
as the decay branching ratio of h1 into any final particle,
and the same for SM Higgs is BrSM(h → xx). The Higgs
like scalar must satisfy the condition for SM Higgs signal
strength R1 ≥ 0.8 [151]. The branching ratio to any final
state particle for h1 is given as Br(h1 → xx) = (h1→xx)

1
(here (h1 → xx) is the decay width of h1 into final state
particles and 1 is the total decay width of h1) and for the SM
Higgs with mass 125.5 GeV it can be expressed as BrSM(h →
xx) = (h→xx)

SM
, where SM is total decay width of Higgs.

Hence, Eq. (26) can be written as

R1 = a4
11

SM

1
, (27)

where 1 = a2
11SM + inv

1 is is the invisible decay width
of h1 into dark matter particles given as

R2 = a4
21

′
SM

2
(28)

Similarly for h2, the signal strength can be written as

R2 = a4
21

′
SM

2
(29)

with 2 = a2
21

′
SM + inv

2 respectively where ′
SM is

the total decay width of non-SM scalar of mass m2 and
inv

2 = h2→χχ̄ + h2→h3h3 . The expression of invisible
decay (hi → χχ̄), i = 1, 2, is

h1→χχ̄ = m1

8π
g2a2

21

(
1 − 4m2

χ

m2
1

)1/2

,

h2→χχ̄ = m2

8π
g2a2

22

(
1 − 4m2

χ

m2
2

)1/2

, (30)

while the expression for h j→h3h3 , j = 1, 2, are given in
Appendix A. The invisible decay branching ratio for the SM

like Higgs is Br1
inv = inv

1
1

. We assume the invisible decay

branching ratio to be small and impose the condition Br1
inv <

0.2 [152].

5 Dark matter self interaction

The study of dark matter self interaction has recently received
attention and has been explored in the literature [131–133].
Dark matter, though primarily assumed to be collisionless in
nature, is found to have self interaction from the observations
of colliding galaxy clusters. A study of 72 colliding clusters
by Harvey et al. [132] claims that the dark matter self inter-
action cross-section σDM/m < 0.47 cm2/g with 95% C.L.
In the present model we proposed two dark matter candi-
dates χ (WIMP like fermion) and a light scalar dark matter
h3 (FImP). In this work we will investigate whether any of
these dark matter candidates can account for the observed
dark matter self interaction cross-section. The study of dark
matter self interaction by Campbell et al. [134] has reported
that a light dark matter with mass below 0.1 GeV produced
by the freeze-in mechanism can provide the required amount
of dark matter self interaction cross-section (contact inter-
action) in order to explain the observations of Abell 3827
[133] with σDM/m ∼ 1.5 cm2/g, which is close to the
bound obtained from [132]. Therefore in the present work,
we investigate whether the FImP dark matter h3 (produced
via the freeze-in mechanism as mentioned earlier in Sect. 3)
can account for the dark matter self interaction cross-section
given by [132,133]. The ratio to the self interaction cross-
section with mass m3 for the scalar dark matter candidate in
the present model is given as [114]6

σh3

m3
� 9λ2

S

2πm3
3

, (31)

where the above expression of the self interaction is obtained
by replacing the quartic coupling λ3333 in terms of the cou-
pling λS for h3 given in Appendix A. In Eq. (31) we have
considered the contact interaction only and neglected the
contributions from s-channel mediated diagrams since those
are suppressed due to a small coupling with scalars h1 and
h2 and also due to large mass terms in the propagator. It
is to be noted that since in the present model we have two
dark matter components, the self interaction cross-section
for a particular component should be modified in accordance
with the fractional contribution of that component towards
the dark matter relic density. For the light DM component

h3 in the present model, this factor is fh3 = �h3
�DM

. Again,
since the process of self interaction requires two dark matter
particles to interact, the self interaction for the h3 compo-
nent should be modified by a factor f 2

h3
. We shall show in

Sect. 6 that although the lighter component of DM has a
smaller relic density, (�h3h

2 ∼ 0.1�χh2), the number den-
sity of h3 is very high compared to that of χ resulting in a
smaller fractional density rχ = nχ

nχ+nh3
∼ 10−6 for the heav-

6 Using the condition s − 4m2 << m2.
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ier DM candidate. As a result the number of collisions will
eventually be dominated by h3 (ncollh3

>> ncollχ ). However,
measurement of the dark matter self interaction is difficult
and depends on several other factors. Our calculation shows
that the self interaction of the heavier component χ is very
small in comparison with that of h3. Therefore, the lighter
component with large self interaction will suffer significant
change in its spatial distribution, while the same for χ will
remain unaffected. However, in assessing the dark matter self
interaction from the observational results (spatial offset as
observed by [132]) of collisions of galaxy clusters, the mass
distribution of dark matter (dark matter halo) in its totality
has been considered (which in the present context signifies
engaging both DM components of the model). Moreover,
if the heavier component dominates the total contribution
to the relic density (as presented in Sect. 7), it will share a
large amount of mass of total DM halo. Then the gravitational
effects between the DM components may affect the self inter-
action and the consequent observed spatial offset. Therefore,
from the present study we may state that the effective self
interaction (∼ f 2

h3

σh3
m3

) in our model is only an estimate and
may be altered by these other factors. But this is for posterity.

