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Abstract The critical phenomena of dilaton black holes
are probed from a totally different perspective other than the
P–v criticality and the q–U criticality discussed in former
literature. We investigate not only the two point correlation
function but also the entanglement entropy of dilaton black
holes. For both the two point correlation function and the
entanglement entropy we consider 4 × 2 × 2 = 16 cases due
to different choices of parameters. The van der Waals-like
behavior can be clearly witnessed from all the T –δL (T –δS)
graphs for q < qc. Moreover, the effects of dilaton gravity
and the spacetime dimensionality on the phase structure of
dilaton black holes are disclosed. Furthermore, we discuss
the stability of dilaton black holes by applying the analogous
specific heat definition and remove the unstable branch by
introducing a bar T = T∗. It is shown that the first order
phase transition temperature T∗ is affected by both α and
n. The analogous equal area laws for both the T –δL graph
and the T –δS graph are examined numerically. The relative
errors for all cases are small enough so that we can safely
conclude that the analogous equal area laws hold for T –δL
(T –δS) graph of dilaton black holes.

1 Introduction

Recently Johnson disclosed intriguing properties of entan-
glement entropy [1]. It was shown that the isocharges in the
entanglement entropy–temperature plane and those of the
entropy–temperature plane not only enjoy similar behavior
but also share the same critical temperature and critical expo-
nents [1]. Moreover, Ref. [2] proved that the equal area law
which in former literature [3] was shown to hold for the T –S
curve, also holds for the entanglement entropy–temperature
plane. Reference [4] further showed that other nonlocal
observable, such as the two point correlation function, also
display similar behavior as the entanglement entropy. The
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research topic initiated by Johnson is receiving more and
more attention [5–12].

In this paper we would like to generalize the above topic
to dilaton black holes in order to probe whether these phe-
nomena are universal. On the other hand, our probe may
be served as an alternative perspective to observe the crit-
ical phenomena of dilaton black holes and would help to
deepen the understanding of these phenomena. Investigating
the properties of black holes in dilaton gravity is of interest
in itself. The dilaton field appears in the low energy limit of
string theory and has significant impact on both the casual
structure and thermodynamics of black holes. The action of
dilaton gravity contains one or more Liouville-type poten-
tials. These potentials are resulted by the breaking of space-
time supersymmetry in ten dimensions. Both the black hole
solutions in dilaton gravity and their thermodynamics have
attracted considerable attention [13–49].

The paper is organized as follows. Section 2 is devoted
to a brief review of thermodynamics of dilaton black holes.
In Sect. 3 their two point correlation functions are studied
numerically. We will carry out a numerical check of the equal
area law in Sect. 4. Furthermore, we will investigate their
entanglement entropy numerically in Sect. 5 and check the
corresponding equal area law in Sect. 6. The last section
contains conclusions.

2 A brief review of thermodynamics of dilaton black
holes

The (n + 1)-dimensional Einstein–Maxwell–dilaton action
was reviewed in Ref. [35] as

S = 1

16π

∫
dn+1x

√−g

(
R − 4

n − 1
(∇�)2

−V (�) − e−4α�/(n−1)FμνF
μν

)
, (1)
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(a) (b)

(c) (d)

Fig. 1 T vs. δL for n = 3, θ0 = 0.2. a α = 0, q = 0.12, b α = 0.25, q = 0.12, c α = 0.5, q = 0.06, d α = 0.75, q = 0.06

where � is the dilaton field with its potential denoted as
V (�). R is the Ricci scalar curvature and Fμν = ∂μAν −
∂ν Aμ is the electromagnetic field tensor. The strength of cou-
pling between the electromagnetic field and the scalar field
is characterized by α.

