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Abstract We investigate the probabilities of the tunneling
and the radiation spectra of massive spin-1 particles from
arbitrary dimensional Gauss–Bonnet–Axions (GBA) Anti-
de Sitter (AdS) black branes, via using the WKB approxima-
tion to the Proca spin-1 field equation. The tunneling prob-
abilities and Hawking temperature of the arbitrary dimen-
sional GBA AdS black brane is calculated via the Hamilton–
Jacobi approach. We also compute the Hawking tempera-
ture via the Parikh–Wilczek tunneling approach. The results
obtained from the two methods are consistent. In our setup,
the Gauss–Bonnet (GB) coupling affects the Hawking tem-
perature if and only if the momentum of the axion fields is
non-vanishing.

1 Introduction

Since Hawking proposed that black holes are not actually
black, inasmuch as they emit a nearly thermal radiation, and
this radiation causes them to lose energy, shrink and even-
tually disappear. This is a disaster as regards the laws of
quantum physics because information is lost, which is the
unsolved black hole information problem [1,2]. Recently,
Hawking, Perry and Strominger showed some ways to solve
the information problem by defining new terms in physics:
‘soft particles’ [3,4] and ‘hard particles’ [5]. Soft particles
carry information and imprint this information on the radia-
tion, even after the black hole itself is defunct.

In the process of constructing quantum gravity theory,
physicists keep a strong interests in the study of Hawking
radiation proposed in [1,2]. In order to strengthen this stag-
gering theory, in the last decades, plenty of methods have
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been proposed to derive Hawking radiation and calculate its
temperature [6–12]. Among them, the semi-classical quan-
tum tunneling method proposed in [8] has attracted much
attention and shown remarkable progress. The trick in the
method is to consider the Hawking radiation as a tunneling
process of particles from the event horizon, and the tunneling
probability for the classically forbidden trajectory to outside

of the horizon is � = e− 2
h̄ ImS . So the crucial task is to com-

pute the imaginary part of the classical action ImS.
In the tunneling method, there are two popular approaches

to calculate ImS. One is the Parikh–Wilczek approach, which
applies the null geodesic equation of the emitted scalar par-
ticles [8]. This approach has been extensively used in [13–
15]. The other way is the Hamilton–Jacobi approach, which
mainly utilizes the Hamilton–Jacobi equation of the classical
scalar particles proposed in [16–18]. Later, tunneling of Dirac
fermions [19–25] and tunneling of gravitinos [26,27] have
been imposed to study the Hawking radiation. More recently,
tunneling of massive spin-1 vector particles has been widely
studied to probe the radiation, which was first researched in
[28,29]. This kind of tunneling was studied via the WKB
approximation of the Proca equation, which describes the
dynamics of spin-1 vector particles. Tunneling of the differ-
ent types of particles has been generalized to more objects;
see for examples [30–78].

In this paper, we will explore the quantum tunneling pro-
cess of massive spin-1 vector particles emitted from arbi-
trary dimensional AdS black branes with GB corrections as
well as axion fields found in [79].1 To calculate the tunnel-
ing probability and the Hawking temperature, we first use

1 We note that the Hawking temperature might be obtained using the
tunneling of scalar, vector or Dirac particles, and the result is indepen-
dent of the spin type of the particles. In this paper, we will only consider
the massive vector particles which should give the correct Hawking
temperature, because the study of vector particles is more recent and
physically reasonable.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5191-0&domain=pdf
mailto:xmeikuang@gmail.com
mailto:joel.saavedra@pucv.cl
mailto:ali.ovgun@pucv.cl


613 Page 2 of 7 Eur. Phys. J. C (2017) 77 :613

the Hamilton–Jacobi approach by starting with the Proca
equation; then we verify our results via the Parikh–Wilczek
approach.