5.1 3.55 keV X-ray emission and light dark matter
candidate

Independent study of XMM Newton observatory data by Bul-
bul et al. [99] and Boyarsky et al. [100] has reported a 3.55
keV X-ray emission line from extragalactic spectrum. Such
an observation cannot be explained by known astrophysical
phenomena. Although the signal is not confirmed, if it yet
would exist then such a signature can be explained by the
decay of heavy dark matter candidates [115] or annihilation
of light dark matter directly into the photon [90,114]. The
observations from the Hitomi collaboration [130] also sug-
gest that the 3.55 keV X-ray line can be caused by charge
exchange phenomena in a molecular nebula, which requires
more sensitive observation to be confirmed. Since in the
present framework we propose a light dark matter candidate
h3 to circumvent the self interaction property of dark matter,
we further investigate whether it can also explain the 3.55
keV X-ray signal. For this purpose, we assume that the mass
of the light FImP dark matter candidate h3 is m3 ∼ 7.1 keV,
which decays into a pair of photons.

The expression for the decay of h3 into 3.55 keV X-rays
is given as

h3→γ γ =
(αem

4π

)2 |F |2 a2
31

GFm3
3

8
√

2π
, (32)

where GF is the Fermi constant and αem ∼ 1
137 is the fine

structure constant. The loop factor F in Eq. (32) is

F = FW (βW ) +
∑
f

NcQ
2
f F f (β f ), (33)

where

βW = 4m2
W

m2
3

, β f = 4m2
f

m2
3

,

FW (β) = 2 + 3β + 3β(2 − β) f (β),

Ff (β) = −2β[1 + (1 − β) f (β)],
f (β) = arcsin2[β−1/2].
Nc in the loop factor is the colour quantum number, while
Q f denotes the charge of the fermion. It is to be noted that
the decay width of h3 must be in the range 2.5×10−29 s−1 ≤
fh3h3→γ γ ≤ 2.5 × 10−28 s−1 in order to produce the
required extragalactic X-ray flux obtained from Andromeda,
Perseus etc. Since in the present model we have two dark
matter components, the decay width of h3 must be multi-

plied by a factor fh3 = �h3
�DM

, the fractional contribution to
the dark matter relic density by the h3 component. Hence,
in this work we will also test the viability of the light scalar
dark matter candidate to explain the possible X-ray emission
signal reported by [99,100] along with DM self interaction
results.

6 Calculations and results

In this section we test the viability of the present two com-
ponent dark matter model scanning over a range of model
parameter space. In Table 1, we tabulate the range of model
parameter space and relevant constraints used in this work.
Note that the coupling parameters λi j ; i, j = 1–3 (i �= j) are
in agreement with the vacuum stability conditions mentioned
earlier in Eq. (16) (Sect. 2) and also satisfy the perturbative
unitarity condition. As we have mentioned earlier, h1 is an
SM like scalar and h2 is a non-SM scalar; we take v1 = 246
GeV and v2 = 500 GeV in the present framework. We fur-
ther assume two choices of v3 = 6.5 MeV and 8.0 MeV. This
choice is consistent with the previous studies of light scalar
dark matter of mass ∼7.1 keV with bound 2.0 MeV ≤ v3 ≤
10.0 MeV [90,114]. We have also imposed the conditions on
the signal strength and invisible decay branching ratio of the
SM like scalar h1 obtained from ATLAS and CMS at LHC
(R1 ≥ 0.8 and Br1

inv ≤ 0.2). Using the range of the model
parameter space tabulated in Table 1 we solve the three scalar
mass matrix in order to find the mixing angles of the PMNS
matrix and the ai j ; i, j = 1–3, elements. These matrix ele-
ments are then used to calculate various couplings mentioned
in Appendix A which are necessary in order to calculate the
decay widths and annihilation cross-sections of the scalar
dark matter candidate h3. The coupling g (≤ 4π , bound
from the perturbative limit) between the pseudo scalar and
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Table 1 Constraints and chosen region of model parameters space for the two component dark matter model

m1 m2 m3 λ12 λ13 λ23 R1 Br1
inv fh3h3→γ γ g

GeV GeV GeV 10−29 s−1

∼125.5 85–110 ∼7.1×10−6 10−4–0.1 10−10–10−8 10−11–10−9 0.8–1.0 0–0.2 2.5–25 0.01–5.0

Fig. 2 The left panel (Fig. 2a) shows the changes in fh3 with mixing angle θ23. Figure 2b, c depicts the allowed values of the couplings λ233 and
λ133 plotted against θ23

the fermionic dark matter is also varied within the range men-
tioned in Table 1 to compute the annihilation cross-sections
for fermionic dark matter. These decay widths and annihila-
tion cross-sections of both dark matter candidates are then
used to solve the coupled Boltzmann equations (18) and (20)
and calculate the relic densities for each of the dark matter
candidates satisfying the condition for total dark matter relic
density, Eq. (25). In Fig. 2 we show the valid range of the
model parameter space obtained using Table 1 and solving
the coupled Boltzmann equations satisfying the condition
�χh2 + �h3h

