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Abstract In this work, we study the propagators of mat-
ter fields within the framework of the refined Gribov–
Zwanziger theory, which takes into account the effects of
the Gribov copies in the gauge-fixing quantization proce-
dure of Yang–Mills theory. In full analogy with the pure
gluon sector of the refined Gribov–Zwanziger action, a
non-local long-range term in the inverse of the Faddeev–
Popov operator is added in the matter sector. Making use
of the recent BRST-invariant formulation of the Gribov–
Zwanziger framework achieved in Capri et al. (Phys Rev
D 92(4):045039, 2015), (Phys Rev D 94(2):025035, 2016),
(Phys Rev D 93(6):065019, 2016), (arXiv:1611.10077 [hep-
th]), Pereira et al. (arXiv:1605.09747 [hep-th]),the propa-
gators of scalar and quark fields in the adjoint and funda-
mental representations of the gauge group are worked out
explicitly in the linear covariant, Curci–Ferrari and maxi-
mal Abelian gauges. Whenever lattice data are available, our
results exhibit good qualitative agreement.
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1 Introduction

While quantum chromodynamics (QCD) is well under-
stood at high energies, where perturbation theory is reli-
able due to asymptotic freedom, the low energy sector
remains a challenging open problem in theoretical Physics.
In the infrared region, perturbation theory breaks down and
non-perturbative techniques are needed. Full control of the
infrared regime of QCD would provide a fundamental under-
standing of the confinement of quarks and gluons, a goal not
achieved till now.

Different approaches which take into account non-
perturbative effects in QCD were devised in the last decades,
see [6–10]. Up to now, the interplay of such approaches was
able to produce non-trivial results. Though, a complete con-
sistent picture of the mechanism behind color confinement
is still lacking.

One approach to dealing with the confinement problem
is the non-perturbative study of the correlation functions
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of the theory. Functional techniques based on the Dyson–
Schwinger equations and on the functional renormalization
group as well as numerical lattice simulations have been
employed in the analysis of the infrared behavior of the cor-
relation functions. In particular, the two-point gluon corre-
lation function has been object of very intensive investiga-
tions. In fact, the infrared structure of two-point gluon corre-
lation function, e.g. the gluon propagator, turns out to encode
important features which are interpreted as signals of con-
finement. For instance, lattice numerical simulations as well
as computations based on the Dyson–Schwinger equations
show that the gluon propagator exhibits a violation of the
reflection positivity. As such, it cannot be associated with a
physical excitation of the spectrum of the theory. This prop-
erty is interpreted as a manifestation of confinement, see
[11–15]. One has to keep in mind that the gluon propagator
is a gauge-dependent quantity. Nevertheless, it still contains
important information as regards such (un)physical elemen-
tary fields, being the simplest correlation function one might
compute. In the last decade, the gluon propagator has been
studied in great detail in the Landau gauge, due to its special
features, namely the transversality of the propagator itself and
the important property of having a useful lattice formulation
which has allowed for a numerical study of the gluon propa-
gator on large lattices. More precisely, the most recent lattice
simulations point towards an infrared suppressed gluon prop-
agator which attains a finite value at zero momentum in four
and three space-time dimensions, while it vanishes at zero
momentum in two space-time dimensions. One says that in
three and four dimensions the gluon propagator is of decou-
pling/massive type, while in two dimensions it is of scaling
type, see [16–22].

Besides the aforementioned functional and numerical lat-
tice approaches, an analytical framework which takes into
account the existence of the Gribov copies [23] occurring
in the Faddeev–Popov quantization of gauge theories has
received increasing interest in the recent years. The so-
called refined Gribov–Zwanziger setup captures the effects
of the spurious gauge copies as well as of additional non-
perturbative effects related to the existence of dimension two-
condensates, giving rise to an effective infrared action, the
refined Gribov–Zwanziger action, yielding a gluon propaga-
tor of the decoupling type which is in very good agreement
with the most recent lattice data in both four and three space-
time dimensions. In two dimensions, infrared singularities
forbid the formation of the dimension-two condensates and
the refinement does not take place. As a consequence, the
gluon propagator turns out to be of the scaling type. In this
paper, we focus on the refined Gribov–Zwanziger formula-
tion. An extensive review of the developments of this frame-
work is presented in Sect. 2.

Nonetheless, in QCD, in addition of the pure gluon sector,
one has to face also the complex issue of quark confinement,

to which different strategies have been devoted, see [8,9]. As
far as the refined Gribov–Zwanziger framewrok is concerned,
a possible mechanism to take into account matter confine-
ment was proposed in [2,24–26] in the Landau gauge. More
precisely, as will be reviewed in Sect. 2, within the refined
Gribov–Zwanziger approach in the Landau gauge, the non-
perturbative effect of the Gribov copies is accounted for by
restricting the domain of integration in the functional inte-
gral to a certain region �, called the Gribov region, which
is defined by demanding that the Faddeev–Popov operator
M(A) is strictly positive, so that it is invertible within �.
Such a restriction enables us to eliminate a large set of copies.
In practice, the restriction to � is achieved by adding to the
starting Faddeev–Popov action an additional non-local term,
known as the horizon function, which contains the inverse of
the operator M(A). It is precisely the addition of this addi-
tional long-range term which is responsible for the infrared
modifications of the gluon propagator, which turns out to be a
confining propagator, exhibiting complex poles and lacking
the Källén-Lehmann representation. Remarkably, the non-
local horizon function can be cast in local form through the
addition of a suitable set of auxiliary fields. The resulting
action is multiplicatively renormalizable to all orders.

The proposal made in [2,24–26] consists in generalizing
the introduction of the non-local horizon function to the mat-
ter sector, in complete analogy with the gluon sector. More-
over, as in the gluon sector, the non-local matter coupling
term can be cast in local form, giving rise to a fully local and
renormalizable action. In [2,24–26], this prescription was
implemented for scalar fields in the adjoint representation
of the gauge group and for spinor fields in the fundamen-
tal representation. The whole procedure was carried out in
the Landau gauge, for which the refined Gribov–Zwanziger
setup was well established, see also [54] and the references
therein for the maximal Abelian gauge.

Very recently, the refined Gribov–Zwanziger framework
has been extended to the class of the linear covariant and
Curci–Ferrari gauges [1–5], allowing, in particular, to estab-
lish the independence from the gauge parameter of the gauge-
invariant correlation functions as well of the poles of the
transverse part of the gluon propagator. In the light of such
developments, it seems natural to ask ourselves how matter
fields should be coupled to the refined Gribov–Zwanziger
action in such gauges. This is precisely the aim of the present
work.

The paper is organized is follows: Sect. 2 contains an
overview of the refined Gribov–Zwanziger action, covering
the Landau, the linear covariant, the Curci–Ferrari as well as
the maximal Abelian gauge. After that, in Sect. 3, we describe
the non-perturbative coupling of scalar fields in the adjoint
representation of the gauge group within the refined Gribov–
Zwanziger action in the aforementioned gauges. Subse-
quently, in Sect. 4, we work out the non-perturbative cou-
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pling of quark fields and its consequences on the propagator.
Finally, we collect our conclusions. To keep the paper self-
contained as much as possible, we have added two appen-
dices devoted to the details of our construction as well as to
the conventions used throughout the paper.

2 Overview of the non-perturbative BRST-invariant
formulation of the refined Gribov–Zwanziger
framework

In this section, we review the recently proposed BRST-
invariant formulation of the refined Gribov–Zwanziger action
in linear covariant [1,3], Curci–Ferrari [4] and maximal
Abelian gauges [54]. For the benefit of the reader, we start
with a brief overview of the Gribov problem in the Landau
gauge for which the refined Gribov–Zwanziger action was
originally constructed.

2.1 The Gribov problem in the Landau gauge

Let us consider Yang–Mills theory ind Euclidean dimensions
with SU (N ) gauge group quantized in the Landau gauge,
namely ∂μAa

μ = 0. The Faddeev–Popov procedure results in
the gauge-fixed action:

SFP =
∫

dd x

(
1

4
Fa

μνF
a
μν + ba∂μA

a
μ + c̄a∂μD

ab
μ (A)cb

)
,

(1)

with the field strength Fa
μν and the covariant derivative Dab

μ

in the adjoint representation of the gauge group given by

Fa
μν = ∂μA

a
ν − ∂ν A

a
μ + g f abc Ab

μA
c
ν,

Dab
μ = δab∂μ − g f abc Ac

μ . (2)

The parameter g stands for the gauge coupling1 and f abc are
the real and totally antisymmetric structure constants of the
gauge group. The fields (c̄a, ca) denote the Faddeev–Popov
ghosts, while ba is the Lagrange multiplier implementing
the Landau gauge condition. Nevertheless, as investigated
by Gribov in [23], the action (1) is plagued by the existence
of gauge copies, i.e. equivalent gauge configurations which
still obey the gauge condition. This fact can be observed
very concretely by considering a gauge field configuration
Aa

μ, which satisfies the Landau gauge condition and another
gauge field A′a

μ , which is connected to Aa
μ by an infinitesimal

gauge transformation:

A′a
μ = Aa

μ − Dab
μ ξb, (3)

with ξa being the infinitesimal gauge parameter of the trans-
formation. If the Landau gauge condition were ideal, i.e. if it

1 The coupling g is dimensionless in d = 4.

were selecting only one representative Aa
μ per gauge orbit,2

then A′a
μ would not obey anymore the Landau gauge condi-

tion, ∂μA′a
μ �= 0. Therefore, from Eq. (3) we should have

∂μA
′a
μ = ∂μA

a
μ − ∂μD

ab
μ ξb = −∂μD

ab
μ ξb �= 0, (4)

where the condition ∂μAa
μ = 0 was employed. Hence, Eq.

(4) shows that if the Faddeev–Popov operator Mab(A) ≡
−∂μDab

μ (A) develops zero-modes, then the Landau gauge is
not ideal. Gribov proved in [23] that the operator Mab(A) ≡
−∂μDab

μ (A) does exhibit in fact zero-modes. As a conse-
quence, a residual gauge symmetry remains even after the
implementation of (1). The existence of such spurious con-
figurations known as Gribov copies is the so-called Gribov
problem. For a pedagogical review of this subject, we refer
to [27–30]. Let us emphasize that the previous argument is
restricted to Gribov copies generated by infinitesimal gauge
transformations. Finite gauge transformations were consid-
ered in [31].

