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Abstract Meson spectroscopy at finite gauge coupling –
whereat any perturbative QCD computation would break
down – and finite number of colors, from a top–down holo-
graphic string model, has thus far been entirely missing in
the literature. This paper fills this gap. Using the delocal-
ized type IIA SYZ mirror (with SU (3) structure) of the
holographic type IIB dual of large-N thermal QCD of Mia
et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th],
2010) as constructed in Dhuria and Misra (JHEP 1311:001.
arXiv:1306.4339 [hep-th], 2013) at finite coupling and num-
ber of colors (Nc = number of D5(D5)-branes wrapping a
vanishing two-cycle in the top–down holographic construct
of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-
th], 2010) = O(1) in the IR in the MQGP limit of Dhuria
and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013)
at the end of a Seiberg-duality cascade), we obtain ana-
lytical (not just numerical) expressions for the vector and
scalar meson spectra and compare our results with previ-
ous calculations of Sakai and Sugimoto (Prog Theor Phys
113:843. doi:10.1143/PTP.113.843. arXiv:hep-th/0412141,
2005) and Dasgupta et al. (JHEP 1507:122. doi:10.1007/
JHEP07(2015)122. arXiv:1409.0559 [hep-th], 2015), and we
obtain a closer match with the Particle Data Group (PDG)
results of Olive et al. (Particle Data Group) (Chin Phys C
38:090001, 2014). Through explicit computations, we ver-
ify that the vector and scalar meson spectra obtained by the
gravity dual with a black hole for all temperatures (small
and large) are nearly isospectral with the spectra obtained
by a thermal gravity dual valid for only low temperatures;
the isospectrality is much closer for vector mesons than
scalar mesons. The black-hole gravity dual (with a horizon
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c e-mail: krusldph@iitr.ac.in

radius smaller than the deconfinement scale) also provides
the expected large-N suppressed decrease in vector meson
mass with increase of temperature.

1 Introduction

The AdS/CFT [6] correspondence and its non-conformal
generalizations conjecture the equivalence between string
theory on a ten-dimensional space-time and gauge theory
living on the boundary of space-time. A generalization of
the AdS/CFT correspondence is necessary to explore more
realistic theories (less supersymmetric and non-conformal)
such as QCD. The original AdS/CFT conjecture [6] pro-
posed a duality between maximally supersymmetric N =
4SU (N ) SYM gauge theory and type IIB supergravity on
AdS5 × S5 in the low energy limit. Different generalized ver-
sions of the AdS/CFT have thus far been proposed to study
non-supersymmetric field theories. One way of constructing
gauge theories with less supersymmetry is to consider stacks
of Dp branes at the singular tip of a Calabi–Yau cone. In
this paper we use a large-N top–down holographic dual of
QCD [1] to obtain the meson spectrum from type IIA per-
spective. Embedding of additional D-branes (flavor branes)
in the near-horizon limit gives rise to a modification of the
original AdS/CFT correspondence which involves field the-
ory degrees of freedom that transform in the fundamental
representation of the gauge group. This is useful for describ-
ing field theories like QCD, where quark fields transform in
the fundamental representation. Mesons operator or a gauge
invariant bilinear operator corresponds to the bound state of
anti-fundamental and fundamental field.

In the past decade, (glueballs and) mesons have been stud-
ied extensively to gain new insight into the non-perturbative
regime of QCD. Various holographic set-ups such as soft-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5219-5&domain=pdf
http://arxiv.org/abs/0902.1540
http://arxiv.org/abs/1306.4339
http://arxiv.org/abs/0902.1540
http://arxiv.org/abs/1306.4339
http://dx.doi.org/10.1143/PTP.113.843
http://arxiv.org/abs/hep-th/0412141
http://dx.doi.org/10.1007/JHEP07(2015)122
http://dx.doi.org/10.1007/JHEP07(2015)122
http://arxiv.org/abs/1409.0559
mailto:viitr.dph2015@iitr.ac.in
mailto:aalokfph@iitr.ac.in
mailto:krusldph@iitr.ac.in


656 Page 2 of 35 Eur. Phys. J. C (2017) 77 :656

wall model, hard-wall model, modified soft-wall model, etc.
have been used to obtain the glueballs’ and mesons’ spectra
and obtain interaction between them. In the following two
paragraphs a brief summary of the work is given that has
been done in past decades.

Most of existing literature on holographic meson spec-
troscopy is of the bottom-up variety based often on soft/hard-
wall AdS/QCD models. Here is a short summary of some of
the relevant work. Soft-wall holographic QCD model was
used in [7,8] to obtain spectrum and decay constants for
1−+ hybrid mesons and to study the scalar glueballs and
scalar mesons at T �= 0, respectively. In [7] no states with
exotic quantum numbers were observed in the heavy quark
sector. Comparison of the computed mass with the experi-
mental mass of the 1−+ candidates π1(1400), π1(1600) and
π1(2015), favored π1(1400) as the lightest hybrid state. In [9]
an IR-improved soft-wall AdS/QCD model in good agree-
ment with linear confinement and chiral symmetry break-
ing was constructed to study the mesonic spectrum. The
model was constructed to rectify inconsistencies associated
with both simple soft-wall and hard-wall models. The hard-
wall model gave a good realization for the chiral symme-
try breaking, but the mass spectra obtained for the excited
mesons did not match the experimental data well. The soft-
wall model with a quadratic dilaton background field showed
the Regge behavior for excited vector mesons but chiral
symmetry breaking phenomena cannot be realized consis-
tently in the simple soft-wall AdS/QCD model. A hard-wall
holographic model of QCD was used in [10–12] to ana-
lyze the mesons. In [13] a two-flavor quenched dynami-
cal holographic QCD(hQCD) model was constructed in the
graviton–dilaton framework by adding two light flavors. In
[3] the mesonic spectrum was obtained for a D4/D8(−D8)-
brane configuration in type IIA string theory; in [14] massive
excited states in the open string spectrum were used to obtain
the spectrum for higher spin mesons J ≥ 2. NLO terms
were obtained by taking into account the effect of the curved
background perturbatively, which led to corrections in for-
mula J = α0 + α′M2. The results obtained for the meson
spectrum were compared with the experimental data to iden-
tify a2(1320), b1(1235), π(1300), a0 etc. first and second
excited states. In [15] a holographic model was constructed
with extremal Nc D4-branes and D6-flavor branes in the
probe approximation. The model gave a good approxima-
tion for Regge behavior of glueballs but failed to explain
mesonic spinning strings because the dual theory did not
include quarks in the fundamental representations.

To our knowledge, the only top–down holographic dual
of large-N thermal QCD which is IR confining, UV confor-
mal and UV-complete (e.g. the holographic Sakai–Sugimoto
model [3] does not address the UV) with fundamental quarks
is the one given in [1] involving N D3-branes, M D5/(D5)

branes wrapping a vanishing two-cycle and N f D7(D7) fla-

vor branes in a warped resolved conifold at finite temperature
in the brane picture (and M D5-branes and D7(D7)-branes
with a black hole and fluxes in a resolved warped deformed
conifold gravitational dual). In [4], the authors (some also
participating in [1]) obtained the vector and scalar mesonic
spectra by taking a single T dual of the holographic type
IIB background of [1]. Comparison of the (pseudo-)vector
mesons with PDG results, provided a reasonable agreement.
One of the main objectives of our work is to see if by taking
a mirror of the type IIB background of [1] via delocalized
Strominger–Yau–Zaslow’s triple-T duality prescription – a
new tool in this field – at finite gauge coupling and with finite
number of colors – a new limit and one which is closest to
realistic strongly coupled thermal QCD – one can obtain a
better agreement between the mesonic spectra so obtained
and PDG results than previously obtained in [3,4], and in the
process gain new insights into a holographic understanding
of thermal QCD.

In [16], we initiated top–down G-structure holographic
large-N thermal QCD phenomenology at finite gauge cou-
pling and finite number of colors, in particular from the van-
tage point of the M-theory uplift of the delocalized SYZ type
IIA mirror of the top–down UV-complete holographic dual
of large-N thermal QCD of [1], as constructed in [2]. We cal-
culated up to (N)LO in N , masses of 0++, 0−−, 0−+, 1++
and 2++ glueballs, and we found very good agreement with
some of the lattice results on the same. In this paper, we
continue exploring top–down G-structure holographic large-
N thermal QCD phenomenology at finite gauge coupling
by evaluating the spectra of (pseudo-)vector and (pseudo-
)scalar mesons, and in particular comparing their ratios for
both types with P(article) D(ata) G(roup) results.

The rest of the paper is organized as follows. In Sect. 2,
via four sub-sections, we briefly review a UV-complete top–
down type IIB holographic dual of large-N thermal QCD
(Sect. 2.1) as given in [1] and its M-theory uplift in the
‘MQGP limit’ as worked out in [2] (Sect. 2.2); Sect. 2.3
presents a discussion of the construction in [2] of the delo-
calized Strominger–Yau–Zaslow (SYZ) type IIA mirror of
the aforementioned type IIB background of [1] and Sect. 2.4
has a brief review of SU (3) and G2 structures relevant to
[1] (type IIB) and [2,17] (type IIA and M theory). Section 3
is on the construction of the embedding of D6-branes via
delocalized SYZ type IIA mirror of the embedding of D7-
branes of type IIB. Via five sub-sections, Sect. 4 is on obtain-
ing the (pseudo-)vector meson spectra in the framework of
[2] at finite coupling assuming a black-hole gravity dual
for all temperatures, small and large. The (pseudo-)vector
mesons correspond to gauge fluctuations about a background
gauge field along the world volume of the D6 branes. Unlike
[4], the gravity dual involves a black hole (rh �= 0) and
consequently, while factorizing the gauge fluctuations along
R

3 ×S
1-radial direction into fluctuations along R

3 × S
1 and
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eigenmode fluctuations along the radial direction, there are
two types of eigenmodes along the radial direction – one
denoted by α

{i}
n (Z), which is coupled to gauge fluctuations

along the space-like R
3, and the other denoted by α

{0}
n (Z),

which is coupled to the compact time-like S
1 (metric along

which includes the black-hole function). After obtaining the
EOMs for α

{i}
n and α

{0}
n , the following is the outline of what

is done in Sects. 4.1–4.5. First, in Sect. 4.1, assuming an
IR-valued vector meson spectrum, the same is obtained by
solving the EOMs near the horizon. Next, by converting the
EOMs to a Schrödinger-like EOMs, the vector meson spec-
tra are worked out for α

{i}
n eigenmodes in Sect. 4.2 (in the

IR limit in Sect. 4.2.1 and the UV limit in Sect. 4.2.2) and
α

{0}
n eigenmodes in Sect. 4.3 (in the IR limit in Sect. 4.3.1

and the UV limit in Sect. 4.3.2). Finally, using the WKB
quantization prescription, the vector meson spectrum corre-
sponding to the α

{i}
n eigenmodes is worked out (in the small-

and large-mass limits) in Sect. 4.4, and that corresponding
to the α

{0}
n eigenmodes (in the small- and large-mass limits)

in Sect. 4.5. In Sect. 5, we obtain the scalar meson spectrum
by considering fluctuations of the D6-branes orthogonal to
their world volume in the absence of any background gauge
fields in a black-hole background for all temperatures, small
and large. In the same vein as vector meson spectroscopy,
after obtaining the EOM for the radial eigenfunction mode,
the following is an outline of what is done in Sect. 5, devoted
to scalar meson spectroscopy. First, in Sect. 5.1, assuming
an IR-valued scalar meson spectrum, the same is obtained
by solving the EOMs near the horizon. Next, by converting
the EOMs to a Schrödinger-like EOMs, the scalar meson
spectrum is worked out for in Sect. 5.2 (in the IR limit in
Sect. 5.2.1 and the UV limit in Sect. 5.2.2). Finally, using the
WKB quantization prescription, the scalar meson spectrum
is worked out (in the small- and large-mass limits) in Sect.
5.3. In Sect. 6, we obtain the (pseudo-)vector meson spec-
trum in Sect. 6.1 (and the three sub-sub-sections therein) and
(pseudo-)scalar meson spectrum in Sect. 6.2 using a ther-
mal background, and hence verify that the mesonic spectra
of Sects. 4 and 5 are nearly isospectral with Sect. 6. Sec-
tion 7 presents a discussion of the new insights and results
obtained in this work and some future directions. There are
three supplementary appendices.

2 Background: a top–down type IIB holographic
large-N thermal QCD and its M-theory uplift in the
‘MQGP’ limit

Via four sub-sections, in this section, we will:

• provide a short review of the type IIB background of [1], a
UV-complete holographic dual of large-N thermal QCD,
in Sect. 2.1,

• discuss the ‘MQGP’ limit of [2] and the motivation for
considering this limit in Sect. 2.2,

• briefly review issues as discussed in [2,17–19], per-
taining to construction of a delocalized S(trominger)–
Y(au)–Z(aslow) mirror and approximate supersymmetry,
in Sect. 2.3,

• briefly review the new results of [17,19] pertaining to
construction of explicit SU (3) and G2 structures respec-
tively of type IIB/IIA, and M-theory uplift.

2.1 Type IIB dual of large-N thermal QCD

In this subsection, we will discuss a UV-complete holo-
graphic dual of large-N thermal QCD as given in Dasgupta
and Mia et al. [1]. In order to include fundamental quarks
at non-zero temperature in the context of type IIB string
theory, [1] considered at finite temperature, N D3-branes,
M D5-branes wrapping a vanishing two-cycle and M D5-
branes distributed along a resolved two-cycle and placed at
the outer boundary of the IR–UV interpolating region/inner
boundary of the UV region. The D5/D5 separation is given
by RD5/D5. The radial space, in [1] is divided into the IR,
the IR–UV interpolating region and the UV. N f D7-branes,
via Ouyang embedding, are holomorphically embedded in
the UV, the IR–UV interpolating region and dipping into the
(confining) IR (up to a certain minimum value of r corre-
sponding to the lightest quark) and N f D7-branes present in
the UV and the UV–IR interpolating (not the confining IR).
This is to ensure turning off of three-form fluxes. The resul-
tant ten-dimensional geometry is given by a resolved warped
deformed conifold. In the gravity dual D3-branes and the
D5-branes are replaced by fluxes in the IR. The finite tem-
perature resolves1 and IR confinement deforms the conifold.
Back-reactions are included in the warp factor and fluxes.

One has SU (N + M) × SU (N + M) color gauge group
and SU (N f ) × SU (N f ) flavor gauge group, in the UV.
It is expected that there will be a partial Higgsing of
SU (N + M) × SU (N + M) to SU (N + M) × SU (N )

at r = RD5/D5 [21]. The two gauge couplings, gSU (N+M)

and gSU (N ) flow logarithmically and oppositely in the IR:

4π2
(

1
g2
SU (N+M)

+ 1
g2
SU (N )

)
eφ ∼π; 4π2

(
1

g2
SU (N+M)

− 1
g2
SU (N )

)

eφ ∼ 1
2πα′

∫
S2 B2. Had it not been for

∫
S2 B2, in the UV,

one could have set g2
SU(M+N ) = g2

SU (N ) = g2
YM ∼ gs ≡

constant (implying conformality), which is the reason for
inclusion of M D5-branes at the common boundary of
the UV–IR interpolating and the UV regions, to annul this
contribution. In fact, the running also receives a contri-

1 The non-zero resolution parameter ‘a’ is also there to introduce a
separation RD5/D5 between the D5 and D5 branes, which as in [19]

we assume is
√

3a (as r >
√

3a lies in the large-r region in a resolved
conifold [20]).
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bution from the N f flavor D7-branes which needs to be
annulled via N f D7-branes. Under an NVSZ RG flow, the
gauge coupling gSU (N+M) – having a larger rank – flows
towards strong coupling and the SU (N ) gauge coupling
flows towards weak coupling. Upon application of Seiberg

duality, SU (N+M)strong
Seiberg Dual−→ SU (N−(M−N f ))weak

in the IR; assuming after duality cascade, N decreases to 0
and there is a finite M , one will be left with SU (M) gauge
theory with N f flavors that confines in the IR – the finite
temperature version of this was addressed by [1].

So, in the IR, at the end of the duality cascade,
number of colors Nc is identified with M , which in
the ‘MQGP limit’ can be tuned to equal 3. One can
identify Nc with Neff(r) + Meff(r), where Neff(r) =∫

Base of Resolved Warped Deformed Conifold F5 and Meff = ∫
S3 F̃3

(the S3 being dual to eψ ∧ (sin θ1dθ1 ∧ dφ1 − B1 sin θ2 ∧
dφ2), wherein B1 is an asymmetry factor defined in [1],
and eψ ≡ dψ + cos θ1 dφ1 + cos θ2 dφ2) where F̃3(≡
F3 − τH3) ∝ M(r) ≡ 1

1+e
α
(
r−RD5/D5

) , α � 1 [22]. The

number of colors Nc varies between M in the deep IR and a
large value [even in the MQGP limit of (10) (for a large value
of N )] in the UV. Hence, at very low energies, the number of
colors Nc can be approximated by M , which in the MQGP
limit is taken to be finite and can hence be taken to be equal to
three. In [1], the effective number of D3-branes, D5-branes
wrapping the vanishing two-cycle and the flavor D7-branes,
denoted, respectively, by Neff(r), Meff(r) and N eff

f (r), are
given as

Neff(r) = N

[
1 + 3gsM2

eff

2πN

(
log r + 3gs N eff

f

2π
(log r)2

)]
,

Meff(r) = M + 3gs N f M

2π
log r +

∑
m≥1

∑
n≥1

Nm
f M

n fmn(r),

N eff
f (r) = N f +

∑
m≥1

∑
n≥0

Nm
f M

ngmn(r). (1)

It was argued in [17] that the length scale of the OKS-BH
metric in the IR, after Seiberg duality cascading away almost
the whole of Neff , will be given by

LOKS-BH ∼ √
MN

3
4
f

√√√√√
⎛
⎝∑

m≥0

∑
n≥0

Nm
f M

n fmn(�)

⎞
⎠

×
⎛
⎝∑

l≥0

∑
p≥0

Nl
f M

pglp(�)

⎞
⎠

1
4

g
1
4
s

√
α′

≡ N
3
4
f

√√√√√
⎛
⎝∑

m≥0

∑
n≥0

Nm
f M

n fmn(�)

⎞
⎠

×
⎛
⎝∑

l≥0

∑
p≥0

Nl
f M

pglp(�)

⎞
⎠

1
4

LKS

∣∣∣∣∣∣∣
�:log �< 2π

3gs N f

,

(2)

which implies that in the IR, relative to KS, there is a color-
flavor enhancement of the length scale in the OKS-BH met-
ric. Hence, in the IR, even for N IR

c = M = 3 and N f = 2
(light flavors) upon inclusion of n,m > 1 terms in Meff and
N eff

f in (1), LOKS-BH � LKS(∼ LPlanck) in the MQGP limit

involving gs
∼
< 1, implying that the stringy corrections are

suppressed and one can trust supergravity calculations. Fur-
ther, the global flavor group SU (N f ) × SU (N f ), is broken
in the IR to SU (N f ) as the IR has only N f D7-branes.