The motivations of our study stem from the following three
aspects. Firstly, the study of tunneling of spin-1 particles is
very significant in particle physics because a vector boson
comes with spin-1 and the massive vector bosons W± and
Z0 particles (force carriers of the weak interaction) play an
indispensable role against the background of the confirmed
Higgs boson [80,81]. Secondly, it is well known that the
gravitational theories with higher curvature coupling, such as
GB corrections and the higher dimensions are very important
and contain much richer physics. Thirdly, from the point view
of the application of anti-de Sitter/conformal field theory,
massless axion fields break the translation symmetry of the
dual boundary theory in a very simple way. This was first
discussed in [82]; thus we witness the introduction of finite
DC conductivity in the study of holographic applications.

As is well known, the temperature of GB black branes with
planar spatial topology does not depend on the GB parame-
ters [83–85]. However, in the GBA gravitational theory con-
structed in [79], via the Euclidean method, the authors found
that the temperature of GB AdS planar black hole with axion
fields is dependent of the GB coupling. When there is no
axion field, the temperature recovers that in normal GB the-
ory. Thus, the aim of this paper is to calculate the Hawking
temperature via the tunneling method and further confirm the
result obtained in [79].

The remaining of this paper is organized as follows. In
Sect. 2, we will review the black brane solution in Gauss–
Bonnet–Axions theory with arbitrary dimensions. Using the
Hamilton–Jacobi approach, we compute the tunneling prob-
abilities of the spin-1 vector particles and Hawking tempera-
ture of the black brane in Sect. 3, and we verify the Hawking
temperature with the use of the Parikh–Wilczek approach in
Sect. 3. The last section is for our conclusion and a discus-
sion.

2 Review of black brane in Gauss–Bonnet–Axions
theory with arbitrary dimensions

In this section, we will review the black hole solutions in
arbitrary dimensional Gauss–Bonnet–Axions (GBA) theory
proposed in [79] with the action

S = 1

2κ2

∫
dd+2x

√−g

⎛
⎝R − 2� + α

2
LGB − 1

2

d∑
I=1

(∂ψI )
2

⎞
⎠ . (1)

Here 2κ2 = 16πGd+2 is the d+2 dimensional gravitational
coupling constant and α is the GB coupling constant. ψI

are a set of axionic fields and � = −d(d + 1)/2L2 is the
cosmological constant while

LGB =
(
Rμνρσ R

μνρσ − 4RμνR
μν + R2

)
. (2)

In what follows, we shall set L = 1.
Variating the action, we can obtain the equations of motion

as
∇μ∇μψI = 0,

Rμν − 1

2
gμν

(
R + d(d + 1)

+α

2
(R2 − 4Rρσ Rρσ + Rλρστ R

λρστ )
)

+α

2

(
2RRμν − 4Rμρ R

ρ
ν − 4Rμρνσ Rρσ + 2RμρσλR

ρσλ
ν

)

−
d∑

I=1

(
1

2
∂μψI ∂νψI − gμν

4
(∂ψI )

2
)

= 0. (3)

We take the form of the scalar fields linearly depending on
the d spatial direction xa where a = 1, 2, . . . d as

ψI = βδI a x
a, (4)

which breaks the translational symmetry in the dual field
theory in a simple way [82]. The equations of motions admit
a homogeneous and isotropic neutral black brane solution
with planar topology2

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2

L2
e

d∑
a=1

dxadxa, (5)

where, defining α̂ = (d − 1)(d − 2)α/2,

f (r) = r2

2α̂

⎛
⎝1 −

√√√√1 − 4α̂

(
1 − rd+1

h

rd+1

)
+ 2α̂

r2
L2
eβ

2

d − 1

(
1 − rd−1

h

rd−1

)⎞
⎠ .

(6)

Here rh satisfying f (rh) = 0 is the black brane horizon.
The constraint of the GB coupling parameter α̂ has been

widely studied in arbitrary dimensions. Considering holog-
raphy, the physical range of α̂ can mainly be determined
by two constraints. One constraint is to require no negative
energy fluxes to appear in all tensor, vector and scalar chan-
nels of perturbations, which can be achieved by computing
the energy flux via holography and then translate the con-
straints of no negative energy fluxes condition into the con-
straint on the GB parameter [87]. The other constraint is to
demand that the dual conformal field theory of GB theory
is causal. It means that the local “speed of graviton” should
not be higher than the speed of light, which can be realized
via analyzing the potentials of the channels of gravitational

2 In order to have a unit velocity of light, the metric ansatz gaa are
dependent of GB coupling parameter α̂. They are somewhat different
from the one presented in [86] in five dimensions where gaa = r2/L2

is independent of the GB coupling α̂.
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perturbations [88]. From [87–90], the above two constraints
produced similar physical ranges of the GB coupling param-
eter, which is

− (d − 1)(3d+5)

4(d+3)2 � α̂ � (d − 1)(d − 2)((d − 1)2 + 3d+5)

4((d − 1)2+d + 3)2 .