2 = �DMh2 as given by the Planck satellite
experiment. In Fig. 2a we plot the variation of the allowed
mixing angle θ23 with the fractional relic density fh3 of the
scalar dark matter in the present framework.7 The plotted
blue and green shaded regions depicted in all the three fig-
ures of Fig. 2 correspond to the choice of v3 = 6.5 × 10−3

GeV and 8.0 × 10−3 GeV. The observation of Fig. 2a (in the
θ23– fh3 plane) shows that the relic density contribution of
the scalar dark matter component increases with the increase
in θ23. It is to be noted that the maximum allowed range of
θ23 depends on the choice of v3 and we have found that for
v3 = 6.5 × 10−3 GeV θmax

23 ∼ 2.8 × 10−13, while the same
obtained with v3 = 8.0 × 10−3 GeV is θmax

23 ∼ 3.5 × 10−13.
This variation of θ23 with fh3 shown in Fig. 2a is a direct con-
sequence of the fact that the increase in θ23 also increases the
value of λ233, which is depicted in Fig. 2b. In Fig. 2b the
variation of θ23 is plotted against λ233. It is easily seen from

7 Mixing angles θi j ; i, j = 1–3, i �= j , are expressed in radians.

Fig. 2b that when θ23 is small ∼ 10−16–10−14, the value of
λ233 is very small. However, as θ23 increases further, there is
a sharp increase in the value of |λ233|. As a result the contri-
bution from the decay channel h2 → h3h3 enhances which
then also increases the relic density contribution of the scalar
h3. From Fig. 2b we notice that the maximum allowed range
of λ233 is ∼ 5 × 10−7 for both cases of v3 considered in the
work. Finally in Fig. 2c θ23 is plotted against λ133 for the two
values of v3 mentioned above. From Fig. 2c we notice that
λ133 decreases steadily with enhancement in θ23 indicating
a suppression in the contribution from h1 (with m1 ∼ 125.5
GeV) decay into pair of h3. The allowed ranges of λ133 for
both values of v3 lie within the range 5 × 10−8–3.5 × 10−7.
In the present work mass of h2 is varied in the range 85–
110 GeV (i.e., m2 < m1) and the decay width is inversely
proportional to the mass of decaying particle (see Appendix
A for the expression). This indicates that the contribution of
the non-SM scalar to the freeze-in production of FImP dark
matter h3 is significant compared to the same obtained from
the SM like scalar when the coupling λ233 is not small (i.e.,
|λ233| ∼ λ133).

Figure 3a depicts the allowed range of θ13 plotted against
λ133 for both values of v3 considered in earlier plots of Fig. 2.
We also use a similar colour scheme to indicate the values
of v3 satisfying the same conditions applied in order to plot
Fig. 2. From Fig. 3a it can easily be observed that θ13 in the
present model varies within the range ∼ 1.0 − 6.0 × 10−13

for both chosen values of v3 = 6.5 × 10−3 GeV and v3 =
8.0 × 10−3 GeV, respectively. It can also be noticed from
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Fig. 3 The available model parameter space in the θ13–λ133 plane is shown in the left panel (Fig. 3a), while in the right panel (Fig. 3b) the same
region is depicted when θ23 is varied against θ13

the plots in Fig. 3a that λ133 is proportional to the value of
θ13. This reveals that the decay width h1 → h3h3 increases
with increase in θ13, which can enhance the freeze-in pair
production of h3 via h1. In Fig. 3b we show the allowed
model parameter space in θ23–θ13 plane for the same set
of v3 values and constraints used in earlier plots as well.
Inspection of Fig. 3b reveals that, for smaller values of θ23 ∼
10−16 −10−14, θ13 maintains a value in range ∼ 3×10−13 −
6 × 10−13 indicating that contribution in the relic density is
mostly from the decay of h1 into two h3 scalars. However,
as θ23 increases, the contribution of h2 increases (due to an
increase in λ233), which reduces the value of θ13 (as well
as λ133) in order to maintain the total DM relic density by
h3 and to avoid overabundance of dark matter (when we
add up the contribution of DM relic density obtained from
the fermionic dark matter component χ , i.e., fh3 + fχ =
1). It is to be mentioned that the mixing angle θ12 varies
within the range 0.003 ≤ θ12 ≤ 0.183 for the allowed model
parameter space obtained using both sets of v3 considered.
Note that all the plots in Figs. 2 and 3 are in agreement with
the constraints on the decay width of 7.1 keV scalar h3 into
X-ray, 2.5×10−29s−1 ≤ fh3h3→γ γ ≤ 2.5×10−28s−1. We
have also found that the signal strength of h2, i.e., R2, in the
present formalism is very small as regards it to be observed at
the LHC experiments due to the smallness of mixing between
the SM like scalar h1 with h2.