The corresponding solution was reviewed in Ref. [35] as

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2R2(r)d	2

k,n−1, (2)

�(r) = (n − 1)α

2(α2 + 1)
ln

(
b

r

)
, (3)

where

f (r) = −k(n − 2)(1 + α2)2b−2γ r2γ

(α2 − 1)(α2 + n − 2)

− m

r (n−1)(1−γ )−1
− nb2γ (1 + α2)2r2(1−γ )

l2(α2 − n)

+2q2(1 + α2)2b−2(n−2)γ r2(n−2)(γ−1)

(n − 1)(n + α2 − 2)
, (4)

R(r) = e2α�(r)/(n−1). (5)

k is a constant characterizing the hypersurface d	2
k,n−1

whose volume is denoted as ωn−1. k respectively can be
taken as −1, 0, 1, corresponding to the hyperbolic, flat and
spherical constant curvature hypersurface. γ is related to α

by γ = α2/(α2 + 1). b is an arbitrary constant while l is the
AdS length scale. q and m are constants related to the charge
Q and the mass M of the black hole as follows:

M = b(n−1)γ (n − 1)ωn−1m

16π(α2 + 1)
, (6)

Q = ωn−1q

4π
. (7)

Based on both the fact that the term including m should
vanish at spatial infinity and the fact that the electric potential
At should be finite at infinity, Ref. [43] obtained the restric-
tions on α for dilaton black holes coupled with power-law
Maxwell field as follows:
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(a) (b)

(c) (d)

Fig. 2 T vs. δL for n = 4, θ0 = 0.2. a α = 0, q = 0.12, b α = 0.25, q = 0.12, c α = 0.5, q = 0.06, d α = 0.75, q = 0.06

For
1

2
< p <

n

2
, 0 ≤ α2 < n − 2,

For
n

2
< p < n − 1, 2p − n < α2 < n − 2. (8)

In this paper we consider the dilaton black holes coupled with
a standard Maxwell field, corresponding to the case p = 1.
So the above restriction is reduced to 0 ≤ α2 < n − 2.

The Hawking temperature and the entropy have been
derived as [35]

T = −(1 + α2)

2π(n − 1)

[
k(n − 2)(n − 1)

2b2γ (α2 − 1)
r2γ−1
+

+�b2γ r1−2γ
+ + q2b−2(n−2)γ r (2n−3)(γ−1)−γ

+
]
, (9)

S = ωn−1b(n−1)γ r (n−1)(1−γ )
+

4
, (10)

where the relation � = −n(n − 1)/2l2 holds for (n + 1)-
dimensional AdS black holes.

Furthermore, Ref. [35] investigated the P–v criticality of
dilaton black holes when Q was treated as an invariant param-
eter and the q–U criticality (U denotes the electric potential)
when l was treated as an invariant parameter. Both cases were
shown to exhibit van der Waals-like behavior [35]. In the rest
of this paper we will further probe the critical phenomena
of dilaton black holes from a totally different perspective.
Namely, the two point correlation function and the entangle-
ment entropy.

3 Two point correlation function of dilaton black holes
and its van der Waals like behavior

Considering the points (t0, xi ) and (t0, x j ) on the boundary
with the corresponding bulk geodesic length denoted as L ,
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(a) (b)

(c) (d)

Fig. 3 T vs. δL for n = 3, θ0 = 0.3. a α = 0, q = 0.12, b α = 0.25, q = 0.12, c α = 0.5, q = 0.06, d α = 0.75, q = 0.06

the equal time two point correlation function in the large 


limit (
 denotes the conformal dimension of scalar operator
O in the dual field theory) takes the following form [50]:

〈O(t0, xi )O(t0, x j )〉 ≈ e−
L . (11)

The proper length can be obtained by parameterizing the
trajectory with θ

L =
∫ θ0

0
L(r(θ), θ)dθ, L =

√
r ′2
f (r)

+ r2, (12)

where r ′ = dr/dθ . Note that the boundary points have been
chosen as (φ = π

2 , θ = 0) and (φ = π
2 , θ = θ0).

Applying the well-known Euler–Lagrange equation

∂L
∂r

= d

dθ

(
∂L
∂r ′

)
, (13)

the equation of motion for r(θ) can be derived. Solving the
equation of motion constrained by the boundary condition
r(0) = r0, r ′(0) = 0 r(θ) is obtained by numerical methods.
To avoid the divergence, the geodesic length L0 in pure AdS
with the same boundary region should be subtracted from
the geodesic length L , with the regularized geodesic length
denoted as δL . Note that L0 can also be obtained through
numerical treatment.