The aforementioned discussion of the existence of the Gri-
bov problem might induce the reader to think that this is a
particular pathology of the Landau gauge or of a subclass
of gauges, which can be circumvented by a suitable choice
of a more appropriate gauge condition. Nevertheless, it was
proved by Singer in [32] that this is not the case. In fact, it
turns out that the Gribov problem has to do with the non-
trivial topological structure of Yang–Mills theories.

In order to deal with the Gribov copies in the path integral
measure, Gribov proposed in [23] the restriction of the path
integral domain to a smaller region � in field space, known
as the Gribov region, defined as

� =
{
Aa

μ, ∂μA
a
μ = 0

∣∣∣Mab(A) > 0

}
, (5)

namely, � is the set of gauge fields which satisfy the Lan-
dau gauge condition and for which the Faddeev–Popov oper-
ator is strictly positive. The boundary ∂�, where the first
vanishing eigenvalue of the Faddeev–Popov operator shows
up, is called the first Gribov horizon. We should mention
that, although the region � is free from infinitesimal Gribov
copies, it still contains additional copies [31] related to finite
gauge transformations. A smaller region, contained inside �

and known as the fundamental modular region, exists and
turns out to be fully free from Gribov ambiguities. However,
unlike the Gribov region �, a practical way to implement
the restriction of the domain of integration in the functional
integral to the Fundamental Modular Region has not yet been
achieved so far. Therefore, we stick to the Gribov region �,
which displays important properties: (i) it is bounded in all
directions in field space; (ii) it is convex; (iii) all gauge orbits

2 A gauge orbit of a given configuration Aa
μ is the set of all gauge fields

related to Aa
μ by a gauge transformation.

123



546 Page 4 of 20 Eur. Phys. J. C (2017) 77 :546

cross it at least once. These properties were proven in a rig-
orous fashion in [33] and give a well-defined support to orig-
inal Gribov’s proposal of restricting the functional integral
to �. Such restriction is effectively implemented through the
addition of an extra term into the action (1), as shown inde-
pendently by Gribov and Zwanziger, [23,34,35], i.e.

Z =
∫

�

[DA]δ(∂μA
a
μ)|det(Mab)|e−SYM

=
∫

[DA][Dc][Dc̄][Db]e−SFP−γ 4H(A)+dV γ 4(N2−1), (6)

where H(A) is known as the horizon function, being given
by

H(A) = g2
∫

dd xdd y f abc Ab
μ(x)

[
M−1(A)

]ad
(x, y) f dec Ae

μ(y).

(7)

In Eq. (6), V is the space-time volume and γ is a parameter
with the dimension of a mass, known as the Gribov parameter.
It is not a free parameter, being determined in a self-consistent
way through the so-called horizon condition, i.e.

〈H(A)〉 = dV (N 2 − 1), (8)

where the expectation value 〈. . .〉 is taken with respect to the
modified measure given by Eq. (6).

As is apparent from Eq. (7), the presence of the inverse
of the Faddeev–Popov operator makes the horizon function
a non-local quantity. Nevertheless, it can be cast in local
form by the introduction of a suitable set of auxiliary fields,
namely a pair of commuting (ϕab

μ , ϕ̄ab
μ ) and of anticommut-

ing (ωab
μ , ω̄ab

μ ) fields. Written in terms of these new fields,
the Gribov–Zwanziger action SGZ is expressed as

SGZ = SFP −
∫

dd x

(
ϕ̄ac

μ Mabϕbc
μ − ω̄ac

μ Mabωbc
μ

+g f adl ω̄ac
μ ∂ν

(
ϕlc

μ Dde
ν ce

))

+γ 2
∫

dd x g f abc Aa
μ(ϕ + ϕ̄)bcμ , (9)

and Eq. (6) takes the form

Z =
∫

[DμGZ]e−SGZ+dV γ 4(N2−1), (10)

with

[DμGZ] = [DA][Dc][Dc̄][Db][Dϕ][Dϕ̄][Dω][Dω̄] . (11)

Remarkably, the action SGZ is local and renormalizable
to all orders in perturbation theory [34]. Hence, the Gribov–
Zwanziger action is an effective framework which imple-
ments the restriction of the domain of integration in the path
integral to the Gribov region � in a renormalizable and local
way.

The Gribov–Zwanziger action has many interesting and
non-trivial properties. For our present purposes, we focus on
a few of them. First, the gluon propagator computed out of (9)
is suppressed in the deep infrared regime and attains a van-
ishing value at zero momentum, a result which is at odds with
the divergent perturbative behavior. This propagator is said
to be of the scaling type. Also, it violates reflection positivity
and, therefore, gluons cannot be interpreted as excitations of
the physical spectrum, being thus confined. The ghost prop-
agator, however, is enhanced in the strong coupling regime,
diverging as 1/k4 for k ≈ 0. Another property of the Gribov–
Zwanziger action (9) is that it breaks the BRST symmetry,
given by the following transformations:

s Aa
μ = −Dab

μ cb, sca = g

2
f abccbcc,

sc̄a = ba, sba = 0,

sϕab
μ = ωab

μ , sωab
μ = 0,

sω̄ab
μ = ϕ̄ab

μ , sϕ̄ab
μ = 0 . (12)

in an explicit way, namely

sSGZ = γ 2
∫

dd x g f abc
(

− Dad
μ cd(ϕ + ϕ̄)bcμ + Aa

μωbc
μ

)
.

(13)

Being proportional to γ 2, the BRST breaking is a soft break-
ing. It becomes relevant in the non-perturbative infrared
region. Though, it does not affect the deep ultraviolet region,
so that the perturbative results are recovered.

More recently, it has been realized that the localizing
fields (ϕ, ϕ̄, ω, ω̄) develop their own dynamics and non-
trivial additional effects are generated. In particular, it has
been shown that dimension-two condensates, 〈Aa

μA
a
μ〉 and

〈ϕ̄ab
μ ϕab

μ − ω̄ab
μ ωab

μ 〉, are dynamically generated [36–39], i.e.

〈Aa
μA

a
μ〉 ∝ γ 2 , 〈ϕ̄ab

μ ϕab
μ − ω̄ab

μ ωab
μ 〉 ∝ γ 2 . (14)

Taking into account the existence of such dimension-two
condensates from the beginning, gives rise to the so-called
refined Gribov–Zwanziger action, which is expressed as

SRGZ = SGZ + m2

2

∫
dd x Aa

μA
a
μ

−M2
∫

dd x

(
ϕ̄ab

μ ϕab
μ − ω̄ab

μ ωab
μ

)
, (15)

where, much alike the Gribov parameter γ 2, the massive
parameters (m2, M2) are not independent, being determined
by suitable gap equations obtained through the evaluation
of the effective potential for the condensates 〈Aa

μA
a
μ〉 and

〈ϕ̄ab
μ ϕab

μ − ω̄ab
μ ωab

μ 〉, see [38].
The addition of the dimension-two operators, Aa

μA
a
μ and

(ϕ̄ab
μ ϕab

μ − ω̄ab
μ ωab

μ ), does not spoil the renormalizability of
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the refined action (15). Notably, taking into account these
additional non-perturbative effects, changes the gluon and
ghost propagators. For instance, the gluon propagator dis-
plays now a decoupling/massive behavior, exhibiting a finite
non-vanishing value at zero momentum, while being still
suppressed in the deep infrared sector. The ghost propaga-
tor, however, is not enhanced anymore in the strong coupling
and, for k ≈ 0, it behaves as 1/k2. Such behavior of the
gluon and ghost propagator is in very good agreement with
the most recent lattice simulations in the Landau gauge, see
[17,20,40–43].

An interesting property of the refinement of the Gribov–
Zwanziger action is that its occurrence depends on the space-
time dimension d. In particular, for d = 3, 4, the formation
of dimension-two condensates is dynamically favored and
the Gribov–Zwanziger action is naturally refined [37,44].
Nevertheless, in d = 2, infrared singularities prevent the
introduction of such operators and the refinement does not
take place. In particular, this implies that, for d = 3, 4, the
gluon propagator is of decoupling type, while in d = 2, it
is of scaling type [45]. Remarkably, this phenomenon was
observed by recent lattice numerical simulationsn [21,46]. It
is worth mentioning that, considering the Gribov–Zwanziger
action as an effective action with an energy scale ultraviolet
cutoff, it is possible to show that, at the strong coupling, the
refinement is also favored in d > 4, [47].

For completeness, we display the form of the tree-level
gluon propagator in3 d = 3, 4

〈Aa
μ(k)Ab

ν(−k)〉d=3,4

= δab
k2 + M2

(k2 + m2)(k2 + M2) + 2g2Nγ 4

(
δμν − kμkν

k2

)
,

(16)

and in d = 2,

〈Aa
μ(k)Ab

ν(−k)〉d=2 = δab
k2

k4 + 2g2Nγ 4

(
δμν − kμkν

k2

)
.

(17)

2.2 Going beyond the Landau gauge and the
non-perturbative BRST symmetry: linear covariant
gauges

Although not peculiar to the Landau gauge, Gribov copies are
very difficult to handle when one chooses a different gauge
condition. The main reason is that in the Landau gauge, the
transversality of the gauge field ensures that the Faddeev–
Popov operator Mab is Hermitean. As such, this operator has
a real spectrum which meaningfully allows for a definition of

3 Due to the different values of d, one should keep in mind the different
meanings of the space-time indices and mass dimensions.

a Gribov region �, where it is positive. Nevertheless, in gen-
eral, the Faddeev–Popov operator is not Hermitean. The lack
of such a property hinders a direct and clear definition of what
would be the Gribov region in gauges different from the Lan-
dau gauge. There are two notable examples of gauge choices
which also possess a Hermitean Faddeev–Popov operator:
the maximal Abelian and Coulomb gauges. For such gauges,
an explicit construction of the Gribov–Zwanziger action and
its refinement was performed, see [48–61]. In spite of this
fact, these gauges have their own peculiarities and the devel-
opment of the refined Gribov–Zwanziger scenario for them
is not at the same level as in the Landau gauge.