Hence, the type IIB model of [1] makes it an ideal holo-
graphic dual of thermal QCD because, it is UV conformal
and IR confining with required chiral symmetry breaking in
the IR. The quarks present in the theory transform in the fun-
damental representation, plus theory is defined for the full
range of temperature both low and high.
(d) Supergravity solution on resolved warped deformed coni-
fold

The metric in the gravity dual of the resolved warped

deformed conifold with gi ’s: g1,2(r, θ1, θ2) = 1 − r4
h
r4 +

O
(
gsM2

N

)
is given by

ds2 = 1√
h

(− g1dt2 + dx2
1 + dx2

2 + dx2
3

)

+√
h
[
g−1

2 dr2 + r2dM2
5

]
. (3)

The compact five-dimensional metric in (3) is given as

dM2
5 = h1 (dψ + cos θ1 dφ1 + cos θ2 dφ2)

2

+ h2
(
dθ2

1 + sin2θ1 dφ2
1

)+ h4
(
h3dθ2

2 + sin2θ2 dφ2
2

)
+ h5

[
cos ψ

(
dθ1dθ2 − sin θ1sin θ2dφ1dφ2

)
+ sin ψ

(
sin θ1 dθ2dφ1 + sin θ2 dθ1dφ2

)]
, (4)

wherein we will assume r �a, h5 ∼ (deformation parameter)2

r3 �
1 for r � (deformation parameter)

2
3 . The hi appearing in the

internal metric up to linear order depend on gs, M, N f are
given as

h1 = 1

9
+ O

(
gsM2

N

)
,

h2 = 1

6
+ O

(
gsM2

N

)
, h4 = h2 + a2

r2 ,

h3 = 1 + O
(
gsM2

N

)
, h5 �= 0, L = (4πgs N )

1
4 . (5)

One sees from (4) and (5) that one has a non-extremal
resolved warped deformed conifold involving an S2-blowup
(ash4−h2 = a2

r2 ), an S3-blowup (ash5 �= 0) and squashing of
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an S2 (as h3 is not strictly unity). The horizon (being at a finite
r = rh) is warped squashed S2 × S3. In the deep IR, in prin-
ciple one ends up with a warped squashed S2(a) × S3(ε), ε

being the deformation parameter. Assuming ε
2
3 > a and

given that a = O
(
gsM2

N

)
rh [21], in the IR and in the MQGP

limit, Neff(r ∈ IR) = ∫
warped squashed S2(a)×S3(ε)

F5(r ∈
IR) � M = ∫

S3(ε)
F3(r ∈ IR); we have a confining SU (M)

gauge theory in the IR.
The warp factor that includes the back-reaction in the IR

is given as

h = L4

r4

[
1 + 3gsM2

eff

2πN
logr

{
1 + 3gs N eff

f

2π

(
logr + 1

2

)

+ gs N eff
f

4π
log

(
sin

θ1

2
sin

θ2

2

)}]
, (6)

where, in principle, Meff/N eff
f are not necessarily the same

as M/N f ; we, however, will assume that, up to O
(
gsM2

N

)
,

they are. Proper UV behavior requires [21]

h = L4

r4

⎡
⎣1 +

∑
i=1

Hi
(
φ1,2, θ1,2, ψ

)
r i

⎤
⎦ , large r;

h = L4

r4

⎡
⎣1 +

∑
i, j;(i, j) �=(0,0)

hi j
(
φ1,2, θ1,2, ψ

)
logi r

r j

⎤
⎦ , small r.

(7)

In the IR, up to O(gs N f ) and setting h5 = 0, the three-
forms are as given in [1]:

(a) F̃3 = 2MA1

(
1 + 3gs N f

2π
log r

)

× eψ ∧ 1

2
(sin θ1 dθ1 ∧ dφ1 − B1 sin θ2 dθ2 ∧ dφ2)

−3gsMN f

4π
A2

dr

r
∧ eψ ∧

×
(

cot
θ2

2
sin θ2 dφ2 − B2 cot

θ1

2
sin θ1 dφ1

)

−3gsMN f

8π
A3 sin θ1 sin θ2

×
(

cot
θ2

2
dθ1 + B3 cot

θ1

2
dθ2

)
∧ dφ1 ∧ dφ2,

(b) H3 = 6gs A4M

(
1 + 9gs N f

4π
log r

+gs N f

2π
log sin

θ1

2
sin

θ2

2

)
dr

r
∧ 1

2

×
(

sin θ1 dθ1 ∧ dφ1 − B4 sin θ2 dθ2 ∧ dφ2

)

+3g2
s MN f

8π
A5

(
dr

r
∧ eψ − 1

2
deψ

)
∧

×
(

cot
θ2

2
dθ2 − B5 cot

θ1

2
dθ1

)
. (8)

The asymmetry factors in (8) are given by Ai = 1 +
O
(
a2

r2 or a2 log r
r or a2 log r

r2

)
+O

(
deformation parameter2

r3

)
, Bi =

1+O
(
a2 log r

r or a2 log r
r2 or a2 log r

r3

)
+O

(
(deformation parameter)2

r3

)
.

As in the UV, (deformation parameter)2

r3 � (resolution parameter)2

r2 ,
we will assume the same three-form fluxes for h5 �= 0.
With RD5/D5 denoting the boundary common to the UV-

IR interpolating region and the UV region, F̃lmn, Hlmn = 0
for r ≥ RD5/D5 is required to ensure conformality in the UV.

Near the θ1 = θ2 = 0-branch, assuming θ1,2 → 0 as εγθ>0

and r → RUV → ∞ as ε−γr<0, limr→∞ F̃lmn = 0 and
limr→∞ Hlmn = 0 for all components except Hθ1θ2φ1,2 ; in
the MQGP limit and near θ1,2 = π/0-branch, Hθ1θ2φ1,2 =
0/

3g2
s MN f
8π

∣∣∣
N f =2,gs=0.6,M=(O(1)gs )

− 3
2

� 1. So, the UV

nature too is captured near θ1,2 = 0-branch in the MQGP
limit. This mimics addition of D5-branes in [1] to ensure
cancellation of F̃3.

Further, to ensure UV conformality, it is important to
ensure that the axion–dilaton modulus approaches a con-
stant implying a vanishing beta function in the UV. This
was discussed in detail in Appendix B of [17], wherein in
particular, assuming the F-theory uplift involved, locally, an
elliptically fibered K3, it was shown that UV conformality
and the Ouyang embedding are mutually consistent.

2.2 The ‘MQGP Limit’

In [2], we had considered the following two limits:

(i) weak(gs)coupling − large ′tHooft coupling limit:
gs � 1, gs N f � 1,

gsM2

N
� 1, gsM � 1, gs N � 1

effected by: gs ∼ εd , M ∼ (O(1)ε)−
3d
2 ,

N ∼ (O(1)ε)−19d , ε � 1, d > 0 (9)

(the limit in the first line though not its realization in the
second line, considered in [1]);

(ii) MQGP limit: gsM2

N
� 1, gs N � 1, finite gs, M

effected by: gs ∼ εd , M ∼ (O(1)ε)−
3d
2 ,

N ∼ (O(1)ε)−39d , ε � 1, d > 0. (10)

The motivation for considering the MQGP limit which
was discussed in detail in [17] is as follows:
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1. Unlike the AdS/CFT limit wherein gYM → 0, N → ∞
such that g2

YMN is large, for strongly coupled thermal
systems like sQGP, what is relevant is gYM ∼ O(1) and
Nc = 3. From the discussion in the previous paragraphs
one sees that in the IR after the Seiberg duality cascade,
effectively Nc = M , which in the MQGP limit of (10)
can be tuned to 3. Further, in the same limit, the string

coupling gs
<∼ 1. The finiteness of the string coupling

necessitates addressing the same from an M-theory per-
spective. This is the reason for coining: ‘MQGP limit’.
In fact this is the reason why one is required to first con-
struct a type IIA mirror, which was done in [2] à la delo-
calized Strominger–Yau–Zaslow mirror prescription, and
then take its M-theory uplift.

2. The second set of reasons for looking at the MQGP limit
of (10) is a calculational simplification in supergravity.

• In the UV–IR interpolating region and the UV,

(Meff , Neff , N eff
f )

MQGP≈ (M, N , N f ).

• Asymmetry factors Ai , Bj (in three-form fluxes)
MQGP→

1 in the UV–IR interpolating region and the UV.
• Simplification of ten-dimensional warp factor and

non-extremality function in MQGP limit

2.3 Approximate supersymmetry, construction of the
delocalized SYZ IIA mirror and its M-theory uplift in
the MQGP limit

To implement the quantum mirror symmetry a la SYZ [23],
one needs a special Lagrangian (sLag) T 3 fibered over
a large base. Defining delocalized T duality coordinates,
(φ1, φ2, ψ) → (x, y, z) valued in T 3(x, y, z) [2]:

x = √
h2h

1
4 sin〈θ1〉〈r〉φ1, y = √

h4h
1
4 sin〈θ2〉〈r〉φ2,

z = √
h1〈r〉h 1

4 ψ, (11)

using the results of [24] it was shown in [18,19] that the
following conditions are satisfied:

i∗ J
∣∣
RC/DC ≈ 0,

�m(i∗�)
∣∣
RC/DC ≈ 0,

�e(i∗�)
∣∣
RC/DC ∼ volume form (T 3(x, y, z)), (12)

for the T 2-invariant sLag of [24] for a deformed conifold∑4
i=1 z

2
i = 1:

K ′(r2)�m(z1 z̄2) = c1,

K ′(r2)�m(z3 z̄4) = c2, �m(z2
1 + z2

2) = c3, (13)

and the T 2-invariant sLag of [24] of a resolved conifold:

K ′

2

(|x |2 − |y|2)+ 4a2 |λ2|2
|λ1|2 + |λ2|2 = c1,

K ′

2

(|v|2 − |u|2)+ 4a2 |λ2|2
|λ1|2 + |λ2|2 = c2,

�m(xy) = c3, (14)

wherein one uses the following complex structure for a
resolved conifold [25]:

x = (
9a2r4 + r6)1/4

ei/2(ψ−φ1−φ2) sin
θ1

2
sin

θ2

2
,

y = (
9a2r4 + r6)1/4

ei/2(ψ+φ1+φ2) cos
θ1

2
cos

θ2

2
,

u = (
9a2r4 + r6)1/4

ei/2(ψ+φ1−φ2) cos
θ1

2
sin

θ2

2
,

v = (
9a2r4 + r6)1/4

ei/2(ψ−φ1+φ2) sin
θ1

2
cos

θ2

2⎛
⎜⎜⎝
x
y
u
v

⎞
⎟⎟⎠ = 1√

2

⎛
⎜⎜⎝

1 −i 0 0
1 i 0 0
0 0 −i 1
0 0 −i −1

⎞
⎟⎟⎠ . (15)

In (14), [λ1 : λ2] are the homogeneous coordinates of the
blown-up CP

1 = S2; λ2
λ1

= x
−u = v

−y = −e−iφ1 tan θ1
2 . In

(14), γ (r2) ≡ r2K ′(r2) = −2a2 + 4a4N− 1
3 (r2) + N

1
3 (r2),

where N (r2) ≡ 1
2

(
r4 − 16a6 + √

r8 − 32a6r4
)

. Hence, if

the resolved warped deformed conifold is predominantly
either resolved or deformed, the local T 3 of (11) is the
required sLag to effect the SYZ mirror construction.

Interestingly, in the ‘delocalized limit’ [26] ψ = 〈ψ〉,
under the coordinate transformation

(
sinθ2dφ2

dθ2

)
→
(

cos〈ψ〉 sin〈ψ〉
−sin〈ψ〉 cos〈ψ〉

)(
sinθ2dφ2

dθ2

)
(16)

andψ → ψ−cos〈θ̄2〉φ2+cos〈θ2〉φ2−tan〈ψ〉ln sin θ̄2, theh5

term becomes h5 [dθ1dθ2 − sinθ1sinθ2dφ1dφ2], eψ → eψ ,
i.e., one introduces a local (not global) isometry along ψ in
addition to the isometries along φ1,2.

To enable use of SYZ mirror duality via three T dualities,
remembering that SYZ mirror symmetry is in fact a quan-
tum mirror symmetry, one also needs to ensure a large base
(implying large complex structures of the aforementioned
two two-tori) of the T 3(x, y, z) fibration, ensuring the disc
instantons’ contribution is very small [23]. This is effected
via [27]:

dψ → dψ + f1(θ1) cos θ1dθ1 + f2(θ2) cos θ2dθ2,

dφ1,2 → dφ1,2 − f1,2(θ1,2)dθ1,2, (17)

for appropriately chosen large values of f1,2(θ1,2) =
± cot θ1,2 [17]. The three-form fluxes remain invariant. The
guiding principle behind choosing such large values of
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f1,2(θ1,2), as given in [2], is that one requires the metric
obtained after a SYZ mirror transformation applied to the
non-Kähler resolved warped deformed conifold to be like
a non-Kähler warped resolved conifold at least locally. For
completeness, we summarize the Buscher triple-T duality
rules [2,28] in appendix A.

A single T duality along a direction orthogonal to the
D3-brane world volume, e.g., z of (11), yields D4 branes
straddling a pair of NS5-branes consisting of world-volume
coordinates (θ1, x) and (θ2, y). Further, T dualizing along
x and then y would yield a Taub-NUT space from each of
the two NS5-branes [29]. The D7-branes yield D6-branes
which get uplifted to Kaluza–Klein monopoles in M-theory
[30] which too involve Taub-NUT spaces. Globally, proba-
bly the 11-dimensional uplift would involve a seven-fold of
G2-structure, analogous to the uplift of D5-branes wrapping
a two-cycle in a resolved warped conifold [27]. We obtained
a local G2 structure in [17], which is summarized in Sect.
2.4.

2.4 G-structures

In this sub-section, we give a quick overview of G =
SU (3),G2-structures and how the same appear in the holo-
graphic type IIB dual of [1], its delocalized type IIA SYZ
mirror and its M-theory uplift constructed in [2].

Any metric-compatible connection can be written in terms
of the Levi-Civita connection and the contorsion tensor κ

([31] and references therein). Metric compatibility requires
κ ∈ �1⊗�2, �n being the space ofn-forms. Alternatively, in
d complex dimensions, since �2 ∼= so(d), κ also be thought
of as �1 ⊗ so(d). Given the existence of a G-structure, one
can decompose so(d) into a part in the Lie algebra g of
G ⊂ SO(d) and its orthogonal complement g⊥ = so(d)/g.
The contorsion κ splits accordingly into κ = κ0 +κg , where
κ0 – the intrinsic torsion – is the part in �1 ⊗ g⊥. One can
decompose κ0 into irreducible G representations providing
a classification of G-structures in terms of which representa-
tions appear in the decomposition. Let us consider the decom-
position of T 0 in the case of SU (3)-structure. The relevant
representations are �1 ∼ 3 ⊕ 3̄, g ∼ 8, g⊥ ∼ 1 ⊕ 3 ⊕ 3̄.

Thus the intrinsic torsion, an element of �1 ⊕su(3)⊥, can be
decomposed into the following SU (3) representations [31]:

�1 ⊗ su(3)⊥ = (3 ⊕ 3̄) ⊗ (1 ⊕ 3 ⊕ 3̄)

= (1 ⊕ 1) ⊕ (8 ⊕ 8) ⊕ (6 ⊕ 6̄) ⊕ (3 ⊕ 3̄) ⊕ (3 ⊕ 3̄)′

≡ W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W5. (18)

The SU (3) structure torsion classes [32] can be defined in
terms of J, �, dJ, d� and the contraction operator � : �kT �⊗
�nT � → �n−kT �. The torsion classes are then defined in
the following way:

• W1 ↔ [dJ ](3,0), given by real numbers W1 = W+
1 +W−

1
with d�+∧J = �+∧dJ = W+

1 J∧J∧J and d�−∧J =
�− ∧ dJ = W−

1 J ∧ J ∧ J .

• W2 ↔ [d�](2,2)
0 ; (d�+)(2,2) = W+

1 J ∧ J +W+
2 ∧ J and

(d�−)(2,2) = W−
1 J ∧ J + W−

2 ∧ J .

• W3 ↔ [dJ ](2,1)
0 is defined as W3 = dJ (2,1) − [J ∧

W4](2,1).
• W4 = 1

2 J�dJ .
• W5 = 1

2�+�d�+ (the subscript 0 indicative of the prim-
itivity of the respective forms).

In [18], it was shown that the five SU (3) structure torsion
classes, in the MQGP limit, satisfied (schematically):

T IIB
SU (3) ∈ W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W5 ∼ e−3τ

√
gs N

⊕ (gs N )
1
4 e−3τ ⊕√

gs Ne−3τ ⊕ −2

3
⊕ −1

2
(19)

(r ∼ e
τ
3 ), such that

2

3
W 3̄

5 = W 3̄
4 (20)

in the UV–IR interpolating region/UV, implying a Klebanov–
Strassler-like supersymmetry [33]. Locally around θ1 ∼

1

N
1
5
, θ2 ∼ 1

N
3

10
, the type IIA torsion classes of the delo-

calized SYZ type IIA mirror metric were shown in [17] to
be

T IIA
SU (3) ∈ W2 ⊕ W3 ⊕ W4 ⊕ W5 ∼ γ2g

− 1
4

s N
3

10

⊕g
− 1

4
s N− 1

20 ⊕ g
− 1

4
s N

3
10 ⊕ g

− 1
4

s N
3

10 ≈ γW2 ⊕ W4 ⊕ W5

fine tuning:γ≈0−→ ≈ W4 ⊕ W5. (21)

Further,

W4 ∼ �eW5 (22)

indicative of supersymmetry after constructing the delocal-
ized SYZ mirror.

The mirror type IIA metric after performing three T dual-
ities, first along x , then along y and finally along z, utilizing
the results of [26] was worked out in [2]. The type IIA metric
components were worked out in [2].

Apart from quantifying the departure from SU (3) holon-
omy due to intrinsic contorsion supplied by the NS–NS three-
form H , via the evaluation of the SU (3) structure torsion
classes, to our knowledge for the first time in the context of
holographic thermal QCD at finite gauge coupling and for
finite number of colors [in fact for Nc = 3 in the IR] in [17]:

(i) The existence of approximate supersymmetry of the
type IIB holographic dual of [1] in the MQGP limit near

123



656 Page 8 of 35 Eur. Phys. J. C (2017) 77 :656

the coordinate branch θ1 = θ2 = 0 was demonstrated,
which apart from the existence of a special Lagrangian
three-cycle (as shown in [17,18]) is essential for con-
struction of the local SYZ type IIA mirror.

(ii) It was demonstrated that the large-N suppression of the
deviation of the type IIB resolved warped deformed
conifold from being a complex manifold, is lost on
being duality-chased to type IIA - it was also shown
that further fine tuning γ2 = 0 in W IIA

2 can ensure that
the local type IIA mirror is complex.

(iii) For the local type IIA SU (3) mirror, the possibility
of surviving approximate supersymmetry was demon-
strated which is essential from the point of view of the
end result of application of the SYZ mirror prescription.

