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Abstract In this paper the f (R) global monopole is reex-
amined. We provide an exact solution for the modified field
equations in the presence of a global monopole for regions
outside its core, generalizing previous results. Additionally,
we discuss some particular cases obtained from this solution.
We consider a setup consisting of a possible Schwarzschild
black hole that absorbs the topological defect, giving rise to a
static black hole endowed with a monopole’s charge. Besides,
we demonstrate how the asymptotic behavior of the Higgs
field far from the monopole’s core is shaped by a class of
spacetime metrics which includes the ones analyzed here. In
order to assess the gravitational properties of this system, we
analyze the geodesic motion of both massive and massless
test particles moving in the vicinity of such configuration.
For the material particles we set the requirements they have
to obey in order to experience stable orbits. On the other
hand, for the photons we investigate how their trajectories
are affected by the gravitational field of this black hole.

1 Introduction

One of the most important predictions expected within the
grand unified theories (GUT) is the potential appearance of
topological defects in the early universe. Such exotic con-
figurations would arise due to the successive phase transi-
tions experienced by the universe in its primordial stage.
The spontaneous symmetry breaking (SSB) process triggered
thanks to such phase transitions would have left behind many
kinds of topological defects, each one related to the different
types of symmetry group which would be broken down [1,2].
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The breaking of the global SO(3) symmetry, for instance,
gives rise to a spherically symmetric topological defect called
global monopole. A simplified global monopole model was
introduced in [3]. The gravitational effects of this object was
investigated by Barriola and Vilenkin within the general rel-
ativity (GR) framework [4]. In the latter case the authors
have shown that the line element associated with this defect
corresponds to a solid deficit angle, what affects particularly
the deflection of light rays moving near the monopole. The
authors also presented a twofold interpretation for the mass
term appearing in the solution for the corresponding Ein-
stein field equations: the first possibility is assuming such
term as the mass enclosed in the monopole’s core, whereas
the second one suggests that a star could have collapsed
into a black hole near the global monopole resulting in a
Schwarzschild black hole carrying the monopole’s charge.
The first case leads to a very tiny mass which is usually
discarded as it is considered negligible at the astrophysical
scale. This fact implies the non-existence of a newtonian
potential generated by the global monopole which conse-
quently prevents the monopole to capture massive test parti-
cles moving around it. Differently, light rays passing by the
surroundings of the monopole would have their trajectories
affected by the solid angle deficit, thus leaving behind a pos-
sible signature to detect the presence of the defect. Using
the proper junction conditions for both the inner and the
outer regions of the defect’s core, Hahari and Loustò have
computed this tiny mass and found it to be negative [5].
The direct physical interpretation for this negative mass is a
repulsive gravitational potential that precludes stable orbits
for timelike test particles moving in the global monopole
spacetime.

Although the well-known success of the GR as an efficient
description of the majority of the gravitational phenomena
observed in the universe, some important challenges for the
theory still persist. The Einstein theory is plagued with singu-
larities, seems incompatible with a quantum representation
of the gravity, more recently, faces apparent drawbacks in
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the cosmological picture where it fails in offering a proper
answer for the current accelerated expansion experienced by
the cosmic background. The only way of addressing prop-
erly the observed cosmic speed-up within the GR scenario is
by evoking a cosmological constant whose addition leads to
inconsistencies between the cosmological observations and
the quantum predictions for the vacuum density energy, the
so-called cosmological constant problem. Therefore, in the
last decades it has been very common to see many propos-
als of modified theories of gravity, suggested as possible
attempts to provide an enlightenment to these issues. The
f (R) theories have been arisen as one of these possibili-
ties. In the 1980s these theories were suggested as a possi-
ble answer for the inflationary mechanism [6]. In the recent
years such scenarios were extensively studied within the cos-
mological ambit as a feasible way out for the dark energy
issue, leading to strong constraints on the f (R) models both
at the background and the perturbative level. It has been
shown that f (R) theories possess an intimate connection
with scalar–tensor theories with both the metric and Pala-
tini f (R) gravity representing two different versions of a
Brans–Dicke gravity with a self-interaction potential: while
the former is equivalent to the case in which the Brans–Dicke
parameter is ω = 0, the latter corresponds to ω = − 3

2 [7,8].
See [9–11] for detailed and comprehensive reviews on the
f (R) theories of gravity.