(7)

It is worthy to note that it was shown in [91] that the con-
straint in the higher derivative coupling coming from causal-
ity issues is much more severe, especially in a weakly coupled
theory. Later in [92], the authors pointed out that the causality
violations can be cured by considering the Regge behavior,
and more recent studies of the (in)stability can be found in
[93–95]. The preciser causality constraint of the higher cor-
rection coupling is worthy of further investigation. Moreover,
the result is given in the case without the axion fields. It may
become more complicated due to the introduction of axionic
fields [96].

Near the UV boundary, r → ∞,

f (r) ∼ 1 − √
1 − 4α̂

2α̂
r2. (8)

So the effective asymptotic AdS radius is

L2
e = 2α̂

1 − √
1 − 4α̂

→
{

1, for α̂ → 0,
1
2 , for α̂ → 1

4 .
(9)

Then, using the Euclidean method, the Hawking temperature
of the black brane is

T = f ′(rh)
4π

= 1

4π

(
(d + 1)rh − L2

eβ
2

2rh

)
, (10)

depending on the GB coupling via Le when β �= 0, which is
very different from the GB gravitational case with β = 0.

The Einstein limit of the black brane solution is obtained
by taking α̂ → 0, in which the gravitational background
recovers the solution addressed in [82] with the redshift

f (r) = r2

(
1 − rd+1

h

rd+1

)
− β2

2(d − 1)

(
1 − rd−1

h

rd−1

)
(11)

and the temperature

T = f ′(rh)
4π

= 1

4π

(
(d + 1)rh − β2

2rh

)
. (12)

It is worth to point out that the dimension of the solution (6)
can be d � 2 for the Einstein case with α̂ → 0, while for the
GB case with α̂ �= 0, we have d � 3 since the Gauss–Bonnet
term is a topological invariant in four dimensions [84].

3 Quantum Tunneling of Spin-1 Particles from d + 2
dimensional Black Brane in Gauss–Bonnet–Axions
Theory

Our main aim of this section is to calculate the Hawking tem-
perature using the semi-classical Hamilton–Jacobi approach
with the suitable WKB ansatz from the recently found solu-
tion of the black brane in GBA theory. In order to calculate
the Hawking temperature we consider the quantum mechani-
cally tunneling massive spin-1 particles from the black brane
in the GBA theory. The wave of the massive spin-1 field ψν

satisfies the dynamical Proca equation [28],

1√−g
∂μ

(√−gψνμ
) + m2

h̄2 ψν = 0, (13)

where m is the mass of the spin-1 particles and ψμν is the
second-rank tensor which is defined by ψμν = ∂μψν −
∂νψμ. Note that here μ and ν refer to the coordinates
t, r, x1, x2 . . . xd .

We expand the Proca equation in the background of the
black brane (5) in the GBA theory and find that in arbitrary
dimensions, D = d + 2, we have the components of the
equations

ν = t : m2

h̄2 f
ψt + d

r

(
∂ψt

∂r
− ∂ψr

∂t

)
+ ∂2ψt

∂r2 − ∂2ψr

∂t∂r

+ L2
e

r2 f

(
d∑

a=1

∂2ψt

∂xa2 −
d∑

a=1

∂2ψxa

∂t∂xa

)
= 0,

ν = r : m2 f

h̄2 ψr + ∂2ψt

∂t∂r
− ∂2ψr

∂t2

+ L2
e f

r2

(
d∑

a=1

∂2ψr

∂xa2 −
d∑

a=1

∂2ψxa

∂r∂xa

)
= 0,

ν = x1 : m2L2
e

h̄2r2
ψx1 + L4

e

r4

(
d∑

a=2

∂2ψx1

∂xa2 −
d∑

a=2

∂2ψxa

∂x1∂xa

)

+ L2
e

r2

[(
∂ψx1

∂r
− ∂ψr

∂x1

)(
f ′ + (d − 2) f

r

)

+ f

(
∂ψ2

x1

∂r2 − ∂ψ2
r

∂r∂x1

)
+ 1

f

(
∂2ψt

∂t∂x1 − ∂2ψx1

∂t2

)]
= 0,

.