In order to investigate the effect of dilaton gravity on
the phase structure of the two point correlation function,
we focus on the cases where α respectively is chosen to be
0, 0.25, 0.5, 0.75. Note that we have considered the restric-
tion 0 ≤ α2 < n − 2 mentioned in the former section.

On the other hand, n respectively is chosen as 3, 4 in
order to study the possible effect of spacetime dimension-
ality. Moreover, we choose θ0 = 0.2, 0.3 to check whether
different boundary region sizes exert influence on the phase
structure as has been shown in former literature [4]. In this
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(a) (b)

(c) (d)

Fig. 4 T vs. δL for n = 4, θ0 = 0.3. a α = 0, q = 0.12, b α = 0.25, q = 0.12, c α = 0.5, q = 0.06, d α = 0.75, q = 0.06

paper the cutoff θc accordingly will be chosen as 0.199, 0.299
and the AdS radius l will be set to be one.

To summarize, we consider 4 × 2 × 2 = 16 cases due
to different choices of parameters. In each case we concen-
trate on the case q < qc (qc denotes the critical value of
the parameter q) to probe the possible van der Waals behav-
ior in the T –δL graphs. Figure 1a–d respectively show the
cases of n = 3, θ0 = 0.2 with four different choices of α

while Fig. 2a–d display the cases for n = 4, θ0 = 0.2. The
cases in which n = 3, θ0 = 0.3 are depicted in Fig. 3a–d
while the cases in which n = 4, θ0 = 0.3 are depicted in
Fig. 4a–b.

From all the T –δL graphs for q < qc, the van der Waals-
like behavior can be clearly witnessed. There exist both the
local maximum temperature and the local minimum temper-
ature, which we respectively denote as Tmax and Tmin. As
shown in Figs. 1, 2, 3 and 4, the effects of dilaton gravity are
reflected in two ways. First, as the increasing of the parameter
α, Tmax and Tmin both increase. Secondly, the corresponding

δL also increases when α increases. This phenomenon is
more apparent for large α. Comparing Fig. 1 with 2, one
may find that the case n = 4 has higher Tmax and Tmin than
the case n = 3. This can also be witnessed by comparing
Fig. 3 with 4. On the other hand, the effect of the boundary
region size is quite apparent in the range of the δL axis when
one compares Fig. 1 with 3 or compares Fig. 2 with 4.

4 Numerical check of equal area law in T–δL graph

According to the analogous specific heat for T –δL graph
introduced in Ref. [4]

C = T
∂δL

∂T
. (14)

The T –δL graph for q < qc can be divided into three
branches. Namely the stable large radius branch with pos-
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Fig. 5 F vs. T for
n = 3, l = 1, b = 1, k = 1.
a α = 0, q = 0.12,
b α = 0.25, q = 0.12,
c α = 0.50, q = 0.06,
d α = 0.75, q = 0.06

(a) (b)

(c) (d)

Fig. 6 F vs. T for
n = 4, l = 1, b = 1, k = 1.
a α = 0, q = 0.12,
b α = 0.25, q = 0.12,
c α = 0.50, q = 0.06,
d α = 0.75, q = 0.06

(a) (b)

(c) (d)

Table 1 Numerical check of equal area law in T–δL graph for n = 3, θ0 = 0.2, l = 1, b = 1, k = 1

α q T∗ δL1 δL3 T∗ (δL3 − δL1)
∫ δL3
δL1

TdδL Relative error (%)

0 0.12 0.277496 0.0000637680 0.0002613560 0.0000548299 0.0000549115 0.1486

0.25 0.12 0.3002889 0.0007501943 0.0030534139 0.0006916313 0.0006854523 0.9014

0.50 0.06 0.4078042 0.0014369702 0.0157774345 0.0058481016 0.0058594007 0.1928

0.75 0.06 0.65401625 0.0130252955 0.1416948822 0.0841520006 0.0841644278 0.0148
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Table 2 Numerical check of equal area law in T–δL graph for n = 4, θ0 = 0.2, l = 1, b = 1, k = 1

α q T∗ δL1 δL3 T∗ (δL3 − δL1)
∫ δL3
δL1

TdδL Relative error (%)