The spacetime of the global monopole was already pre-
viously studied in the Brans–Dicke theory of gravity in [12]
assuming the weak field approximation. The f (R) gravity is
another gravitational scenario in which the global monopole
physics was also analyzed [13]. In both cases the authors
made proper comparisons with the corresponding results
obtained in the scope of GR. Moreover, their analysis also
have in common the finding of the capability of the global
monopole to trap test particles moving around it. Such out-
standing feature was owing to the emergence of a newtonian
potential and represents a prompt consequence of the new
degrees of freedom coming from the modification of the grav-
ity. Since the f (R) global monopole was introduced in [13],
it has received a lot of attention of some authors who studied
several interesting physical phenomena within this context.
The problem of a test particle moving in the surroundings of a
global monopole was explored in a subsequent paper by these
same authors [14], where some approximative assumptions
were made. For example, the solutions for the correspond-
ing field equations were obtained in the weak field regime
and the departure from the GR was considered very small.
Besides, the monopole was assumed as a point-like defect
whose mass can be neglected at an astrophysical level. These
same suppositions were admitted by [15] where they studied
the thermodynamics of the black hole provided with f (R)

global monopole charge. The f (R) global monopole was

also used to study strong lensing effects in [16], where the
authors obtained analytic expressions for both the deflection
angle and the time delay between multiple images in terms of
the global monopole parameter and the f (R) correction. In
[17] the authors generalized the original solution by assign-
ing rotation to the f (R) global monopole. In [18] this system
has served as background to compute the quasinormal modes
for scalar and spinor fields, by means of the WKB approxi-
mation. In [19] the authors claimed to have obtained an exact
solution for the f (R) global monopole. However, it seems
that what they found, at the end of the day, was just a solu-
tion within standard GR, since they performed its analysis in
a framework where f (R) ∝ R, which is quite restrictive with
respect to our study, where we do assume possible deviations
from GR.

In the present article we deepen the discussion as regards
the f (R) global monopole and add new contributions to the
previous studies on this issue. In particular, we achieved an
exact solution for the field equations outside the monopole’s
core for a specific class of f (R) theories, enlarging the possi-
bilities to be explored within such models. It is worth noting
that the exact solution here obtained is an extension of what
was uncovered by Multamaki and Vilja [20] for the vacuum
case, for the same class of f (R) theories that we used here.
We also demonstrated the form assumed by the Higgs field in
the regions very far from the centre of the topological defect
and showed how such asymptotic behavior is shaped by the
background geometry given by a family of polynomial-like
metric functions. This finding generalizes previous results
obtained in the context of a global monopole in de Sitter/anti-
de Sitter spacetime [21]. The next step was to investigate the
geodesic motion of both massive and massless test particles.
For timelike particles we carried out a detailed analysis of the
necessary conditions for stable and circular orbits, by exam-
ining the properties of the corresponding effective potentials.
On the other hand, the study of the orbit equation for light par-
ticles allowed us to determine the effects both of the deviation
from GR and the global monopole’s charge on the gravita-
tional bending of light.

In the next section we introduce the basic setup from where
our analysis evolves and the standard global monopole model
is briefly reviewed. In the Sect. 2, we provide an exact solu-
tion for the f (R) global monopole and discuss some useful
approximate cases where our studies are going to be devel-
oped. The consequences of the modification of the gravity
theory on the dynamics of massive test particles is assessed
in the Sect. 3, where the expected requirements for stable
orbits are properly appraised. In the Sect. 4 we study the
light deflection issue in such gravitational field. Finally, the
last section is dedicated to our concluding remarks and to
the possible future investigations motivated by the present
work.
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2 The model

2.1 The f (R) theory

The action of the f (R) gravity reads [9]

S = 1

2κ

∫
d4x

√−g f (R) + Sm, (1)

where κ = 8πG and the matter action Sm is given in terms
of the corresponding lagrangian density as follows:

Sm =
∫

d4x
√−gL. (2)

In the metric formalism, the action (1) is extremized with
respect to the metric tensor providing the following field
equations:

F(R)Rμν− 1

2
f (R)gμν−∇μ∇νF(R)+gμν�F(R) = κTμν,

(3)

with F(R) ≡ d f (R)/dR and as usual μ, ν = 0, 1, 2, 3. As
it is known, the energy-momentum tensor Tμν is obtained
from the lagrangian L as

Tμν = 2√−g

δ
√−gL
δgμν

. (4)

Taking the trace of (3) we are left with

f (R) = 1

2
(F(R)R + 3�F(R) − κT ) . (5)