A natural extension of the Landau gauge, which preserves
Lorentz and color covariance, is given by the so-called linear
covariant gauges, whose corresponding gauge condition is
written as

∂μA
a
μ = αba, (18)

with α a non-negative gauge parameter and ba being, at this
level, a given function. Clearly, if one sets α = 0, the Lan-
dau gauge is recovered. Infinitesimal Gribov copies in these
gauges are characterized by the zero-modes equation,

Mab
LCG(A)ξb = −δab∂2ξb + g f abc Ac

μ∂μξb

+g f abc(∂μA
c
μ)ξb = 0, (19)

where, in contrast to the Landau gauge, ∂μAa
μ �= 0 in general.

It is precisely the fact that the gauge field is not purely trans-
verse in these gauges that spoils the Hermiticity of Mab

LCG.
The lack of Hermiticity makes the definition of the analog

of the Gribov region in linear covariant gauges very difficult.
The first strategy to circumvent this technical difficulty was
to take α as an infinitesimal parameter [62], namely, the lin-
ear covariant gauge is taken as a small perturbation of the
Landau gauge. As a consequence, it was proven in [62] that,
in this situation, one can restrict the transverse component
of the gauge field AT,a

μ = (δμν − ∂μ∂ν/∂
2)Aa

ν to the Gribov
region � in the domain of integration in the path integral
and all infinitesimal Gribov copies are removed. In [63], it
was pointed out that the same strategy works for finite values
of α with the exception of pathological infinitesimal Gribov
copies, corresponding to zero modes which are not smooth
functions of the gauge parameter α. Hence, modulo a certain
subclass of pathological copies, the restriction of the domain
of integration in the path integral to the region where the
transverse component belongs to � removes the infinites-
imal Gribov copies. The resulting action was expressed in
local form [63] and its renormalizability proof to all orders
in perturbation theory was achieved in [64]. We also refer to
[65].

Nevertheless, the presence of the gauge parameter α

allows for an explicit check of the gauge independence of
correlation functions of gauge-invariant operators. In stan-
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dard perturbation theory, this is controlled by the BRST sym-
metry. However, the soft breaking of the BRST symmetry in
the (refined) Gribov–Zwanziger setup gives rise to non-trivial
complications for such a task. Nevertheless, recently, in [1], a
reformulation of the Gribov–Zwanziger action in the Landau
gauge in terms of a transverse and gauge-invariant field,4 see
[66–68], Ah,a

μ , with ∂μAh,a
μ = 0, and its generalization to lin-

ear covariant gauges was proposed. In this new formulation,
the Gribov–Zwanziger enjoys an exact nilpotent BRST sym-
metry, which is a direct consequence of the gauge invariance
of Ah,a

μ and which enables us to establish the independence
from the parameter α of the gauge-invariant correlation func-
tions, and this even in the presence of the Gribov horizon.

As shown in Appendix A of [1], the gauge-invariant field5

Ah
μ is expressed as an infinite series in powers of Aμ, namely

Ah
μ =

(
δμν − ∂μ∂ν

∂2

)(
Aν − ig

[
1

∂2 ∂A, Aν

]

+ ig

2

[
1

∂2 ∂A, ∂ν

1

∂2 ∂A

]
+ O(A3)

)
, (20)

which, albeit transverse and gauge invariant, is a non-local
expression. Upon a suitable redefinition of the field ba ,
ba → bh,a [1], with the introduction of the gauge-invariant
field Ah,a

μ , the resulting Gribov–Zwanziger action in linear
covariant gauges is written as [1]

S̃LCG
GZ = SYM +

∫
dd x

(
bh,a∂μA

a
μ − α

2
bh,abh,a

+c̄a∂μD
ab
μ (A)cb

)
+ γ 4H(Ah), (21)

with

H(Ah) = g2
∫

dd xdd y f abc Ah,b
μ (x)

[
M−1(Ah)

]ad

×(x, y) f dec Ah,e
μ (y), (22)

and

Mab(Ah) = −δab∂2 + g f abc Ah,c
μ ∂μ,

with ∂μA
h,a
μ = 0 . (23)

Before proceeding, one should note that the horizon function
H(Ah) has now two sources of non-localities: the first one is
related to the inverse of the operator M(Ah), which is simi-
lar to the non-locality of the horizon function in the Landau
gauge, see Eq. (7). The second source of non-locality is asso-
ciated with the field Ah

μ itself, see Eq. (20). In order to localize
the first type of non-locality present in (22), one proceeds as

4 We refer to Appendix A of [1] for the construction of the gauge-
invariant field Ah,a

μ .
5 We write it in the matrix notation Ah

μ = Ah,a
μ T a , with T a the gener-

ators of SU (N ).

in the Landau gauge and introduces the set of auxiliary fields
(ϕ̄, ϕ, ω̄, ω)abμ , which gives rise to the following action6:

SLCG
GZ = SYM +

∫
dd x

(
bh,a

(
∂μA

a
μ − α

2
bh,a

)

+c̄a∂μD
ab
μ cb

)
+

∫
dd x

(
ϕ̄ac

μ

[
M(Ah)

]ab
ϕbc

μ

−ω̄ac
μ

[
M(Ah)

]ab
ωbc

μ + gγ 2 f abc Ah,a
μ (ϕ + ϕ̄)bcμ

)
.

(24)

Some properties of (24) are listed: (i) The action SLCG
GZ is

non-local due to the presence of the field Ah
μ; (ii) In the limit

α → 0, i.e. ∂μAa
μ = 0, one has Ah

μ → AT
μ and the action

(25) is equivalent to (9), the Gribov–Zwanziger action in the
Landau gauge; (iii) The action (24) enjoys an exact nilpotent
BRST symmetry defined by the following transformations:

s Aa
μ = −Dab

μ cb, sca = g

2
f abccbcc,

sc̄a = bh,a, sbh,a = 0,

sϕab
μ = 0, sωab

μ = 0,

sω̄ab
μ = 0, sϕ̄ab

μ = 0,

s Ah,a
μ = 0, (25)

with

sSLCG
GZ = 0. (26)

Up to now, we have presented a BRST-invariant non-local
action, Eq. (24), which restricts the domain of integration in
the path integral to a region free from a large set of Gribov
copies. Moreover, as reported in [2], this action can be fully
localized by means of the introduction of additional auxiliary
fields. In particular, the localization procedure worked out in
[2] relies on the introduction of an auxiliary Stueckelberg-
type field ξa , namely

h = eigξ
aT a ≡ eigξ . (27)

The field Ah
μ = Ah,a

μ T a is expressed in terms of the local
field ξa as

Ah
μ = h†Aμh + i

g
h†∂μh . (28)

An important feature of Ah , as defined by (28), is that it
is gauge invariant, that is,

Ah
μ → Ah

μ , (29)

as can be explicitly seen through a gauge transformation
parametrized by the SU (N ) matrix V

6 We omit the vacuum term −dV γ 4(N 2 − 1).
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Aμ → V †AμV + i

g
V †∂μV , h → V †h , h† → h†V .

(30)

Although non-polynomial, the field Ah
μ (28) is now a local

field and can be expanded in terms of ξa , yielding

(Ah)aμ = Aa
μ − Dab

μ ξb − g

2
f abcξbDcd

μ ξd + O(ξ3) . (31)

Also, we must impose the requirement that the local field
Ah

μ, Eq. (28), is transverse, namely, ∂μAh
μ = 0. Solving

the transversality condition for the local field ξa field, we
obtain back the non-local expression for Ah

μ of Eq. (20); see
Appendix A of [1]. Therefore, besides introducing the field
ξa , we should enforce the transversality of Ah

μ by means of
a Lagrange multiplier τ a , a task which can be accomplished
by introducing in the action the term

Sτ =
∫

dd x τ a∂μ(Ah
μ)a . (32)

We are now ready to write down the local and non-
perturbative BRST-invariant Gribov–Zwanziger action in the
linear covariant gauges, i.e.

Sloc
GZ = SYM +

∫
dd x

(
ba∂μA

a
μ − α

2
baba

+c̄a∂μD
ab
μ (A)cb

)
+

∫
dd x τ a∂μ(Ah

μ)a

−
∫

dd x

(
ϕ̄ac

μ

[
M(Ah)

]ab
ϕbc

μ

−ω̄ac
μ

[
M(Ah)

]ab
ωbc

μ + gγ 2 f abc(Ah
μ)a(ϕ̄ + ϕ)bcμ

)
.

(33)

The local action turns out to be renormalizable to all orders
in perturbation theory [70], while implementing the restric-
tion of the domain of integration in the path integral to a
region free from a large set of Gribov copies in the linear
covariant gauges in a BRST-invariant way. Such a feature
allows for a well-defined Slavnov–Taylor identity, through
which the gauge parameter independence of gauge-invariant
correlation functions can be established. An extensive anal-
ysis of these properties was carried out in [2,5].

As discussed in Sect. 2.1, the action (33) needs to be fur-
ther refined, due to the dynamical formation of dimension-
two condensates. This fact was exploited in [3] where it was
verified that, as in the Landau gauge, the refinement of the
Gribov–Zwanziger action occurs in d = 3, 4, while in d = 2
it is forbidden due to the presence of infrared singularities
which prevent the formation of the dimension two conden-
sates. Hence, in d = 3, 4, the action (33) is replaced by its
refined version

Sloc
GZ −→ Sloc

RGZ = Sloc
GZ + m2

2

∫
dd x (Ah

μ)a(Ah
μ)a

−M2
∫

dd x

(
ϕ̄ab

μ ϕab
μ − ω̄ab

μ ωab
μ

)
.

