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Abstract In this paper, we study the effect of thermal fluc-
tuations on the thermodynamics of a black geometry with
hyperscaling violation. These thermal fluctuations in the ther-
modynamics of this system are produced from quantum cor-
rections of geometry describing this system. We discuss the
stability of this system using specific heat and the entire Hes-
sian matrix of the free energy. We will analyze the effects of
thermal fluctuations on the stability of this system. We also
analyze the effects of thermal fluctuations on the criticality
of the hyperscaling-violation background.

1 Introduction

Itis important to associate an entropy with black holes to pre-
vent the violation of the second law of thermodynamics. This
is because if black holes were not maximum entropy objects,
then the entropy of the universe would spontaneously reduce,
whenever an object with a finite entropy crossed the horizon.
So, black holes are maximum entropy objects, and they have
more entropy than any other object with the same volume [1—
5]. The scaling of this maximum entropy with the area of the
horizon has led to the development of the holographic prin-
ciple [6,7]. The holographic principle equates the degrees of
freedom in any region of space with the degrees of freedom
on the boundary of that region.

The holographic principle is expected to be corrected near
Planck scale, as quantum gravity corrections modify the man-
ifold structure of space-time at Planck scale [8,9]. As the
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holographic principle was motivated from the entropy—area
relation, it can be argued that the quantum gravity correc-
tions would also modify this entropy—area relation. Now for
a black hole with area A and entropy Sp, original entropy—
area relation in natural units is given by So = A/4. How-
ever, the corrected entropy—area relation can be written as
S=Sy+alogA+ )/1A_1 + )/2A‘2 ...,wherea, y1,v2...,
are coefficients which depend on the details of the model. The
general structure of the corrections and their dependence on
the area is a universal feature, and it occurs in almost all
approaches to quantum gravity. The corrections to the ther-
modynamics of black holes have been studied using non-
perturbative quantum general relativity [10]. In this formal-
ism, the conformal blocks of a well defined conformal field
theory were used to study the behavior of the density of states
of a black hole. The quantum corrections to the thermody-
namics of a black hole has also been studied using the Cardy
formula [11]. The corrected thermodynamics of a black hole
has also been studied by analyzing the effect of matter fields
surrounding a black hole [12—14]. Such corrections have the
general feature that they are represented by a logarithmic
function of area.

As string theory is one of the most important approaches to
quantum gravity, it is very important to understand the effects
of quantum corrections produced by string theoretical effects.
In fact, the corrections produced by string theoretical effects
on the thermodynamics of a black hole have been studied,
and it has been observed that they produce the same general
form of the corrections as are produced by other approaches
to quantum gravity [15-18]. The corrections to the thermo-
dynamics of a dilatonic black hole have also been studied,
and they have again been observed to have the same univer-
sal form [19]. The partition function of a black hole has also
been used to analyze the corrections to the thermodynamics
of a black hole [20]. Another universal feature of almost all
theories of quantum gravity is the existence of a minimum
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measurable length scale, and this has motivated the gener-
alized uncertainty principle, which in turn has been used to
study corrections to the thermodynamics of the black holes
[21,22]. It has been demonstrated that the black hole ther-
modynamics corrected by the generalized uncertainty prin-
ciple again has the same universal form as produced by other
approaches to quantum gravity.

In fact, the universality of this correction can be argued
from purely thermodynamics arguments. This is because in
the Jacobson formalism, the Einstein equations are thermo-
dynamics identities [23,24]. So, space-time geometry is an
emergent property from the thermodynamics. Thus, a ther-
mal fluctuation in thermodynamics would produce a quan-
tum fluctuation in the geometry of space-time. In fact, it has
been demonstrated that the thermal fluctuations correct the
thermodynamics of black holes, and this corrected thermo-
dynamics has the same universal form as expected from the
quantum gravitational effects [25-27]. As the coefficients
of quantum gravity corrections depend on the details of the
model, we will keep such a coefficient as a constant. Thus, we
will analyze the corrections produced by thermal fluctuations
on the near horizon geometry of a hyperscaling-violating
background, with variable coefficients.