0 0.12 0.448178 0.0000688919 0.0003011692 0.0001041016 0.0001041083 0.0064

0.25 0.12 0.490898 0.0001308121 0.0005050468 0.0001837111 0.0001837165 0.0029

0.50 0.06 0.65793667 0.0002371822 0.0046525001 0.0029049996 0.0029063836 0.0476

0.75 0.06 1.070886315 0.0027446929 0.1854763902 0.1956848740 0.1957787303 0.0479

Table 3 Numerical check of equal area law in T–δL graph for n = 3, θ0 = 0.3, l = 1, b = 1, k = 1

α q T∗ δL1 δL3 T∗ (δL3 − δL1)
∫ δL3
δL1

TdδL Relative error (%)

0 0.12 0.277496 0.0017837032 0.0073122615 0.0015341528 0.0015366458 0.1622

0.25 0.12 0.3002889 0.0024892165 0.0101203310 0.0022915390 0.0022710854 0.9006

0.50 0.06 0.4078042 0.0042562477 0.0460392623 0.0170392888 0.0170769726 0.2207

0.75 0.06 0.65401625 0.0301340104 0.3145252201 0.1859964725 0.1860497056 0.0286

Table 4 Numerical check of equal area law in T–δL graph for n = 4, θ0 = 0.3, l = 1, b = 1, k = 1

α q T∗ δL1 δL3 T∗ (δL3 − δL1)
∫ δL3
δL1

TdδL Relative error (%)

0 0.12 0.448178 0.0003666396 0.0015882967 0.0005475198 0.0005475520 0.0059

0.25 0.12 0.490898 0.0006709414 0.0025817161 0.0009379955 0.0009380156 0.0021

0.50 0.06 0.65793667 0.0011076791 0.0213463021 0.0133157322 0.0133239547 0.0617

0.75 0.06 1.070886315 0.0104051412 0.5641278672 0.5929740896 0.5938277878 0.1438

itive specific heat, the unstable medium radius branch with
negative specific heat and the stable small radius branch with
positive specific heat. This phenomenon is quite similar to
that of the T –S graph and the P–v graph of dilaton black
holes.

The unstable branch in the T –δL curve with a bar T = T∗
vertical to the temperature axis can be removed by mimick-
ing the approach of the T –S graph [3]. Note that T∗ should
be interpreted physically as the first order phase transition
temperature and can be determined utilizing the free energy
analysis. The analogous equal area law for the T –δL graph
reads

T∗ × (δL3 − δL1) =
∫ δL3

δL1

TdδL , (15)

where δL1, δL2, δL3 are three values of δL corresponding
to T∗. Here we have assumed δL1 < δL2 < δL3. If it can be
proven that the LHS of Eq. (15) equals its RHS the conclusion
can be drawn that the analogous equal area law holds for the
T –δL graph of dilaton black holes.

Before we carry out the examination, it is urgent to study
the behavior of the free energy first. Utilizing Eqs. (4), (6),
(9) and (10), the free energy of dilaton black holes can be
derived,

F = M − T S

= ωn−1(1 + α2)b(n−1)γ rn−2+γ−nγ
+

16π

×
{
k(n − 2)r2γ

+ b−2γ

n − 2 + α2 + nb2γ r2−2γ
+ (α2 − 1)

l2(n − α2)

+ 2b−2(n−2)γ q2r2(n−2)(γ−1)
+ (2n − 3 + α2)

(n − 1)(n − 2 + α2)

}
, (16)

with the F–T graphs depicted in Figs. 5 and 6 for different
choices of parameters.