We can get a one-form type IIA potential from the triple
T dual (along x, y, z) of the type IIB F1,3,5 in [2] and using
which the following D = 11 metric was obtained in [2]
(u ≡ rh

r ):

ds2
11 = e− 2φ I I A

3

[
gttdt

2 + gR3

(
dx2 + dy2 + dZ2

)

+ guudu
2 + ds2

I I A(θ1,2, φ1,2, ψ)
]

+ e
4φ I I A

3

(
dx11 + AF1 + AF3 + AF5

)2

≡ Black M3 − Brane + O
([

gsM2 log N

N

]
(gs N f )

)
.

(23)

Let us now briefly discussG2 structure. We will be follow-
ing [34–36]. If V is a seven-dimensional real vector space,
then a three-form ϕ is said to be positive if it lies in the
GL (7,R) orbit of ϕ0, where ϕ0 is a three-form on R

7 which
is preserved by theG2-subgroup ofGL(7,R). The pair (ϕ, g)
for a positive 3-form ϕ and corresponding metric g constitute
a G2-structure. The spaces of p-forms are known to decom-
pose as the following irreps of G2 [34]:

�1 = �1
7,

�2 = �2
7 ⊕ �2

14,

�3 = �3
1 ⊕ �3

7 ⊕ �3
27,

�4 = �4
1 ⊕ �4

7 ⊕ �4
27,

�5 = �5
7 ⊕ �5

14,

�6 = �6
7. (24)

The subscripts denote the dimension of the representation and
the components of the same representation/dimensionality,
being isomorphic to each other. Let M be a 7-manifold with
a G2-structure (ϕ, g). Then the components of spaces of 2-,
3-, 4-, and 5-forms are given in [34,36]. The metric g defines
a reduction of the frame bundle F to a principal SO (7)-sub-
bundle of oriented orthonormal frames. Now, g also defines

a Levi-Civita connection ∇ on the tangent bundle T M , and
hence on F . However, the G2-invariant 3-form ϕ reduces the
orthonormal bundle further to a principal G2-subbundle Q.
The Levi-Civita connection can be pulled back to Q. On Q,
∇ can be uniquely decomposed as

∇ = ∇̄ + T (25)

where ∇̄ is a G2-compatible canonical connection, taking
values in the sub-algebra g2 ⊂ so (7), while T is a 1-form
taking values in g⊥

2 ⊂ so (7); T is known as the intrinsic
torsion of the G2-structure – the obstruction to the Levi-
Civita connection being G2-compatible. Now so (7) splits
under G2 as

so (7) ∼= �2V ∼= �2
7 ⊕ �2

14. (26)

But�2
14

∼= g2, so the orthogonal complementg⊥
2

∼= �2
7

∼= V .
Hence T can be represented by a tensor Tab which lies in
W ∼= V ⊗ V . Now, since ϕ is G2-invariant, it is ∇̄-parallel.
So, the torsion is determined by ∇ϕ. Now, from Lemma 2.24
of [35],

∇ϕ ∈ �1
7 ⊗ �3

7
∼= W. (27)

Due to the isomorphism between the �
a=1,...,5
7 s, ∇ϕ lies in

the same space as TAB and thus completely determines it.
Equation (27) is equivalent to

∇AϕBCD = T E
A ψEBCD (28)

where TAB is the full torsion tensor. Equation (28) can be
inverted to yield

T M
A = 1

24
(∇AϕBCD) ψMBCD . (29)

The tensor T M
A , like the space W, possesses 49 components

and hence fully defines ∇ϕ. In general TAB can be split into
torsion components as

T = T1g + T7�ϕ + T14 + T27 (30)

where T1 is a function and gives the 1 component of T . We
also have T7, which is a 1-form and hence gives the 7 com-
ponent, and, T14 ∈ �2

14 gives the 14 component. Further, T27

is traceless symmetric, and gives the 27 component. Writing
Ti as Wi , we can split W as

W = W1 ⊕ W7 ⊕ W14 ⊕ W27. (31)
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From [38], we see that a G2 structure can be defined as

ϕ0 = 1

3! f ABCe
ABC = e−φ I I A

fabce
abc + e− 2φ I I A

3 J ∧ ex10 ,

(32)

where A, B,C = 1, . . . , 6, 10; a, b, c,= 1, . . . , 6 and
f ABC are the structure constants of the imaginary octonions.
Using the same and [37]:

dϕ0 = 4W1 ∗7 ϕ0 − 3W7 ∧ ϕ0 − ∗7W27

d ∗7 ϕ0 = −4W7 ∧ ∗7ϕ0 − 2 ∗7 W14, (33)

theG2-structure torsion classes were worked out around θ1 ∼
1

N
1
5
, θ2 ∼ 1

N
3

10
in [17] to

TG2 ∈ W 14
2 ⊕ W 27

3 ∼ 1

(gs N )
1
4

⊕ 1

(gs N )
1
4

. (34)

Hence, the approach of the seven-fold, locally, to having a
G2 holonomy (WG2

1 = WG2
2 = WG2

3 = WG2
4 = 0) is

accelerated in the MQGP limit.

As stated earlier, the global uplift to M-theory of the type
I I B background of [1] is expected to involve a seven-fold
of G2 structure (not G2-holonomy due to non-zero G4).
It is hence extremely important to be able to see this, at
least locally. It is in this sense that the results of [2] are
of great significance as one explicitly sees, for the first
time, in the context of holographic thermal QCD at finite
gauge coupling, though locally, the aforementionedG2 struc-
ture having worked out the non-trivial G2-structure torsion
classes.

3 SYZ mirror of Ouyang embedding

To start off our study of meson spectroscopy, we first need
to understand how the flavor D6-branes are embedded in the
mirror (constructed in [2]) of the resolved warped deformed
conifold of [1], i.e., the delocalized SYZ mirror of the Ouyang
embedding of the flavor D7-branes in [1].

One can show that the delocalized type IIA mirror metric
of the resolved warped deformed conifold metric as worked
out in [2], for fixed θ1 = αθ1

N
1
5

in the (θ2, T 3(x, y, z))-

subspace near θ2 = αθ2

N
3

10
can be written as

ds2
IIA

(
θ2, T

3(x, y, z)
)

= dθ2
2 N

7
10

(
ξθ2θ2

α2
θ1

α2
θ2

√
gsdθ2 + ξθ2 y N

− 7
20 g

1
4
s dy

− ξθ2z
log rMN f

αθ2

N− 13
20 g

7
4
s dz

)
+ ds2

(
T 3(x, y, z)

)

N�1−→ ξθ2θ2

α2
θ1

α2
θ2

√
gsdθ2

2 + ds2(T 3(x, y, z)), (35)

where the T 3(x, y, z) metric is given by

gi j (T
3(x, y, z)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

32/3
(

α2
θ1

−α2
θ2

5
√

1
N

)

α2
θ1

2
√

2
(
α2

θ1
αθ2

√
N−2α3

θ2
N3/10

)
3 6√3α6

θ1

2
(

9
√

2 6√3αθ1 N
4/5−2 32/3N

)
27α2

θ1
α2

θ2

2
√

2
(
α2

θ1
αθ2

√
N−2α3

θ2
N3/10

)
3 6√3α6

θ1

32/3

√
2
(
α2

θ2
−3N3/5

)
3 6√3αθ2 N

3/10

2
(

9
√

2 6√3αθ1 N
4/5−2 32/3N

)
27α2

θ1
α2

θ2

√
2
(
α2

θ2
−3N3/5

)
3 6√3αθ2 N

3/10

2
(

5√Nα2
θ1

+α2
θ2

)
N2/5

3 3√3α2
θ1

α2
θ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

Interestingly, one can diagonalize the local T 3 metric to

ds2
IIA(T 3(x, y, z)) =

2dx̃2
(

9
√

2 6
√

3αN 4/5 − 2 32/3N
)

27α2
θ1

2α2
θ2

+
2d ỹ2

(
2 32/3N − 9

√
2 6
√

3αN 4/5
)

27α2
θ1

2α2
θ2

+
2dz̃2

(
32/3α2

θ1
2N 3/5 + 32/3α2

θ2
N 2/5

)
27α2

θ1
2α2

θ2

,

(37)

where

dx̃ =
dx
(

3α2
θ1

( 1
N

)2/5 + 4
)

4
√

2
+

dz
(

4 − 3α2
θ1

( 1
N

)2/5
)

4
√

2

+
dy
√

1
N

(
2α2

θ2

5
√

1
N

((
54 − 32/3

)
α6

θ1
− 54

√
6α3

θ1
α2

θ2
+ 66α4

θ2

)
− α2

θ1

(
32/3α6

θ1
+ 72α4

θ2

))

16 35/6α4
θ1

αθ2
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d ỹ =
dx
(

3α2
θ1

( 1
N

)2/5 − 4
)

4
√

2
+

dz
(

3α2
θ1

( 1
N

)2/5 + 4
)

4
√

2

+
dy
√

1
N

(
α2

θ1

(
−
(

32/3α6
θ1

+ 72α4
θ2

))
− 2α2

θ2

5
√

1
N

((
54 + 32/3

)
α6

θ1
+ 54

√
6α3

θ1
α2

θ2
− 66α4

θ2

))

16 35/6α4
θ1

αθ2

dz̃ = −
9 6
√

3
√

α2
θ2

dx
( 1
N

)7/10
(

α2
θ2

5
√

1
N − 2α2

θ1

)

4
√

2
+

dy
(
−32/3α12

θ1
− 768α4

θ1
α2

θ2
N + 1728 3

√
3α8

θ2

)

768α4
θ1

√
α2

θ2
αθ2 N

−
3 6
√

3α4
θ2

dz
√

1
N

(
3
√

3α3
θ1

5
√

1
N + √

2α2
θ1

− 2
√

2α2
θ2

5
√

1
N

)

2α4
θ1

√
α2

θ2

. (38)

Now, from the Buscher triple T duality results for the
NS–NS B as given in (A11), one sees that for small φ1,2

(which ensures decoupling of M6(θ1,2, φ1,2, ψ, x10) from
M5(R

1,3, r) in the M-theory uplift in the MQGP limit)

BIIA

(
θ1 = αθ1

N
1
5

, θ2 ∼ αθ2

N
3

10

)

= dθ2 ∧ dx

⎛
⎝−

2
√

2 4√π 4√gs N3/4
(

3
√

6α3
θ1

− 2α2
θ1

5√N + 2α2
θ2

)

27α4
θ1

αθ2

⎞
⎠

+ dθ2 ∧ dz

⎛
⎜⎜⎝

4√π 4√gs

(
5α2

θ2
20
√

1
N − 6N11/20

)

27
√

2αθ2

⎞
⎟⎟⎠

+ dθ2 ∧ dy

⎛
⎝

4√π 4√gs N3/20
(

2α
10√N + αθ2

)
√

3α

⎞
⎠

= dθ2 ∧ dx̃

⎛
⎝−

2 4√π 4√gs N3/4
(

3
√

6α3
θ1

− 2α2
θ1

5√N + 2α2
θ2

)

27α4
θ1

αθ2

⎞
⎠

+ dθ2 ∧ d ỹ

⎛
⎝ 2 4√π 4√gs N3/4

(
3
√

6α3
θ1

− 2α2
θ1

5√N + 2α2
θ2

)

27α4
θ1

αθ2

⎞
⎠

+ dθ2 ∧ dz̃

⎛
⎝−

4√παθ2
4√gs N3/20

(
2
(

3√3 − 1
)

α
10√N + 3√3αθ2

)

35/6α
√

α2
θ2

⎞
⎠ .

(39)

There is an important message we must take in from (39).
As one realizes from (A11) and therefore (39), BIIA is

independent of M even up to NLO in N , even though BIIB

is proportional to M . This will be important in obtaining the
mesonic spectra in the subsequent sections and obtaining a

good match with [5] without having to invoke O
(
gsM2

N

)
-

corrections which the authors of [4] had to use (and set to 0.5
– and yet consider the same as ‘small’ – to get a reasonable
match with [5]).

The complete ten-dimensional type IIA metric in large-N
limit is given as

ds2
IIA ≈ GIIA

00 dx2
0 + GIIA

11 dx2
1 + GIIA

22 dx2
2 + GIIA

33 dx2
3

+GIIA
rr dr2 + GIIA

θ1θ1
dθ2

1 + GIIA
θ1 x̃

dθ1dx̃ + GIIA
θ1 ỹ

dθ1d ỹ

+GIIA
θ1 z̃

dθ1dz̃ + GIIA
θ2θ2

dθ2
2 + ds2(T 3(x̃, ỹ, z̃)). (40)

To obtain the pull-back metric on the D6 branes, we choose
the first branch of the Ouyang embedding where (θ1, x̃) =
(0, 0) and we consider the z̃ coordinate as a function of r,
i.e. z̃(r). We then use the equation of motion of the field to
find the explicit functional dependence. The coordinates for
D6 brane are xμ = x (0,1,2,3), r, θ2, ỹ. The pull-back of the
metric is given by

GIIA
6μνdxμdxν = GIIA

00 dx2
0 + GIIA

11 dx2
1

+GIIA
22 dx2

2 + GIIA
33 dx2

3 + (GIIA
rr + GIIA

z̃ z̃ z̃′(r)2)dr2

GIIA
θ2θ2

dθ2
2 + GIIA

ỹ ỹ d ỹ2. (41)

Near θ1 = αθ1 N
−1/5 and θ2 = αθ2 N

−3/10 the type IIA metric
components up to NLO are given as follows:

GIIA
00 = −

(
r4 − rh4

) (
3gsM2 log(r)(−2gs N f log(αθ1αθ2) + gs N f log(N ) − 6gs N f + gs N f log(16) − 8π) − 36gs2M2N f log2(r) + 32π2N

)
64π5/2√gs N 3/2r2

GIIA
11 = r2

(
3gsM2 log(r)(−2gs N f log(αθ1αθ2) + gs N f log N − 6gs N f + gs N f log(16) − 8π) − 36gs2M2N f log2(r) + 32π2N

)
64π5/2√gs N 3/2

GIIA
22 = r2

(
3gsM2 log(r)(−2gs N f log(αθ1αθ2) + gs N f log N − 6gs N f + gs N f log(16) − 8π) − 36gs2M2N f log2(r) + 32π2N

)
64π5/2√gs N 3/2

123
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GIIA
33 = r2

(
3gsM2 log(r)(−2gs N f log(αθ1αθ2) + gs N f log N − 6gs N f + gs N f log(16) − 8π) − 36gs2M2N f log2(r) + 32π2N

)
64π5/2√gs N 3/2

GIIA
rr =

√
gsr2

(
6a2 + r2

) (
3gsM2 log(r)(2gs N f log(αθ1αθ2) − gs N f log N + 6gs N f − 2gs N f log(4) + 8π) + 36gs2M2N f log2(r) + 32π2N

)
16π3/2

√
N
(
9a2 + r2

) (
r4 − rh4

)

GIIA
ỹ ỹ = −

2
(

9
√

2 6
√

3αN 4/5 − 2 32/3N
)

27α2
θ1

2α2
θ2

GIIA
θ2θ2

=
√

π
√
gs

√
N
(
α2

θ1
2 5
√
N + α2

θ2

)
3
√

3α2
θ2

. (42)

One will assume that the embedding of the D6-brane will be

given by i : �1,6
(
R

1,3, r, θ2 ∼ αθ2

N
3

10
, ỹ

)
↪→ M1,9, effected

by z̃ = z̃(r). The pull-back of the B-field along the directions
of the D6-branes is given by

δ

(
θ2 − αθ2

N
3

10

)
i∗B

= δ

(
θ2 − αθ2

N
3

10

) [−Bθ2 z̃ z̃
′(r)dr ∧ dθ2

+ Bθ2 ỹdθ2 ∧ d ỹ + Bθ2 x̃dθ2 ∧ dx̃
]
, (43)

where Bθ2 x̃ , Bθ2 ỹ, Bθ2 z̃ can be read off from (117). Now, one
can show that

det
(
i∗(g + B)

)
= �0(r; gs, N f , N , M) + �1(r; gs, N f , M, N )(z̃′(r))2,

(44)

where the embedding functions �0,1(r; gs, N f , M, N ) are
given in (B1).

Thus, the Euler–Lagrange equation of motion yields

d

dr

⎛
⎝ z̃′(r)√

�0(r; gs, N f , N , M) + �1(r; gs, N f , N , M)(z̃′)2

⎞
⎠

= 0. (45)

Like [4], z̃ = constant, is a solution of (45). Alternatively,
(45) is equivalent to z̃′(r)√

�0(r;gs ,N f ,N ,M)+�1(r;gs ,N f ,N ,M)(z̃′)2
=

K . Hence, the Euler–Lagrange equation for the z̃(r) from the
DBI action can be written in the following form:

z′(r)2 − 24461180928π19/2α16
θ1

α8
θ2
C1gs4K N 49/5

C2
2 − 24461180928π19/2α16

θ1
α8

θ2
C3gs4K N 49/5

= 0 (46)

where K is an arbitrary constant, while C1(r; gs, N f , N ),

C2(r; gs, N f , N ) and C3(r; gs, N f , N ) up to NLO-in-N
after a large-N expansion have the following forms:

C1(r; gs, N f , N )

=
4194304π17/2 5

√
Nr6

(
6a2 + r2

) (
27 3

√
3α6

θ1
− 12

√
6α3

θ1
α2

θ2
+ 4α2

θ1
α2

θ2

5
√
N − 8α4

θ2

)
α6

θ1
α4

θ2
gs
(
9a2 + r2

) ,

C2(r; gs, N f , N )

=
8388608π8α2

θ1

√
gs N 26/5r4

(
r4 − rh4

) (
81α6

θ1
− 36

√
2 6
√

3α3
θ1

α2
θ2

+ 432/3α2
θ1

α2
θ2

5
√
N − 432/3α4

θ2

)
27α2

θ2

,

C3(r; gs, N f , N )

=
4194304π8N 3/10r4

(
r4 − rh4

) (
81α6

θ1
− 36

√
2 6
√

3α3
θ1

α2
θ2

+ 432/3α2
θ1

α2
θ2

5
√
N − 432/3α4

θ2

)
27α6

θ1
α6

θ2
gs3/2

. (47)

Substituting the values ofC1(r; gs, N f , N ),C2(r; gs, N f ,

N ) and C3(r; gs, N f , N ) in the differential equation pre-
sented above and keeping terms only up to NLO-in-N after
taking a large-N expansion the differential equation acquires
the following form:

z̃′(r)2 − 5904932/3π2α4
θ1

α6
θ2
gs2K

( 1
N

)3/5 (
6a2 + r2

)
2r2
(
9a2 + r2

)(
r4 − rh4

)2

−
531441π2α5

θ1
α4

θ2
gs2K

( 1
N

)4/5 (
6a2 + r2

) (
4
√

2 6
√

3α2
θ2

− 9α3
θ1

)

8r2
(
9a2 + r2

)(
r4 − rh4

)2
= 0.

(48)
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Analogous to [4], from (45), one sees that z̃ = constant, is
a valid solution and by choosing z̃ = ±C π

2 , one can choose
the D6/D6-branes to be at “antipodal” points. Using a very
similar computation for a thermal background with no black
hole (rh = 0), one can show that this constant embedding of
D6-branes, is still valid.