It may be noted that such thermal corrections have been
studied for various different black geometries. Such correc-
tions have been studied for Godel black holes [28]. Such
corrections for an AdS charged black hole have been stud-
ied, and it has been observed that the thermodynamics of
this AdS black hole is modified by thermal fluctuations [29].
The effect of thermal fluctuations on the thermodynamics
for a black Saturn have also been studied [30]. It has been
demonstrated that the thermal fluctuations do not have any
major effect on the stability of the black Saturn. The ther-
mal fluctuations for a modified Hayward black hole have
been studied, and it has been demonstrated that such ther-
mal fluctuations reduce the pressure and internal energy of
such a black hole [31]. The effect of thermal fluctuations
on the thermodynamics of a charged dilatonic black Saturn
has also been studied [32]. It was observed that the thermal
fluctuations can be studied either using a conformal field
theory or by analyzing the fluctuations in the energy of this
system. However, it has been demonstrated that the fluctu-
ations in the energy and the conformal field theory produce
the same results for a charged dilatonic black Saturn. The
effects of thermal fluctuations on the thermodynamics of a
small singly spinning Kerr—AdS black hole have also been
studied [33]. As dumb holes are analogs of black hole like
solutions, it is possible to study such effects for dumb holes.
In fact, the effects of thermal fluctuations on the thermo-
dynamics of dumb holes has been studied [34]. The ther-
mal fluctuations can affect the critical behaviors of black
holes. Such corrections to a dyonic charged anti-de Sitter
black hole have been studied, and it has been observed that
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such a corrected solution also describes a van der Waals fluid
[35]. It is also expected that such corrections to the solu-
tions in AdS can be used to study the modifications to the
quark—gluon plasma, and this can be done using the AdS/CFT
correspondence [36-39]. In fact, it has been demonstrated
that such corrections can produce interesting modifications
to the ratio between the viscosity to entropy of such a system
[40].

Now, as this form of the corrections to the thermodynam-
ics is universal, we will analyze the effects of such correc-
tions on the thermodynamics of a near horizon geometry with
hyperscaling violation. Hyperscaling-violating backgrounds
are interesting geometries, and have been used to study inter-
esting physical systems [41-43]. The possible boundary con-
ditions of scalar fields in a hyperscaling-violation geometry
have been studied [44]. Such backgrounds are also interesting
for holographic models [45], such as holographic supercon-
ductor [46]. Singularities in hyperscaling-violating space-
times have also been investigated [47]. The analytic solu-
tion of a Vaidya-charged black hole with a hyperscaling-
violating factor (in an Einstein—-Maxwell-dilaton model [48])
has been obtained [49]. The hyperscaling-violating solu-
tions in Einstein-Maxwell-scalar theory have also been
studied [50-52]. Thermalization of mutual information in
hyperscaling-violating backgrounds has been analyzed, and
it has been observed that the dynamical exponent is impor-
tant for understanding the mutual information in such a sys-
tem [53]. Entanglement temperature [54] and entanglement
entropy [55] with hyperscaling-violating backgrounds have
also been investigated.

The black brane geometry with hyperscaling-violating
backgrounds can also be constructed, and it is possible to
study the thermodynamics of such a system. In fact, the
thermodynamics of nonlinear charged Lifshitz black branes
with hyperscaling violation has been discussed [56]. In this
system, the effect of a nonlinear electromagnetic field on
the hyperscaling-violating Lifshitz black branes has been
studied. It may be noted that as the hyperscaling-violating
geometries have been used for analyzing various differ-
ent physical systems [42,57-59], it would be interesting
to analyze the effects of quantum corrections on such a
hyperscaling-violating geometry. In this paper, we will ana-
lyze the corrections produced by the thermal fluctuations
on the near horizon geometry of a black brane [60]. The
Null-Melvin—Twist and KK reduction has been used to ana-
lyze a hyperscaling-violating geometry constructed from a
black brane [61,62]. This is an interesting geometry, and
it is both important and interesting to analyze the effects
of thermal fluctuations on such a geometry. Thus, we will
analyze the effects of thermal fluctuations on the thermo-
dynamics of this geometry. It will be observed that such
correction terms can have very interesting effects on this
system.



Eur. Phys. J. C (2017) 77:555

Page 3 of 8 555

2 Hyperscaling-violating background

In this paper, we will analyze the corrections to the thermo-
dynamics of a near horizon geometry of a black brane with
hyperscaling violation. Such a geometry is described by the
following metric [62]:

5 r\2 /rp\20/d
asin=(%) (5)
R2 —2(z—1)
X (— (—) fdr? +dy? —i—dxl-z)
r

2 2
(Y ). o

r r

where R is the AdS scale, x; = (x1, x2), rr is a scale describ-
ing this system [62], and