Let us recall that in GR the contracted Einstein field equa-
tions corresponds to an algebraic constraint involving the
Ricci scalar and the trace of the energy-momentum tensor,
whereas in f (R) theory contracting the field equations leads
to a further dynamical equation for F(R), which indicates
that F(R) plays the role of an extra degree of freedom in the
metric f (R) gravity. Hence, (5) has an important meaning
since it enhances a crucial distinction between GR and f (R)

theories.
Using Eq. (5) we can also write the function f (R) in

terms of F(R), its derivatives and the trace of the energy-
momentum tensor. This allows us to get rid of f (R) and
promote F(R) to the actual function to be specified in a
given f (R) theory. It is possible to notice that such procedure
reduces considerably the original complexity of the system
of differential equation (3), making its integration much sim-
pler. Furthermore, another interesting reason to work with
F(R) is its clear physical interpretation as a scalar degree
of freedom in f (R) gravity. In principle it can make easier

any possible comparison with results obtained within scalar–
tensor theories of gravity. The purely radial dependence of the
Ricci scalar, R = R(r), leads to an alternative parametriza-
tion for F(R), as F(R(r)) ≡ F(r). Since in GR we have
F(r) = 1, we can assume that any departure from the ein-
steinian theory appears in F(r) in the following way:

F(r) = 1 + ψ(r), (6)

where ψ(r) is a function that encodes the modification of
the gravity, whose functional form is arbitrary and must be
specified in order to enables one to integrate the system of
differential equations resulting from (3).

2.2 The global monopole spacetime

The model is described by the lagrangian density below [4]

L = 1

2
∂μφa∂μφa − 1

4
λ(φaφa − η2)2, (7)

which exhibits the symmetry breaking of the SO(3) to U (1)

groups. In the equation above the parameter λ is a positive
coupling constant and η is the energy scale at which the
symmetry is broken, The SO(3)-symmetric Higgs field φa is
given by an isotriplet of scalar fields whose form corresponds
to the well-known hedgehog Ansatz,

φa = ηh(r)
xa

r
. (8)

We have the index a = 1, 2, 3 and xaxa = r2. The radial
function h(r) is subject to the following boundary conditions:

h(0) = 0, h(r → ∞) = 1. (9)

The spherically symmetric line element describing a space-
time around a static source can be written as

ds2 = B(r)dt2 − A(r)dr2 − r2dθ2 − r2sin2θdϕ2. (10)

However, the energy-momentum tensor for the global
monopole, obtained from the Lagrangian (7), has the fol-
lowing non-vanishing components:

T 0
0 = η2

[
h′2

2A
+ h2

r2 + λ

4
η2(h2 − 1)2

]
,

T 1
1 = η2

[
−h′2

2A
+ h2

r2 + λ

4
η2(h2 − 1)2

]
,

T 2
2 = T 3

3 = η2
[
h′2

2A
+ λ

4
η2(h2 − 1)2

]
, (11)
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where the prime denotes derivatives with respect to the radial
coordinate r . The field equation for φa in the background (10)
is

h′′

A
+

[
2

Ar
+ 1

2B

(
B

A

)′]
h′− 2h

r2 −λη2h(h2 −1) = 0. (12)

In this model it is assumed that far from the monopole’s
core, the function h(r) tends to unity which leads the energy-
momentum tensor to a very simple form given by

T ν
μ ≈ diag

(
η2

r2 ,
η2

r2 , 0, 0

)
. (13)

The gravitational implications due to a possible existence
of global monopoles were first explored by Barriola and
Vilenkin [4], who considered the approximation (13) to
achieve the solution for the gravitational field of this defect.
They found that a spacetime associated with this object is
characterized by a non-trivial topology observed as a deficit
solid angle, which brings remarkable consequences to the
light deflection phenomenon. On the other hand, neglecting
the core’s mass, they verified that the global monopole does
not exert any gravitational force on the matter around it. Con-
sidering (10) and (11), they obtained the following solution
for the Einstein field equations:

B(r) = A(r)−1 = 1 − 8πGη2 − 2GM/r, (14)

where M is an integration constant that can be identified
with the central mass that generates the gravitational field.
For the solution (14), Barriola and Vilenkin discussed two
possible physical interpretations for such mass term. The
first one presents this parameter as the mass contained inside
the radius of the monopole’s core. In this case, this mass
is usually neglected as it is insignificant at astrophysical
scales. The second hypothesis suggests that this term could
be the mass of a Schwarzschild black hole that swallowed
the global monopole and hence carries its charge. This latter
case opens a door for a large variety of possible phenomena
to be explored in the spacetime of such modified black hole.

Global monopoles in the Brans–Dicke theory of gravity
were also analyzed by Barros and Romero in [12]. Within the
weak field regime they found an emerging force which acts
on the test particles moving in the monopole’s spacetime.
In [13] the weak field approximation was also considered
to study this cosmic defect in the context of a f (R) theory.
In that paper the authors purchased results very similar to
the Brans–Dicke case, at least from a qualitative point of
view, as for instance observing the appearance of an extra
force that accounts for the capture of test particles moving
around the monopole. Such a feature is absent in the general
relativistic scenario and can be assigned to the influence of

the scalar degree of freedom which arises in the both theories
and represents an evident heritage of the modification of the
gravity.