(34)

The tree-level gluon propagator computed out of (34) is given
by

〈Aa
μ(k)Ab

ν(−k)〉d=3,4

= δab
[

k2 + M2

(k2 + m2)(k2 + M2) + 2g2γ 4N

×
(

δμν − kμkν

k2

)
+ α

k2

kμkν

k2

]
, (35)

being in very good agreement with the most recent lattice data
[71–73]. Although the transverse part of the propagator might
acquire loop corrections, the longitudinal sector is exact to
all orders, a consequence of the BRST symmetry. It is worth
mentioning that this propagator has a decoupling/massive
behavior in d = 3, 4, while in d = 2 it is of scaling type due
to the absence of refinement, see [3]. For completeness, the
local refined Gribov–Zwanziger action, Eq. (34), is invariant
under the nilpotent BRST transformations

s Aa
μ = −Dab

μ cb, sca = g

2
f abccbcc,

sc̄a = bh,a, sbh,a = 0,

sϕab
μ = 0, sωab

μ = 0,

sω̄ab
μ = 0, sϕ̄ab

μ = 0,

shi j = −igca(T a)ikhk j , s Ah,a
μ = 0,

sτ a = 0, s2 = 0, (36)

from which the BRST transformation of the field ξa , Eq.
(27), can be evaluated iteratively, giving

sξa = −ca + g

2
f abccbξ c − g2

12
f amr f mpqcpξqξ r

+O(g3). (37)

It is instructive to check here explicitly the BRST invariance
of Ah . For this purpose, it is better to employ a matrix notation
for the fields, namely

s Aμ = −∂μc + ig[Aμ, c] , sc = −igcc ,

sh = −igch , sh† = igh†c , (38)

with Aμ = Aa
μT

a , c = caT a , ξ = ξaT a . From Eq. (28) we
get

s Ah
μ = igh†c Aμh + h†(−∂μc + ig[Aμ, c])h

−igh†Aμ ch − h†c∂μh + h†∂μ(ch)
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= igh†cAμh − h†(∂μc)h + igh†Aμ ch − igh†c Aμh

−igh†Aμch − h†c∂μh + h†(∂μc)h + h†c∂μh

= 0 . (39)

Finally, we have

sSloc
RGZ = 0 . (40)

It is important to emphasize that, in the action (34), the mas-
sive parameters (γ,m, M) are coupled to BRST-invariant
expressions which are easily verified to be not BRST exact,
i.e. cannot be expressed as pure s-variations. This fact ensures
that these parameters are not akin to gauge parameters, hav-
ing a physical meaning. As such, they will be present in the
gauge-invariant correlation functions. Also, they are not free,
being determined by their own gap equations as discussed in
[37,38].

2.3 Curci–Ferrari gauge

In [4], it was argued that the Gribov problem in the Curci–
Ferrari gauge is intimately related to the existence of copies
in the linear covariant gauges. By a suitable shift of the b-
field, it was shown that the copies equation is the same in
both gauges. As such, the issue of the Gribov copies can
be handled in the same way and the implementation of the
restriction of the domain of integration in the path integral
is obtained by the introduction of the same horizon function
(22). As discussed in [4], the Gribov–Zwanziger action in
the Curci–Ferrari gauge is

SCF
GZ = SYM +

∫
dd x

[
bh,a∂μA

a
μ + c̄a∂μD

ab
μ cb

−α

2
bh,abh,a + α

2
g f abcbh,ac̄bcc

+α

8
g2 f abc f cdec̄a c̄bcdce

]

+
∫

dd x

(
ϕ̄ac

μ

[
M(Ah)

]ab
ϕbc

μ − ω̄ac
μ

[
M(Ah)

]ab

×ωbc
μ + gγ 2 f abc Ah,a

μ (ϕ + ϕ̄)bcμ

)

+
∫

dd x τ a∂μ(Ah
μ)a . (41)

As in the case of the linear covariant gauges, this theory suf-
fers from non-perturbative instabilities which give rise to the
dynamical formation of condensates in d = 3, 4. Therefore,
expression (41) is refined by the inclusion of the same oper-
ators as in Eq. (34) i.e.

SCF
GZ −→ SCF

RGZ = SCF
GZ + m2

2

∫
dd x (Ah

μ)a(Ah
μ)a

−M2
∫

dd x

(
ϕ̄ab

μ ϕab
μ − ω̄ab

μ ωab
μ

)
.

(42)

This action is invariant under the BRST transformations of
Eq. (36). The resulting tree-level gluon propagator coincides
with that given in Eq. (35). Nevertheless, since the Curci–
Ferrari gauge is non-linear7, it does not enjoy the same set of
Ward identities as the linear covariant gauges. A particular
consequence of this fact is that, unlike the case of the linear
covariant gauge, the longitudinal part of the propagator is
now affected by quantum corrections.

2.4 Maximal Abelian gauge (MAG)

In order to construct the BRST-invariant (refined) Gribov–
Zwanziger action in the MAG, let us first set our conven-
tions for this gauge. To avoid unnecessary complications, we
restrict ourselves to the case of the gauge group SU (2). In
this case, the gauge field Aμ = Aa

μT
a can be decomposed

into diagonal and off-diagonal components, as

Aμ = Aa
μT

a = Aα
μT

α + A3
μT

3, (43)

with α = {1, 2} denoting the indices corresponding to the
off-diagonal components. The diagonal generator T 3 ≡ T
belongs to the Cartan subalgebra of SU (2). Therefore, the
following commutation relations hold:

[
T a, T b

]
= iεabcT c,

[
T α, T β

]
= iεαβ3T 3 ≡ iεαβT,

[
T α, T

]
= −iεαβT β,

[
T, T

]
= 0,

(44)

with εαβ = εαβ3 being the totally antisymmetric symbol.
The explicit decomposition of the field strength Fa

μν yields

Fα
μν = Dαβ

μ Aβ
ν − Dαβ

ν Aβ
μ,

Fμν = ∂μAν − ∂ν Aμ + gεαβ Aα
μA

β
ν , (45)

with Dαβ
μ being the covariant derivative defined with respect

to the Abelian component Aμ = A3
μ, namely

Dαβ
μ = δαβ∂μ − gεαβ Aμ . (46)

By means of Eq. (45), we can express the Yang–Mills
action as

SYM = 1

4

∫
dd x

(
Fα

μνF
α
μν + FμνFμν

)
, (47)

7 The non-linearity of the Curci–Ferrari gauge can be appreciated
through the fact that, upon elimination of the Lagrange multiplier field
ba , a quartic ghost interaction term shows up.
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which is left invariant under the following infinitesimal gauge
transformations:

δAα
μ = −Dαβ

μ ξβ − gεαβ Aβ
μξ,

δAμ = −∂μξ − gεαβ Aα
μξβ . (48)

The MAG is defined by the gauge conditions,

Dαβ
μ Aβ

μ = 0,

∂μAμ = 0, (49)

giving rise to the following Faddeev–Popov operator
Mαβ(A):

Mαβ(A) = −Dαδ
μ Dδβ

μ − g2εαδεβσ Aδ
μA

σ
μ . (50)

The gauge-fixed Yang–Mills action in the MAG is written
as

SFP
MAG = SYM +

∫
dd x

(
bαDαβ

μ Aβ
μ − c̄αMαβ(A)cβ

+gεαβ c̄α(Dαδ
μ Aδ

μ)c + b∂μAμ + c̄∂μ(∂μc + gεαβ Aα
μc

β)

)
.

(51)

As discussed in [54], an analogous of the Gribov region �

of the Landau gauge can be introduced in the MAG. More
precisely, the Gribov region �MAG for the MAG is defined
by

�MAG =
{
Aα

μ, Aμ ; Dαβ
μ Aβ

μ = 0, ∂μAμ = 0
∣∣∣Mαβ(Ah) > 0

}
.

(52)

As in the case of the Landau gauge, the restriction of the
domain of integration in the path integral to the region �MAG

can be achieved in a BRST-invariant way by the introduction
of the following horizon function:

HMAG(Ah) = g2
∫

dd xdd y Ah,3
μ (x)εαβ

×
[
M−1(Ah)

]αδ

(x, y)εδβ Ah,3
μ (y), (53)

where Mαβ(Ah) means

Mαβ(Ah) = −Dαδ
μ (Ah)Dδβ

μ (Ah) − g2εαδεβσ Ah,δ
μ Ah,σ

μ ,

(54)

and Dαβ
μ (Ah) = δαβ∂μ − gεαβ Ah,3

μ . The Gribov–Zwanziger
action in the MAG is thus given by

S̃MAG
GZ = SFP

MAG + γ 4HMAG(Ah) . (55)

As before, Eq. (55) has two sort of non-localities encoded in
the horizon function HMAG(Ah). In complete analogy with
the procedure described in Sect. 2.2, it is possible to cast the

action (55) in a local fashion. The resulting local action is
expressed by

SMAG
GZ = SFP

MAG −
∫

dd x

(
ϕ̄αδ

μ Mαβ(Ah)ϕβδ
μ

−ω̄αδ
μ Mδβ(Ah)ωδβ

μ − gγ 2εαβ Ah,3
μ (ϕ + ϕ̄)αβ

μ

)

+
∫

dd x

(
τα∂μA

h,α
μ + τ∂μA

h,3
μ

)
. (56)

This action is invariant under the following BRST transfor-
mations:

s Aα
μ = −(Dαβ

μ cβ + gεαβ Aβ
μc), s Aμ = −(∂μc + gεαβ Aα

μc
β),

scα = gεαβcβc, sc = g

2
εαβcαcβ,

sc̄α = bα, sc̄ = b,

sω̄αβ
μ = 0, sϕ̄αβ

μ = 0,

sωαβ
μ = 0, sϕαβ

μ = 0,

sτα = 0, sτ = 0,

s Ah,α
μ = 0, s Ah,3

μ = 0, (57)

with

sSMAG
GZ = 0 . (58)

As in the case of the gauges discussed before, the
Gribov–Zwanziger action in the MAG also suffers from non-
perturbative instabilities and dimension-two condensates are
dynamically generated in d = 3, 4, while, in d = 2, their
formation is invalidated by infrared singularities. Therefore,
as in the case of the previous gauges, the Gribov–Zwanziger
action in the MAG does not refine in d = 2. We refer to [54]
for a detailed discussion of this feature. The refined Gribov–
Zwanziger action in d = 3, 4 in the MAG is written as

SMAG
GZ −→ SMAG

RGZ = SMAG
GZ

+m2
diag

2

∫
dd x Ah,3

μ Ah,3
μ + m2

off

2

∫
dd x Ah,α

μ Ah,α
μ

−M2
∫

dd x

(
ϕ̄αβ

μ ϕαβ
μ − ω̄αβ

μ ωαβ
μ

)
, (59)

where the mass parameters (m2
diag,m

2
off , M

2) reflect the

existence of the dimension-two condensates 〈Ah,3
μ Ah,3

μ 〉,
〈Ah,α

μ Ah,α
μ 〉, 〈ϕ̄αβ

μ ϕ
αβ
μ − ω̄

αβ
μ ω

αβ
μ 〉.