Fe1- (r_h)d+z—6

r

) @

with r = ry, as the radius of the horizon. Now we can study
the finite temperature effects of hyperscaling violation using
the condition rr < rp. It may be noted that this analysis
can be simplified by setting z = 1, and this corresponds to
an asymptotically AdS space-time [61]. The Null-Melvin—
Twist and KK reduction can now be used to obtain the fol-
lowing metric:
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where A is a one-form field, ¢ is the dilaton, K =1 — (f —
1)br?>M?, b is a free parameter (inverse of length), and
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This can be simplified using the following light-cone coor-
dinates:

xt=bR(t+y),
1
= =), s)

Thus, we can obtain the following scaled extremal metric:

o= (5 () [ () s
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In order to write the metric (6), we analytically continue x ™
to ix™, and we assume that the system is inside a box by
using the cut-off r = rp. Here, the finite cut-off rp is larger
than the scale R. The metric (6) can be obtained from the
equations of motion that follow from the action [63],

1
/ dxd+2 /_g
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where G442, cal R and F),, are the (d 4-2) dimensional New-
ton constant, the scalar curvature and field-strength tensor,
respectively.

3 Corrected thermodynamics

In this section, we will analyze the effects of thermal fluc-
tuations on the thermodynamics of such a system. So, first
we will obtain the thermodynamic quantities like the entropy,
the free energy and the temperature for such a geometry [61].
The Hawking temperature of this geometry can be expressed
as

d+1-6 ry
= 9
" 4 abR> @
and the local temperature for this geometry is given by
Ty
T=—, (10)
VF

where f given by Eq. (2). The entropy of this geometry is
given by

g _ 4mbld —6)(dd — 39) s
= r .
0 ERXd+1-6) "

(11

Here the original entropy is denoted by Sp, and the entropy
corrected by thermal fluctuations will be denoted by S. Since
the above metric is stationary but not static and describes
the black brane rotating in the compactified x~ direction, it
is natural to interpret the angular momentum and velocity
as the charge and the conjugate chemical potential of the
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system, respectively. So, the constant chemical potential for
this system can be written as [61]

1

=——. 12
2b2R2 (12)

uw

The Helmholtz free energy of this system can be written as
F=E-TS, (13)

where E is the internal energy of this system.

These thermodynamic quantities are calculated by neglect-
ing the effects of thermal fluctuations on the thermodynam-
ics of this system. This is valid as long as the temperature is
sufficiently small. However, as the temperature of the black
geometry increases, due to the decrease in the radius of the
black geometry, we have to also consider the effects of ther-
mal fluctuations. If the thermal fluctuations are still small
enough, then they can be analyzed as a perturbation around
the equilibrium state. These thermal fluctuations for a black
geometry can be expressed as [25-27]

S=So—alnST)+2+2 4. (14)
So Sy

where «, y1, y2 . . ., are correction parameters which depend
on the details of the model being studied. Using (11) and
(10), the explicit form of S can be written as
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As the values of these coefficients depend on the specifics
of the model, we will keep these values as a variable in this
paper. We will now neglect higher order corrections (y3 = 0)

to this system. So, the corrected internal energy, which can
be calculated from the definition £ = [ T'dS, is given by

_ 6(d—0)

L (15)

o d+1-0) " 87b(d— 6)(4d —36)
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The corrected Helmholtz free energy is calculated by
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In the plots given in Fig. 1, we plot the internal energy in
terms of horizon radius for two cases, i.e., 0 < d and 9 > d.
We analyze such a geometry with d = 2, 3, 8, 9. Now, for
0 < d, the behavior of the system does not depend on the
dimension, and the system in all these different dimensions
has the same behavior. However, for 6 > d, there are two
phases of the system, i.e., d = 2, 3 (middle plot of Fig. 1),
andd = 8, 9 (right plot of Fig. 1). The Helmbholtz free energy
of this system also has a similar behavior.

4 Stability

In this section, we will analyze the stability of this system
using both specific heat and the entire Hessian matrix of the
free energy. Now, the corrected specific heat can be calculated
using the corrected entropy of this system,

ds

cC=T <—) . (18)
dr

This is given by

1— (r_h)d+Z—9

r

.
12b(d — 0)*(4d — 30) 30 5d — 36
r —
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Eur. Phys. J. C (2017) 77:555

Page 5 of 8 555

0<d 0>d 0>d
10 -
I ' /
4 It /
Il: l 1 #
I|: l e
It e
B e
2 5 t , PP
= S | S ——
: | . ,_4ga$§;:;,::: ........................
| ’ \.\'\
01 | N
0 1Y \‘\‘
[ N
| N
) L1 -1 A
1.5 2 4 2 4
14 14 14