3 Solutions for the field equations

To obtain the explicit form of the field equations for this
model we follow the same procedure as adopted in [13,20].
Substituting (5) into (3) the resulting equation can be written
as

F(R)Rμν − ∇μ∇νF(R) − κTμν = gμν

4
[F(R)R − �F(R) − κT ] .

(15)

This expression tells us that the combination, involving rank-
2, diagonal, tensor quantities

Cμ ≡ F(R)Rμμ − ∇μ∇μF(R) − κTμμ

gμμ

, (16)

whose indices μ are fixed,1 does not depend on the mentioned
index, so that the relation below

Cμ − Cν = 0, (17)

keeps valid for any μ and ν. One can check that (17) allows
for the obtaining of the only two independent field equations,
corresponding to C1 − C0 = 0 and C2 − C0 = 0. So, these
two relations will provide a system of differential equations
involving A(r), B(r) and F(r) for a given matter field. As
said before, for the function F(r) a suitable Ansatz has to
be adopted in order to determine the solution of the system.
For a static, spherically symmetric matter configuration the
following field equations hold:

2rF ′′ − 2F Y ′

Y
− rF ′ Y ′

Y
= 16πG(T 1

1 − T 0
0 )Ar (18)

and

−4B + 4Y − 4r B
F ′

F + 2r2B ′F ′

F + 2r B
Y ′

Y
− r2B ′ Y ′

Y
+ 2r2B ′′

+32πG

F Yr2(T 2
2 − T 0

0 ) = 0, (19)

where Y (r) ≡ A(r)B(r). For the global monopole energy-
momentum tensor (11) these equations are rewritten as fol-
lows:

2rF ′′ − 2F Y ′

Y
− rF ′ Y ′

Y
= −16πGη2h′2r, (20)

1 This means there is no summation here.
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−4B + 4Y − 4r B
F ′

F + 2r2B ′F ′

F + 2r B
Y ′

Y
− r2B ′ Y ′

Y

+2r2B ′′ − 32πGη2h2Y

F = 0. (21)

Once a convenient shape for F(r) is assumed, the equa-
tions (20) and (21) along with (12) form a system of equa-
tions whose solution can be in principle obtained numerically
given a proper set of boundary conditions. It is common to
consider the outside the core approximation, for which h ≈ 1
and the global monopole energy-momentum tensor is given
by (13), which makes the form of the dynamical equations
even simpler [13]

2rF ′′ − 2F Y ′

Y
− rF ′ Y ′

Y
= 0, (22)

−4B + 4Y − 4r B
F ′

F + 2r2B ′F ′

F + 2r B
Y ′

Y
− r2B ′ Y ′

Y

+2r2B ′′ − 32πGη2Y

F = 0. (23)

Let us notice that the solution for the system of equations
above can only be achieved if the shape of F is specified
beforehand. As mentioned before we are interested in func-
tions F of the form (6) and that means, at the end of the
day, that we specify the expression for the deviation from
GR, ψ(r). For convenience, we adopt the simplest Ansatz
for such function and assume it as linear in the radial coor-
dinate, ψ(r) = ψ0r . This is a usual choice, often considered
in the literature.

For F = 1 + ψ0r , (22) implies that Y (r) = Y0 = const.,
enormously simplifying Eq. (23), which now gets reduced
to an ordinary second-order differential equation for B(r),
whose integration gives

B(r) = Y0(1 − 8πGη2) + c1ψ0

2
− c1

3r
− rψ0[Y0(1 − 16πGη2) + ψ0c1]
+ r2

2

{
ψ2

0Y0(3 − 32πGη2) + 2c2

+ 2ψ2
0 [Y0(1 − 16πGη2) + ψ0c1] ln

(
ψ0 + 1

r

)}
,

(24)

where c1 and c2 are integration constants. Comparing (24)
with Eq. (20) of [20], the solution above can easily be seen
as a clear generalization of that vacuum result for the case
in which a global monopole sources the gravitational field.
Besides, notice that this solution is more general than that
ones found in previous studies as it carries corrections that
are absent in all those approaches, where the approximations
|ψ0r | 
 1 and the weak field limit were taken into account
[13]. It is easy to verify such statement by looking at each

term of (24) and comparing with Eq. (36) of [13]. In order
to help us in such comparison, let us fix c2 = 0. Assuming
the smallness of the correction on GR we can keep just the
linear terms in ψ0r and throw away all the higher order con-
tributions. This enables us to neglect all the terms between
the curly brackets in (24). The integration constant c1 is usu-
ally associated with the newtonian potential, by means of the
identification c1 = 6GM . In the approximation adopted in
[13] this mass term is a first order contribution, as well as the
monopole’s charge and the modification of gravity param-
eter, Gη2 and ψ0, respectively. Therefore, if the correction
on GR is tiny and the weak field approximation applies it
is reasonable to assume that all the crossing terms involving
GM , ψ0 and Gη2 can be ruled out,2 so that just the purely
linear terms in each one of these quantities survive. Lastly,
by setting Y0 = 1 Eq. (24) takes the form