4 Vector meson spectroscopy in a black-hole
background for all temperatures

Equipped with the embedding of the flavor D6-branes in the
delocalized SYZ mirror of resolved warped deformed coni-
fold of [1] from Sect. 3, we now proceed to obtaining the spec-
tra as the Kaluza–Klein modes of the massless sector of open
strings in type IIA at finite gauge coupling. In this and the next
section, we do not worry about the issues like that the black-
hole gravity dual is not considered at low temperatures where
one must consider a thermal background. Happily, in Sect. 6,
we will via an explicit computation verify that the mesonic
spectra obtained in Sects. 4 (for [pseudo-]vector mesons) and
5 (for [pseudo-]scalar mesons), are nearly isospectral with
one obtained by working with a thermal background without
a black hole valid at only low temperatures.

We evaluate the masses of the (pseudo-)vector and
(pesudo-)scalar mesons separately – the former by consid-
ering gauge fluctuations of a background gauge field along
the world volume of the embedded flavor D6-branes and the
latter (without turning on a background gauge field) by look-
ing at fluctuations of the embedding transverse to the world
volume of the embedded D6-branes.

As done in [4], let us redefine (r, z̃) in terms of new vari-
ables (Y, Z):

r = rhe
√
Y 2+Z2

,

z̃ = C arctan
Z

Y
, (49)

and the constant embedding of D6(D6)-branes can corre-
spond to z̃ = π

2 for C = 1 for D6-branes and z̃ = −π
2

for C = −1 for D6-branes, both corresponding to Y = 0.
Now, consider turning on a gauge field fluctuation F̃ σ 3

2 about

a small background gauge field F0
σ 3

2 and the background
i∗(g + B). This implies

Str

√
detR1,3,Z ,θ2,ỹ

(
i∗(G + B) + (F0 + F̃)

σ 3

2

)∣∣∣∣∣∣
Y=0

× δ

(
θ2 − αθ2

N
3

10

)
=
√

detθ2,ỹ (i∗(g + B))

Str

√
detR1,3,Z

(
i∗(g + B) + (F0 + F̃)

σ 3

2

)∣∣∣∣∣∣
Y=0

× δ

(
θ2 − αθ2

N
3

10

)

=
√

detθ2,ỹ (i∗(g + B))

√
detR1,3,Z (i∗g)Str

×
(

12 − 1

2

[
(i∗g)−1

(
(F0 + F̃)

σ 3

2

)]2

+ · · ·
)∣∣∣∣∣

Y=0

× δ

(
θ2 − αθ2

N
3

10

)
. (50)

Concentrating on the terms quadratic in F̃ :

SD6 = − 1

2

∫
d4xdZdθ2d ỹ

×
√

detθ2,ỹ (i∗(G + B))

√
detR1,3,Z (i∗G)

×
[
2
√
hGZZ G̃μν F̃μZ F̃νZ + hG̃μμ1 G̃νν1 F̃μ1ν F̃ν1μ

]∣∣∣
Y=0

× δ

(
θ2 − αθ2

N
3

10

)
, (51)

where G̃μν are the unwarped R
1,3 metric components. Sub-

stituting

Aμ(xν, Z) =
∑
n=1

B(n)
μ (xν)α{μ}

n (Z), no summation w.r.t. μ,

AZ (xν, Z) =
∑
n=1

φ(n)(xν)βn(Z), (52)

one obtains∫
d4xdZ

(
V2(Z)F (n)

μν Fμν

(n) α
{μ}
m (Z)α{μ}

n (Z)

+V1(Z)B(m)
μ B(n)

ν α̇{μ}
m α̇{μ}

n

)
, (53)

where V1,2 are given in (C1).
Now, Fμν(xρ, |Z |) = ∑

n ∂[μB(n)
ν] αn(Z) ≡ F (n)

μν αn(Z).

The EOM satisfied by Bμ(xν)(n) is ∂μ F̃
μν

(n) + ∂μ log√
GR1,3,|Z | F̃

μν

(n) = ∂μ F̃
μν

(n) = M2
(n)B

ν
(n). After once integrat-

ing by parts, and utilizing the EOM for B(n)
μ , one rewrites

(53) as
∫

d4xdZ
(− 2V2(Z)M2

(m)α
Bμ
n α

Bμ
m

+V1(Z)α̇
Bμ
n α̇

Bμ
m
)
Bμ(n)B(m)

μ , (54)

which yields the following equations of motion:

α{0}
m : d

dZ

(
V1(Z)G̃00(Z)α̇{0}

m

)+2V2(Z)G̃00M2
(m)α

{0}
m =0,

α{i}
m : d

dZ

(
V1(Z)α̇{i}

m

)+ 2V2(Z)M2
(m)α

{i}
m = 0. (55)

Writing a = rh
(

0.6 + 4 gsM2

N (1 + log rh)
)

,m = m̃
rh√

4πgs N
, one hence obtains the following EOMs:
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α{i}
n

′′(Z)

+α{i}
n

′(Z)

(−gs N f
(
e4|Z |(−2log N + 6|Z | + 3) − 2log N + 6|Z | − 3

)− 6gs N f
(
e4|Z | + 1

)
log(rh) + 8π

(
e4|Z | + 1

)
(
e4|Z | − 1

)
(gs N f (log N − 3|Z |) − 3gs N f log(rh) + 4π)

− 1

N 2(gs N f (log N − 3.|Z |) − 3.gs N f log(rh) + 12.5664)2

{
1.5e−2|Z | (4.gsM

2 log(rh) + 4.gsM
2 + 0.6N

)2

×
[
gs

2N f
2
(

2.log N 2 − 12.log N |Z | − 6.log N + 18.Z2 + 18.|Z | + 9.
)

+ 18.gs
2N f

2 log2(rh)

+ gs N f log(rh)(gs N f (−12.log N + 36.|Z | + 18.) − 150.796) + gs N f (50.2655log N − 150.796|Z | − 75.3982)

+ 315.827

]})
+ α{i}

n (Z)

m̃2
(
e2|Z | − 3.

(
4.gsM2 log(rh)+4.gsM2+0.6N

)2
N2

)

e4|Z | − 1
= 0, (56)

and

α{0}
n

′′(Z) + α
{0}
n

′(Z)

2(gs N f log N − 3gs N f log(rh) − 3gs N f |Z | + 4π)2

×
{(

1

N 2

{
e−2|Z | (4.gsM

2 log(rh) + 4.gsM
2 + 0.6N

)2
× (9gs N f (−gs N f log N + 3gs N f log(rh) + 3gs N f |Z |
− 4π) + (2gs N f log(N ) − 6gs N f log(rh) − 6gs N f |Z |
−3gs N f + 8π)(−3gs N f log N + 9gs N f log(rh)

+ 9gs N f |Z | + 9gs N f − 12π))

}
+ 2(2gs N f log N

− 6gs N f log(rh) − 6gs N f |Z | − 3gs N f + 8π)

× (gs N f log N − 3gs N f log(rh) − 3gs N f |Z | + 4π)

)}

+ α{0}
n (Z)

m̃2
(
rh2e2|Z | − 3.rh2(4.gs M2 log(rh )+4.gs M2+0.6N

)2
N2

)

rh2
(
e4|Z | − 1

)
= 0. (57)

We will now proceed to obtaining the (pseudo-)vector
meson spectrum by three routes. The first will cater exclu-
sively to an IR computation where we solve the α

{i}
n (Z)

and α
{0}
n (Z) EOMs near the horizon. Imposing Neumann

boundary condition at the horizon results in quantization
of the (pseudo-)vector meson masses and via N f - and M-
dependent contributions, we extract the temperature depen-
dence of the (pseudo-)vector meson spectrum. We will see
that up to LO in N, in the IR, there is a near isospectrality in
the (pseudo-)vector meson spectrum obtained by solving the
α

{i}
n (Z) and α

{0}
n (Z) EOMs. The second route will be to con-

vert the α
{i}
n (Z) and α

{0}
n (Z) EOMs into Schr”odinger-like

EOMs and to solve the same in the IR and UV separately and
obtain (pseudo-)vector mass quantization by imposing Neu-
mann boundary conditions at the horizon (IR)/asymptotic
boundary (UV). It turns out the former yields a result, which
up to LO in N , is of the same order as the IR results of route
one. The UV-computations satisfy Neumann and/or Dirich-

let boundary conditions without any mass quantization con-
dition. The third route catering to the IR–UV interpolating
region and what gives us our main results that are directly
compared with PDG results, is obtaining the (pseudo-)vector
meson masses via WKB quantization condition. We also
show that an IR WKB quantization (pseudo-)vector meson
spectroscopy is nearly isospectral with the results of route
one.

4.1 Vector meson spectrum from solution of EOMs near
r = rh

The αi
n(Z) EOM, near the horizon, i.e., Z = 0(Y = 0), is of

the form

αi
n

′′(Z) +
(

1

|Z | + α1

)
αi
n

′(Z) +
(

β2

|Z | + α2

)
αi
n(Z) = 0,

(58)

whose solution is given by

α{i}
n (Z) = c1e

1
2 |Z |

(
−
√

α2
1−4α2−α1

)

×U

⎛
⎝−

−α1 + 2β2 −
√

α2
1 − 4α2

2
√

α2
1 − 4α2

, 1,

√
α2

1 − 4α2|Z |
⎞
⎠

+ c2e
1
2 |Z |

(
−
√

α2
1−4α2−α1

)
L −

√
α2

1−4α2−α1+2β2

2
√

α2
1−4α2

×
(

|Z |
√

α2
1 − 4α2

)
. (59)

One sets c2 = 0 as satisfying the Neumann boundary condi-
tion for the associate Laguerre function will not be feasible.
From (55), one notes that the differential operator is even
under Z → −Z – relevant to parity and charge conjuga-
tion [3] – and therefore one can think of solutions that are
even or odd under Z → −Z . As one knows from [3] that
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α
{i}
2n (−Z) = −α

{i}
2n (Z) and α

{i}
2n+1(−Z) = α

{i}
2n+1(Z), (59)

(c2 = 0) must be understood as

α{i}
n (Z) = (

δn,2Z+Sign(Z) + δn,(2Z+∪{0})+1
)

× e
1
2 |Z |

(
−
√

α2
1−4α2(n)−α1

)

×U

⎛
⎝−

−α1 + 2β2(n) −
√

α2
1 − 4α2(n)

2
√

α2
1 − 4α2(n)

, 1,

√
α2

1 − 4α2(n)|Z |
⎞
⎠ . (60)

Setting c2 = 0, one sees

α{i}
n

′(Z) = −1

2
e
− 1

2 |Z |
(√

α2
1−4α2+α1

)

×
⎡
⎣
(√

α2
1 − 4α2 + α1

)

×U

⎛
⎝α1 − 2β2 +

√
α2

1 − 4α2

2
√

α2
1 − 4α2

, 1,

√
α2

1 − 4α2|Z |
⎞
⎠

+
(√

α2
1 − 4α2 + α1 − 2β2

)

×U

⎛
⎝α1 − 2β2 + 3

√
α2

1 − 4α2

2
√

α2
1 − 4α2

, 2,

√
α2

1 − 4α2|Z |
⎞
⎠
⎤
⎦

= − 1

|Z |�
(

α1−2β2+
√

α2
1−4α2

2
√

α2
1−4α2

)

+ 1

2�

(
α1−2β2+

√
α2

1−4α2

2
√

α2
1−4α2

)
⎧⎨
⎩β2 log

(
α2

1 − 4α2

)

+
(√

α2
1 − 4α2+α1

)
ψ(0)

⎛
⎝α1 − 2β2+

√
α2

1 − 4α2

2
√

α2
1 − 4α2

⎞
⎠

−
(√

α2
1 − 4α2 + α1 − 2β2

)
ψ(0)

×
⎛
⎝α1 − 2β2 + 3

√
α2

1 − 4α2

2
√

α2
1 − 4α2

⎞
⎠

+ 2
√

α2
1 − 4α2 + 2α1 + 2β2log |Z | − 2β2 + 4γβ2

⎫⎬
⎭

+O (|Z |) . (61)

One therefore sees that one can impose the Neumann/
Dirichlet boundary condition αi

n
′(r = rh) = 0 provided the

following condition is imposed:

√
α2

1 − 4α2 + α1 − 2β2

2
√

α2
1 − 4α2

= −n ∈ Z
−. (62)

One can show that (62) in the context of the EOM (56), for
a = 0.6rh ([16,19]):

α1 = −1.08 − 9.gsM2(4.8 log(rh) + 4.8)

log NN

+ 1.5M2(4.8 log(rh)+4.8)(−18.gs N f log(rh)+9gs N f +75.398)

NN f log2(N )

+ 3.gsM2(4.8 log(rh)+4.8)

N
+ (−4.14gs N f − 3.016) log(rh)

gs N f log2(N )
+ 0.24

log N
,

α2 = gsM2m̃2(7.2 log(rh) + 7.2)

N
+ 0.54m̃2,

β2 = gsM2m̃2(−3.6 log(rh) − 3.6)

N
− 0.02m̃2. (63)

Up to LO in N , NLO in log N (and assuming large | log rh |)
LO in log rh , would yield the following meson spectrum:

m̃α
{i}
n

n = 0.5
√

−10800.n2 − 10800.n + 10800.
√

(n + 0.36)(n + 0.5)(n + 0.5)(n + 0.64) − 2592.

+
0.25

(
23.04(n+0.5)2√

(n+0.36)(n+0.5)(n+0.5)(n+0.64)
− 24.

)

log N
√

−10800.n2 − 10800.n + 10800.
√

(n + 0.36)(n + 0.5)(n + 0.5)(n + 0.64) − 2592.

+ 1

gs(log N )2
√

−10800.n2 − 10800.n + 10800.
√

(n + 0.36)(n + 0.5)(n + 0.5)(n + 0.64) − 2592.N f

×
{

0.25 log(rh)

(
1

((n + 0.36)(n + 0.5)(n + 0.5)(n + 0.64))3/2

×
{
n6(−397.44gs N f − 289.529) + n5(−1192.32gs N f − 868.588) + n4(−1482.61gs N f − 1080.06)

+ n3(−978.02gs N f − 712.473) + n2(−360.915gs N f − 262.921)

+ n(−70.6251gs N f − 51.4493) − 5.72314gs N f − 4.16922

}
+ 414.gs N f + 301.593

)}
+ O

(
1

(log N )3 ,
1

N

)
. (64)
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Disregarding n = 0 (as it yields a O
(

1
N2

)
-suppressed

though imaginary value) one sees

m̃
α

{i}
0

n=1 = 0.18(414gs N f + 0.089(−4487.65gs N f − 3269.19) + 301.6) log(rh)

gs N f log2(N )

− 0.15

log N
+ 0.69, m̃α

{i}
n

n=2 = 1

gs N f log2(N )

{
0.173 log(rh)(0.004(−5.723gs N f

+ 16(−1482.61gs N f − 1080.06) + 32(−1192.32gs N f − 868.588)

+ 8(−978.02gs N f − 712.473) + 4(−360.915gs N f − 262.92) + 2(−70.625gs N f − 51.449)

+ 64(−397.44gsN f − 289.529) − 4.169) + 414.gs N f + 904.77)

}
− 0.16

log N
+ 0.721. (65)

Given that one is solving the EOM near the horizon, i.e., the
IR, one expects the masses to be small, something verified
by (65).

Now, the EOM (57), near r = rh , can be written as

α{0}
n

′′(Z) + α1α
{0}
n

′(Z) +
(

β2

|Z | + α2

)
α{0}
n (Z) = 0, (66)

whose solution is given by

α{0}
n (Z) = c1|Z |e− 1

2 |Z |
(√

α2
1−4α2(n)+α1

)

×U

⎛
⎝1 − β2√

α2
1 − 4α2(n)

, 2,

√
α2

1 − 4α2(n)|Z |
⎞
⎠

+ c2|Z |e− 1
2 |Z |

(√
α2

1−4α2(n)+α1

)
1

× F1

⎛
⎝1 − β2(n)√

α2
1 − 4α2(n)

; 2;
√

α2
1 − 4α2(n)|Z |

⎞
⎠ . (67)

As d
dZ

[
c2|Z |e− 1

2 |Z |
(√

α2
1−4α2+α1

)
1F1

(
1 − β2√

α2
1−4α2

;

2;
√

α2
1 − 4α2|Z |

)]
vanishes at |Z | → 0+ only for c2 = 0,

one sets c2 = 0 at the very outset. Similar to (60):

α{0}
n (Z) = (

δn,2Z+Sign(Z) + δn,(2Z+∪{0})+1
)

× e
− 1

2 |Z |
(√

α2
1−4α2(n)+α1

)

×U

⎛
⎝1 − β2(n)√

α2
1 − 4α2(n)

, 2,

√
α2

1 − 4α2(n)|Z |
⎞
⎠ . (68)

Now

α{0}
n

′(Z)

∣∣∣
c2=0

= −1

2
c1e

− 1
2 |Z |

(√
α2

1−4α2+α1

) ⎡
⎣ (|Z |

√
α2

1 − 4α2 + α1|Z | − 2

)

× U

⎛
⎝1 − β2√

α2
1 − 4α2

, 2,

√
α2

1 − 4α2|Z |
⎞
⎠+ 2|Z |

(√
α2

1 − 4α2 − β2

)
U

⎛
⎝2 − β2√

α2
1 − 4α2

, 3,

√
α2

1 − 4α2|Z |
⎞
⎠
⎤
⎦

=
c1

(
β2 log

(
α2

1 − 4α2
)+ 2β2ψ

(0)

(
1 − β2√

α2
1−4α2

)
+
√

α2
1 − 4α2 + α1 + 2β2log |Z | + 4γβ2

)

2β2�

(
− β2√

α2
1−4α2

) + O (|Z |) . (69)

Hence, one can successfully impose Neumann/Dirichlet
boundary condition at the horizon: α

{0}
n

′(r = rh) = 0 by
demanding:

β2√
α2

1 − 4α2

= n ∈ Z
+. (70)

In the context of (57)

α1 =
− 3.016

gs N f
+ 0.72 log(rh) − 4.86

log N 2

+ 43.2gsM2N f log(rh) + 43.2gsM2N f

log NNN f

+ gsM2(−14.4 log(rh) − 14.4)

N
+ 0.24

log N
+ 0.92,
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α2 = gsM2m̃2(7.2 log(rh) + 7.2)

N
+ 0.54m̃2,

β2 = gsM2m̃2(−3.6 log(rh) − 3.6)

N
− 0.02m̃2. (71)

One sees that (70) can be satisfied for only a single value

of m̃α
{0}
n

n – which we declare to be the ground state (largely
due to the proximity of its value to (64)) – which satisfies the
following condition:

1

gs2log N 4N f
2

{(
gs

2log NM2N f (43.2 − 14.4log N )

+ gs N f log(rh)
(
gs log NM2(43.2 − 14.4log N )

+0.72N ) + N (0.92gs(log N − 2.17166)(log N

+2.43253)N f −3.016)

)2}
+m̃2N

(
−28.8gsM

2 log(rh)

−28.8gsM
2 − 2.16N

)
= 0. (72)

The solution when expanded in powers of N and log N

m̃α
{0}
n

n=0 = 0.163

log N
+ 0.626 +

− 2.052
gs N f

+ 0.49 log(rh) − 3.307

log N 2

+ gsM2(28.305 log(rh) + 28.305)

N log N

+ gsM2(−13.971 log(rh) − 13.971)

N
+ · · · (73)

Now, from (65) and (73), disregarding O
(

log rh
(log N )2

)
terms,

one sees that

m̃α{i}
n=1 = m̃α{0}

n=0, for N = 105. (74)

Hence, from (65) and (73), one sees an IR isospectrality in
the spectra of αi

n=1 and α0
n=0 mesons. Equation (73) beauti-

fully captures the conformal (N → ∞), the non-conformal
(N f , M-dependent) contributions as well as the temperature
dependence via log rh of vector mesons, and it does so explic-
itly. Also, from both (65) and (73), we see that the temperature
dependence entering via log rh does so at O

( 1
N

)
.