Fig. 1 Internal energy in terms of rj,. We set unit values for all param-
eters in this model. Left 6 < d for 6 = 1,d = 9. Middle 6 > d for
0 =10,d = 2. Right 6 > d for0 =10,d =8.a« = 0.5,y =0 (red
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We can analyze the behavior of the specific heat for this
system using numerical techniques. We observe that, for
0 = d/2, a thermodynamically stable phase exists for this
system [61]. However, there are phases in this system where
the specific heat is negative. For such phases, it is possible to
use the corrected entropy to obtain a positive specific heat.
The case of 6 > d is very interesting. In this case, the spe-
cific heat can become negative when (d = 8,6 = 10). In
Fig. 2, we can see the behavior of the specific heat. A solid
red line of Fig. 2 shows that the specific heat is completely
negative for d = 8 and 8 = 10. It may be noted that = 0.5
produces a negative specific heat, while a negative value of
a produces a stable region. Similar positive regions can be
obtained by using a positive value of y (also for positive y»).
We find that an infinitesimal positive value of « also produces
anegative specific heat. Without logarithmic corrections, we
can always obtain positive specific heat with infinitesimal y;.
However, we can still obtain instability for the small black
geometries (small ;). Hence, as we can see from the dash
dotted line of Fig. 2, corresponding to y; > 0 and o = O,
there is an asymptotic behavior for the specific heat which
shows an unstable/stable black hole phase transition. This
is different for phase transitions in hyperscaling-violating
geometries [58].

Due to the presence of the chemical potential, we can
analyze this system using the matrix of second derivatives
of free energy with respect to temperature 7' and chemical
potential p, which is given by

dash), « = —0.5, y1 = 0 (red dot), « = 0, y; = 0 (red solid), « = 0,
y1 = 0.5 (blue dash dot), « = 0, y; = —0.5 (blue long dash)

AN
AN

1 2 3 4
rn

Fig. 2 Specific heat in terms of r;. We set unit value for all model
parameters except 0 = 10, d = 8. a = 0.5, y; = 0 (red dash),
a = —0.5, y1 = 0 (red dot), « = 0, y1 = 0 (red solid), « = 0,
y1 = 0.5 (blue dash dot), « = 0, y; = —0.5 (blue long dash)

Hyy — 92F Hip = 92F
T2’ aTou’
Hyy = 82_F Hyy = 82_F (20)
oudT’ au?

Now Hi1Hyy — Hi2Hy1 = 0 implies that one of the eigen-
values is zero, and so we should have to use the other. This
can be expressed as the trace of the matrix,
Tr(H) = Hi1 + Ha. 2D
In Fig. 3, we plot the variation of the Hessian trace with
respect to the horizon. Now we have a negative region for
0 < d (specially & = 1, and d = 8). By using the higher
order corrections, we can now obtain positive regions. Thus,
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5 N

Tr(H)

-___
-
0

0 0.5 1
Vh

Fig. 3 Hessian trace in terms of r,. We set unit values for all parameters
in the model except & = 1,d = 8.a = 0.5, y; = 0 (red dash),a = 0.5,
y1 = —0.02 (green dot), « = 0, y; = 0 (red solid), « = 0, y; = 0.5
(blue dash dot), « = 0.5, y1 = —0.1, y» = 0.5 (black long dash)

we can consider the positive o, negative y1, and positive y»,
in this system.

5 PV-criticality

It is possible to study PV-criticality for a system using the
extended phase space [64]. In this formalism, it is possible to
define a thermodynamic volume and pressure for a geometry
[65,66]. Then this thermodynamic volume and pressure can
be used to study the critical phenomena for such a geome-
try. Thus, using the extended phase space thermodynamic,
the volume for a hyperscaling-violation background can be
written as

30

wb(dd —30)(d — O)r,

V=A =
T LR d—6+1)

(22)

The pressure for such a background can be calculated using
[67]

P=

T
-, (23)
v

where v = 24/V/m. So, we can write the pressure for a
hyperscaling-violation background as

d—-6+1) rh

_30 d+z—6
bR b(4d277d9+362)r: a \/1 - ()
dZR2(d—0+1)

Py =

(24)
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1 2 3 4

Fig. 4 P-V diagram for the hyperscaling-violating geometry for d =
2,3, 8 and 9, showing different behaviors for d = 2 from the other
dimensions. We sete = 0.5and y; =y, =0

Figure 4 shows a plot of the PV-diagram for the hyper-
scaling-violating black geometry (for fixed R, B, and for dif-
ferent dimensions). Now, we are able to calculate the enthalpy
for the system as

d+1-0) h

"=

1 — (r_h)d-‘rZ—@

L
87b(d — 0)(4d — 30) M0 8y
rh — —3
SR+ 1—6) 3R
d*>d+1-0) _3d6)
- r
V' 2w bR(d —6)(4d —36) "
d*R(d +1—6)? _6d-6)
.
Y 4n22(d — 0)2(ad — 36)2
1 \/(d +1—0)(4d —30)(d —0) 6-34
r .