B(r) = 1 − 8πGη2 − 2GM

r
− ψ0r , (25)

which corresponds to the original solution found by Caramês
et al. [13]. So, we have just shown that (25) is just a particular
case of the solution (24) obtained by us in the present work.
The metric given by (25) is quite used to address the f (R)

global monopole problem and its possible applications, as
can be seen in our references. This suggests that the solu-
tion presented here can bring about possible corrections to
the studies previously performed involving an f (R) global
monopole.

For convenience let us rewrite (24) as

B(r) = β − c1

3r
− (2β − Y0)ψ0r + r2

2

[
ψ2

0Y0(3 − 32πGη2)

+ 2c2 + 2ψ2
0 (2β − Y0) ln

(
ψ0 + 1

r

)]
, (26)

whereβ denotes the combinationβ = Y0(1−8πGη2)+ c1ψ0
2 .

Now let us analyze some particular cases arising from the
opportune choice of the integration constants present in this
solution. The first case refers to an exact solution, whereas the
second one takes some useful approximations into account.

3.1 For Y0 = 2β

We can discard the logarithmic term by imposing Y0 = 2β,
which consequently implies in setting also the r -term to
zero. Additionally, we can choose the r -independent term as
β = 1 − 8πGη2, which allows for the prompt recovering of
the standard Barriola–Vilenkin solution in the limits ψ0 → 0

2 In fact it is known that typically we have Gη2 ∼ 10−6 [2].
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and Y0 → 1, with the integration constant c1 = 6GM . Con-
sequently, these choices fix the forms both for Y0

Y0 = 2(1 − 8πGη2), (27)

and for the modification of gravity parameter

ψ0 = −(1 − 8πGη2)(1 − 16πGη2)

3GM
. (28)

Notice that in the absence of global monopole, η = 0, the
variables Y0 and ψ0 reduce to those ones found by Mul-
tamaki and Vilja in [20] (see the “solution I” obtained by
these authors) within the vacuum context. Interestingly, as
can be seen in (28) the solution considered here imposes a
constraint on the value of the parameter ψ0, by fixing it in
terms of the numerical values both of the source mass and the
monopole’s charge, once these quantities are known. Taking
all these assumptions into account the solution (24) can be
written as

B(r) = 1 − 2GM

r
− 8πGη2 − �̃

3
r2, (29)

where we require that c2 = −�
3 in order to have a

Schwarzschild–de Sitter (SdS) solution in the suitable limit.
Moreover, �̃ plays the role of an effective cosmological con-
stant given by �̃ ≡ � − 3ψ2

0 (1 − 8πGη2)(3 − 32πGη2),
which displays the effects of the f (R) correction on the usual
cosmological constant, �. For a small correction around GR
it is reasonable to neglect this extra term. So, the line element
for this solution shall be

ds2 =
(

1 − 2GM

r
− 8πGη2 − �̃

3
r2

)
dt2 − 2(1 − 8πGη2)

×
(

1 − 2GM

r
− 8πGη2 − �̃

3
r2

)−1

dr2 − r2d�2,

(30)

where d�2 = dθ2 + sin2θdϕ2.

3.2 For Y0 = 1

We can otherwise set Y0 = 1 from the beginning and keep
β = Y0(1−8πGη2)+ c1ψ0

2 . This means to let the parameter
ψ0 free, instead of restricting it so strongly as was done in
the previous case. Moreover, assuming a small deviation from
GR the constant ψ0 can be considered very tiny, what enables
one to retain just the linear powers of such parameter in the
general solution (26), so that we have

B(r) = 1 − 8πGη2 + 3GMψ0 − 2GM

r
− ψ0r. (31)

Notice that in this approximative treatment a possible con-
tribution of the independent term c1ψ0

2 is taken into account,
differently what is verified in the weak field approximation
where such term does not come up, as can be seen in (25). In
the case in which the mass is interpreted as the one enclosed
in the monopole’s core, such a term could be ignored at
the astrophysical level and the two solutions (25) and (31)
would match each other, coinciding with that analyzed in
[13]. On the other hand, if this mass is due to a black hole that
swallowed the monopole its contribution can be relevant. Its
immediate effect seems to be either increasing or decreasing
the effective magnitude of the monopole’s charge, 8πGη2,
depending on whether the ψ0’s sign is negative or positive,
respectively. This extra term may exert a detectable influ-
ence on the motion of test massive or massless particles in
the spacetime of this black hole.