The diagonal gluon propagator is given by

〈Aμ(k)Aν(−k)〉 =
(

δμν − kμkν

k2

)

× k2 + M2

k4 + (m2
diag + M2)k2 + M2m2

diag + 4g2γ 4
,

(60)
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while the off-diagonal gluon propagator is

〈Aα
μ(k)Aβ

ν (−k)〉 =
(

δμν − kμkν

k2

)
δαβ

k2 + m2
off

. (61)

From Eq. (61), we see that the off-diagonal gluon propagator
displays a Yukawa type behavior. Lattice simulations give
support to this result, see [75–78]. Moreover, this behavior
is in agreement with the Abelian dominance scenario [79],
where off-diagonal gluons should acquire a dynamical mass,
responsible for their decoupling at low energy. On the other
hand, the diagonal gluon propagator (60) is of the refined
Gribov type. As such, it is infrared suppressed and attains a
non-vanishing value for k = 0, in agreement with the lattice
studies [75–78]. The diagonal gluon propagator also displays
reflection positivity violation, a feature which is interpreted
as a signal of confinement. Again, this result is in agreement
with the Abelian dominance scenario.

3 Non-perturbative coupling of scalar fields in the
adjoint representation

In this section, we generalize the construction of [24] to lin-
ear covariant, Curci–Ferrari and maximal Abelian gauges.
To begin with, we consider scalar fields in the adjoint rep-
resentation of8 SU (N ). The idea proposed in [24] consists
in the introduction of a term akin to the horizon function
for the matter sector, which provides a non-perturbative cou-
pling between matter fields and the gauge sector. Although
for the gluon sector the horizon function has a clear geomet-
rical meaning, implementing the restriction of the domain of
integration in the path integral to the Gribov region, the intro-
duction of an analogous term in the matter sector does not
yet exhibit the same well-defined geometric support. Never-
theless, recently, it was observed that such a non-perturbative
coupling between matter and gauge fields could be motivated
through the dimensional reduction of higher-dimensional
Yang–Mills theory, see [47]. More precisely, upon reduction
of a five dimensional Yang–Mills to the four dimensional
theory [47], a non-perturbative coupling between the scalar
field corresponding to the fifth component of the gauge con-
nection and the four dimensional gauge field shows up, being
precisely of the type introduced in [24]. As we shall see, this
prescription gives rise to non-perturbative matter fields prop-
agators which turn out to be in good agreement with lattice
data, whenever available.

3.1 Linear covariant and Curci–Ferrari gauges

Let us consider the standard action of scalar fields in the
adjoint representation of SU (N ), minimally coupled with
the gauge sector, i.e.

8 In the case of the MAG, we restrict ourselves to SU (2) for simplicity.

Sscalar =
∫

dd x

[
1

2
(Dab

μ φb)(Dac
μ φc)

+m2
φ

2
φaφa + λ

4! (φ
aφa)2

]
. (62)

Of course, Eq. (62) is left invariant by BRST transformations
(25), with the scalar field φa transforming as

sφ = ig[φ, c] , φ = φaT a , (63)

where {T a} stand for the generators of SU (N ) in the adjoint
representation.

Making use of the Stueckelberg field ξ , Eq. (27), a BRST-
invariant scalar field is constructed as follows [2]:

φh = h†φh , h = eig ξaT a
. (64)

To first order, we get

φh,a = φa + g f abcξbφc + O(ξ2) . (65)

It is easy to verify that φh is left invariant by the BRST
transformations, i.e.

sφh = 0 . (66)

The prescription introduced in [24] amounts to introduce the
following non-local BRST-invariant term to the scalar action
(62):

H(φh) = g2
∫

dd xdd y f abcφh,b(x)

×
[
M−1(Ah)

]ad
(x, y) f decφh,e(y), (67)

where

(
M(Ah)

)ad

stands for the Faddeev–Popov operator

of Eq. (23). It is almost immediate to realize that Eq. (67)
shares great similarity with the horizon function of the gluon
sector, Eq. (22). In fact, as already mentioned, expression
(67) can be obtained through the dimensional reduction of
higher-dimensional Yang–Mills theory [47].

The action of the scalar field with the addition of the non-
perturbative coupling (67) is given by

Sφ =
∫

dd x

[
1

2
(Dab

μ φb)(Dac
μ φc)

+m2
φ

2
φaφa + λ

4! (φ
aφa)2

]
+ σ 4H(φh), (68)

where the massive parameter σ plays the same role of the Gri-
bov parameter γ . Again, due to the presence of the operator
M−1 in Eq. (67), the action (68) is non-local. Moreover, it
turns out to be possible to cast the action Sφ in local form fol-
lowing the same procedure adopted in the previous sections
for the localization of the Gribov–Zwanziger action. To that
purpose, we introduce a set of auxiliary fields (η̄, η, θ̄ , θ)ab

akin to Zwanziger’s localizing fields in such a way that
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σ 4H(φh) −→ −
∫

dd x

(
η̄acMab(Ah)ηbc

−θ̄acMab(Ah)θbc − gσ 2 f abcφh,c(η̄ + η)ab
)

. (69)

The fields (η̄, η) are commuting while (θ̄ , θ) are anticommut-
ing. Integrating out these fields in the functional integration
gives back the non-local Eq. (67).

Therefore, the local scalar field action non-perturbatively
coupled to the gauge sector is expressed by

S̃φ
loc =

∫
dd x

[
1

2
(Dab

μ φb)(Dac
μ φc) + m2

φ

2
φaφa + λ

4! (φ
aφa)2

]

−
∫

dd x

(
η̄acMab(Ah)ηbc − θ̄acMab(Ah)θbc

−gσ 2 f abcφh,c(η̄ + η)ab
)

. (70)

One should keep in mind that in Eq. (70), both Ah
μ and φh

are expressed in terms of the Stueckelberg field ξa and are
thus local fields, albeit non-polynomial.

As it happens in the gauge sector of the Gribov–Zwanziger
action, the non-local mass term (67) entails non-perturbative
instabilities which give rise to the dimension-two conden-
sates, 〈φh,aφh,a〉 and 〈η̄abηab − θ̄abθab〉, akin to those of the
refined Gribov–Zwanziger action. It is worth to proceed by
evaluating those condensates at first order, a task which can
be accomplished by introducing the operators

J
∫

dd x φh,aφh,a and,

− J̃
∫

dd x

(
η̄abηab − θ̄abθab

)
, (71)

in Eq. (70), where (J, J̃ ) are constant sources. Thus, we
define the action �(J, J̃ ) by

�(J, J̃ ) = S̃φ
loc + J

∫
dd x φh,aφh,a

− J̃
∫

dd x

(
η̄abηab − θ̄abθab

)
. (72)

To first order, the condensates 〈φh,aφh,a〉 and 〈η̄abηab −
θ̄abθab〉 can be obtained by taking the derivatives of the one-
loop vacuum energy E (1) with respect to the sources (J, J̃ ),
and setting them to zero, where

e−VE (1) =
∫

[Dμ]e−�(2)(J, J̃ ) . (73)

�(2)(J, J̃ ) denotes the quadratic part of (72), while the path
integral measure is expressed as

[Dμ] = [DA][Db][Dc̄][Dc][Dω̄][Dω]
[Dϕ̄][Dϕ][Dξ ][Dτ ][Dφ][Dη̄][Dη][Dθ̄][Dθ ].

(74)

At one-loop order, the vacuum energy is easily evaluated,
being given by

E (1) = (N 2 − 1)

2

∫
dd p

(2π)d

×ln

(
p2 + m2

φ + 2J + 2Ng2σ 4

p2 + J̃

)
, (75)

where dimensional regularization has been employed. There-
fore, at first order, for the condensates we get

〈φh,aφh,a〉 = ∂E (1)

∂ J

∣∣∣
J= J̃=0

= −(N 2 − 1)

×
∫

ddk

(2π)d

m2
φ

k4 + m2
φk

2 + 2Ng2σ 4

−2Ng2σ 4(N 2 − 1)

×
∫

ddk

(2π)d

1

k2

1

k4 + m2
φk

2 + 2Ng2σ 4
,

〈η̄abηab − θ̄abθab〉 = −∂E (1)

∂ J̃

∣∣∣
J= J̃=0

= (N 2 − 1)Ng2σ 4

×
∫

ddk

(2π)d

1

k2

1

k4 + m2
φk

2 + 2Ng2σ 4
. (76)

One sees that the one-loop result already shows non-
vanishing expressions for the condensates 〈φh,aφh,a〉 and
〈η̄abηab − θ̄abθab〉. Remarkably, the contributions coming
from the introduction of the non-perturbative mass term (67)
to the standard scalar field action are ultraviolet convergent.
Interesting to note: very much alike the refinement of the
Gribov–Zwanziger action, infrared singularities show up in
the integrals (76), preventing the formation of such conden-
sates in d = 2. As in the case of the gluon sector, in d = 3, 4,
the effects of the existence of the condensates 〈φh,aφh,a〉 and
〈η̄abηab − θ̄abθab〉 can be taken into account by refining the
matter action as:

S̃φ
loc −→ Sφ

loc = S̃φ
loc + m̃2

φ

∫
dd x φh,aφh,a

−ρ2
∫

dd x

(
η̄abηab − θ̄abθab

)
, (77)

where the parameters (m̃2
φ, ρ2) have dynamical origin and

can be obtained through the evaluation of the effective poten-
tial for 〈φh,aφh,a〉 and 〈η̄abηab − θ̄abθab〉. Furthermore, in
the case of d = 2, due to the absence of condensates, the
action remains the original one given by Eq. (70).