So far, in this work, we have only discussed the available
parameters for the two component dark matter model involv-
ing a fermion χ and a light scalar h3 of mass ∼ 7.1 keV in
agreement with Planck dark matter relic density satisfying
the condition �χh2 + �h3h

2 = �DMh2 (Figs. 2 and 3). In

Fig. 4a–b we show the mχ –�χh2 plots, while in Fig. 4c the
variation of the dark matter density �h3h

2 for the light dark
matter candidate h3 (m3 ∼ 7.1 keV) is plotted against the
temperature T of the Universe. Instead of scanning over the
full range of parameter space obtained from Figs. 2 and 3 (for
two values of v3), we consider two valid sets of parameters for
the purpose of demonstration tabulated in Table 2. Therefore,
the parameter sets in Table 2 are within the range of scans
performed using Table 1 and also respects all other neces-
sary conditions (such as vacuum stability, decay width of h3,
constraints from LHC etc.). The fermionic dark matter candi-
date can annihilate through s-channel annihilation mediated
by the scalars h1 and h2 (see Fig. 1). The mixing between the
SM like scalar h1 and non-SM scalar h2, given by θ12, is nec-
essary to calculate the parameters ai j , i, j = 1, 2, and dif-
ferent annihilations of the fermionic dark matter. Since in the
present work the range of couplingλ12 is large compared with
other couplings λ23 and λ13, the parameters ai j , i, j = 1, 2,
will dominantly be determined by θ12. This is also justified
by the plots in Fig. 3b where θ23 is varied with θ13, show-
ing these mixing angles are very small. Therefore, we have
chosen two values of θ12 for two sets of v3 values given in
Table 2. Note that we have also considered the same set of v3

values of the light scalar S in our model along with v1 = 246
GeV and v2 = 500 GeV taken earlier in order to find the
valid range parameter space obtained in Figs. 2 and 3. The
shown mχ–�χh2 plot in Fig. 4a corresponds to the set of
parameters with v3 = 6.5×10−3 GeV and the same with the
other set of parameters (for v3 = 8.0×10−3 GeV) is depicted
in Fig. 4b. The red regions in both Fig. 4a and b are obtained
by varying the coupling g within the range 0.01 ≤ g ≤ 5.0
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Fig. 4 Plots in Fig. 4a, b shows the mχ –�χh2 parameter space for the set of parameters in Table 2 for the fermionic DM. The variation of �h3h
2

(for the scalar DM h3) with temperature T for the same set of parameter is shown in Fig. 4c

Table 2 Chosen parameter sets
for the plots in Fig. 4a-c

Set m1 m2 m3 v3 θ12 g
GeV GeV GeV GeV

1 125.4 102.5 7.12×10−6 6.5×10−3 1.41×10−2 0.01–5.0

2 125.5 107.2 7.15×10−6 8.0×10−3 5.78×10−2 0.01–5.0

and also varying the fermionic dark matter mass mχ from 20
GeV to 200 GeV. From both Fig. 4a and b it can be observed
that a very small region of parameter space (for the chosen
sets in Table 2) lies below the total dark matter relic density
bound given by Planck [2] (black horizontal line shown in
both Fig. 4a and b). We have found that the relic density of
fermionic dark matter becomes less abundant with respect
to the total dark matter relic density near the resonances of
SM like Higgs (h1) and the non-SM scalar h2 when its mass
mχ ∼ mi/2, i = 1, 2. Apart from that, there is also a region
of parameter space with mass ∼ 100–180 GeV (for m2 =
102.5 GeV) and ∼ 100–190 GeV (when m2 = 107.2 GeV)
where the condition �χh2 < �DMh2 is satisfied. In this
region the heavy fermionic dark matter annihilates into the
scalars h1 and h2. Thus the dark matter annihilation cross-
section gets enhanced which reduces the relic density �χh2

of the fermionic dark matter candidate. The shaded blue hori-
zontal regions shown in the plot Fig. 4a (Fig. 4b) are fractional
contributions to the total DM relic density from the fermionic
dark matter candidate χ with fχ = 0.54 ( fχ = 0.72) where

fχ = �χ

�DM
. In Fig. 4c we show the evolution of the relic

density �h3h
2 of the light scalar dark matter h3 as a func-

tion of temperature T of the Universe with the same set of
parameters as given in Table 2. The plot shown in red (blue)
depicted in Fig. 4a (Fig. 4b) corresponds to the parameter
set with v3 = 6.5 × 10−3 GeV (v3 = 8.0 × 10−3 GeV).
Moreover, we have also satisfied the condition fχ + fh3 = 1
in the plots of Fig. 4c (in order to produce the total DM relic

abundance obtained from the Planck results [2]) such that
the fractional contribution of h3 for each set of parameters
in Table 2 is fh3 = 1 − fχ , i.e., fh3 = 0.46 (0.28) for the
red (blue) plot depicted in Fig. 4c. It appears from the plots
in Fig. 4c that the relic density of the light scalar dark matter
is very small (as the initial abundance Yh3 = 0), increases
gradually with decreasing temperature and finally saturates
near T ∼ 10 GeV. The saturation of the relic density indicates
that the production of h3 ceases as the Universe expands and
cools down due to a rapid decrease in the number density of
decaying or annihilating particles. Therefore from Fig. 4a-c
it can be concluded that the present model of two component
dark matter with a WIMP (heavy fermion χ ) and a FImP
(light scalar h3) can successfully provide the observed dark
matter relic density predicted by Planck satellite data.