Interestingly, for 8πGη2 = 0, the solution (31) resem-
bles to the static and spherical symmetric solution obtained
by Mannhein and Kazanas within vacuum Weyl conformal
gravity [22].

3.3 Asymptotic behavior of h(r)

Considering appropriate boundary conditions for the met-
ric components B(r) and A(r) as well as the corresponding
ones satisfied by h(r) (9), Eq. (12) can be in principle solved
through a numerical approach. However, we will restrict our
study to the asymptotic case h → 1 at infinity by analyzing
how one expects the solution to behave in this regime. In this
vein, it is useful to assume a series expansion for the radial
function h(r) as follows:

h(r) = 1 +
∑

anr
−n, (32)

where n ≥ 1. The special case A(r)B(r) = Y0 leads (12) to
a simpler form,

h′′B
Y0

+
(

2B

Y0r
+ B ′

Y0

)
h′ − 2h

r2 − λη2h(h2 − 1) = 0. (33)

For the sake of simplicity let us write the function B(r) as

B(r) = B0 + B1

r
+ B2r + B3r

2. (34)

Let us notice that the solutions given by (25), (29) and (31)
can be expressed in the form (34). Using (32) and (34) in
(33) we can determine the coefficients an and then obtain
the expression for h(r) in the regions very far from the
monopole’s core,
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Table 1 Corresponding values
of the constants B0, B1, B2, B3
and Y0 for the solutions (25),
(29) and (31). For convenience,
in the table they are denoted
merely as (i), (ii) and (iii),
respectively. Additionally, we
include the standard
Barriola–Vilenkin solution

Solutions B(r)-parameters

B0 B1 B2 B3 Y0

(i) 1 − 8πGη2 −2GM −ψ0 0 1

(ii) 1 − 8πGη2 −2GM 0 −�̃/3 2(1 − 8πGη2)

(iii) 1 − 8πGη2 + 3GMψ0 −2GM −ψ0 0 1

Barriola–Vilenkin 1 − 8πGη2 −2GM 0 0 1

h(r → ∞) = 1 − Y0

(B3 + λη2Y0)

1

r2 + Y0
[
3Y 2

0 λη2 + 2(B0 − Y0)(B3 + λη2Y0)
]

2(B3 + λη2Y0)2(2B3 − λη2Y0)

1

r4

+
{
8Y0B1(B3+λη2Y0)

2(2B3−λη2Y0)−8B2Y0
[
3Y 2

0 λη2+2(B0 − Y0)(B3+λη2)
]}

2(B3+λη2Y0)2(2B3 − λη2Y0)(10B3 − 2λη2Y0)

1

r5
+ O

(
1

r6

)
, (35)

whose definite form depends upon the parameters B0, B1, B2,
B3 andY0, which characterize the different solutions. We pro-
vide Table 1 in order to help the reader to obtain promptly
the explicit form for the asymptotic behavior of h(r) for dif-
ferent metric tensors subject to the parametrization (34), in
particular those ones mentioned or obtained throughout this
paper. It is easy to verify that such general expression (35)
recovers the result presented in [21], in the context of global
monopoles within de Sitter/anti-de Sitter spacetimes.3

4 Test particles around a black hole with an f (R)
global monopole

It is well known that the geodesic motion of test particles in
a certain spacetime obeys a Lagrangian, Lg , given by

Lg = gμν

dxμ

dτ

dxν

dτ
= ε, (36)

where ε = 0 or 1 labels massless and massive particles,
respectively. The affine parameter, τ , represents the proper
time for massive particles that follow timelike geodesics.
Considering that the motion lies on the equatorial plane
θ = π

2 , the LagrangianLg obtained from (10) gets reduced to

Lg = B(r)

(
dt

dτ

)2

− A(r)

(
dr

dτ

)2

− r2
(

dϕ

dτ

)2

, (37)

with τ being the proper time. Notice that the coordinates t
and ϕ are cyclic implying the following conserved quantities:

E ≡ B(r)
dt

dτ
, L ≡ r2 dϕ

dτ
, (38)

3 This can be checked by comparing (35) with Eq. (11) derived by
Bertrand et al.

where E (L) means the total energy (angular momentum) at
infinity per unit particle rest mass. Using them we can express
(37) as

1

2

(
dr

dτ

)2

+ Veff(r) = E, (39)

where E ≡ E2

2Y0
and the effective potential reads

Veff(r) ≡ B(r)

2Y0

(
L2

r2 + 1

)
, (40)

where we have set ε = 1. Equation (39) reveals that the
existence of the motion of a test particle is subject to the con-
dition E − Veff(r) > 0. Besides, the values of r for which
E = Veff(r) correspond to the turning points of the motion.
Equations (39) and (40) are useful to investigate such pos-
sible orbits to be experienced either by massive or massless
particles moving around a central black hole. For instance,
the GR shows us that considering a Schwarzschild back-
ground, for the geodesic motion of massive particle there is
a minimum radius at which stable circular orbits are pos-
sible. It is denoted by the innermost stable circular orbit
(ISCO) and corresponds to rISCO = 6GM [23,24]. The
angular momentum of the particle for which such a con-
dition is achieved is L ISCO = 2

√
3GM and the respective

total energy is also promptly obtained, EISCO = √
8/9.