4.2 Vector meson spectrum from conversion of α
{i}
n (Z)’s

EOM to Schrödinger-like equations

The α
{i}
n EOM (56), written as α

{i}
n

′′(Z) + A(Z)α
{i}
n

′(Z) +
B(Z)α

{i}
n (Z) = 0, with a field redefinition: ψ i

n(Z) =√
C1(Z)αi

n(Z), is converted to

ψ {i}
n

′′(Z) + V
(
α{i}
n

)
ψ {i}
n (Z) = 0, (75)

where V = C′′
1

2C1
− 1

4

(C′
1C1

)2+B. This potential for α
{i}
n (Z) can

easily be worked out but due to the cumbersome nature of the

expression so obtained, we will not be giving its analytical
expression.

For α
{i}
n vector mesons,

C1 = − 1

2rh2

{
e−4|Z | (e4|Z | − 1

)

×
(
gs N f log N

(
3a2 + 2rh

2e2|Z |)

− 3gs N f log(rh)
(

3a2 + 2rh
2e2|Z |)

− 9a2gs N f |Z | − 9a2gs N f + 12πa2

− 6gs N f rh
2e2|Z ||Z | + 8πrh

2e2|Z |
)}

. (76)

4.2.1 IR

The potential V (α
{i}
n ), performing first a large-N and then a

small-|Z | expansion, for a = rh
(

0.6 + 4 gsM2

N (1 + log rh)
)

[19], is given by

V (α{i}
n ) = 1(

e4|Z | − 1.
)2
{
e−2|Z | (e6|Z | (6. − 1.08m̃2)

+ e4|Z | (2.16−m̃2)+m̃2e8|Z |+(1.08m̃2 − 1
)
e2|Z | − e10|Z | − 2.16

)}

+ e−2|Z | (gs3N f
3
(
4.86 − 3.e2|Z | − 3.24e4|Z | − 1.62e8|Z | + 3.e10|Z |))

gs3log NN f
3
(
e4|Z | − 1.

)2
+O

(
1

(log N )2 ,
gsM2

N

)
. (77)

In the IR, (77) yields

V (α{i}
n ; I R) =

−0.02m̃2 − 0.12
log N + 0.54

|Z |
+ 0.54m̃2 + 4.86

log N
+ 0.25

Z2 − 3.49333

+O
(

|Z |, 1

(log N )2 ,
gsM2

N

)
. (78)

The solution to (77) is given in terms of Whittaker functions
by

ψ {i}
n (Z) = c1M log N(0.27−0.01m̃2)−0.06

√
log N

√
−0.54log Nm̃2+3.49333log N−4.86

,0

×
(

2
√−0.54log Nm̃2 + 3.49333log N − 4.86|Z |√

log N

)

+ c2W log N(0.27−0.01m̃2)−0.06
√

log N
√

−0.54log Nm̃2+3.49333log N−4.86
,0

×
(

2
√−0.54log Nm̃2 + 3.49333log N − 4.86|Z |√

log N

)
.

(79)

One can show that
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d

dZ

⎛
⎜⎜⎜⎜⎜⎝

M log N(0.27−0.01m̃2)−0.06
√

log N
√

−0.54log Nm̃2+3.49333log N−4.86
,0

(
2
√

−0.54log Nm̃2+3.49333log N−4.86|Z |√
log N

)

√
C1

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
r=rh

= 0 (80)

implies

m̃ =
(

2.543 − 1.769

log N

)
+ O

((
1

log N

)3/2
)

. (81)

One can also show that

d

dZ

⎛
⎜⎜⎜⎜⎜⎝

W log N(0.27−0.01m̃2)−0.06
√

log N
√

−0.54log Nm̃2+3.49333log N−4.86
,0

(
2
√

−0.54log Nm̃2+3.49333log N−4.86|Z |√
log N

)

√
C1

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
r=rh

= 0 (82)

implies

m̃
αi
n

n = 0.5

√
−10800.n2 + 10800.

√
(n + 0.376679)(n + 0.623321)

(
n2 + n + 0.25

)− 10800.n − 2592. (83)

The n = 0 result of (83) – 2.479 – is close to the LO result in
(81). Once again, from considerations of parity and charge
conjugation, similar to (60) and (68),

α
{i}
n=0(Z) = Sign(Z)

M or W log N(0.27−0.01m̃2)−0.06
√

log N
√

−0.54log Nm̃2+3.49333log N−4.86
,0

(
2
√

−0.54log Nm̃2+3.49333log N−4.86|Z |√
log N

)

√
C1(Z)

. (84)

4.2.2 UV

Neglecting N f , M-dependent terms in the potential in the
UV (as both become very small), one obtains

V (α{i}
n ;UV )

= e−2|Z | (e6|Z | (6. − 1.08m̃2
)+ e4|Z | (2.16 − 1m̃2

)+ m̃2e8|Z | + (1.08m̃2 − 1
)
e2|Z | − e10|Z | − 2.16

)
(
e4|Z | − 1

)2
= −1 +

(
2.16 + m̃2

)
e−2|Z | + O

(
e−4|Z |) . (85)

The solution to the Schrödinger-like equation is

ψ {i}
n (|Z | ∈ UV) = (

δn,2Z+Sign(Z) + δn,(2Z+∪{0})+1
)

×
[
c1 I1

(
0.2ie−|Z |√25.m̃2(n) + 54.

)

+ c2K1

(
0.2ie−|Z |√25m̃2(n) + 54

)]
. (86)

One can show that the Neumann boundary condition

lim
Z→∞

d

dZ

⎛
⎝c1 I1

(
0.2ie−|Z |√25.m̃2 + 54.

)
√
C1

⎞
⎠ = 0 (87)

as well as the Dirichlet boundary conditions is identically
satisfied. This hence does not yield values for m̃. Similarly,
one can show that the Neumann boundary condition:

lim
Z→∞

d

dZ

⎛
⎝c2K1

(
0.2ie−|Z |√25.m̃2 + 54.

)
√
C1

⎞
⎠ = 0, (88)

but not the Dirichlet boundary condition, is identically satis-
fied, therefore not providing values for m̃.
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4.3 Vector meson spectrum from conversion of α
{0}
n (Z)’s

EOM to Schrödinger-like equations

4.3.1 IR

One can show that

V (α{0}
n ; I R) = −1 + |Z |

(
3.24

log N
− 0.526667m̃2

)

− 0.02m̃2

|Z | + 0.54m̃2 − 3.24Z2

log(N )
+ 1.38

log N

+O
(

1

(log N )2 ,
gsM2

N
, Z3

)
. (89)

The solution to

ψ0
n

′′(Z) +
(
a1

|Z | + b1

)
ψ0
n (Z) = 0 (90)

is given by

ψ0
n (Z)=c2|Z |e−√−b1|Z |

1F1

( −a1

2
√−b1

+1; 2; 2
√−b1|Z |

)

+ c1|Z |e−√−b1|Z |U
( −a1

2
√−b1

+1, 2, 2
√−b1|Z |

)
. (91)

One can show that near r = rh

d

dZ

⎛
⎝c1|Z |e−√−b1|Z |U

( −a1
2
√−b1

+ 1, 2, 2
√−b1|Z |

)
√
C1(Z)

⎞
⎠

= 1

2a1C1(0)3/2
(
a1

√−b1 + 2b1
)
�
(
− a1

2
√−b1

)

×
{
c1

(
2a1

2
√−b1C1(0) log |Z | + 4γ a1

2
√−b1C1(0)

+ a1

√−b1C1
′(0) + 4a1b1C1(0) log |Z |

− 2a1b1C1(0) + 8γ a1b1C1(0)

+ 2a1C1(0)
(
a1

√−b1 + 2b1

)
log
(

2
√−b1

)

+ 2a1C1(0)
(
a1

√−b1 + 2b1

)
ψ(0)

(
1 − a1

2
√−b1

)

+ 2b1C1
′(0) + 4

√−b1b1C1(0)

)}
+ O(Z). (92)

Hence by requiring

a1

2
√−b1

= n ∈ Z
+ ∪ {0} , (93)

one can impose the Neumann boundary condition at the hori-
zon, r = rh . With

a1 = −0.02m̃2,

b1 = −1 + 0.54m̃2 + 1.38

log N
, (94)

this yields

mα
{0}
n

n = 0.5

√
10800.

√
n4 + 0.001n2 − 10800n2

− 2.56n2

log N
√
n4 + 0.001n2

√
10800.

√
n4 + 0.001n2 − 10800n2

+O
(

1

(log N )2

)

=
{

1.36059 − 0.938489

log N
, 1.36077

− 0.93885

log N
, 1.3608 − 0.938917

log N
, 1.36081 − 0.938941

log N
, . . .

}
.

(95)

4.3.2 UV

In the UV disregarding the M and N f (as there is no net D7-
brane and D5-brane charge in the UV in [1] and therefore in
their mirror in [2])

V (α{0};UV ) = e−2|Z | (3.e2|Z | − 1.62
)

log N

+ m̃2e2|Z |

e4|Z | − 1.
− 1.08m̃2

e4|Z | − 1.
− 1

= −1 + e−2|Z |
(
m̃2 − 1.62

log N

)
+ 3

log N
+ O(e−4|Z |).

(96)

The solution to

ψ {0}
n

′′(Z) +
(
A + Be−|Z |)ψ {0}

n (Z) = 0 (97)

is given by

ψ {0}
n (Z) = c1 J−i

√
A

(√
B
√
e−2|Z |

)

+c2 Ji
√
A

(√
B
√
e−2|Z |

)
. (98)

One can show that ψ0
n (Z) does not satisfy the Dirichlet

boundary condition in the UV but the Neumann boundary
condition,

lim
Z→∞

d

dZ

(
ψ

{0}
n (Z)√
C1(Z)

)
= 0, (99)

is identically satisfied in the UV and hence one does not
obtain any quantization condition on the masses m̃.

4.4 α
{i}
n (Z) meson spectroscopy from WKB quantization

The potential in the Schrödinger-like EOM having converted
the α

{i}
n (Z)-EOM to the same, is given by (75). To keep
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the calculations tractable, we first perform a large-N expan-
sion of the potential and work up to LO in N , then expand√
V (α

{i}
n ) up to NLO in log N .

Performing first a large-N expansion, one obtains the fol-
lowing:√
V α

{i}
n (m̃, N )

=
√√√√e−2|Z | (e6|Z | (6. − 1.08m̃2

)+ e4|Z | (2.16 − m̃2
)+ m̃2e8|Z | + (1.08m̃2 − 1.

)
e2|Z | − e10|Z | − 2.16

)
(
e4|Z | − 1.

)2

− 0.75
(
e4|Z | − 1

) (
2.e2|Z | − 1.08e4|Z | + 2.e6|Z | − 3.24

)
log N

(−m̃2e8|Z | + (1 − 1.08m̃2
)
e2|Z | + (m̃2 − 2.16

)
e4|Z | + (1.08m̃2 − 6.

)
e6|Z | + e10|Z | + 2.16

)

×
√√√√e−2|Z | (e6|Z | (6. − 1.08m̃2

)+ e4|Z | (2.16 − 1.m̃2
)+ m̃2e8|Z | + (1.08m̃2 − 1.

)
e2|Z | − e10|Z | − 2.16

)
(
e4|Z | − 1

)2

+O
((

1

log N

)2
)

. (100)

(a) Large-m̃ expansion: UV regime, i.e., r > 0.6
√

3rh or
|Z | > 0.04

One notes from (100) that
√
V ∈ R in the UV for large

m̃:
√

0.5m̃2 − 0.1
√

25.m̃4 − 108.m̃2 < e|Z |

<

√
0.5m̃2 + 0.1

√
25.m̃4 − 108.m̃2, (101)

or

|Z | ∈
[

log

(
1.039 + 0.561

m̃2 + O
(

1

m̃3

))
,

log

(
m̃ − 0.54

m̃
+ O

(
1

m̃3

))]
. (102)

Thus, after performing a large-N expansion, followed by
a large-m̃ expansion and then a large-|Z | expansion, one
obtains

√
V α

{i}
n (m̃, N ) =

(
e−|Z | − 0.54e−3|Z |) m̃

+ 1

m̃

(
−0.5e−|Z | − 0.27e−|Z | + 2.03e−3|Z |)

+ 1

m̃N

(
1.5e−|Z | + 2.47e−3|Z |)

+O
(

1

m̃2 ,
1

(log N )2 , e−5|Z |
)

. (103)

Finally, we have the WKB quantization condition

∫ log
(
m̃− 0.54

m̃

)

log
(

1.039+ 0.561
m̃2

)
√
V =

(
n + 1

2

)
π (104)

and up to O
(

1
log N

)
obtains the results of Table 1.

(b) Small-m̃ expansion

We expand
√
V (α

{i}
n ) up to O

(
1

log N , m̃4
)

. One can show

that
√
V ∈ R for Z ∈ [0.01, 0.47]; given that Z = 0.0385

corresponding to r = RD5/D5 – the D5 − D5 separation –
we put the lower limit by hand as 0.01. One can show from
the WKB quantization condition

∫ 0.47

0.01
dZ

√
V
(
α

{i}
n ; Z

)
=
(
n + 1

2

)
π, (105)

that the following IR vector meson spectrum is generated:

mn(I R)

= 0.5

√√√√3.036 − 0.1136log N

0.068log N + 56.946
+ 2.

√
(0.854513n − 0.0765252) log2(N ) + (715.605n − 67.1225)log N − 134.138

(0.068log N + 56.946)2 .

(106)

Happily, the ground state is non-zero and, for N = 6000,
is 0.81 – not that far off from the value 0.694 − 0.155

log N in

(65) obtained by solving the α
{i}
n (Z) equation of motion near

r = rh or Z = 0 – for N = 6000 the same yields 0.677.
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Table 1 (Pseudo-)vector meson
masses from WKB quantization
applied to V (α

{i}
n )

(Pseudo-)vector
meson name

J PC mn>0 (units of rh√
4πgs N

) PDG mass
(MeV)

B(1)
μ ρ[770] 1++ 7.649 − 1.759

log N 775.49

B(2)
μ a1[1260] 1−− 11.60 − 1.792

log N 1230

B(3)
μ ρ[1450] 1++ 15.535 − 1.81

log N 1465

B(4)
μ a1[1640] 1−− 19.462 − 1.821

log N 1647

4.5 α
{0}
n spectroscopy from WKB quantization

Writingm = m̃ rh√
4πgs Ns

, a = rh
(

0.6 + 4 gsM2

N (1 + log rh)
)

,

one can obtain the Schrödinger-like potential for α
{0}
n (Z) –

due to its cumbersome form, we will not give the explicit
form of its analytical expression.

After retaining terms up LO in N in the potential, the
square root of the Schrödinger-like potential for α

{0}
n (Z) after

a large-(log)N expansion yields
√
V α

{0}
n (|Z |, N , m̃)

=
√

m̃2e2|Z |
e4|Z | − 1

− 1.08m̃2

e4|Z | − 1.
+ 0.e−2|Z | − 1.

+ e−2|Z | (1.5e2|Z | − 0.81
)

log N
√

m̃2e2|Z |
e4|Z |−1.

− 1.08m̃2

e4|Z |−1
− 1.

+O
((

1

log N

)2
)

. (107)

4.5.1 Large-m̃ expansion

One can show that V (α
{0}
n ) ∈ R provided

0.5 log
(

0.1
(

5m̃2 −
√

25.m̃4 − 108m̃2 + 100
))

< |Z |
< 0.5 log

(
0.1
(

5m̃2 +
√

25m̃4 − 108m̃2 + 100
))

,

(108)

or

|Z | ∈
[

0.0385 + O
(

1

m̃2

)
, log m̃ − 0.54

m̃2 + O
(

1

m̃3

)]

≈ [
0.0385, log m̃

]
, (109)

which will be the turning points for the WKB quantization
condition implementation.

One obtains the following large-m̃ expansion from (107):
√
V α

{0}
n (|Z |, N , m̃) = m̃

(
e−|Z | − 0.54e−3|Z |)

+ 1

m̃

(
−e−|Z |

2
− 0.27e−|Z | + 0.03e−3|Z |

)

+ 1

m̃ log N

(
1.5e|Z | − 0.531e−3|Z |)

+O
(

1

(log N )2 ,
1

m̃2 , e−5|Z |
)

. (110)

The WKB quantization condition,

∫ log m̃

0.0385
dZ

√
V α

{0}
n (Z) =

(
n + 1

2

)
π (111)

yields a cubic of the form: a + bm̃ + c
m̃ + d

m̃2 = g where

a = −1.5 + 1.5

log N
,

b = 0.802,

c = 0.269 − 1.717

log N
,

d = 0.27,

g =
(
n + 1

2

)
π. (112)

The only real root up to O
(

1
log N

)
yields the vector meson

spectrum of Table 2 (disregarding n = 0 as it does not satisfy
the large-m̃ assumption).

One hence notes a near isospectrality between the (pseudo-
)vector meson spectra from Tables 1 and 2, and as will be seen
in Table 4, upon comparison with PDG, it is the results of
Table 2 that are slightly closer to the PDG values than those
of Table 1 (Table 3).

The WKB quantization does not work for α
{0}
n (Z) for

small m̃; as can easily be shown in the large-N limit there
are no turning points of the potential.

5 Scalar meson spectroscopy using a black-hole
background for all temperatures

Unlike vector meson spectroscopy, the scalar meson spec-
trum will be obtained by considering a fluctuation of the
D6-brane world volume along Y by switching off any D6-
brane world-volume fluxes as in [4]. Now, Y �= 0 and the
D6-brane metric (41), using (49) and the embedding

Y = Y (xμ, Z), (113)
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Table 2 (Pseudo-)vector meson
masses from WKB quantization
applied to V (α

{0}
n )

(Pseudo-)vector meson name J PC mn>0 (units of rh√
4πgs N

) PDG mass (MeV)

B(1)
μ ρ[770] 1++ 7.698 − 1.604

log N 775.49

B(2)
μ a1[1260] 1−− 11.634 − 1.692

log N 1230

B(3)
μ ρ[1450] 1++ 15.56 − 1.736

log N 1465

B(4)
μ a1[1640] 1−− 19.483 − 1.762

log N 1647

Table 3 The lightest sector meson masses

mn=1 1.331 − 0.167
log N

mn=2 1.958 − 0.226
log N

is therefore

GIIA
6μνdxμdxν = GIIA

μν

(
1 + C1(x

κ , Z)Gρλ
IIA∂ρY ∂λY

)

× dxμdxν + C2(x
κ , Z , Ẏ )dZ2 + C3(x

κ , Z , Ẏ )dxμdZ∂μY

GIIA
θ2θ2

dθ2
2 + GIIA

ỹ ỹ d ỹ2, (114)

where

C1(x
κ , Z) = AY 2 + BZ2,

C2(x
κ , Z , Ẏ ) =

(
AY 2 + BZ2

)
Ẏ 2

+
(
AY 2 + BZ2

)
+ 2Y Z (A − B) Ẏ ,

C3(x
κ , Z , Ẏ ) = 2

(
AY 2 + BZ2

)
Ẏ + 2Y Z (A − B) ,

(115)

where

A = GIIA
rr r2

h e
2
√
Y 2+Z2

(
Y 2 + Z2

) ,

B = GIIA
z̃ z̃(

Y 2 + Z2
)2 . (116)

BIIA
NS−NS [2] in diagonal basis (θ2, x̃, ỹ, z̃) is given by

BI I A = Bθ2 ỹdθ2 ∧ d ỹ + Bθ2 z̃dθ2 ∧ dz̃ + Bθ2 x̃dθ2 ∧ dx̃ .