.

.

ν = x j : m2L2
e

h̄2r2
ψx j + L4

e

r4

⎛
⎝ d∑

a=1,a �= j

∂2ψx j

∂xa2 −
d∑

a=1,a �= j

∂2ψxa

∂x j∂xa

⎞
⎠

+ L2
e

r2

[(
∂ψx j

∂r
− ∂ψr

∂x j

) (
f ′ + (d − 2) f

r

)

+ f

(
∂ψ2

x j

∂r2 − ∂ψ2
r

∂r∂x j

)
+ 1

f

(
∂2ψt

∂t∂x j
− ∂2ψx j

∂t2

)]
= 0, (14)

where the index j = 2, 3 . . . d and the prime denotes
the derivative to the radial coordinate r . Then, using the
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Hamilton–Jacobi method, we choose a suitable ansatz of the
spin-1 vector field, [29]

ψν = Cν exp

[
i

h̄

(
S0(t, r, x

1, x2, . . . , xd )
)

+ h̄S1(t, r, x
1, x2, . . . , xd ) + · · ·

]
, (15)

where Cν = (Ct ,Cr ,Cx1 ,Cx2 , . . . ,Cxd ) are some con-
stants. It is noted that a classical action of the mas-
sive spin-1 particles is defined by S0(t, r, x1, x2, . . . , xd),
which is a kinetic term [97]. Higher order correction terms
Si=1,2,..(t, r, x1, x2, . . . , xd) can be ignored because the
particles can be considered to be free and without self-
interaction. Moreover, to choose the suitable WKB ansatz,
one should use the symmetry of the background spacetime
by Killing vectors [18]. In our case, we choose the action to
leading order as follows:

S0(t, r, x
1, x2, . . .) = −Et + R(r) +

d∑
a=1

Xa(xa) + c, (16)

which means that the particles of massive spin-1 have an
energy of E . Here c is a complex constant. Then we substitute
Eqs. (15) and (16) into the components of the Proca equa-
tion given in Eq. (14), the corresponding quadruple equations
with the lowest order in h̄ can be obtained:

[
m2

f
+

(
∂R

∂r

)2

− L2
e

r2 f

d∑
a=1

(
∂Xa

∂xa

)2
]
Ct

−E
∂R

∂r
Cr − L2

e E

r2 f

d∑
a=1

(
∂Xa

∂xa
Cxa

)
= 0, (17a)

E
∂R

∂r
Ct +

[
m2 f + E2 + L2

e f

r2

d∑
a=1

(
∂Xa

∂xa

)2
]
Cr

+ L2
e f

r2

∂R

∂r

d∑
a=1

(
∂Xa

∂xa
Cxa

)
= 0, (17b)

L2
e E

r2 f

∂X1

∂x1 Ct + L2
e f

r2

∂R

∂r

∂X1

∂x1 Cr + L4
e

r4

∂X1

∂x1

d∑
a=2

(
∂Xa

∂xa
Cxa

)

+
[
m2L2

e

r2 − L4
e

r4

d∑
a=2

(
∂Xa

∂xa

)2

+ L2
e

r2

(
E2

f
− f

(
∂R

∂r

)2
)]

Cx1 = 0,

(17c)

.

.

.

L2
e E

r2 f

∂X j

∂x j
Ct + L2

e f

r2

∂R

∂r

∂X j

∂x j
Cr + L4

e

r4

∂X j

∂x j

d∑
a=1,a �= j

(
∂Xa

∂xa
Cxa

)

+
⎡
⎣m2L2

e

r2 − L4
e

r4

d∑
a=1,a �= j

(
∂Xa

∂xa

)2

+ L2
e

r2

(
E2

f
− f

(
∂R

∂r

)2
)⎤

⎦Cx j = 0,

(17d)

where again j = 2, 3 . . . d.