After these considerations, we can compute the tree-level
scalar field propagator for different values of d. In d = 2, we
have
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〈φ(k)φ(−k)〉d=2 = δab
k2

k4 + m2
φk

2 + 2Ng2σ 4
, (78)

while in d = 3, 4,

〈φ(k)φ(−k)〉d=3,4

= δab
k2 + ρ2

k4 + (m2
φ + m̃2

φ + ρ2)k2 + (m2
φ + m̃2

φ)ρ2 + 2Ng2σ 4
.

(79)

In analogy with the case of gluon propagator, the scalar field
propagator attains a finite value at zero momentum in d =
3, 4 while in d = 2 it vanishes at k = 0. In both cases the
scalar propagator is infrared suppressed. Also, at the tree-
level, there is no α-dependence as it is apparent from Eqs.
(78) and (79). Hence, the Landau limit α = 0 is trivial and
agrees with the results reported in [37]. Also, the propagators
(78) and (79) violate reflection positivity, a feature which is
interpreted as a signal of confinement. We see thus that the
introduction of the non-perturbative matter coupling (67) has
the effect of confining the scalar matter fields.

It is worth here to add some further remarks on the specific
case of d = 2, Eq. (78). One should keep in mind that Eq. (78)
is a consequence of the first-order absence of the condensate
〈η̄abηab − θ̄abθab〉, as it follows from Eq. (76). Though, we
underline that this is only a first-order analysis. As such,
expression (78) would retain its validity at this order. Willing
to make an all order statement, a higher loop analysis of the
condensate 〈η̄abηab − θ̄abθab〉 would be required, a matter
which is well beyond the aim of the present paper. Although
the available lattice simulations [74] point towards a similar
behavior for the scalar field propagator in the infrared for
different values of d = 4, 3, 2 in the Landau gauge, in order
to make a comparison with the lattice data in d = 2 a detailed
analysis of the higher-order condensate 〈η̄abηab − θ̄abθab〉
would definitively be needed.

Finally, as discussed in Sect. 2.3, the Gribov problem in the
Curci–Ferrari and linear covariant gauges can be treated by
means of a formal equivalence. As such, the non-perturbative
matter term, Eq. (67), in both gauges is the same. There-
fore, the scalar field action non-perturbatively coupled to the
gauge sector is given by (70). Clearly, at first order, all the
computations presented in this section remain valid for the
Curci–Ferrari gauges, namely, the calculation of the vacuum
energy and of the scalar field propagator. Of course, taking
into account higher loops contributions, the non-linear char-
acter of the Curci–Ferrari gauges will show up giving results
which will differ from those of the linear covariant gauges.
Since this is beyond the scope of the present work, we limit
ourselves to the first-order computations already presented in
the case of linear covariant gauges, which retain their validity
also in the Curci–Ferrari gauges.

3.2 Maximal Abelian gauge

In the case of the MAG, although the prescription is the same,
care is due to the decomposition of color indices into diago-
nal and off-diagonal ones. Firstly, we express the minimally
coupled scalar field action in a color decomposed fashion,
namely

Sscalar =
∫

dd x
1

2

{
(∂μφα)(∂μφα) + (∂μφ)(∂μφ)

−2gεαβ

[
(∂μφ)φα Aβ

μ − (∂μφα)φAβ
μ + (∂μφα)φβ Aμ

]

+g2
[
Aα

μA
α
μ(φβφβ + φφ) + AμAμφαφα

−Aα
μA

β
μφaφb − 2AμφAα

μφα

]}
+

∫
dd x

m2
φ

2
(φαφα + φφ)

+
∫

dd x
λ

4!
[
(φαφα)2 + 2φαφαφ2 + φφφφ

]
, (80)

with φ ≡ φ3.
As in the case of linear covariant and Curci–Ferrari

gauges, the non-perturbative matter coupling is obtained
through the addition, in the scalar field action, of a non-local
term which shares great similarity with the corresponding
horizon function of the gluon sector in the MAG, Eq. (53),
i.e.

H(φh) = g2
∫

dd xdd y εαβφh,3(x)

[
M−1(Ah)

]αδ

(x, y)εδβφh,3(y),

(81)

where the Faddeev–Popov operator M(Ah) is now given by
Eq. (54). The scalar field action supplemented with the non-
perturbative coupling (81) becomes

Sφ
MAG = Sscalar + σ 4H(φh) . (82)

The parameter σ has mass dimension and is the analog of the
Gribov parameter γ in the matter sector. As before, the non-
local action (82) can be cast in local form by means of the
introduction of auxiliary fields and of a Stueckelberg field,
also used to localize Ah

μ. In local form, the action (82) is
written as

S̃φ
MAG−loc = Sscalar −

∫
dd x

(
η̄αδMαβ(Ah)ηβδ

−θ̄ αδMαβ(Ah)θβδ−gσ 2εαβφh,3(η̄ + η)αβ

)
,

(83)

with φh = h†φh.
As pointed out in Sect. 3.1, the auxiliary localizing fields

(η̄, η, θ̄ , θ)αβ develop their own dynamics and give rise to
the dynamical formation of condensates. This is in very much
analogy with the refinement of the Gribov–Zwanziger action.
In order to explicitly check the existence of such condensates
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to first order, we proceed as before and introduce the follow-
ing operators to (83):

J
∫

dd x φh,3φh,3 and − J̃
∫

dd x

(
η̄αβηαβ − θ̄ αβθαβ

)
,

(84)

where J and J̃ are constant sources. This gives rise to

�(J, J̃ ) = S̃φ
MAG−loc + J

∫
dd x φh,3φh,3

− J̃
∫

dd x

(
η̄αβηαβ − θ̄ αβθαβ

)
. (85)

Our aim is to compute the following condensates at one-loop
order:

〈φh,3(x)φh,3(x)〉 and 〈η̄αβ(x)ηαβ(x) − θ̄ αβ(x)θαβ(x)〉.
(86)

This is achieved by taking the derivatives with respect to J
and J̃ of the vacuum energy E , defined by

e−VE(J, J̃ ) =
∫

[Dμ]e−Sloc
RGZ−�(J, J̃ ), (87)

and setting the sources to zero at the end, namely

〈φh,3(x)φh,3(x)〉 = ∂E(J, J̃ )

∂ J

∣∣∣
J= J̃=0

,

〈η̄αβ(x)ηαβ(x) − θ̄ αβ(x)θαβ(x)〉 = −∂E(J, J̃ )

∂ J̃

∣∣∣
J= J̃=0

.

(88)

The measure of the path integral (87) is written as

[Dμ] = [DA][Db][Dc̄][Dc][Dω̄][Dω][Dϕ̄]
[Dϕ][Dξ ][Dτ ][Dφ][Dη̄][Dη][Dθ̄][Dθ ] . (89)

At one-loop order, we should take the quadratic part of9

�(J, J̃ ),

�(2)(J, J̃ ) =
∫

dd x

{
1

2

[
(∂μφα)(∂μφα) + (∂μφ)(∂μφ)

]

+m2
φ

2
φαφα + m2

φ

2
φφ

}

−
∫

dd x

(
− η̄αδδαβ∂2ηβδ + θ̄ αδδαβ∂2θβδ

−gσ 2εαβφh,3(η̄ + η)αβ

)

+J
∫

dd x φh,3φh,3

− J̃
∫

dd x

(
η̄αδηαβ − θ̄ αβθαβ

)
. (90)

9 For the moment, we can ignore the contribution from Sloc
RGZ, which is

(J, J̃ )-independent.

Integrating the auxiliary fields (τα, τ ), which enforce the
transversality condition of Ah,a = (Ah,α

μ , Ah
μ), we see that

the gauge-invariant scalar field φh,a = (φh,α, φh,3) can be
expressed as in Eq. (65) with ξa = ∂Aa

∂2 .

Since we want to maintain the action �(2) to the quadratic
order in the fields, we see that φh,a ≈ φa . Hence, the (J, J̃ )-
dependent part of the one-loop order vacuum energy E is
given by

E (1)(J, J̃ ) = 1

2

∫
ddk

(2π)d
ln

(
k2 + m2

φ + 2J + 4g2σ 4

k2 + J̃

)
.

(91)

This implies

〈φh,3φh,3〉1−loop = −
∫

ddk

(2π)d

m2
φ

k4 + m2
φk

2 + 4g2σ 4

−4g2σ 4
∫

ddk

(2π)d

1

k2

1

k4 + m2
φk

2 + 4g2σ 4
, (92)

and

〈η̄αβηαβ − θ̄ αβθαβ〉1−loop

= 2g2σ 4
∫

ddk

(2π)d

1

k2

1

k4 + m2
φk

2 + 4g2σ 4
. (93)

Eq. (93) shows that, at the one-loop level, the condensate
of auxiliary fields, 〈η̄αβηαβ − θ̄ αβθαβ〉1−loop, is ultraviolet
convergent. For d = 3, 4, such a condensate is perfectly
well defined in the infrared region and can be safely intro-
duced. In d = 2, an infrared singularity at k = 0 turns out
to appear. This is in agreement with the refining condensates
in the Gribov–Zwanziger setup. From Eq. (92), we see that
the condensate 〈φh,3φh,3〉 has two contributions: one propor-
tional to m̃2

diag which exists irrespective of the presence of σ

and the other one proportional to σ 4. The former contains
an ultraviolet divergence which can be taken into account by
the standard renormalization techniques while the latter is
ultraviolet convergent and free from infrared divergences in
d = 3, 4. In d = 2, an infrared singularity appears prevent-
ing the introduction of this condensate. We must emphasize
that this condensate does not affect the qualitative behavior
of the initial theory.

Therefore, in d = 2, the scalar field action non-
perturbatively coupled with the gauge sector is given by (83),
while in d = 3, 4 the condensates 〈η̄αβηαβ − θ̄ αβθαβ〉 and
〈φh,3φh,3〉 have to be taken into account, giving rise to the
following refined action:

Sφ
MAG−loc = Sscalar −

∫
dd x

(
η̄αδMαβ(Ah)ηβδ

−θ̄ αδMαβ(Ah)θβδ − gσ 2εαβφh,3(η̄ + η)αβ

)
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+μ2
diag

2

∫
dd x φh,3φh,3

−ρ2
∫

dd x

(
η̄αβηαβ − θ̄ αβθαβ

)
. (94)

From the actions (94) and (83) we can compute the tree-
level Abelian component of the scalar field propagator. The
expressions in d = 2 and d = 3, 4 are, respectively,

〈φ(k)φ(−k)〉d=2 = k2

k4 + m2
φk

2 + 4g2σ 4
, (95)

and

〈φ(k)φ(−k)〉d=3,4

= k2 + ρ2

k4 + (m2
φ + μ2

diag + ρ2)k2 + (m2
φ + μ2

diag)ρ
2 + 4g2σ 4

.