(117)

Thus, its pull-back on D6 is given by

i∗BIIA = Bθ2 ỹdθ2 ∧ d ỹ + C4(x
κ , Z , Ẏ )dZ ∧ dθ2

+ C5(x
κ , Z)∂μYdxμ ∧ dθ2 (118)

where

C4(x
κ , Z , Ẏ ) =

(
BIIA

θ2 z̃

Y 2 + Z2

) (
Ẏ Z − Y

)
,

C5(x
κ , Z) =

(
BIIA

θ2 z̃

Y 2 + Z2

)
Z . (119)

Now, Bθ2 z̃ and Bθ2 ỹ are as given in (39).
Therefore

i∗(G + B)IIA =
(
A4×4 B4×3

C3×4 D3×3

)
, (120)

where

A =

⎛
⎜⎜⎝
GIIA

00 T 0 0 0
0 GIIA

x1x1T 0 0
0 0 GIIA

x2x2T 0
0 0 0 GIIA

x3x3T

⎞
⎟⎟⎠ ,

T =
(

1 + C1G
ρλ
I I A∂ρY ∂λY

)
,

B4×3 =

⎛
⎜⎜⎜⎜⎜⎝

i∗GIIA
x0Z

i∗BIIA
x0θ2

0

i∗GIIA
x1Z

i∗BIIA
x1θ2

0

i∗GIIA
x2Z

i∗BIIA
x2θ2

0

i∗GIIA
x3Z

i∗BIIA
x3θ2

0

⎞
⎟⎟⎟⎟⎟⎠

,

D3×3 =

⎛
⎜⎜⎝

i∗GIIA
Z Z i∗BIIA

Zθ2
0

−i∗BIIA
Zθ2

i∗GIIA
θ2θ2

i∗BIIA
θ2 ỹ

0 −i∗BIIA
θ2 ỹ

i∗GIIA
ỹ ỹ

⎞
⎟⎟⎠ .

Now, det
(
i∗(G + B)IIA

) = detAdet
(
D − CA

−1
B
)
, and

retaining terms in the following up to O
(
Y 2, Ẏ 2, ∂μY ∂νY

)
(indicated by a tilde below), one obtains

√
detA ∼

√
−GIIA

R1,3

(
1 + C1(Y = 0)

2
Gμν

IIA∂μY ∂νY

)
,

det
(
D − CA

−1
B

)
∼ Ẏ 2�1 + Y 2�2

+�3G
μν
IIA∂μY ∂νY + �4,

implying:√
det
(
D − CA−1B

)

∼ √
�4

(
1 + �1

�4

Ẏ 2

2
+ �2

�4

Ẏ 2

2
+ �3

�4

Gμν
IIA

2
∂μY ∂νY

)
;

· ≡ d

dZ
. (121)

Finally, one thus obtains the following DBI action for N f

D6-branes (setting the tension to unity):
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SD6 = N f

∫
d4xdZdθ2d ỹδ

(
θ2 − αθ2

N
3

10

)

× e−φIIA√
�4

√
−GIIA

R1,3

[
1 + C1 + �3

�4

2
Gμν

IIA∂μY ∂νY

+ �1

�4

Ẏ 2

2
+ �2

�4

Ẏ 2

2

]∣∣∣∣
θ1=

αθ1

N
1
5

,x̃=0

= N f

∫
d4xdZdθ2d ỹδ

(
θ2 − αθ2

N
3

10

)

×
[
S1(Z)Gμν

IIA∂μY ∂νY + S2(Z)Ẏ 2

+S3(Z)Y 2
]∣∣∣

θ1=
αθ1

N
1
5

,x̃=0
, (122)

where S1,2,3 are defined in (C2).
Now, similar to [4], we make the KK ansatz:

Y (xμ, Z) =
∑
n=1

Y(n)(xμ)Zn(Z), (123)

together with the following identifications, normalization and
EOM:∫

dZ
(
S2(Z)Żm(Z)Żn(Z) + S3(Z)Zm(Z)Zn(Z)

)

= m2
n

2
δmn,

∫
dZS1(Z)Zm(Z)Zn(Z) = 1

2
δmn;

− ∂Z (S2(Z)∂ZZn) + S3(Z)Zn(Z) = S1(Z)m2
nZn .

(124)

Making a field redefinition: Zn(Z) = |Z |Gn(Z), one obtains
the following EOM for G(Z):

G′′
n (Z) + G′

n(Z)
1

(2gs N f log N − 6gs N f (log(rh) + |Z |) + 8π)2

×
{(

2(2gs N f log N − 6gs N f (log(rh) + |Z |) + 8π)
(
4gs N f e4|Z |log N − 12gs N f e4|Z |(log(rh) + |Z |) − 3gs N f e4|Z | + 3gs N f + 16πe4|Z |)

e4|Z | − 1

− 3e−2|Z |
(

4gsM2 log(rh)

N
+ 4gsM2

N
+ 0.6

)2 [
−24gs

2N f
2log N (log(rh) + |Z |) + 4gs

2N f
2 log2(N ) − 12gs

2N f
2log N

+ 36gs
2N f

2(log(rh) + |Z |)2 + 36gs
2N f

2(log(rh) + |Z |) + 18gs
2N f

2 + 32πgs N f log N − 96πgs N f (log(rh) + |Z |)

− 48πgs N f + 64π2
])}

+ Gn(Z)

m̃2
(
α2

θ1
2 5
√
N − α2

θ2

)(
e2|Z | − 3.

(
4.gs M2 log(rh )+4.gs M2+0.6N

)2
N2

)

α2
θ1

2 5
√
N
(
e4|Z | − 1

) = 0. (125)

Analogous to obtaining the (pseudo-)vector meson spec-
trum in Sect. 4, we will now proceed to obtaining the
(pseudo-)scalar meson spectrum by three routes. The first
will cater exclusively to an IR computation where we solve
the Gn(Z) EOM near the horizon. Imposing the Neumann
boundary condition at the horizon results in quantization of

the (pseudo-)scalar meson masses. The second route will be
to convert the Gn(Z) EOM into Schrödinger-like EOM and
to solve the same in the IR and UV separately and obtain
(pseudo-)scalar mass quantization by imposing Neumann
boundary conditions at the horizon (IR)/asymptotic boundary
(UV). It turns out the former yields a result which, up to LO
in N , is of the same order as the IR results of route one. The
UV computations satisfy Neumann and/or Dirichlet bound-
ary conditions without any mass quantization condition. The
third route catering to the IR–UV interpolating region and
giving us our main results that are directly compared with
PDG results, is obtaining the (pseudo-)scalar meson masses
via the WKB quantization condition.

5.1 Scalar meson spectrum from solution to EOM near
r = rh

Analogous to (58)–(62), one can rewrite (125) and solve the
same near r = rh , impose Neumann boundary condition at
r = rh with the following identifications:

α1 = 0.92 + 0.24

log N
,

α2 = 0.02α2
θ2
m̃2

α2
θ1

2 5
√
N

+ gsM2m̃2(−3.6 log(rh) − 3.6)

N
− 0.02m̃2,

β2 = −0.54α2
θ2
m̃2

α2
θ1

2 5
√
N

+ gsM2m̃2(7.2 log(rh) + 7.2)

N

+ 0.54m̃2. (126)

The analog of (62) for scalar mesons up to O
(

1
log N

)
yields
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m̃n = 0.5

√
0.548697n2 + 0.548697

√(
n2 + n + 0.25

) (
n2 + n + 166.926

)+ 0.548697n + 3.54458

+
0.25

(
22.9689(n+0.5)2√

(n2+n+0.25)(n2+n+166.926)
+ 0.888889

)

log N

√
0.548697n2 + 0.548697

√(
n2 + n + 0.25

) (
n2 + n + 166.926

)+ 0.548697n + 3.54458

+O
(

1

(log N )2

)
. (127)

The lightest scalar meson masses are in Table 3.

Our result implies that
m2
n=1

m2
n=0

= 2.16 if one disregards the

O
( 1
N

)
corrections. On comparison with the PDG table for

scalar meson masses, if one assumes that the lightest scalar
mesons are f 0[980]/a0[980], f 0[1370] then their mass-
squared ratio is 1.95 – not too far from our result.

5.2 Scalar mass spectrum from solution of the
Schrödinger-like equation

5.2.1 IR

In the IR, one can show that the potential in a Schrödinger-
like form simplifies to

V (IR) =
−0.36gs2N f

2 log(rh)+2.43gs2N f
2+1.50796gs N f

gs2log N2N f
2 − 0.12

log N − 0.02m̃2 − 0.46

|Z |
+ 13.86gs4N f

4 log(rh) + gs2N f
2
(−2.97gs2N f

2 − 58.0566gs N f
)

gs4log N 2N f
4 + 0.54m̃2 + 0.25

Z2 − 3.413. (128)

The solution to the Schrödinger-like equation �′′
n(Z) +

V (IR)(Z)�n(Z) = 0, where �n(Z) = √
C1Gn(Z), and

V (IR)(Z) = c1
Z2 + a1|Z | + b1 with

c1 = 0.25,

a1 = −0.36gs2N f
2 log(rh) + 2.43gs2N f

2 + 1.50796gs N f

gs2N f
2 log2(N )

− 0.02m̃2 − 0.12

log(N )
− 0.46,

b1 = 0.54m̃2 − 3.413, (129)

is given by

�n(Z) = c1Mgs((−0.01m̃2(n)−0.23)log N2−0.06log N+1.215)N f −0.18gs log(rh )N f +0.753982

gs log N2
√

3.41333−0.54m̃2(n)N f
,0

(
2
√

3.41333 − 0.54m̃2(n)|Z |
)

+ c2Wgs((−0.01m̃2(n)−0.23)log N2−0.06log N+1.215)N f −0.18gs log(rh )N f +0.753982

gs log N2
√

3.41333−0.54m̃2(n)N f
,0

(
2
√

3.41333 − 0.54m̃2(n)|Z |
)

. (130)

Now

C1(Z) = − 1

2rh2

{
e−2|Z | (e4|Z | − 1

)

×
(

2gs N f log(N )

(
3rh

2
(

4gsM2 log(rh)

N

+ 4gsM2

N
+ 0.6

)2

+ 2rh
2e2|Z |

)

− 6gs N f (log(rh) + |Z |)
(

3rh
2
(

4gsM2 log(rh)

N

+ 4gsM2

N
+ 0.6

)2

+ 2rh
2e2|Z |

)

+ 2

(
rh

2(12π − 9gs N f )

(
4gsM2 log(rh)

N

+ 4gsM2

N
+ 0.6

)2

+ 8πrh
2e2|Z |

)) }
. (131)

One can show that the Neumann boundary condition is iden-
tically satisfied by Zn(Z) = |Z |Gn(Z) = |Z | �n(Z)√C1(Z)

and
is hence uninteresting, and it will therefore not be imple-
mented. We will implement the Neumann boundary condi-
tion on Gn(Z) = �n(Z)√C1(Z)

. One sees that
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d

dZ

⎛
⎜⎜⎜⎝
Mgs((−0.01m̃2−0.23)log N2−0.06log N+1.215)N f −0.18gs log(rh )N f +0.753982

gs log N2
√

3.41333−0.54m̃2N f
,0

(
2
√

3.41333 − 0.54m̃2|Z |
)

√
C1(Z)

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣|Z |∼0

= 1

N 2

(
0.54m̃2 − 3.41333

) 1
4
(
ω1(gs, M, N f ) + ω2(gs, M, N f ; log rh)m̃

2
)

+ O(Z). (132)

Hence, either

0.54m̃2 − 3.41333 = 0, implying m̃ = 2.514, (133)

or

ω1(gs, M, N f ) + ω2(gs, M, N f ; log rh)m̃
2 = 0, implying

m̃ = 3.07694 +
95.6605
gs N f

− 22.8373 log(rh) + 3.34479

log2(N )

− 7.61242

log(N )
+ O

(
1

(log N )2

)
. (134)

One can show that

W− ia1
2
√

b1
,0

(
2i

√
b1|Z |)

√
C1(Z)

∣∣∣∣∣∣∣|Z |∼0

=

2i
√
b1

(
ψ(0)

(
ia1

2
√

b1
− 1

2

)
+log(2i

√
b1)+log |Z |+2γ

)

�

(
ia1

2
√

b1
− 1

2

) +
a1

(
ψ(0)

(
ia1

2
√

b1
+ 1

2

)
+log(2i

√
b1)+log |Z |+2γ

)

�

(
ia1

2
√

b1
+ 1

2

)

√
2
√
i
√
b1

√
C1(0)

√|Z |

+

√|Z |
⎛
⎝ 2b1C1′(0) log |Z |

�

(
ia1

2
√

b1
− 1

2

) − 2b1C1′(0) log |Z |
�

(
ia1

2
√

b1
+ 1

2

) − ia1
√
b1C1′(0) log |Z |

�

(
ia1

2
√

b1
+ 1

2

)
⎞
⎠

2
√

2
(
i
√
b1
)3/2 C1(0)3/2

+ O
(
Z3/2

)
. (135)

One therefore can satisfy the Neumann boundary condition
at r = rh if

1

2
− ia1

2
√
b1

= −n ∈ Z
− ∪ {0} , (136)

which yields the following quantization condition on m̃:

mn = 0.5

√
−10800.n2 + 10800.

√(
n2 + n + 0.25

) (
n2 + n + 0.271719

)− 10800.n − 2792

+
6.n2 − 6.

√(
n2 + n + 0.25

) (
n2 + n + 0.271719

)+ 6.n + 1.5

log N
√(

n2 + n + 0.25
) (
n2 + n + 0.271719

)√−10800.n2 + 10800.

√(
n2 + n + 0.25

) (
n2 + n + 0.271719

)− 10800.n − 2792.

+O
(

1

(log N )2

)
. (137)

One sees that the n = 0 value 2.39 − 0.51
log N is close to 2.51

of (133), and not too far from 3.08 − 7.61
log N of (134).

5.2.2 UV

In the UV, we will assume M and N f to be quite small and
hence approximate the potential by
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V (UV ) = e−2|Z | (e6|Z | (8 − 1.08m̃2
)+ e4|Z | (−m̃2

)+ 1.08m̃2e2|Z | + (m̃2 + 1.08
)
e8|Z | − 4e10|Z | − 1.08

)
(
e4|Z | − 1

)2

+ α2
θ2
m̃2
(
e2|Z | + 1.08e4|Z | − e6|Z | − 1.08

)
α2

θ1

5
√
N
(
e4|Z | − 1

)2 . (138)

The solution to the Schrödinger-like equation �′′(Z) +
V (Z)�(Z) = 0 is given by

�(Z) = c1 J−i
√
x2

(
e|Z |√x1

)
+ c2 Ji√x2

(
e|Z |√x1

)
,

(139)

where

x1 = 1.08 + m̃2,

x2 = 8 − 1.08m̃2. (140)

One can show that in the UV

d

dZ

(
J±i

√
x2

(
e|Z |√x1

)
√
C1(Z)

)

∼ cos
(
e|Z |√x1

)
× O

(
e− 3|Z |

2

)
, (141)

which tells us that the Neumann boundary condition is identi-
cally satisfied and one does not obtain any mass quantization
condition in the UV from this approach.

5.3 Scalar mass spectrum via WKB quantization condition

For the purpose of simplification of this calculation, we will
be disregarding N f and M because one can show that the
WKB quantization condition integral fails to converge for
IR-valued m̃ and in the UV, M and N f are very small. One
will hence work in the large-m̃/UV limit. From (138), one
thus obtains

√
V = m̃

√
1.08 − e2|Z | − 1.08e4|Z | + e6|Z |

1. − 2e4|Z | + e8|Z |

+
0.5
(
8e6|Z | + 1.08e8|Z | − 4e10|Z | − 1.08

)√ 1.08−e2|Z |−1.08e4|Z |+e6|Z |
1.−2e4|Z |+e8|Z |

m̃
(
1.08e2|Z | − e4|Z | − 1.08e6|Z | + e8|Z |)

+ 0.5α2
θ2
m̃
(
e2|Z | + 1.08e4|Z | − e6|Z | − 1.08

)
α2

θ1

5
√
N
(
e4|Z | − 1.

)2 √ 1.08−e2|Z |−1.08e4|Z |+e6|Z |
1.−2e4|Z |+e8|Z |

+O
(

1

m̃N
1
5

,
1

m̃2

)
. (142)

One sees that
√
V ∈ R for |Z | ∈ [

0.0385, 0.5 log (0.54

+ 1.013×109

m̃2

)]
, which we will approximate by |Z | ∈[

0.0385, 0.5 log(1.013 × 109) ≈ 10.368
]
. The WKB quan-

tization condition,

∫ 10.368

0.0385
dZ
√
V (Z) =

(
n + 1

2

)
π, (143)

yields the following scalar meson spectrum:

m̃n =
α2

θ1
(157.08n + 78.5398) + 0.5

√
α4

θ1

(
98696n2 + 98696n + 2.08747 × 109

)− 1.04372 × 109α2
θ1

α2
θ2

5
√
N

82α2
θ1

− 41α2
θ2

5
√
N

. (144)

One can argue that Y (xμ, Z) is even under parity: (x1,2,3, Z)

→ (−x1,2,3,−Z). The idea is the following. The type IIB
set-up of [1] includes D3-branes with world-volume coordi-
nates x0,1,2,3 and D7-branes with world-volume coordinates
(x0,1,2,3, r, x̃, θ1, z̃),2 which after three T dualities along
x̃, ỹ, z̃ yield two sets of D6-branes, one set with world-
volume coordinates (x0,1,2,3, x̃, ỹ, z̃) (obtained from a triple
T dual of the D3-branes) and the other set with world-volume
coordinates (x0,1,2,3, r, θ2, ỹ) (obtained from a triple T dual
of the D7-branes). One hence sees that the two sets of D6-
branes are separated in r or Y . In the type IIB set-up of [1],
the flavor D7-branes never touch the D3-branes, which in
the SYZ or triple T dual picture implies that the two sets of
D6-branes never touch each other. This, like [3,4], implies
one can construct a C5 ∼ Ydx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dZ
which vanishes precisely when the two sets of D6-branes
touch. From this C5, one can construct a Chern–Simons
action:

∫
w.v.of D6 F2 ∧ C5 where F2 = d A1 corresponds

to a gauge field on the D6-brane world volume. If one
demands the Chern–Simons action be invariant under par-
ity – which includes Z → −Z – given that F2 is even,

2 There are also D5-branes with world-volume coordinates
(x0,1,2,3, θ1, x̃) and D5-branes with world-volume coordinates
(x0,1,2,3, θ1, x̃) which, relative to the D5-branes are at the antipodal
point of the resolved S2

a (θ2, φ2); their bound state, however, is equiva-
lent to producing a net D3-brane charge provided a certain topological
condition is satisfied (see [19] and references therein).
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one sees that Y is even under parity. Similarly, under charge
conjugation – which includes Z → −Z – noting that
F2 is charge-conjugation odd implies that Y is charge-
conjugation even. From (123), under 5D parity, Zn(−Z) =
(−)n+1Zn(Z),Y(n)(−xμ) = (−)n+1Y(n)(xμ), n ∈ Z

+ [3].
We assume that the three lightest scalar mesons from

the PDG are f 0[980]/a0[980], f 0[1370] and f 0[1450]. We
could choose αθ1 and αθ2 to match mn=3

mn=1
with PDG exactly

(this is not normalizing our mn=3
mn=1

result to match PDG val-
ues)! This is effected by imposing the following condition
on αθ1 , αθ2 :

mn=3

mn=1
=

549.7787α2
θ1

+ 0.5
√

2.08767 × 109α4
θ1

− 1.04372 × 109α2
θ1

α2
θ2

5
√
N

235.6194α2 + 0.5
√

2.08747 × 109α4
θ1

− 1.04372 × 109α2
θ1

α2
θ2

5
√
N

= 1350

980
, (145)

which is satisfied by αθ1 = 0.70765N
1

10 αθ2 . Having done
so, the ratio mn=5

mn=1
is not too far off of the PDG value – see

Table 8 in Sect. 7! The (pseudo-)scalar meson (0−−)0++
masses are listed in Table 4. (The entries against 0−− are
blanks as there are, as of now, no known candidates with this
J, P,C assignment.)