If the Schwarzschild black hole carries a global monopole
charge the ISCO parameters are slightly modified by scaling
M → M/(1 − 8πGη2) in both rISCO and L ISCO, whereas E
becomes E = √

(1 − 8πGη2)8/9 [25]. So let us use these
scaled ISCO parameters as a reference in order to assess how
they are influenced by the modification of the gravity. Before
to proceed with our numerical treatment let us parametrize
the main phyisical quantities used in our investigation into
new dimensionless variables:
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x ≡ r/GM; l ≡ L/GM and σ ≡ ψ0GM. (41)

For convenience, the results of this section will be expressed
in terms of such variables. In this section, our interest is
basically to analyze how far it is possible to deviate from
GR without preventing the existence of circular stable orbits.
It is expected that any stable circular motion satisfies the
following requirements:

• ṙ = 0;
• ∂Veff/∂r = 0;
• ∂2Veff/∂r2 > 0,

where the dot denotes derivative with respect to the proper
time. The second condition provides a polynomial equation
whose roots give the radial positions where the effective
potential have critical points, enabling the existence of orbital
motion at those radii. The condition ṙ = 0 results inVeff = E ,
which shall fix the energy a particle orbiting the central mass
at a certain radius r (any of the roots of ∂Veff/∂r = 0) should
have in order to undergo a stable orbit. The sign of ∂2Veff/∂r2

evaluated at the radial distance where a given orbit lies, tell
us if these extrema of the effective potential correspond to
minimum (positive sign) or maximum points (negative sign),
resulting in stable or unstable orbits, respectively. A stable
orbit means that the particle will tend to return immediately
to its original orbit after being slightly disturbed. On the
other hand, a particle undergoing an unstable orbital motion
departs further from its original orbit when a slight flick is
applied on it.

Let us now implement this procedure for some of the solu-
tions discussed in this paper.

4.1 Case B(r) = 1 − 8πGη2 − 2GM
r − ψ0r

In terms of (41) this solution is written as

B(x) = 1 − α2 − 2

x
− σ x, (42)

where we defined α2 ≡ 8πGη2. The algebraic equation
B(x) = 0 gives us two real roots, which correspond to the
two horizons of this solution. Namely, these are an event and
cosmological ones given by

xh,1 = 1 − α2 − √
(1 − α2)2 − 8σ

2σ
(43)

and

xh,2 = 1 − α2 + √
(1 − α2)2 − 8σ

2σ
, (44)

σ=0
σ=10–3

σ=3x10–3
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V e
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(b)

Fig. 1 Variation of the effective potential with x . Here we fix l2 =
12

(1−α2)2 and α2 = 0.01. The corresponding ISCO position gets far-
ther and farther from the central black hole, as the deviation from GR
increases. This becomes a bit more evident by looking at the smaller
graph on the panel a, where the minima of the effective potential moves
slightly to the right for increasing values of σ . Moreover, the modifica-
tion of the gravity gives rise to maximum points for the Veff curve. The
greater are the σ values, the closer such points are to the event hori-
zon. Panel b illustrates more clearly the appearance of these maximum
points in the blue and red curves, indicating that extra unstable orbits
can also exist along with the stable ones

respectively. Besides, (42) renders the effective potential (40)
in the form

Veff(x) = (1 − α2)

2
−

(
σ l2

2
+ 1

)
1

x
+ l2(1 − α2)

2x2

− l2

x3 − σ x

2
. (45)