We will use the matrix formalism to solve these d +
2 equations for the radial function of R(r). Let us first
rewrite Eq. (17) in a (d + 2) × (d + 2) matrix form as

Λ(d+2)×(d+2)

(
Ct ,Cr ,Cx1 . . .Cxd

)T = 0, where T is the
transition to the transposed vector. It is notable that here
Λ(d+2)×(d+2) is in matrix form and the function of the coor-
dinates, and indeed Cμ are constants defined in Eq. (15). So
we can read off all the elements of the matrix Λ(d+2)×(d+2)

from the related equations (17a)–(17d), thus:

Λ1,1 = m2

f
+

(
∂R

∂r

)2

− L2
e

r2 f

d∑
a=1

(
∂Xa

∂xa

)2

, Λ1,2 = −E
∂R

∂r
,

Λ1,3 = − L2
e E

r2 f

∂X1

∂x1 , . . . , Λ1,d+2 = − L2
e E

r2 f

∂Xd

∂xd
, (18a)

Λ2,1 = E
∂R

∂r
, Λ2,2 = m2 f + E2 + L2

e f

r2

d∑
a=1

(
∂Xa

∂xa

)2

,

Λ2,3 = L2
e f

r2

∂R

∂r

∂X1

∂x1 , . . . , Λ2,d+2 = L2
e f

r2

∂R

∂r

∂Xd

∂xd
, (18b)

Λ3,1 = L2
e E

r2 f

∂X1

∂x1 , Λ3,2 = L2
e f

r2

∂R

∂r

∂X1

∂x1 ,

Λ3,3 = m2L2
e

r2 − L4
e

r4

d∑
a=2

(
∂Xa

∂xa

)2

+ L2
e

r2

(
E2

f
− f

(
∂R

∂r

)2
)

,

Λ3,4 = L4
e

r4

∂X1

∂x1

∂X2

∂x2 , . . . , Λ3,d+2 = L4
e

r4

∂X1

∂x1

∂Xd

∂xd
, (18c)

.

.

.

Λ j+2,1 = L2
e E

r2 f

∂X j

∂x j
, Λ j+2,2 = L2

e f

r2

∂R

∂r

∂X j

∂x j
,

Λ j+2,3 = L4
e

r4

∂X j

∂x j

∂X1

∂x1 , . . . Λ j+2, j+1 = L4
e

r4

∂X j

∂x j

∂X j−1

∂x j−1

Λ j+2, j+2 = m2L2
e

r2 − L4
e

r4

d∑
a=1,a �= j

(
∂Xa

∂xa

)2

+ L2
e

r2

(
E2

f
− f

(
∂R

∂r

)2
)

,

Λ j+2, j+3 = L4
e

r4

∂X j

∂x j

∂X j+1

∂x j+1 , . . . , Λ j+2,d+2 = L4
e

r4

∂X j

∂x j

∂Xd

∂xd
. (18d)

The condition of the matrix equation to have a non-trivial
solution is det Λ = 0, which will give us a simple expression

L4
e

(
−

(
d

∂r
R

)2

f 2r2 − L2
e f

d∑
a=1

×
(

∂Xa

∂xa

)2

+ r2
(
−m2 f + E2

) )3
m2 = 0. (19)

It is obvious that the solution to the above equation for the
radial function is

R± =
∫

dr

⎛
⎝± 1

f

√√√√E2 − L2
e f

r2

d∑
a=1

(
∂Xa

∂xa

)2
− f m2

⎞
⎠ . (20)

Note that R+ is for the outgoing massive spin-1 particles
while R− is for the ingoing ones. It is obvious that there
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is a pole on the event horizon. To solve this singularity in
the integral of the imaginary part of R± in Eq. (20), we use
the residue theorem and complex path integration [16,17].
Consequently, the result of the integral is obtained:

ImR± = ± π
d
dr f

E

∣∣∣∣∣
r=rh

+ k (21)

where k is a complex integration constant. Then we calcu-
late the tunneling probabilities of the ingoing and outgoing
massive spin-1 particles

Poutgoing = e− 2
h̄ ImS+ = e−2(ImR++Imk), (22)

Pingoing = e− 2
h̄ ImS− = e−2(ImR−+Imk), (23)

where we have set h̄ = 1 in the second equalities. In agree-
ment with the event horizon of the black brane in the GBA
theory, particles which are ingoing must be absorbed com-
pletely, so that one can choose Pingoing = 1. This can be
achieved by imposing Imk = −ImR−. Further recalling
R+ = −R− in (20), the quantum tunneling rate � of the
massive spin-1 particles has the form

� = Pemission = exp (−4ImR+) = exp

⎛
⎜⎝− 4π(

d
dr f

) E

∣∣∣∣∣∣
r=rh

⎞
⎟⎠ .

(24)

We recall from [97] that the equivalent of the tunneling rate �

satisfies the Boltzmann equation � = e−βE with the Boltz-
mann factor β, and the Hawking temperature is defined as
T = 1

β
. Then we derive the surface temperature of the black

brane

T =
( d

dr f
)

4π

∣∣∣∣∣
r=rh

= 1

4π

(
(d + 1)rh − L2

eβ
2

2rh

)
. (25)

This agrees well with the Hawking temperature found in
Eq. (10) via the Euclidean method.

4 Hawking temperature via Parikh–Wilczek tunneling
approach

In this section, we use the Parikh–Wilczek Tunneling (PWT)
approach to find the Hawking temperature of the black brane
solution of Eq. (5). In the PWT approach, one thinks of the
tunneling particle as a spherical shell which does not have
motion in the (θ, ϕ)-directions. That is to say, we can con-
sider the radial null geodesics of a test particle as a massless
spherical shell. With a massless particle, m = 0, we would
presumably say that the particle associated with the wave

(photon, or graviton in this case) is massless, and thus they
travel along null geodesics. Recently, it is found that there are
several phenomena that show the same behavior as quantum
tunneling and thus can be accurately described by tunneling.
Examples include the tunneling of a classical wave and par-
ticle in association [98]. Moreover, the particle feels itself
as a barrier, because when the particle tunnels to outside, the
radius of the black hole gets smaller depending on the energy
of the outgoing particle. Then using the emission and absorp-
tion probabilities of the ingoing and the outgoing particles,
one can calculate the ratio [8,9]

� = Pemission

Pabsorption
= e

− E
TH = e−2ImS, (26)

where ImS is for the net imaginary part of action (ImS =
ImSout − ImSin). Note that another way to get Eq. (26) is to
use the following connections in the WKB limit, which are
written in terms of the imaginary part of the action of the
particles, ImSout and ImSin:

Pemission = e−2ImSout , Pabsorption = e−2ImSin . (27)

To proceed, we transform our metric to the non-singular
coordinates of Painleve–Gullstrand Coordinates (PGCs) with
the transformation [8]

dτ = dt +
√

1 − f (r)

f (r)
dr. (28)

It is noted that herein we use τ as a new time in the PGCs to
measure a proper time. Then it is easy to rewrite the metric
of Eq. (5) into the form

ds2 = − f (r)dτ 2+2
√

1 − f (r)dτdr+dr2 + r2

L2
e

dxadxa .

(29)

In the PGCs, the function of the metric is regular, and the
singularity is removed at r = rh (i.e., f = 0). We have the
only radial null geodesics

ṙ = dr

dτ
= ±1 − √

1 − f (r). (30)

It is sufficient to calculate the Hawking radiation. The imag-
inary part of the action for the outgoing waves is given by
[35]

ImSout = Im
∫ rout

rin

prdr = Im
∫ rout

rin

∫ pr

0
dp′

rdr, (31)

where pr is the canonical momentum, rin and rout are the
initial and final radius of the black hole. The particle tunnels
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through between these radii so the potential barrier is located
between these radii.