(96)

From Eqs. (95) and (96), we see that the propagator of the
Abelian component of the scalar field displays the same fea-
tures observed for the tree-level propagator of the scalar field
in the linear covariant and Curci–Ferrari gauges, Eqs. (78),
(78).

4 Generalization of the non-perturbative matter
coupling for quark fields

In the previous section, we have presented a prescription for
the non-perturbative coupling of scalar fields in the adjoint
representation of the gauge group with the gauge sector. Such
a coupling arises from the introduction of a non-local term
which shares great similarity with the corresponding hori-
zon term introduced in the gluon sector to implement the
restriction of the domain of integration to the Gribov region.
Interestingly, this term naturally appears through the dimen-
sional reduction of higher-dimensional Yang–Mills theory
[47].

In the present section we follow the same reasoning for
the case of fermionic matter fields in the fundamental repre-
sentation of the gauge group. This case is particularly impor-
tant since it allows us to obtain an analytic non-perturbative
expression of the quark field propagator. As before, we divide
the analysis in two subsections for linear covariant/Curci–
Ferrari gauges and for the maximal Abelian gauge. We
have collected our conventions regarding spinors and related
issues in Appendix A.

4.1 Linear covariant and Curci–Ferrari gauges

Let us begin by considering the Dirac action in Euclidean
space minimally coupled with the gauge sector,

SDirac =
∫

dd x

[
ψ̄ IγμD

I J
μ ψ J − mψψ̄ Iψ I

]
, (97)

where capital latin indices {I, J, . . .} stand for the fundamen-
tal representation of SU (N ). The covariant derivative DI J

μ

is defined by

DI J
μ = δ I J ∂μ − ig(T a)I J Aa

μ, (98)

with T a the generators of SU (N ) in the fundamental rep-
resentation. In strict analogy to what has been proposed in
Sect. 3, the non-perturbative fermion matter coupling is intro-
duced by adding to the Dirac action the non-local term

H(ψh) = −g2
∫

dd xdd y ψ̄h,I (x)(T a)I J

×
[
M−1(Ah)

]ab
(x, y)(T b)J Kψh,K (y), (99)

with

(
M(Ah)

)ad

given by Eq. (23) and where the gauge-

invariant spinor ψh is defined as

ψh,I = ψ I − ig
1

∂2 (∂μA
a
μ)(T a)I Jψ J + O(A2) . (100)

Employing the Stueckelberg field ξa , the all-order BRST-
invariant spinor field ψh is obtained:

ψh = h†ψ = e−igξaT a
ψ . (101)

From

sh† = igh†c , sψ = −igcψ , (102)

it immediately follows that ψh is BRST invariant, namely

sψh = 0 . (103)

Solving the transversality condition ∂μAh,a
μ = 0 for the

Stueckelberg field ξa and plugging it in Eq. (101), see
Appendix A of [1], we reobtain Eq. (100). Hence, follow-
ing the prescription discussed in [2,24], the fermionic action
non-perturbatively coupled to the gauge sector is given by

Sψ = SDirac + M3H(ψh), (104)

where M is the analog of the Gribov parameter γ for the
fermionic sector.

The termH(ψh) is non-local due to the inverse ofM(Ah),
Eq. (23). Nevertheless, the action (104) can be localized
in complete analogy with the localization of the Gribov–
Zwanziger action by means of the introduction of commut-
ing spinor fields (θ̄ , θ)aI as well as of anticommuting ones
(λ̄, λ)aI . The local form of Eq. (99) is given by

M3H(ψh) −→
∫

dd x

(
θ̄aIMab(Ah)θbI

−λ̄aIMab(Ah)λbI − gM3/2λ̄aI (T a)I Jψh,J

+gM3/2ψ̄h,I (T a)I Jλa J
)

, (105)
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which, upon integration over the auxiliary fields (θ̄ , θ)aI and
(λ̄, λ)aI , gives back the non-local quantity of Eq. (99)

Therefore, the local action with the non-perturbative cou-
pling between fermionic matter and the gauge sector is
expressed as

S̃ψ
loc = SDirac +

∫
dd x

(
θ̄aIMab(Ah)θbI

−λ̄aIMab(Ah)λbI − gM3/2λ̄aI (T a)I Jψh,J

+gM3/2ψ̄h,I (T a)I Jλa J
)

. (106)

As extensively discussed in the present work, the presence
of the parameter M , akin to the Gribov parameter γ , and of
the quadratic coupling between the auxiliary localizing fields
and the corresponding matter field give rise to a dynamical
and non-perturbative instability, resulting in the formation
of condensates. Again, we present the one-loop computation
which hints the existence of such condensates. To do so, we
introduce the following operators:

− J
∫

dd x ψ̄h,Iψh,I and J̃
∫

dd x

(
θ̄aI θaI − λ̄aIλaI

)
,

(107)

into the action (106), yielding

�(J, J̃ ) = S̃ψ
loc − J

∫
dd x ψ̄h,Iψh,I

+ J̃
∫

dd x

(
θ̄aI θaI − λ̄aIλaI

)
. (108)

We aim at computing the following condensates:

〈ψ̄h,I (x)ψh,I (x)〉 and 〈θ̄aI (x)θaI (x) − λ̄aI (x)λaI (x)〉,
(109)

which can be obtained by taking the derivatives with respect
to (J, J̃ ) of the vacuum energy10 E(J, J̃ ) at one-loop order,

e−VE (1) =
∫

[Dμ]e−�(2)(J, J̃ ), (110)

with �(2)(J, J̃ ) the quadratic part of �(J, J̃ ), namely

〈ψ̄h,I (x)ψh,I (x)〉 = −∂E (1)

∂ J

∣∣∣
J= J̃=0

,

〈θ̄aI (x)θaI (x) − λ̄aI (x)λaI (x)〉 = ∂E (1)

∂ J̃

∣∣∣
J= J̃=0

. (111)

10 We restrict ourselves to the contributions relevant for our purposes.

Explicitly, �(2)(J, J̃ ) is written as

�(2)(J, J̃ ) =
∫

dd x

[
ψ̄ Iγμ∂μψ I − mψψ̄ Iψ I + λ̄aI ∂2λaI

−θ̄aI ∂2θaI − gM3/2λ̄aI (T a)I Jψ J

+gM3/2ψ̄ I (T a)I Jλa J

−J ψ̄ Iψ I + J̃ (θ̄aI θaI − λ̄aIλaI )

]
. (112)

Performing the path integral over the auxiliary localizing
fields yields the following expression:

∫
[Dψ̄][Dψ]exp

{ ∫
ddk

(2π)d
ψ̄ I (k)

×
[
δ I Jγμ(ikμ) + δ I J (mψ + J )

+g2M3 (T a)I K (T a)K J

k2 + J̃

]
ψ J (−k)

}
. (113)

Making use of the relation

(T a)I K (T a)K J = δ I J
N 2 − 1

2N
, (114)

and performing the path integral over (ψ̄, ψ), one obtains

det

{
δ I J

[
γμ(ikμ) +

(
mψ + J + g2M3 N

2 − 1

2N

1

p2 + J̃

)
1

]}
.

(115)

After simple manipulations and employing the identity

det(iγμkμ + A1) = det1/2
(
k21 + A21

)
, (116)

one ends up with

e−VE(1) =
{

det

[
k21 +

(
mψ + J + g2M3 N 2 − 1

2N

1

k2 + J̃

)2

1

]}(N2−1)/2

.

(117)

From (117) it is immediate to extract the vacuum energy
E (1), which is written as

E (1)(J, J̃ ) = −2(N 2 − 1)

∫
ddk

(2π)d

×ln

[
k2 +

(
mψ + J + g2M3 N

2 − 1

2N

1

k2 + J̃

)2]
.

(118)

Finally, we are ready to compute the expectation values (111),
by differentiating (118) with respect to the sources (J, J̃ ) as
in (111). One obtains,
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〈ψ̄ Iψ I 〉1−loop = 4(N 2 − 1)mψ

∫
ddk

(2π)d

k4

k6 +
(
mψk2 + g2M3 N2−1

2N

)2

−g2M3 (N 2 − 1)2

N

×
∫

ddk

(2π)d

m2
ψ +

(
g2M3 N2−1

2N

)2
1
k4 + g2M3mψ

N2−1
n

1
k2

k6 +
(
mψk2 + g2M3 N2−1

2N

)2 ,

(119)

and

〈θ̄aI θaI − λ̄aIλaI 〉1−loop = 2g2M3 (N 2 − 1)2

N

×
∫

ddk

(2π)d

mψ + g2M3 N2−1
2N

1
k2

k6 +
(
mψk2 + g2M3 N2−1

2N

)2 , (120)

where the prescriptions of the dimensional regularization
were employed. In d = 4, we see from Eq. (119) that the
contribution which is directly proportional to the parameter
M is perfectly ultraviolet convergent. This is in agreement
with the fact that the introduction of the non-local term of
the type of Eq. (99) does not introduce any new ultravio-
let divergence [80]. From Eq. (120), we easily see that the
one-loop contribution to the condensate 〈θ̄aI θaI − λ̄aIλaI 〉
is non-vanishing and ultraviolet convergent. These results
show explicitly, already at one-loop order, that the introduc-
tion of the non-perturbative matter coupling (120) contributes
definitively to the formation of such condensates.