6 Meson spectroscopy in a thermal background and
near isospectrality with black-hole background

In this section we show an interesting near isospectrality
of the (pseudo-) vector meson spectrum (in Sect. 6.1) and
(pseudo-)scalar meson spectrum (in Sect. 6.2) obtained using
a thermal background which is valid for low temperatures,
with the corresponding results of Sects. 4 and 5 obtained
using a black-hole background (expected to be valid/stable
at high temperatures) for all temperatures.

As the techniques are similar to and in fact simpler than
the ones used in Sects. 4 and 5, we will only present the main
results to substantiate our claim.

6.1 Vector meson spectroscopy in a thermal background

6.1.1 Solving the EOM near an IR cut-off r = r0

Writing r = r0e
√
Y 2+Z2

– r0 being an IR cut-off3 – and
defining m = m̃ r0√

4πgs N
, setting rh = 0 and introducing a

bare resolution parameter a = γ r0 (to ensure thatRD5/D5 =

3 This is not actually a parameter put in by hand. In the spirit of a top–
down approach, one can show that a Hawking–Page transition occurs at
a temperature at an r0 given in terms of rh and an O(1) constant of pro-
portionality relating the modulus of the Ouyang embedding parameter
corresponding to the holomorphic embedding of type IIB flavor branes
to r0 – see [19].

√
3a �= 0), one can show that the αN (Z) EOM - there is no

need to attach a superscript to αN anymore as rh = 0 – near
the horizon can be written in the form

α′′
n (Z) + (a1 + b1|Z |)α′

n(Z) + (a2 + b2|Z |)αn(Z) = 0,

(146)

where up to O
(

1
log N

)
:

a1 = 2 − 3γ 2 − 3

log N
+ 9γ 2

log N
,

b1 = 6γ 2 − 18
γ 2

log N
,

a2 =
(

1 − 3γ 2
)
m̃2, (147)

whose solution is given by

αn(Z) = e
−a1|Z |+ b2 |Z |

b1
− b1Z

2

2

×
(
c2

(
b1

3 − a2b1
2 + a1b2b1 − b2

2

2b1
3 ; 1

2
;

(|Z |b1
2 + a1b1 − 2b2

)2
2b1

3

)

+ c1H−a1b1b2+a2b1
2−b1

3+b2
2

b1
3

(
a1b1 + b1

2|Z | − 2b2√
2b1

3/2

))
.

(148)

By imposing the Neumann boundary condition at r = r0 by
assuming c2 = 0, numerically, e.g., for N = 6000, γ = 0.6

(similar to a(rh �= 0) =
(

0.6 + O
(
gsM2

N

))
rh), one obtains

as a root – corresponding to the lightest vector meson – m̃ ≈
1.04 – of the same order as the LO value in (65). One gets
only the root m̃ = 0 if c1 = 0.

6.1.2 Schrödinger-like EOM

One can rewrite the EOM as a Schrödinger-like equation
in terms of ψn(Z) = √

C1(Z)αn(Z) where ψn(Z) satisfies
ψ ′′
n (Z) + V (Z)ψn(Z) = 0, where
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Table 4 (Pseudo-)scalar meson
masses from WKB quantization

(Pseudo-)scalar meson name J PC mn>0 (units of rh√
4πgs N

) PDG mean mass (MeV)

Y(1) f 0[980]/a0[980 0++ 9207.44 980

Y(2) – 0−− 10,861.9 –

Y(3) f 0[1370] 0++ 12,683.7 1350

Y(4) – 0−− 14,640.8 –

Y(5) f 0[1450] 0++ 16,704 1474

C1(Z) = 1

2

[
3γ 2(gs N f (log(N ) − 3|Z | − 3) + 4π)

− 3gs N f

(
3γ 2 + 2e2|Z |) log(r0)

+ 2e2|Z |(gs N f (log(N ) − 3|Z |) + 4π)

]
(149)

and

V (Z) = −1 + e−2|Z |m̃2 − 3e−4|Z |γ 2m̃2

+ 3 − 9
2e

−2|Z |γ 2

log N
+ O

(
1

(log N )2

)
. (150)

Near r = r0 – the IR – the EOM can written as ψ ′′
n (Z) +

(a + b|Z |)ψn(Z), where

a = −1 + 3

log N
− 9γ 2

2 log N
+ m̃2

(
1 − 3γ 2

)
,

b = 9γ 2

log N
+ m̃2

(
12γ 2 − 2

)
, (151)

the solution to which is given by

ψ(Z) = c1Ai

(
−a + b|Z |

(−b)2/3

)
+ c2Bi

(
−a + b|Z |

(−b)2/3

)
.

(152)

In the large-| log r0| limit and setting γ = 0.6, one can show
that m̃ = 0.36.

In the UV, V (Z) = −1 + e−2|Z |m̃2 +O
(
e−4|Z |), and the

solution to the EOM is given by J1
(
e−|Z |m̃

)
and Y1

(
e−|Z |m̃

)
which satisfy the Neumann/Dirichlet boundary conditions,
identically, in the UV and do not provide m̃ quantization.

6.1.3 WKB quantization condition

In the UV, one can show that

√
V (αn) = 3 − 9

2γ 2e−2|Z |

2 log(N )
√−3γ 2m̃2e−4|Z | + m̃2e−2|Z | − 1

+
√

−3γ 2m̃2e−4|Z | + m̃2e−2|Z | − 1

+O
((

1

log N

)2
)

. (153)

One can see that
√
V ∈ R for |Z | ∈

[
log
(√

3γ + O
(

1
m̃2

))
,

log
(
m̃ − 3

2m̃ + O
(

1
m̃2

))]
. One can then show that

∫ log
(
m̃− 3

2m̃

)

log
(√

3γ
)

√
V =

(
n + 1

2

)
π (154)

yields

mαn
n = 3

20

√
3

(√
2
√

γ 2
(
2(2πn+π)2+12π(2n+1) + 13

)

+ 2γ (2πn + π + 3)

)

×
√

3

(
γ 2(7−36π(2n+1))√

2
√

γ 2(2(2πn+π)2+12π(2n+1)+13)
− 18γ

)

20 log(N )

+O
((

1

log N

)2
)

. (155)

Hence, disregarding n = 0, the spectrum of Table 5, nearly
isospectral with Table 1 gotten using a black-hole back-
ground, is obtained.

6.2 Scalar meson spectroscopy in a thermal background

6.2.1 Solving the EOM near an IR cut-off r = r0

The EOM for Gn(Z), near the horizon, is again of the form
(146) wherein

a1 = 4 − 3γ 2 + (9γ 2 − 3)

log N
+ (27γ 2 − 9) log r0

(log N )2 ,

b1 = 6γ 2 − 18γ 2

log N
− 54γ 2 log r0

(log N )2 ,

a2 = m̃2(1 − 3γ 2),

b2 = m̃2(12γ 2 − 2). (156)

Quite interestingly, this IR computation is able to resolve
f 0[980](m f 0[980] = 990 MeV) and a0[980](ma0[980] =
980 MeV) because, for γ = 0.6, numerically one can show
that the two smallest roots of the equation obtained by impos-
ing Neumann boundary condition on |Z |Gn(r = r0) by set-
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Table 5 (Pseudo-)vector meson
masses from WKB quantization
applied to V (α

{0}
n )

(Pseudo-)vector meson name J PC mn>0 (units of r0√
4πgs N

) PDG mass (MeV)

B(1)
μ ρ[770] 1++ 7.716 − 1.636

log N 775.49

B(2)
μ a1[1260] 1−− 11.644 − 1.714

log N 1230

B(3)
μ ρ[1450] 1++ 15.567 − 1.753

log N 1465

B(4)
μ a1[1640] 1−− 19.488 − 1.776

log N 1647

ting c2 = 0 are: 1.83 and 1.94 – the second in particular
not far off of the results of Table 1 gotten using a black-hole
gravity dual – and 1.94

1.83 = 1.06 and
m f 0[980]
ma0[980] = 1.01 – very

close indeed! A black-hole computation could not do so.

6.2.2 Schrödinger-like EOM

With

C1(Z) = e2|Z |
(

3γ 2(gs N f (log(N ) − 3|Z | − 3) + 4π)

− 3gs N f

(
3γ 2 + 2e2|Z |) log(r0)

+ 2e2|Z |(gs N f (log(N ) − 3|Z |) + 4π)

)
, (157)

and the potential in the Schrödinger-like EOM (analogous to
(150)) given by

V (Gn) = −4 − 3e−4|Z |γ 2m̃2 + e−2|Z |(3γ 2 + m̃2)

+ 6 − 27
2 e−2|Z |γ 2

log N
+ O

(
1

(log N )2

)
, (158)

the a, b, analogous to (151), are given by

a = −4 + 3γ 2 + m̃2(1 − 3γ 2) + (6 − 27γ 2)

log N
,

b = −6γ 2 + m̃2(12γ 2 − 2) + 27γ 2

log N
. (159)

One gets a solution analogous to (152); only for c2 = 0 we
can show numerically that, for γ = 0.6, m̃ ≈ 0.85 – not too
far off of the smallest root in Sect. 6.2.1 and about the same
order as the results of Sect. 5.2.1 – one can approximately
satisfy the Neumann boundary condition at r = r0.

6.2.3 WKB quantization condition

Once again, as was assumed for the black-hole background
computation, given that scalars are typically more massive
than vector mesons, implying that we address the UV-IR
interpolating/UV region in which M, N f are very small, one
sees that

√
V (Gn) =

√
−4 − 3e−2|Z |γ 2m̃2 + e−2|Z | (3γ 2 + m̃2

)

+O
(

1

N
1
5

)
. (160)

One sees that |Z | ∈
[
log
(√

3γ
)

, log
(
m̃
2 − 9γ 2

4m̃2

)]
,
√
V ∈

R and the WKB quantization condition:

∫ log

(
m̃
2 − 9γ 2

4m̃2

)

log
(√

3γ
)

√
V (Gn(Z)) =

(
n + 1

2

)
π (161)

yields

mn = 1

20

√
3γ

(
6(2πn + π + 6)

+√
2
√

18(2πn + π)2 + 216π(2n + 1) + 349

)
. (162)

Hence, disregarding n = 0, the spectrum of Table 6 is gen-
erated.

For a low-temperature thermal gravity dual, we do not
trust values n > 3 and hence have not quoted these.

7 Summary, new insights into thermal QCD and future
directions

A top–down finite-gauge-coupling finite-number-of-colors
holographic thermal QCD calculation pertaining to meson
spectroscopy,4 has thus far been missing in the literature.
This paper fills this gap. We should keep in mind that even
though lattice QCD is a good tool to deal with IR physics it
is hard to include fundamental fermions in the same. How-
ever, incorporation of fermions is easily taken care of in the
top–down type IIB construct of [1] and its type IIA mirror
in [2]. In this paper, we have calculated (pseudo-)vector and
(pseudo-)scalar meson spectra from the delocalized type IIA
SYZ mirror (constructed in [2]) of the UV-complete top–
down type IIB holographic dual of large-N thermal QCD
(constructed in [1]), at finite coupling and with finite number
of colors (part of the ‘MQGP’ limit), and we compared our

4 For glueball spectroscopy, see [16].
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Table 6 (Pseudo-)scalar meson
masses from WKB quantization

(Pseudo-)scalar meson name J PC mn>0 (units of r0√
4πgs N

) PDG mean mass (MeV)

Y(1) f 0[980]/a0[980] 0++ 15.745 980

Y(2) – 0−− 22.359 –

Y(3) f 0[1370] 0++ 28.934 1350

results with [3–5]. We first do a computation with a black-
hole background assuming the same to be valid for all temper-
atures, low and high (similar in spirit to the computations in
[8]). We then repeat the computation in a thermal background
with no black hole which is valid for low temperatures. What
we learn about QCD is that the mirror of [1] when considered
in the ‘MQGP limit’ – involving finite gauge/string coupling
and finite Nc = M (at the end of a Seiberg duality cascade)
and not just a large ’t Hooft coupling – can, almost with-
out any fine tuning, generate the low-lying vector and scalar
meson spectra from the massless string sector. An analytical
finite-gauge-coupling computation in perturbative (thermal)
QCD is very hard if not unfeasible. This, however, is easily
done as a classical supergravity computation in our set-up.

• Summary of new results obtained (points 1.–6.) and
the new insights gained into thermal QCD (point 7.)

1. In Tables 1 and 2, even if we drop the O
(

1
log N

)
terms in the vector meson masses (BH/thermal back-
ground) obtained by a WKB quantization condition,
and assume n = 1, 2, 3, 4 to correspond, respec-
tively, to ρ[770], a1[1260], ρ[1450], a1[1640], then
Table 7 compares mass ratios from our results at
LO in N (obtained from a WKB quantization con-
dition) with those from [3,4] (up to first order in

δ = gsM2

N < 1) and [5].

The authors of [4] obtain a variety of values by adjusting
the values of and working up to first order in δ, as well as
a constant appearing in a ‘squashing factor’ in the metric.
Their best values for (pseudo-)vector meson mass ratios are
quoted in Table 5, column 5. But they need to do a lot of fine
tuning, incorporate contributions to the results from theO(δ)

terms, and choose δ = 0.5, which in fact cannot justify dis-
regarding terms of higher powers of δ as δ = 0.5 is not very
small to warrant the same. Our results, specially coming from
the WKB quantization condition applied to V (α

{0}
n ) for the

BH gravitational dual or V (αn) for the thermal gravitational
background, working even up to LO in N without having to
explicitly numerically compute the O(δ) (δ ∼ 0.001 for our
calculations and thereby justifying dropping higher powers
of δ) contribution, display the following features (Table 6):

– Our m2
a1[1260]/m2

ρ[770] is close to [3,4], and not too far
off of the PDG value.

– Our m2
ρ[1450]/m2

ρ[770] is the same as (for BH back-
ground)/very close to (for thermal background) [4] (but
without any fine tuning and already at LO in N ) – within
≈ 15% of the PDG value.

– Our m2
a1[1640]/m2

ρ[770] is closer to the PDG value than
[3].

2. There is a near isospectrality between the lightest
(pseudo-)vector meson masses calculated by a BH and
thermal backgrounds.

3. The thermal background, to the order permissible by our
analytical/numerical computations, does not provide a
temperature dependence of m̃ at low temperatures – in
agreement with one’s expectations [8]. Encouraged by
the aforementioned isospectrality, by solving the EOMs
for the gauge field fluctuations along the D6 world vol-
ume in a BH gravitational dual, close to the horizon, we
are able to capture the explicit temperature dependence
of the lowest lying vector meson mass with the temper-

ature dependence appearing at O
(

1
(log N )2 ,

gsM2

N

)
. The

temperature-dependent meson mass m̃ will have the fol-
lowing form (Table 7):

Table 7 Comparison of mesons masses ratio

Ratio (α{i}
n ) (BH) Ratio (α{0}

n ) (BH) Ratio (thermal) Sakai–Sugimoto (as

given in [4])

Best value in [4]: δ = 0.5 Exp. value PDG
(as given in [4])

m2
a1 [1260]
m2

ρ[770]
2.30 2.28 2.28 2.32 2.31 2.52

m2
ρ[1450]

m2
ρ[770]

4.12 4.09 4.07 4.22 4.09 3.57

m2
a1 [1640]
m2

ρ[770]
6.47 6.41 6.38 6.62 5.93 4.51
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m̃lightest = α + β

log N
+ (δ1 + δ2 log rh)

(log N )2

+ gsM2 (κ1 + κ2 log rh)

N
+ O

(
gsM2

N

log rh
log N

)
,

(163)

δ2 > 0. The temperature, assuming the resolution to
be larger than the deformation in the resolved warped
deformed conifold in the type IIB background of [1] in
the MQGP limit, and utilizing the IR-valued warp factor

h(r, θ1 ∼ N− 1
5 , θ2 ∼ N− 3

10 ), is [19]

T = ∂r GM
00

4π

√
GM

00 GM
rr

= rh

⎡
⎣ f rac12π3/2

√
gs N

−
3gs

3
2 M2N f log(rh)

(
− log N+12 log(rh)+ 8π

gs N f
+6−log(16)

)
64π7/2N 3/2

⎤
⎦

+ a2

⎛
⎝ 3

4π3/2√gs
√
Nrh

−
9gs3/2M2N f log(rh)

(
8π

gs N f
−log(N )+12 log(rh)+6−2 log(4)

)
128π7/2N 3/2rh

⎞
⎠ .

(164)

Using (164) and the arguments of [19], one can invert
(164) and express rh in terms of T [41] in the MQGP
limit. Assuming log rh in (163) to be in fact log

( rh
�

)
,� >

rh being the scale at which confinement occurs, one
sees that, as per expectations, the vector meson masses
decrease with temperature [8] with the same being large-
N suppressed [42] (and references therein).

4. On comparing scalar meson mass ratios obtained from
(144) using a black-hole gravitational dual WKB quan-
tization and PDG values, we obtain Table 8.