_|_

(25)

8R4d 1— (r_h)d-i-Z—G h

r
We may use this PV relation to study the criticality. This can
be done by using the Gibbs free energy G(T) = E + PV —
TS. The Gibbs free energy for the hyperscaling-violating
black geometry in the extended phase space can be written
as
30

(d — 0)(4d — 30)r, 7
Go =

30

842 RS \/ b(4d2=7d6+36%)r, ¢

d?R%2(d—60+1)
3(d—0)
(4d —36)(d — O)r, *
d*R>
It is expected that the thermal fluctuations will correct this
expression for the Gibbs free energy, and it is possible analyze
the effects of thermal fluctuations on criticality using this
corrected Gibbs free energy. In order to see the effects of the
correction terms, we set « = 0.5 and y; = y» = 0. The
Gibbs free energy corrected by thermal fluctuations can be
written as

+1
+ rp. (26)
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-300
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-500

-100

Fig. 5 Gibbs free energy as a function of temperature, for different space dimensions d = 2 blue, d = 3 yellow,d = 8 green and d = 9 red. On the
left, we have the Gibbs free energy calculated without thermal fluctuations. On the right, thermal fluctuations are considered (@ = 0.5, y; = y» = 0)

Fig. 6 Gibbs free energy G(T, R), for d = 3 in orange and d = 9 in
blue. Showing criticality for black hyperscaling-violating geometries
for d = 9, while it there is no criticality for the d = 3 case (¢ =
05, y1=y=0)

30

(d — 0)(4d — 30)r, 7

G =
b(4d2—7d6+362) N
2R5 — "
8d°R d2R2(d79+])h
4= d -0y T s
— _or -
= 2l +dr, T @)

d2R>5

It may be noted from Fig. 5 that there is no criticality in any
dimension and at any temperature, if thermal fluctuations
are neglected. In Fig. 6, we consider a logarithmic correc-
tion, and we neglect higher order corrections. We analyze
the Gibbs free energy as a function of 7 and R, for d = 3
and d = 9. We can see criticality for black hyperscaling-
violating geometries for (d = 9), while there is no criticality
for the d = 3. So, the Gibbs free energy also indicates that
the criticality of this system does not change in two and three

dimensions due to thermal fluctuations. However, for higher
dimensions there is a phase transformation at high temper-
ature. Thus, the thermal fluctuations can change the critical
phenomena in such geometries.

6 Conclusion

The hyperscaling-violating backgrounds are interesting sub-
jects of many recent studies [68—71]. In this paper, we have
studied the thermodynamics of a black geometry with hyper-
scaling violation. As this geometry will be corrected due to
quantum gravitational effects, we expected corrections to the
thermodynamics of such black geometries. This is because
quantum fluctuations in this geometry will produce thermal
fluctuations in the thermodynamics of this system. As the
form of these corrections is universal, we have used this uni-
versal form to analyze its effects on such a black geometry.
We have discussed the stability of this system. This was done
by using the specific heat of this system and the entire Hessian
matrix of the free energy for this system. It was demonstrated
that the thermal fluctuations of this system can modify the
behavior of this system, and this can also affect the stability
of this system. Finally, we used Gibbs free energy to analyze
criticality for this system.

It may be noted that the thermal fluctuations to the ther-
modynamics of various geometries has been recently stud-
ied [29-32]. However, most of the work on the corrected
thermodynamics has been done using the logarithmic cor-
rection term. It is well known that the thermodynamics of a
black geometry will get corrected from higher order correc-
tion terms [27]. It would be interesting to investigate such
correction terms for these geometries. It would be possible
that such correction terms will modify the stability of such
systems. The stability of such system can be studied by using
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the specific heat. It is also possible to analyze the stability
of such a system using the entire Hessian matrix of the free
energy. It would thus be interesting to perform this study for
these geometries with higher order thermal fluctuations.

Open Access This article is distributed under the terms of the Creative
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