As usual, the dynamical formation of those condensates
can be taken into account from the beginning by refining the
matter sector in the following way:

S̃ψ
loc −→ Sψ

loc = S̃ψ
loc − m̃ψ

∫
dd x ψh,Iψh,I

+ρ2
∫

dd x

(
θ̄aI θaI − λ̄aIλaI

)
. (121)

Finally, one can compute the quark field propagator at tree
level from the refined action (121). The result is

〈ψ̄ I (−p)ψ J (p)〉

= −δ I J
−iγμ pμ +

(
Mψ + g2M3 (N2−1)

2N
1

p2+ρ2

)

p2 +
(
Mψ + g2M3 (N2−1)

2N
1

p2+ρ2

)2 ,

(122)

with Mψ = mψ + m̃ψ .
The propagator (122) is the same as the one computed in

the Landau gauge [24], i.e. α = 0. Of course, a higher-orders
correction will, eventually, introduce some α-dependence in
(122). In the particular case of α = 0, the propagator (122)

fits well recent lattice data, see [24] and references therein.
To the best of our knowledge, there are no available numer-
ical simulations of the quark propagator in linear covariant
gauges. Hence, our result could be a motivation for such an
endeavor in the near future.

As described in the case of scalar fields, the generalization
of the present construction to the case of the Curci–Ferrari
gauges is straightforward. In particular, the results obtained
here also hold in the Curci–Ferrari gauge, which differs from
the linear covariant gauges by non-linear terms which do not
contribute to the order we are dealing with. In particular, the
quark propagator at the tree-level remains the same as in Eq.
(122).

4.2 Maximal Abelian gauge

In this subsection, we proceed with the analysis of the non-
perturbative coupling of quark matter fields in the maximal
Abelian gauge case. In full analogy with the case of the
scalar matter field, Eq. (81), for the non-perturbative BRST-
invariant coupling in the quark sector we write

HMAG(ψh) = −g2
∫

dd xdd y ψ̄h,I (x)(T α)I J

×
[
M−1(Ah)

]αβ

(x, y)(T β)J Kψh,K (y),

(123)

where the gauge-invariant field ψh is defined by Eq. (101),
while the Faddeev–Popov operator in the maximal Abelian
gauge, Mαβ , is given by Eq. (50). The non-perturbative cou-
pling of quark matter fields with the gauge sector in the max-
imal Abelian gauge is thus given by

Sψ = SDirac + M3HMAG(ψh), (124)

where, as before, the parameter M plays an analog role to
the Gribov parameter γ in the matter sector. As exhaustively
discussed in the previous sections, the non-local quark matter
term (123) can be localized by means of auxiliary fields. The
gauge-invariant field ψh can be written in local form in the
same manner described in Sect. 4.1. On the other hand, a pair
of commuting (θ̄ , θ)α I and anticommuting (λ̄, λ)α I fields are
introduced in order to localize HMAG(ψh), namely,

M3HMAG(ψh) −→
∫

dd x

(
θ̄ α IMαβ(Ah)θβ I

−λ̄α IMαβ(Ah)λβ I − gM3/2λ̄α I (T α)I Jψh,J

+gM3/2ψ̄h,I (T α)I Jλα J
)

. (125)

Therefore, the action of quark matter fields coupled with the
gauge sector in a non-perturbative way is expressed, in local
form, as

123
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S̃ψ
MAG−loc = SDirac +

∫
dd x

(
θ̄ α IMαβ(Ah)θβ I

−λ̄α IMαβ(Ah)λβ I − gM3/2λ̄α I (T α)I Jψh,J

+gM3/2ψ̄h,I (T α)I Jλα J
)

. (126)

At this stage, it is not unexpected to predict that, again, the
action (126) suffers from dynamical non-perturbative insta-
bilities, giving rise to the formation of condensates. The pro-
cedure to explicit check the existence of such codensates goes
exactly along the same lines of the previous case, namely:
constant sources J and J̃ are coupled to the composite oper-
ators ψ̄h,Iψh,I and (θ̄α I θα I − λ̄α Iλα I ), i.e.

− J
∫

dd x ψ̄h,Iψh,I and J̃
∫

dd x

(
θ̄ α I θα I − λ̄α Iλα I

)
,

(127)

which are introduced in the action (126), giving rise to

�(J, J̃ ) = S̃ψ
MAG−loc − J

∫
dd x ψ̄h,Iψh,I

+ J̃
∫

dd x

(
θ̄ α I θα I − λ̄α Iλα I

)
. (128)

The condensates are obtained by taking the derivatives of
the vacuum energy E corresponding to the action (128) with
respect to the sources J and J̃ , and setting them to zero, i.e.

〈ψ̄h,I (x)ψh,I (x)〉 = − ∂E
∂ J

∣∣∣
J= J̃=0

,

〈θ̄ α I (x)θα I (x) − λ̄α I (x)λα I (x)〉 = ∂E
∂ J̃

∣∣∣
J= J̃=0

, (129)

with

e−VE =
∫

[Dψ̄][Dψ][Dμ]e−�(J, J̃ ) . (130)

At one-loop order, using the same techniques presented in
Sects. 3 and 4.1, one obtains

E (1)(J, J̃ ) = −4
∫

ddk

(2π)d

×ln

[
k2 +

(
mψ + J + g2M3

2

1

k2 + J̃

)2]
.

(131)

Plugging Eq. (131) into Eq. (129), one immediately gets

〈ψ̄h,I (x)ψh,I (x)〉 = 8
∫

ddk

(2π)d

mψk4

k6 + (mψk2 + g2M3

2 )2

−g2M3
∫

ddk

(2π)d

g2mψ M2

k2 + g4M6

4k4

k6 + (mψk2 + g2M3

2 )2
(132)

and

〈θ̄ α I (x)θα I (x) − λ̄α I (x)λα I (x)〉

= 4g2M3
∫

ddk

(2π)d

mψ + g2M3

2
1
k2

k6 +
(
mψk2 + g2M3

2

)2 . (133)

Once again, one notices that the contributions proportional
to M are ultraviolet finite. As such, we find already at one-
loop order that such condensates are non-vanishing, due to
the introduction of the non-perturbative coupling (123) in
the quark matter sector. We should emphasize that, unlike
the case of the linear covariant and Curci–Ferrari gauges,
the condensate of the auxiliary fields, 〈θ̄ α I (x)θα I (x) −
λ̄α I (x)λα I (x)〉, is purely diagonal. This is a direct conse-
quence of the decomposition into diagonal and off-diagonal
indices of the maximal Abelian gauge. Finally, as before, the
dynamical generation of the condensates (129) can be taken
into account by the refinement of the quark action, i.e.

S̃ψ
MAG−loc −→ Sψ

MAG−loc = S̃ψ
MAG−loc

−m̃ψ

∫
dd xψ̄h,Iψh,I + ρ2

∫
dd x

(
θ̄ α I θα I − λ̄α Iλα I

)
.

(134)

Out of the action (134), one can compute the tree-level quark
propagator, which is given by

〈ψ̄ I (−k)ψ J (k)〉 = −δ I J
−iγμkμ +

(
Mψ + g2M3

2
1

k2+ρ2

)

k2 +
(
Mψ + g2M3

2
1

k2+ρ2

)2 .

(135)

Quite importantly, the tree-level quark propagator (135) is
in qualitative agreement with the very recent lattice results
reported in [69]. Such an agreement works as a highly non-
trivial check of the non-perturbative matter coupling pro-
posed here.

5 Conclusions

In this work, we have extended the non-perturbative gauge-
matter coupling proposed in [2,24] to linear covariant, Curci–
Ferrari and maximal Abelian gauges. In particular, we have
investigated the coupling of scalar fields in the adjoint repre-
sentation of the gauge group as well as of quark fields in the
fundamental representation.

The non-perturbative nature of the proposal relies on the
introduction of an additional term in which the matter fields
are coupled to the inverse of the operator M(Ah), whose
existence is ensured by the restriction of the domain of inte-
gration in the functional integral to the Gribov region. As
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discussed in detail throughout the paper, this additional term
in the matter fields shares great similarity with the horizon
function introduced in the pure gauge sector in order to imple-
ment the restriction to the Gribov region. Albeit non-local,
the resulting action can be cast in local form by the introduc-
tion of auxiliary fields which, as in the case of the localiz-
ing Zwanziger fields of the pure gauge sector, develop their
own dynamics giving rise to the formation of condensates,
as explicitly checked through one-loop computations. More-
over, the condensates arising in the matter sector can be taken
into account through an effective action which looks much
alike the refined Gribov–Zwanziger action which accounts
for the existence of similar condensates in the gluon sector.
Out of this action, the tree-level propagators for matter fields
were analysed, giving rise to reflection positivity violating
propagators. As in the case of the gluon propagator, the posi-
tivity violation is taken as a signal that colored matters fields
are confined too.

We emphasize that the final effective action which encodes
the non-perturbative effects of the matter sector is invari-
ant under BRST transformations. This was achieved by the
introduction of the suitable gauge-invariant fields Ah , φh and
ψh , see [1–5], which, albeit local, are non-polynomial in the
auxiliary Stueckelberg-type field ξa . Nevertheless, such vari-
ables as well as the proposed non-perturbative matter cou-
pling give rise to a local ation which can be proven to be
renormalizable to all orders, see [70,81].

The present work can give rise to several future investiga-
tions among which we quote: (i) as done in the pure gauge
sector [5], we are now ready for a detailed analysis of the
Nielsen identities, in the case of linear covariant gauges,
to investigate the independence of the poles of the matter
field propagator from the gauge parameter α; (ii) use the
gauge invariance of Ah , φh and ψh to explore the Landau–
Khalatnikov–Fradkin transformations, as briefly discussed
in [5] for the gluon sector, and analyse how gauge-matter
correlators depend on the gauge parameter α, while check-
ing out how the results compare with those obtained through
the aforementioned Nielsen identities; (iii) study of how the
presence of the Higgs mechanism can drive the transition
between the confining and de-confining regimes in a BRST-
invariant fashion, (iv) investigate how the present proposal
generalizes to supersymmetric gauge theories, (v) stimulate
different groups from other approaches such as lattice simu-
lations and Dyson–Schwinger equations to study two-point
functions of matter fields away from Landau gauge. As in
the gluon sector, the interplay between different approaches
in the study of non-perturbative correlation functions will
certainly be very successful.
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Appendix A: Conventions in Euclidean space

The gamma matrices γμ obey the Clifford algebra

{
γμ, γν

}
= 2δμν, (A1)

with

γ4 =
(

0 1

1 0

)
, γk = −i

(
0 σk

−σk 0

)
(A2)

and

σ4 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
,

σ2 =
(

0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A3)
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