The familiar swallow tail behavior can be observed in all
the F–T graphs and T∗ can be obtained from the intersection
point of two branches in the graphs. Comparing these graphs,
one may conclude that the first order phase transition tem-
perature T∗ is affected by both α and n. When α increases,
T∗ increases. When n increases, T∗ increases too. With T∗
at hand the left-hand side and right-hand side of Eq. (15)
can be calculated for different cases. As can be seen from
Tables 1, 2, 3 and 4, the relative errors for all the cases are
small enough and we can safely conclude that the analogous
equal area law holds for the T –δL graph of dilaton black
holes.
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(a) (b)

(c) (d)

Fig. 7 T vs. δS for n = 3, θ0 = 0.2. a α = 0, q = 0.12, b α = 0.25, q = 0.12, c α = 0.5, q = 0.06, d α = 0.75, q = 0.06

5 Entanglement entropy of dilaton black holes and its
van der Waals like behavior

Beside the two point correlation function, entanglement
entropy serves as another nonlocal observable to probe the
holographic properties of black holes.

The entanglement entropy can be expressed holographi-
cally in terms of the area of a minimal surface anchored on
∂A as [51,52]

SA = Area(�)

4GN
, (17)

where � is the codimension-2 minimal surface with bound-
ary condition ∂� = ∂A and GN is the Newton constant.

As argued in Ref. [2], dealing with the phase transition
between connected and disconnected minimal surfaces can
be avoided by avoiding large entangling regions. Taking this

into consideration, we choose the region to be a spherical cap
on the boundary delimited by θ ≤ θ0.

Parametrizing the minimal surface by the function r(θ),
the holographic entanglement entropy can be obtained:

SA = π

2

∫ θ0

0
r sin θ

√
r ′2
f (r)

+ r2dθ, (18)

where r ′ = dr/dθ . From the above equation, the following
can be obtained:

L = r sin θ

√
r ′2
f (r)

+ r2. (19)

Substituting it into an Euler–Lagrange equation, the equation
for r(θ) can be derived. Then r(θ) can be obtained by solving
the equation constrained by the boundary condition r(0) =
r0, r ′(0) = 0 numerically.
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(a) (b)

(c) (d)

Fig. 8 T vs. δS for n = 4, θ0 = 0.2. a α = 0, q = 0.12, b α = 0.25, q = 0.12, c α = 0.5, q = 0.06, d α = 0.75, q = 0.06

To avoid the divergence the holographic entanglement
entropy should be regularized by subtracting the entangle-
ment entropy S0 (S0 can also be obtained through numerical
treatment) in pure AdS with the same boundary region. We
denote the regularized entanglement entropy as δS and in the
following discussions mainly deal with the behavior of the
T –δS graph.

As in Sect. 3 we will consider 4 × 2 × 2 = 16 cases
due to different choices of parameters. For the sake of clar-
ity, we repeat the choices here. α is respectively chosen as
0, 0.25, 0.5, 0.75 in order to investigate the effect of dila-
ton gravity on the phase structure of holographic entangle-
ment entropy while n respectively is chosen as 3, 4 in order
to probe the effect of spacetime dimensionality. θ0, respec-
tively, is chosen as 0.2, 0.3 in order to study the effect of
different boundary region sizes. Accordingly, the cutoff θc
will also be chosen as 0.199, 0.299. In each case we focus

on the case q < qc to probe the possible van der Waals
behavior.

We plot the cases in which n = 3, θ0 = 0.2 in Fig. 7a–d
and the cases in which n = 4, θ0 = 0.2 in Fig. 8a, b. The
cases in which n = 3, θ0 = 0.3 are displayed in Fig. 9a, b
while the cases in which n = 4, θ0 = 0.3 are depicted in Fig.
10a–d.

The van der Waals like behavior can be clearly witnessed
from all the T –δS graphs for q < qc. As seen in the T –
δL graphs presented in Sect. 3, there also exists both a local
maximum temperature and a local minimum temperature in
all the T –δS graphs. As depicted in Figs. 7, 8, 9 and 10, not
only Tmax and Tmin but also the corresponding δS increases as
the parameter α is increasing, showing the impact of dilaton
gravity. Comparing Fig. 7 with 8, or comparing Fig. 9 with
10, it is not difficult to observe that the cases n = 4 have
higher Tmax and Tmin than the cases n = 3. Moreover, the
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(a) (b)

(c) (d)

Fig. 9 T vs. δS for n = 3, θ0 = 0.3. a α = 0, q = 0.12, b α = 0.25, q = 0.12, c α = 0.5, q = 0.06, d α = 0.75, q = 0.06

range of the δS axis for the cases θ0 = 0.2 differs from that
of the cases θ0 = 0.3, showing the effect of the boundary
region size. These phenomena are quite similar to those of
two point correlation function probed in Sect. 3.