6.1 Direct detection of dark matter

In this section we will investigate whether the allowed model
parameter space is compatible with the results from direct
detection of dark matter obtained from dark matter direct
detection experiments. Direct detection experiments search
for the evidence of dark matter–nucleon scattering and pro-
vide bounds on the dark matter–nucleon scattering cross-
section. Dark matter candidates in the present model can
undergo collisions with a detector nucleus and the recoil
energy due to the scattering is calibrated. Since no such
collision events have been observed yet by different dark
matter direct detection experiments, these experiments pro-
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vide an exclusion limit on the dark matter–nucleon scattering
cross-section. The most stringent bound on the DM–nucleon
spin independent (SI) cross-section is given by LUX [6],
XENON-1T [7] and PandaX-II [8]. In the present model both
dark matter components (WIMP and FImP) χ and h3 can suf-
fer spin independent (SI) elastic scattering with the detector
nucleus. The fermionic dark matter χ in the present work
can interact through pseudo scalar interaction via t-channel
processes mediated by both h1 and h2. The expression of the
spin independent scattering cross-section for the fermionic
dark matter χ is

σ
χ
SI = g2

π
m2

r

(
a11a12

m2
1

+ a22a21

m2
2

)2

λ2
p v2 (34)

where λp is given as [153]

λp = mp

v1

[∑
q

fq + 2

9

(
1 −

∑
q

fq

)]
� 1.3×10−3, (35)

and mr = mχmp
mχ+mp

denotes the reduced mass for the scatter-
ing. It is to be noted that due to the pseudo scalar interaction,
the scattering cross-section of Eq. (34) is velocity suppressed
and hence multiplied by a factor v2 with v ∼ 10−3 being
the velocity of dark matter particle. We have found that this
velocity suppressed scattering cross-section is way below
the latest limit on DM–nucleon scattering given by direct
detection experiments [6–8] DM direct search experiment.
This finding is also in agreement with the results obtained
in a different work by Ghorbani [85]. Moreover, since we
have two dark matter components in the model, the effective
scattering cross-section for the fermionic dark matter (i.e.,
WIMP candidate) will be rescaled by a factor proportional
to the fractional number density rχ = nχ

nχ+nh3
(nx denotes

the number density), i.e., σ
′χ
SI = rχσ

χ
SI (for further details

see [87,90]). The number density of both dark matter com-
ponents χ and h3 can be obtained from the expression of
the individual relic density given in Eq. (24). In the present
framework the fermionic dark matter candidate χ is ∼ 106

times heavier than the scalar h3 dark matter. For example
if we consider that the contribution to the total relic den-
sity from h3 is smaller with respect to that of the fermion
χ , having a value �h3h

2 ∼ 0.1�χh2, the number density
of h3 is 106 times larger than that of nχ . This indicates that
the rescaling factor rχ ∼ 10−6 and rh3 ∼ 1. Therefore the

effective spin independent scattering cross-section σ
′χ
SI for

the fermionic dark matter candidate is further suppressed by
the rescaling factor rχ << 1 making it much smaller than the
most sensitive dark matter direct detection limits obtained
from experiments like LUX, PandaX-II. Similarly, for the
scalar FImP dark matter candidate the effective spin indepen-

dent direct detection cross-section is given as σ
′h3
SI = rh3σ

h3
SI

where

σ
h3
SI = m

′2
r

4π

f 2

v2
1

m2
p

m2
3

(
λ133a11

m2
1

+ λ233a21

m2
2

)2

, (36)

where m′
r = m3mp

m3+mp
and f ∼0.3 [154]. Since m3 << mp,

m′
r ∼ m3 and Eq. (36) can be rewritten as

σ
h3
SI = 1

4π

f 2

v2
1

m2
p

(
λ133a11

m2
1

+ λ233a21

m2
2

)2

. (37)

Since h3 in the present model has very small interaction with
the SM bath particles and never reaches equilibrium once
being produced, the couplings λ133 and λ233 are very small
(∼ 10−7, as seen from Fig. 2b, c). We have found that though
the number density of h3 is high, rh3 ∼ 1 (as it is light), the

effective scattering cross-section σ
′h3
SI ∼ σ

h3
SI is also very

small as regards to being observed by any dark matter direct
search experiments and it remains far below the most strin-
gent limit given by LUX [6], XENON-1T [7] and PandaX-II
[8] due to the smallness of the couplings λ j33, j = 1, 2.
Therefore, in the present scenario of the two component dark
matter model (with a WIMP and a FImP), we do not expect
any bound on the model parameter space from direct detec-
tion experimental constraints.