The total mass of the system (M) is fixed inasmuch as
the black hole shrinks (rin > rout) after the Hawking radia-
tion, so that the black hole can fluctuate. Moreover, in this
study, we use only chargeless particles which have a thin-
spherical-shell of energy ω. Then we consider the decreasing
of the mass of the black hole M → M − ω, because of the
effect of the self-gravitation. Using the Hamilton equation,
the momentum is transferred to the energy ṙ = dH

dpr
, and

Eq. (31) reduces to

ImSout = Im
∫ rout

rin

∫ M−ω

M

dr

ṙ
dH. (32)

One can now use the energy of the particle ω instead of H to
transform H = M − ω′ to dH = −dω′ as

ImSout =
∫ rout

rin

∫ ω

0

dr

ṙ
(−dω′) = −ω

∫ rout

rin

dr

1−√
1− f (r)

.

(33)

We used Eq. (30) in the second equality. To solve the above
integral, we use the contour integral by ensuring that positive
energy solutions decay in time because there is a pole at the
horizon where ṙ = 0. For the tunneling particle, we obtain
the imaginary part of the action,

ImSout = 2πω

f ′(rh)
+ O(ω2). (34)

On the other hand, the ingoing particle can be ignored,
because the probability amplitude of the ingoing particle is
unity so we use the above tunneling rate for an outgoing par-
ticle from the horizon. Then we find that the tunneling rate
is

� = exp(−4πω/ f ′(rh)), (35)

and the Hawking temperature is

T =
( d

dr f
)

4π

∣∣∣∣∣
r=rh

= 1

4π

(
(d + 1)rh − L2

eβ
2

2rh

)
. (36)

This expression of the Hawking temperature is the same as
the Eqs. (25) and (10). Hence, we have correctly recovered
the Hawking temperature.

5 Conclusion

In this paper, we have studied the tunneling of spin-1 parti-
cles from arbitrary dimensional AdS black branes with GB
corrections and additional axion fields, using the Hamilton–
Jacobi approach to recover the corresponding Hawking tem-
perature. And then we have checked our results using the

Parikh–Wilczek approach. Firstly, to investigate the tunnel-
ing rate of the spin-1 particles, we have derived the solutions
of the Proca equation on the background of the d + 2 dimen-
sional black brane in Gauss–Bonnet–Axions theory with the
help of Hamilton–Jacobi approach. To solve these solutions,
we have used the separation of variables and extracted the
radial part of the wave solution after taking the determinant
of the matrix zero. Then we have obtained the solution of
the complex integral on the event horizon using the residue
method. The tunneling rate of the spin-1 particles has been
calculated and the Hawking temperature is correctly con-
firmed compared with the Boltzmann factor. Secondly, we
have used the Parikh–Wilczek approach which involves the
null geodesic equation of the emitted scalar particles for the
derivation of the Hawking temperature.

Remarkably, we have showed that the radiation spectra are
not purely thermal. There is an effect of the Gauss–Bonnet
term on the radiation spectra that means that the informa-
tion can be extracted using this term. This is an important
result because it is well known that GB parameters have no
effect on the temperature of GB black branes with planar
topology [83–85]. However, in this model of the GBA grav-
itational theory [79], it is clear that the GB coupling term
affects the Hawking temperature as well as the information
paradox. One can store all information of the black brane
inside the GB term to make it survive from the loss of infor-
mation through tunneling from the event horizon. It is noted
that if one removes the axions field, the temperature of the
normal GB theory is recovered [79]. We can conclude that
the magnitude of the Hawking temperature depends on the
values of the parameters of GB. It is worth to mention that
we have neglected the back-reaction effects due to the radi-
ation of particles and also self-gravitating effects. We have
calculated the Hawking temperature only by a leading term.
This work shows that the gravitational theories with higher
curvature coupling, such as GB corrections and the higher
dimensions are significantly influential.

Lastly, from Einstein’s theory of gravity one concludes
that black holes have no hair. Recently, using the data of
gravitational waves from the LIGO, information of the hair
of the black hole is successfully extracted [99]. In future,
this kind of experiments may also shed light on the extrac-
tion of information from black holes/branes and solve the
information paradox.
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