6 Numerical check of equal area law in T–δS graph

The analogous specific heat for T –δS graph has been defined
in the literature [4] as

C = T
∂δS

∂T
. (20)

Based on the above definition each T –δS graph for q <

qc can be divided into three branches. Namely, the stable
large radius branch with positive specific heat, the unstable
medium radius branch with negative specific heat and the
stable small radius branch with positive specific heat. This

phenomenon is quite similar to that of the T –S graph and
P–v graph of dilaton black holes. It is also similar to that of
the T –δL graph discussed in Sect. 3.

Taking a similar treatment the unstable branch in the T –
δS curve with a bar T = T∗ vertical to the temperature axis
can be removed. The analogous equal area law for the T –δS
graph can be written

T∗ × (δS3 − δS1) =
∫ δS3

δS1

TdδS, (21)

where δS1, δS2, δS3 are three values of δS corresponding to
T∗ with the assumption that δS1 < δS2 < δS3.

The left-hand side and right-hand side of Eq. (21) are cal-
culated for different cases and the results are listed in Tables
5, 6, 7 and 8, from which it is clearly seen that the relative
errors for all the cases are amazingly small. So we can safely
draw the conclusion that the analogous equal area law Eq.
(21) holds for T –δS graph of dilaton black holes.
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(a) (b)

(c) (d)

Fig. 10 T vs. δS for n = 4, θ0 = 0.3. a α = 0, q = 0.12, b α = 0.25, q = 0.12, c α = 0.5, q = 0.06, d α = 0.75, q = 0.06

Table 5 Numerical check of equal area law in T–δS graph for n = 3, θ0 = 0.2, l = 1, b = 1, k = 1

α q T∗ δS1 δS3 T∗ (δS3 − δS1)
∫ δS3
δS1

TdδS Relative error (%)

0 0.12 0.277496 0.0119147123 0.0488420932 0.0102472005 0.0102600904 0.1256

0.25 0.12 0.3002889 0.0247660099 0.0858928910 0.0183557239 0.0183641401 0.0458

0.50 0.06 0.4078042 0.0716592283 0.9511787777 0.3586717662 0.3592798682 0.1693

0.75 0.06 0.65401625 4.0720587420 44.1845284093 26.2342069900 26.2343780610 0.0007

Table 6 Numerical check of equal area law in T–δS graph for n = 4, θ0 = 0.2, l = 1, b = 1, k = 1

α q T∗ δS1 δS3 T∗ (δS3 − δS1)
∫ δS3
δS1

TdδS Relative error (%)

0 0.12 0.448178 0.0006548237 0.0038527782 0.0014332529 0.0014330141 0.0167

0.25 0.12 0.490898 0.0017571468 0.0067818433 0.0024666135 0.0024663505 0.0107

0.50 0.06 0.65793667 0.0075207833 0.1020304981 0.0621814070 0.0622185738 0.0597

0.75 0.06 1.070886315 0.1595664149 11.1997305875 11.8227607278 11.8253260328 0.0217
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Table 7 Numerical check of equal area law in T–δS graph for n = 3, θ0 = 0.3, l = 1, b = 1, k = 1

α q T∗ δS1 δS3 T∗ (δS3 − δS1)
∫ δS3
δS1

TdδS Relative error (%)

0 0.12 0.277496 0.0394539472 0.1608172794 0.0336778392 0.0337657232 0.2603

0.25 0.12 0.3002889 0.0711468332 0.2719042091 0.0602852116 0.0603586328 0.1216

0.50 0.06 0.4078042 0.2149538454 2.3059365730 0.8527115384 0.8534806310 0.0901

0.75 0.06 0.65401625 6.7549216837 74.3949477659 44.2376762082 44.2373479097 0.0007

Table 8 Numerical check of equal area law in T–δS graph for n = 4, θ0 = 0.3, l = 1, b = 1, k = 1