7 Galactic Centre gamma ray excess and dark matter
self interaction

An excess of gamma ray in the energy range 1–3 GeV has
been obtained from the analysis of Fermi-LAT data [49]
in the region of the Galactic Centre. Such an excess can
be interpreted as a result of dark matter annihilation in the
GC region. Dark matter particles can be trapped due to the
immense gravitational pull of GC and also other astrophysi-
cal sites like dwarf galaxies, the Sun etc. These sites are rich
with dark matter particles, which then undergo pair anni-
hilation. Different particle physics models for dark matter
are explored in order to provide a suitable explanation to
this excess in gamma ray at GC as we have mentioned ear-
lier in Sect. 1. An analysis of this 1–3 GeV GC excess of
gamma rays by Calore, Cholis and Weniger (CCW) [60]
using various galactic diffusion excess models suggests that
Fermi-LAT data can be explained by dark matter annihila-
tion at GC. Indeed, the γ -ray excess can be very well fitted
with a dark matter of mass 49+6.4

−5.4 GeV, which annihilates
into a pair of bb̄ particles8 with annihilation cross-section

8 A produced pair of fermions undergo hadronisation processes
to finally annihilate into a pair of photons via pion decay or
bremsstrahlung.
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Table 3 Benchmark points for calculation of GC gamma ray excess plotted in Fig. 5 with fermionic dark matter χ

BP1 m1 m2 mχ v3 g R1 Br1
inv fχ fχ f 2

χ 〈σv〉bb̄ rχ σ
′χ
SI

GeV GeV GeV 10−3 10−26 pb
GeV cm3s−1

1 125.5 102.4 47.5 3.5 0.22 0.92 0.082 0.88 1.68 1.04e−06 2.09e−26

2 125.4 104.9 50.0 4.5 0.11 0.99 0.021 0.89 1.62 1.14e−06 5.81e−28

〈σv〉bb̄ = 1.76+0.28
−0.27 × 10−26 cm3s−1. In this section we

will investigate whether the WIMP like fermionic dark mat-
ter candidate χ can account for the observed GC gamma ray
excess results. In addition, a self interaction study of the light
scalar dark matter (FImP DM, mentioned earlier in Sect. 5)
will also be addressed in this section. Before we explore the
dark matter interpretation of GC gamma ray excess, a dis-
cussion is in order. The study of gamma ray signatures from
dwarf galaxies by Fermi-LAT and DES [63,64] also pro-
vides limits on the dark matter annihilation cross-sections
into various annihilation modes. The limits on the dark mat-
ter annihilation cross-section into bb̄ is consistent with the
GC gamma ray excess analysis by CCW. However, apart
from dark matter annihilation, the gamma ray excess at GC
in the range 1–3 GeV can also be explained by various non-
DM phenomena, such as a contribution from point sources
near GC [61] or in terms of millisecond pulsars [62]. The
study by Clark et al. [155] also rules out the idea that the
point like sources are dark matter substructures. However, in
a recent work the Fermi-LAT and DES collaborations have
performed an analysis of γ -ray data with 45 confirmed dwarf
spheroidals (dSphs) [65]. The analysis of gamma ray emis-
sion data from these dSphs by Fermi-LAT and DES provides
a bound on the dark matter annihilation cross-section into
different final channel particles (bb̄ and τ τ̄ ). Although their
analysis [65] of the data does not show any significant excess
at these sites (dSphs), the limits obtained on the DM anni-
hilation cross-section in their analysis do not exclude the
possibility of a DM interpretation of GC gamma ray excess
either. Therefore in the present work, we will consider dark
matter as the source to the gamma ray excess at the Galactic
Centre observed by Fermi-LAT and test the viability of our
model.

The expression for the differential gamma ray flux
obtained in the region of the Galactic Centre for the fermionic
dark matter candidate χ is

d2�

dEd�
= 〈σv〉 f

8πm2
χ

J
dN f

γ

dEγ

, (38)

performed over a solid angle d� for certain region of interest
(ROI). From Eq. (38), it can be observed that the differen-
tial γ -ray flux depends on the thermal averaged annihilation
cross-section 〈σv〉 f of dark matter into final state particles

(fermions), and
dN f

γ

dEγ
is the photon energy spectrum produced

due to annihilation into fermions. In Eq. (38), the factor J , the
astrophysical factor, depending on the dark matter density ρ,
is expressed as

J =
∫

los
ρ2(r(r ′, θ))dr, (39)

as the line of sight integral where r ′ =
√
r2 + r2 − 2rr cos θ

with r being the distance from the region of annihilation (GC)
to Earth and r = 8.5 kpc. The angle between line of sight
and line from GC is denoted by θ . In this work, we assume the
dark matter distribution is spherically symmetric, following
the Navarro–Frenk–White (NFW) [156] profile given as

ρ(r) = ρs
(r/rs)−γ

(1 + r/rs)3−γ
. (40)