The agreement with the PDG values for the lightest
three scalar meson candidates (if assumed to be f 0[980],
f 0[1370], f 0[1450]) is quite nice. We do not expect the
agreement for more massive scalar mesons. This is for the fol-
lowing reason. As discussed in [4,14]5 massive open string
excitations can contribute to the meson (specially scalar)
masses (as scalar mesons are typically heavier than (pseudo-
)vector mesons). We do not attempt to estimate the same as
open string quantization in a curved RR background is a hard
problem, and in this paper, like [4], we have assumed that
the mesons arise from the massive KK modes of the mass-
less open string sector. The difference between our results
and the PDG results for the mass ratios of vector and scalar

5 One of us (AM) thanks K. Dasgupta for emphasizing this point to
him.

Table 8 The lightest scalar meson mass ratios

Our results PDG values

mn=3
mn=1

m f 0[1370]
m f 0[980]

1.38 1.38
mn=5
mn=1

m f 0[1450]
m f 0[980]

1.81 1.50

mesons, for heavier mesons, could be attributable to the con-
tributions coming to meson masses from the massive open
string sector (which we have not calculated) in addition to
the ones coming from the massless open string sector (which
we have calculated in this paper).

5. Using a thermal background, though on the one hand, it
appears to be possible to in fact resolve a0[980] (average
mass of 980 MeV) and f 0[980] (average mass 990 MeV),
on the other hand assuming f 0[980]/a0[980], f 0[1370],
f 0[1450] to be the lightest scalar mesons, and a WKB
quantization condition yields a mass ratio of the first two
as 1.83, the mass ratio of f 0[1370] and a0[980] being
1.38; as f 0[1370] is expected to have a mass range of
1200–1500 MeV [5], with 1500 MeV the ratio – as per
PDG values – increases to 1.53.
The thermal background is not able to correctly account
for f 0[1470]. The black-hole background, as is evident
from Table 8, does a good job though.

6. The 0−− pseudo-scalar mesons in Table 4 do not, thus
far, have corresponding entries in the PDG tables. This
is one point of difference between our results and PDG
tables.

7. There are three main insights we gain in thermal QCD
by evaluating mesonic (vector/scalar) spectra and com-
paring with PDG values.
(a) The first is the realization that, from a type IIA per-
spective, meson spectroscopy in the mirror of top–down
holographic type IIB duals of large-N thermal QCD at
finite coupling and number of colors6 (closer to a realistic
QCD calculation) which are UV-complete – we know of
only [1] that falls in this category for which the mirror was
worked out in [2] – will give results closer to PDG val-
ues rather than a single T dual of the same. Even though
obtaining the mirror requires a lot of work, once per-
formed, one can obtain very good agreement with PDG

tables already atO
((

gsM2

N

)0
)

(for vector mesons,with-

out any fine tuning). This is a major lesson we learn from

6 In the IR, as explained in Sect. 2.1, Nc = M which can be O(1) in
the MQGP limit of [2] – taken to be three in this paper – and not N .
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our computation. There are two major reasons for the
same.

– As noted in Sect. 3, the mirror of [1] picks up sub-
dominant terms in N of O(N 0) in BIIA which are there-

fore bigger than the O(
gsM2

N ) contributions, and which
were missed in [4]. This is the reason why the authors of

[4] had to set gsM2

N = 0.5 – not a small enough fraction to

warrant disregarding O
((

gsM2

N

)2
)

contributions which

they did – to obtain a reasonable match with [5].
– In the context of [1], this is expected to be related to the

following.7 The brane construct of [1] involves N D3-
branes, M D5-branes wrapping the vanishing S2, M D5-
branes wrapping the same S2 but placed at the antipo-
dal points of the resolved S2(a) relative to the D3, D5-
branes, N f flavor D7-branes wrapping an S3 and radially
extending all the way into the IR starting from the UV
and N f D7-branes wrapping the same S3 but going only
up to the IR–UV interpolating region. The mirror of this
results in D6 branes in a deformed conifold. Now, the
gravity dual of the above picture – which is what we
work with – involves a resolved warped deformed coni-
fold with a black hole and D5, D7 branes and D7 branes
(plus fluxes) on the type IIB side and the delocalized mir-
ror yields a non-Kähler warped resolved conifold with a
black hole and D6, D6 branes (plus fluxes) on the type
IIA side. The latter (warped resolved conifolds) are easier
to deal with computationally than the former (resolved
warped deformed conifolds).

(b) This is related to (a) above. There is an intimate
connection between Strominger–Yau–Zaslow mirror of
resolved warped deformed conifolds and thermal QCD
at strong coupling and finite number of colors; hence,
delocalized Strominger–Yau–Zaslow mirror construc-
tion is an entirely new technique used for hadron spec-
troscopy.

(c) The third is that a BH gravitational dual and a thermal
gravity dual yield nearly isospectral spectra for the light
vector mesons; the same is partially true for the lightest
scalar mesons too. Explicit computations reveal that a
BH type IIA gravity dual obtained by delocalized SYZ
mirror transform of the type IIB holographic dual of [1]
is not only able to provide a good match with PDG values
for the lightest vector and scalar mesons, it is also able to
thereby obtain an explicit temperature dependence of the
(pseudo-)vector masses as a bonus and realize the log rh
dependence in the same appears at the sub-dominant

7 One of us (AM) thanks K. Dasgupta for discussion of this point.

O
(

1
(log N )2

)
with the desired feature of a small large-N

suppressed decrease with increase of temperature.

• Future directions: glueball decays into mesons
It will be interesting to look at the various glueball-to-
meson decay modes. To that end, Performing a Kaluza–
Klein reduction similar to [39]: AZ = φ(Z)π(xμ), Aμ =
ψ(Z)ρμ(xν), and similar to [40], we can look at the
following M-theory metric perturbations hMN (M, N =
0, . . . , 10;μ = t, a, a = 1, 2, 3):

htt (r, x
μ) = q1(r)G(xμ)GM

t t ,

hrr (r, x
μ) = q2(r)G(xμ)GM

rr ,

hra(r, x
μ) = g3(r)∂aG(xμ)GM

aa ,

hab(r, x
μ) = GM

ab

(
q4(r) + q5

∂a∂b

m2

)

G(xμ) no summation,

h10 10(r, x
μ) = q6(r)G(xμ)GM

10 10. (165)

Using Witten’s prescription of going from type IIA to
M-theory we could work back and using the aforemen-
tioned M-theory metric perturbations, work out the type
IIA metric perturbations which hence would yield (in the
following G̃IIA

αβ = GIIA
αβ + hαβ;α, β = 0, 1 . . . , 9 and

hαβ being type IIA metric perturbations):

e
4φIIA

3 = GM
10 10 + h10 10,

G̃IIA
rr,t t√

GM
10 10 + h10 10

= GM
rr,t t + hrr,t t ,

G̃IIA
ra√

GM
10 10 + h10 10

= hra,

G̃IIA
ab√

GM
10 10 + h10 10

= GM
ab + hab.

Solving (with a slight abuse of notation) the first order
perturbation of the M-theory Einstein’s EOM (assum-
ing the flux term providing a cosmological constant):
R(1)
MN ∼ G4∧∗G4√

G
hMN , for q1,...6, one can obtain the

glueball–meson interaction Lagrangian density (metric
perturbation corresponding to glueballs and gauge field
fluctuations corresponding to mesons), using which one
can work out glueball decays into mesons.
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Appendix A: Triple-T duality rules

In this section, we summarize the Buscher triple T duality
rules for T dualizing first along x , then along y followed by
dualizing along z. The starting metric in the type IIB theory
has the following components:

ds2
IIB = gIIB

μν dxμ dxν + gIIB
xμ dx dxμ

+ gIIB
yμ dy dxμ + gIIB

zμ dz dxμ + gIIB
xy dx dy

+ gIIB
xz dx dz + gIIB

zy dz dy

+ gIIB
xx dx2 + gIIB

yy dy2 + gIIB
zz dz2, (A1)

where μ, ν �= x, y, z. As shown in [28], the form of the met-
ric of the mirror manifold after performing three T dualities,
first along x , then along y and finally along z:

ds2 =
(
Gμν − GzμGzν − BzμBzν

Gzz

)
dxμ dxν

+ 2

(
Gxν − GzxGzν − BzxBzν

Gzz

)
dx dxμ

+ 2

(
Gyν − GzyGzν − BzyBzν

Gzz

)
dy dxν

+ 2

(
Gxy − GzxGzy − BzxBzy

Gzz

)
dx dy

+ dz2

Gzz
+ 2

Bμz

Gzz
dxμ dz + 2

Bxz

Gzz
dx dz + 2

Byz

Gzz
dy dz

+
(
Gxx−G2

zx − B2
zx

Gzz

)
dx2 +

(
Gyy − G2

zy−B2
zy

Gzz

)
dy2.

(A2)

The various components of the metric after three successive
T dualities along x, y and z, respectively, can be written as
[28]

Gμν = gIIB
μν g

IIB
xx − gIIB

xμ gIIB
xν + bIIB

xμ b
IIB
xν

gIIB
xx

−
(
gIIB
yμ gIIB

xx − gIIB
xy g

IIB
xμ + bIIB

xy b
IIB
xμ

) (
gIIB
yν gIIB

xx − gIIB
xy g

IIB
xν + bIIB

xy b
IIB
xν

)

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
)

+
(
bIIB
yμ gIIB

xx − gIIB
xy b

IIB
xμ + bIIB

xy g
IIB
xμ

) (
bIIB
yν gIIB

xx − gIIB
xy b

IIB
xν + bIIB

xy g
IIB
xν

)

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
)

,

(A3)

Gμz = gIIB
μz g

IIB
xx − gIIB

xμ gIIB
xz + bIIB

xμ b
IIB
xz

gIIB
xx

−
(
gIIB
yμ gIIB

xx − gIIB
xy g

IIB
xμ + bIIB

xy b
IIB
xμ

) (
gIIB
yz g

IIB
xx − gIIB

xy g
IIB
xz + bIIB

xy b
IIB
xz

)

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
)

+
(
bIIB
yμ gIIB

xx −gIIB
xy b

IIB
xμ +bIIB

xy g
IIB
xμ

) (
bIIB
yz g

IIB
xx − gIIB

xy b
IIB
xz + bIIB

xy g
IIB
xz

)

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
) ,

(A4)

Gzz = gIIB
zz gIIB

xx − j2
xz + b2

xz

gIIB
xx

−
(
gIIB
yz g

IIB
xx − gIIB

xy g
IIB
xz + bIIB

xy b
IIB
xz

)2

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
) +

(
bIIB
yz g

IIB
xx − gIIB

xy b
IIB
xz

+ bIIB
xy g

IIB
xz

)2

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
)

,
(A5)

Gyμ = − bIIB
yμ gIIB

xx − bIIB
xμ gIIB

xy + bIIB
xy g

IIB
μx

gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2 ,

Gyz = − bIIB
yz g

IIB
xx − bIIB

xz g
IIB
xy + bIIB

xy g
IIB
zx

gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2 , (A6)

Gyy = gIIB
xx

gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2 ,

Gxx = gIIB
yy

gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2 ,

Gxy = −gIIB
xy

gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2 , (A7)

Gμx = bIIB
μx

gIIB
xx

+
(
gIIB
μy g

IIB
xx − gIIB

xy g
IIB
xμ + bIIB

xy b
IIB
xμ

)
bIIB
xy

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
)

+
(
bIIB
yμ g

IIB
xx − gIIB

xy b
IIB
xμ + bIIB

xy g
IIB
xμ

)
gIIB
xy

gIIB
xx (gIIB

yy g
IIB
xx − gIIB

xy
2 + bIIB

xy
2)

, (A8)

Gzx = bIIB
zx

gIIB
xx

+
(
gIIB
zy gIIB

xx − gIIB
xy g

IIB
xz + bIIB

xy b
IIB
xz

)
bIIB
xy

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
)

+
(
bIIB
yz g

IIB
xx − gIIB

xy b
IIB
xz + bIIB

xy g
IIB
xz

)
gIIB
xy

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
) . (A9)

In the above formulas we have denoted the type IIB B fields
by bIIB

mn . For the generic case we will switch on all the com-
ponents of the B field:

BIIB = bIIB
μν dxμ ∧ dxν + bIIB

xμ dx ∧ dxμ + bIIB
yμ dy ∧ dxμ + bIIB

zμ dz

∧dxμ + bIIB
xy dx ∧ dy + bIIB

xz dx ∧ dz + bIIB
zy dz ∧ dy.

(A10)
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After applying again the T dualities, the type IIA NS–NS B
field in the mirror set-up will take the form

BI I A =
(
Bμν + 2Bz[μGν]z

Gzz

)
dxμ ∧ dxν

+
(
Bμx + 2Bz[μGx]z

Gzz

)
dxμ ∧ dx

×
(
Bμy + 2Bz[μGy]z

Gzz

)
dxμ ∧ dy

+
(
Bxy + 2Bz[xGy]z

Gzz

)
dx ∧ dy

+ Gzμ

Gzz
dxμ ∧ dz + Gzx

Gzz
dx ∧ dz + Gzy

Gzz
dy ∧ dz.

(A11)

Here the Gmn components have been given above, and the
various B components can be written as

Bμν = bIIB
μν g

IIB
xx + bIIB

xμ gIIB
νx − bIIB

xν gIIB
μx

gIIB
xx

+
2
(
gIIB
y[μgIIB

xx − gIIB
xy g

IIB
x[μ + bIIB

xy b
IIB
x[μ
) (

bIIB
ν]y gIIB

xx − bIIB
ν]x gIIB

xy − bIIB
xy g

IIB
ν]x
)

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
) ,

(A12)

Bμz = bIIB
μz g

IIB
xx + bIIB

xμ gIIB
zx − bIIB

xz g
IIB
μx

gIIB
xx

+
2
(
gIIB
y[μgIIB

xx − gIIB
xy g

IIB
x[μ + bIIB

xy b
IIB
x[μ)(bIIB

z]y gIIB
xx − bIIB

z]x gIIB
xy − bIIB

xy g
IIB
z]x
)

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
) ,

(A13)

Bμy = gIIB
μy g

IIB
xx − gIIB

xy g
IIB
xμ + bIIB

xy b
IIB
xμ

gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2 ,

Bzy = gIIB
zy gIIB

xx − gIIB
xy g

IIB
xz + bIIB

xy b
IIB
xz

gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2 , (A14)

Bμx = gIIB
μx

gIIB
xx

−
gIIB
xy

(
gIIB
μy g

IIB
xx − gIIB

xy g
IIB
xμ + bIIB

xy b
IIB
xμ

)

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
)

+
bIIB
xy

(
bIIB
xμ g

IIB
xy − bIIB

yμ g
IIB
xx − bIIB

xy g
IIB
xz

)

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
) , (A15)

Bzx = gIIB
zx

gIIB
xx

−
gIIB
xy

(
gIIB
zy gIIB

xx − gIIB
xy g

IIB
xz + bIIB

xy b
IIB
xz

)

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
)

+ bIIB
xy (bIIB

xz g
IIB
xy − bIIB

yz g
IIB
xx − bIIB

xy g
IIB
xz )

gIIB
xx

(
gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2
) , (A16)

Bxy = −bIIB
xy

gIIB
yy g

IIB
xx − gIIB

xy
2 + bIIB

xy
2 . (A17)

Appendix B: Vector meson embedding functions appear-
ing in the DBI action for D6-branes

In this appendix we give the embedding functions �0,1(r; gs,
N f , M, N ) relevant to the embedding of D6-branes in the
delocalized SYZ type IIA mirror of the type IIB construct of
[1] that appears in (44) in Sect. 3. The same are given by

�0(r; gs , N f , M, N )

≡ − 1

97844723712π11α8
θ1

α4
θ2
gs N26/5

(
9a2 + r2

)
{
r6
(

6a2 + r2
)

×
[

81
√

235/6α9
θ1

5√N − 54 3√3α8
θ1
N2/5 + 81

√
235/6α7

θ1
α2

θ2

− 54
(

2 + 3√3
)

α6
θ1

α2
θ2

5√N + 24
√

6α5
θ1

α2
θ2
N2/5 − 8α4

θ1
α2

θ2
N3/5

− 24
√

6α3
θ1

α4
θ2

5√N + 16α2
θ1

α4
θ2
N2/5 − 8α6

θ2

5√N

]

×
(

3gsM
2 log(r)(−2gs N f log(αθ1αθ2 ) + gs N f log N

− 6gs N f +gs N f log(16)−8π)−36gs
2M2N f log2(r)+32π2N

)4

×
(

3gsM
2 log(r)(2gs N f log(ααθ2 ) − gs N f log N + 6gs N f

− 2gs N f log(4) + 8π) + 36gs
2M2N f log2(r) + 32π2N

)}

�1(r; gs , N f , M, N )

≡ 1

165112971264π19/2α10
θ1

α6
θ2
gs3/2N49/10

{
r4
(
r4 − rh

4
)

×
[

− 486
√

6α11
θ1

N + 324α10
θ1

N6/5

+ 972
√

2 6√3α9
θ1

α2
θ2

5√N
((

−9 − 3 3√3 + 632/3
)

α2
θ2

− 3√3N3/5
)

+ 108α8
θ1

(
27

√
2 6√3

(
32/3−3

)
α5

θ2

10√N+18
(

3√3 − 1
)2

α4
θ2
N2/5

+ 2
(

3 + 32/3
)

α2
θ2
N

)
− 9α7

θ1

(
243

√
2 6√3α6

θ2
− 216 3√3

(
3√3−1

)

α5
θ2
N3/10 + 54

√
6α4

θ2
N3/5 + 16

√
2 6√3α2

θ2
N6/5

)

+2α6
θ1

(
24332/3α6

θ2

5√N + 54
(

3 + 232/3
)

α4
θ2
N4/5

+ 832/3α2
θ2
N7/5

)
− 1632/3α4

θ1
α4

θ2
N6/5 + 144

√
2 6√3α3α6

θ2
N4/5

− 1632/3α2
θ1

α6
θ2
N + 1632/3α8

θ2
N4/5

] (
3gsM

2 log(r)(−2gs N f

log(ααθ2 ) + gs N f log N − 6gs N f + gs N f log(16) − 8π)

− 36gs
2M2N f log2(r) + 32π2N

)4
}
. (B1)

Appendix C: Functions appearing in the vector and scalar
meson actions

Appendix C.1: Vector meson action functions

The functions V1,2 appearing in Eq. (53) in Sect. 4 in the
context of the vector meson action obtained by substituting
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a KK ansatz (52) into the DBI action for N f = 2 D6-branes
of (51) are given by

V1(Z) = e−�I I A√
hGZZ

√
detθ2,ỹ (i∗(G + B))

√
det

R1,3,Z (i∗G),

= 1

36
√

2π3/2α2
θ1

αθ2 gs
3/2

{
5√Ne−4|Z | (e4|Z | − 1

)

×
(

3a2gs N f log N − 9a2gs N f log(rh)

− 9a2gs N f |Z | − 9a2gs N f + 12πa2 + 2gs N f rh
2e2|Z | log N

− 6gs N f rh
2e2|Z ||Z | − 6gs N f rh

2e2|Z | log(rh) + 8πrh
2e2|Z |

)}

+ 1

576π3/2α4
θ1

α3
θ2
gs3/2

{
e−4|Z | (e4|Z | − 1

) (
27

√
2 3√3α6

θ1

− 24
√

3α3
θ1

α2
θ2

− 8
√

2α4
θ2

)

×
(

−3a2gs N f log

(
1

N

)
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Appendix C.2: Scalar meson action functions

The scalar meson functionsS1,2,3 appearing in the DBI action
(122) for N f D6-branes and (124) are given by

S1 = 1
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