α q T∗ δS1 δS3 T∗ (δS3 − δS1)
∫ δS3
δS1

TdδS Relative error (%)

0 0.12 0.448178 0.0046156698 0.0177350761 0.0058798293 0.0058821069 0.0387

0.25 0.12 0.490898 0.0080413189 0.0369024703 0.0141678815 0.0141621430 0.0405

0.50 0.06 0.65793667 0.0145412501 0.3493654246 0.2202931024 0.2207464643 0.2054

0.75 0.06 1.070886315 0.5398143877 24.4969431344 25.6553613215 25.6488620105 0.0253

7 Conclusions

In this paper we probe the critical phenomena of dilaton black
holes from a perspective totally different from the P–v criti-
cality and the q–U criticality discussed in the literature [35].

On the one hand we study the two point correlation func-
tion of dilaton black holes. Considering the points (t0, xi ) and
(t0, x j ) on the boundary the equal time two point correlation
function can be written in the large 
 limit and the proper
length can be obtained by parameterizing the trajectory with
θ . Applying the Euler–Lagrange equation the equation of
motion can be derived for r(θ). Solving this equation con-
strained by the boundary condition r(0) = r0, r ′(0) = 0,
we obtain r(θ) via numerical methods. To avoid the diver-
gence, we regularize the geodesic length by subtracting the
geodesic length L0 in the pure AdS case with the same bound-
ary region.

On the other hand, we investigate the entanglement
entropy of dilaton black holes which can be expressed holo-
graphically in terms of the area of a minimal surface �

anchored on ∂A with boundary condition ∂� = ∂A. We
choose the region to be a spherical cap on the boundary
delimited by θ ≤ θ0 and obtain the holographic entangle-
ment entropy through parametrizing the minimal surface by
r(θ), utilizing the Euler–Lagrange equation again, we derive
the equation for r(θ). Solving the equation constrained by the
boundary condition numerically, we obtain r(θ). For a simi-
lar consideration, we regularize the entanglement entropy by
subtracting the entanglement entropy S0 in pure AdS with
the same boundary region.

For both the two point correlation function and the entan-
glement entropy, we consider 4 × 2 × 2 = 16 cases due
to different choices of parameters. Namely, α, respectively,
is chosen as 0, 0.25, 0.5, 0.75 in order to probe the effect
of dilaton gravity on the phase structure, while n respec-

tively is chosen as 3, 4 in order to study the impact of space-
time dimensionality. θ0, respectively, is chosen as 0.2, 0.3 in
order to check the effect of different boundary region sizes.
The behavior of the T –δL graphs is quite similar to that of
the T –δS graphs. First, the van der Waals like behavior can
be clearly witnessed from all the T –δL (T –δS) graphs for
q < qc. Second, there exist both the local maximum tem-
perature and the local minimum temperature. Third, not only
Tmax and Tmin but also the corresponding δL (δS) increase
as the parameter α is increasing, showing the impact of dila-
ton gravity. This phenomenon is more apparent for large α.
Fourth, Tmax and Tmin of the cases n = 4 is higher than
that of the cases n = 3. Finally, the effect of the bound-
ary region size is quite apparent in the range of δL (δS)
axis.

Furthermore, we discuss the stability of dilaton black
holes by introducing the analogous specific heat for T –δL
graph and T –δS graph accordingly. All these graphs can be
divided into three branches. Namely, the stable large radius
branch with positive specific heat, the unstable medium
radius branch with negative specific heat and the stable small
radius branch with positive specific heat. This phenomenon
is quite similar to that of the T –S graph and the P–v graph
of dilaton black holes in the former research. To remove the
unstable branch, we introduce a bar T = T∗ vertical to the
temperature axis. T∗ should be interpreted physically as the
first order phase transition temperature and can be determined
utilizing the free energy analysis. It is shown that the first
order phase transition temperature T∗ is affected by both α

and n. When α increases, T∗ increases. When n increases,
T∗ increases too. We also examine the analogous equal area
law for both the T –δL graph and the T –δS graph. The rel-
ative errors for all the cases are small enough that we can
safely conclude that the analogous equal area law holds for
the T –δL (T –δS) graph of dilaton black holes.
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