In the expression of the NFW halo profile rs = 20 kpc
and ρs is a typical scale density such that it produces the
local dark matter density ρ = 0.4 GeV cm−3 at a distance
r. The differential gamma ray flux is calculated using the
ROI used by CCW [60] (|l| ≤ 200 and 20 ≤ |b| ≤ 200)

for γ = 1.2. The photon spectrum
dN f

γ

dEγ
from the annihila-

tion of dark matter is obtained from Cirelli [157]. In order
to calculate the differential gamma ray flux obtained for the
fermionic dark matter using Eqs. (38)–(40) and the specified
ROI by CCW, we consider two benchmark points from the
available model parameter space but with different values of
v3 (using the condition v3 ≤ 10.7 MeV to avoid the domain
wall problem as mentioned earlier in Sect. 2). We have used
different values of v3 for benchmark points keeping the range
of parameter space (given in Table 1) unchanged. Imposing
other relevant conditions (relic density, direct detection etc.)
we have observed that the nature of the plots and the physics
discussed earlier in Sect. 6 do not alter and the conclusions
remain same. Therefore the new set of benchmark points are
in agreement with all the limits and constraints such as vac-
uum stability, LHC bounds, limits on the decay width of light
scalar, dark matter relic density etc. The benchmark points
are then used to calculate the gamma ray flux in this work
is tabulated in Table 3. It is to be noted that since the dark
matter candidate is a fermion, one may think that the anni-
hilation cross-section will be velocity suppressed. However,
in the present model, the fermion dark matter has a pseudo
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Fig. 5 Comparison of the Fermi-LAT excess results from CCW [60]
with the gamma ray flux obtained from benchmark points tabulated in
Table 3

scalar type interaction which removes the velocity depen-
dence of the dark matter annihilation cross-section [85]. In
Fig. 5, we compare the GC gamma ray flux produced using
benchmark points BP1 and BP2 tabulated in Table 3 with the
results from CCW [60] for the GC gamma ray excess. It is to
be noted that the annihilation cross-section for the fermionic
dark matter χ into bb̄, i.e., 〈σv〉bb̄ will be multiplied by f 2

χ

(since annihilation requires two dark matter candidates).9

Hence in order to produce the required flux for the excess
of the GC gamma ray, the contribution to the relic density
by the fermionic candidate fχ should be large. In Fig. 5, the
gamma ray flux obtained from BP1 (BP2) is plotted in green
(blue) along with the data obtained from CCW [60]. From
Fig. 5, it can be observed that the fermionic dark matter com-
ponent χ (WIMP) in our model can account for the observed
GC gamma ray excess results obtained by an analysis of the
Fermi-LAT data. Moreover, from the benchmark points it can
also be seen that the spin independent direct detection cross-
section for the fermionic dark matter candidate calculated
using Eqs. (34, 35) is very small and remains below the lim-
its from the most stringent constraints on the DM–nucleon
cross-section given by LUX [6], XENON-1T [7] etc.

As we have mentioned earlier, we now investigate whether
the light scalar dark matter h3 can satisfy the condition for
the dark matter self interaction with the same set of bench-
mark points. The relevant results for the scalar dark matter
candidate h3 for BP1 and BP2 are tabulated in Table 4. From
Table 4, it can be easily seen that for both benchmark points,
the effective self interaction cross-section of the light DM
candidate h3 remains below the observed limit σ/m ≤ 0.47
cm2/g (∼ 1

10 of the observed upper limit) obtained from the
study by Harvey et al. [132]. However, as we have discussed

9 This can be understood as the modified line of sight integral Je f f =
f 2
χ J to depend on the DM density as well.

in Sect. 5, it is to be noted that the result for the effective
self interaction in this model is only an estimate and it may
change significantly by the influence of other effects such
as the gravitational interaction, the mass distribution etc. of
dark matter. The self interaction for the light scalar DM can-
didate is calculated using Eq. (31) and it is then scaled by a
factor f 2

h3
to find the effective self interaction.

It can also be seen from Table 4 that the FImP like scalar
DM can also explain the 3.55 keV X-ray emission as observed
by the XMM Newton observatory if confirmed later as well.
Calculation of DM–nucleon scattering cross-section for the
scalar dark matter (using Eq. 37) also indicates that direct
detection of the candidate is not possible at present, having

a small σ
′h3
SI compared to the upper limit obtained LUX and

other DM direct search experiments. Hence, at present, both
dark matter candidates (χ and h3) are beyond the reach of
current direct DM search experiments with spin independent
scattering cross-section lying far below the existing limits
obtained from these experiments. This justifies our previous
comments on the scattering cross-section for the dark matter
particles with the detector nucleon discussed in Sect. 6.1.

8 Summary and conclusion

In this work we have explored the viability of a two com-
ponent dark matter model with a fermionic dark matter that
evolves thermally behaving like a WIMP and a non-thermal
feebly interacting light singlet scalar dark matter which is
produced via the freeze-in mechanism (FImP). The fermionic
dark matter candidate χ interacts with the SM sector through
a pseudo scalar particle � as the pseudo scalar acquires a non-
zero VEV and thus the CP symmetry of the Lagrangian is
broken spontaneously. Similarly the Z2 symmetry of the sin-
glet scalar is also broken spontaneously when S is given a tiny
non-zero VEV resulting in three physical scalars. However,
the global U (1)DM symmetry of the fermionic dark matter
remains intact and provides us a stable dark WIMP like DM
candidate. On the other hand the light scalar h3 having a very
small interaction with the SM sector also serves as a FImP
dark matter candidate produced via the freeze-in mechanism.
The SU (2)L ×U (1)Y symmetry of the SM Higgs field is also
broken spontaneously which provides mass to the SM parti-
cles. Hence, in the present model we have three scalars which
mix with each other. We identify one of the physical scalars,
h1, to be SM like Higgs, h2 as a non-SM Higgs and h3 is
the light scalar dark matter. We constrain the model param-
eter space by vacuum stability, unitarity, bounds from LHC
results on the SM scalar etc. to solve for the coupled Boltz-
mann equation in the present framework such that the sum
of the relic densities of these dark matter candidates satis-
fies the observed DM relic density by Planck. We test for the
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Table 4 Calculations of
different observables for the
scalar dark matter candidate for
the same set of benchmark
points given in Table 3

BP1 m1 m2 m3 v3 fh3 fh3h3→γ γ rh3 λs f 2
h3

σh3
m3

σ
h3
SI

GeV GeV keV 10−3 10−29 cm2/g pb
GeV s−1

1 125.5 102.4 7.10 3.5 0.12 2.55 ∼ 1 2.06e−06 0.053 1.11e−23

2 125.4 104.9 7.11 4.5 0.11 2.63 ∼ 1 1.25e−06 0.017 9.10e−24

viability of the fermionic dark matter candidate in order to
explain the GC gamma ray results obtained from the analy-
sis of the Fermi-LAT data [49] by CCW [60]. We show that
the excess of the GC gamma rays in the energy range 1–3
GeV can be obtained from the annihilation of fermionic dark
matter, which produces the required amount of annihilation
cross-section 〈σv〉bb̄, having a mass ∼ 50 GeV. There is also
a valid region for the fermionic dark matter candidate χ with
mass ranging from 100–190 GeV. In addition, we investigate
whether the light scalar dark matter candidate can account
for dark matter self interaction. We found that the dark matter
self interaction cross-section for the light scalar dark matter
h3 considered in the model is about ten times smaller than the
observed upper limit obtained from galaxy cluster collisions
results [132,133]. Moreover, we also test for the viability of
this light dark matter candidate to explain the possible 3.55
keV X-ray signal obtained from the study of extragalactic X-
ray emission reported by Bulbul et al. [99]. Our study reveals
that a light dark matter m3 ∼ 7.1 keV in the present model
can serve as a viable candidate that produces the required
flux (in agreement with the condition for the decay width of
h3 → γ γ ) if confirmed by the observations of extragalactic
X-ray search experiments and also consistent with the dark
matter self interaction results. Both dark matter candidates
in the present “WIMP–FImP” framework are insensitive to
direct detection experimental bounds and the spin indepen-
dent direct detection cross-section is far below the upper limit
given by the LUX, PandaX-II DM direct search results. While
this work is being completed, we came to know about a new
work [158] on the analysis of the Fermi-LAT GC gamma ray
excess for pseudo scalar interaction of dark matter using a
different ROI (150 × 150) about GC with interstellar emis-
sion models (IEMs) and point sources. A detailed study of
the results presented in [158] is beyond the scope of this work
and we wish to test these results for pseudo scalar interactions
in our model in a future work.
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Appendix A

• Annihilation cross-section of fermion dark matter candi-
date χ

σvχ̄χ→ f f̄ = Nc
g2

32π
s
m2

f

v2
1

(
1 − 4m2

f

s

)3/2

× F(s,m1,m2),

σvχ̄χ→W+W− = g2
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(
1 − 4m2

W
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v1
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4m4
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=
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1
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2

2
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× 2(s − m2
1)(s − m2

2) + 2m1m212

[(s − m2
1)

2 + m2
1

2
1][(s − m2

2)
2 + m2

2
2
2]

]
,

σvχ̄χ→h1h1

= g2

32π

(
1 − 4m2

1

s

)1/2 [
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2
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σvχ̄χ→h2h2
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32π

(
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,
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σvχ̄χ→h3h3

= g2

32π

(
1 − 4m2

3
s

)1/2 [
a2

12λ2
133

(s − m2
1)2 + m2

12
1
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22λ2
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22

2]
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.

• Decay and annihilation terms for scalar dark matter can-
didate h3

h
j
→h

3
h

3
= λ2

j33

8πm j

√√√√1 − 4m2
3

m2
j

, j = 1, 2,

σ f f̄ →h3h3
= Nc

1

16πs

√
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• PMNS matrix with δ = 0

U =
⎛
⎝ c13c12 s12c13 s13

−s12c23 − s23s13c12 c23c12 − s23s13s12 s23c13

s23s12 − s13c23c12 −s23c12 − s13s12c23 c23c13

⎞
⎠ .

• Couplings between different physical scalars obtained
from the expression of the potential
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