In Fig. 1 we plot the effective potential (45) against x , where
we have set l2 = 12/(1 − α2)2 and, by way of illustra-
tion, α2 = 0.01. The blue curve displays the Barriola–
Vilenkin case, where the only difference with respect to
the purely Schwarzschild black-hole situation (without any
global monopole inside it) is that the respective xISCO gets
increased by a factor 1/(1 − α2) as we discussed before. So,
in the σ = 0 case the corresponding curve shows a minimum
at xISCO ≈ 6.06. For σ = 10−3, the radius of ISCO is slightly
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enhanced, giving xISCO ≈ 7.014. Additionally, a local max-
imum point is verified at xmax,1 ≈ 5.53, revealing a new
feature in comparison with σ = 0: even for a small depar-
ture from GR, unstable orbits can also exist, besides the stable
one. A second maximum point appears at xmax,2 ≈ 37.69, as
is more clearly illustrated in Fig. 1b. It is easy to check that
Veff(xmax,1) < V eff(x max,2), so a particle coming from very
far regions has to possess energy greater than V eff(x max,2) in
order to cross the inner horizon and fall into the black hole.
If such an energy is smaller than this value, the test particle
will approach the black hole at most up to the turning point,
E2 = V eff(x max,1), where it shall reverse its motion and
proceed towards the infinity.

For σ = 3 × 10−3 we verified that the ISCO lies a bit
farther from the central mass, at the position x ISCO ≈ 8.84.
Besides, two maximum points for V eff shows up at x max,3 ≈
5.26 and x max,4 ≈ 16.96, yielding a profile quite similar to
the case σ = 10−3 from the qualitative point of view. So, it
could be possible to have a stable circular motion encompass-
ing an inner unstable orbit while it is encircled by another
one. However, differently from the case σ = 10−3, the outer
unstable orbit gives for the effective potential a smaller value
when comparing with that one given by the inner unstable
orbit, i.e. V eff(x max,3) > V eff(x max,4), which means that
any particle endowed with energy E > V eff(x max,3) is able
to overcome the effective potential barrier and reach the cen-
ter of the black hole. When σ > 3 × 10−3 we observed that
only maximum points show up, indicating that stable orbits
are not allowed for such cases.

One can verify that the solution (31) yields an effective
potential whose profile is quite similar to (45), so that it
exhibits the same general properties that we have approached
in this subsection. The main difference appears in the dis-
placement of the extrema of Veff when comparing with the
case where 3GMψ0 is absent. Nonetheless, we have checked
that such discrepancies do not overcome 10% of the cor-
responding values obtained without taking such extra term
into account. Moreover, we noticed that the upper limit men-
tioned above, σ = 3 × 10−3, to be obeyed by (45) in order
to allow for stable orbits keeps valid even for this case.
So, these features suggest that 3GMψ0 does not add any
significant contribution to the geodesic motion of material
particles.

4.2 Case B(r) = 1 − 2GM
r − 8πGη2 − �̃

3 r
2

For convenience, let us consider � = 0 in the solution (29),
so that all the effects of the effective cosmological constant
�̃ is due only to the deviation from GR. This assumption
could be implemented from the beginning by merely defin-
ing the integration constant c2 = 0. Such a choice does not
seem so weird if we recall that one of the main motivations

for the f (R) theories is exactly to dispense the cosmological
constant, by replacing it by extra degrees of freedom of geo-
metric nature which, in principle, would be able to play the
same role that � has in the dynamics of the current universe.
Thus, (29) becomes

B(r) = 1 − 2GM

r
− 8πGη2 + ψ2

0 (1 − 8πGη2)

(3 − 32πGη2)r2. (46)

As remarked previously, the solution above arises after a con-
venient choice for the integration constants of (24) which
allowed for a vanishing of that undesirable logarithmic term.
The price one had to pay for achieving such a simpler version
of the exact solution was to find a non-trivial constraint rela-
tion, (28), involving the parametersψ0, 8πGη2 and M , which
prevents ψ0 to vary freely by conveying to this parameter a
tight dependence on the numerical values of both the mass
parameter and the monopole’s charge. Now let us employ
(28) and (41) to express (46) as follows:

B(x) = 1− 2

x
−α2+ 1

9
(1−α2)3(1−2α2)2(3−4α2)x2, (47)

whose corresponding effective potential can be found with
the aid of (40)

Veff(x) = 1

4
+ 1

36
(1 − α2)2(1 − 2α2)2(3 − 4α2)l2

− 1

2(1 − α2)x
+ l2

4x2 − l2

2(1 − α2)x3

+ 1

36
(1 − α2)2(1 − 2α2)2(3 − 4α2)x2. (48)

Here we followed the same receipt performed in the pre-
vious section in order to examine the nature of the motion
of possible test particles under the influence of the effec-
tive potential above. As the system under analysis includes a
global monopole, we keep using as reference the same usual
expression for the angular momentum, namely L ISCO =
2
√

3GM/(1 − 8πGη2). Note that for this case we should
have α2 as the only free parameter of the model, due to the
constraint (28). Taking it into account we looked for pos-
sible values of α2 capable to provide a stable and circular
motion; however, we could not find any interesting result in
this regard. We noticed that the necessary conditions men-
tioned before that has to be respected by a given effective
potential in order to enable stable and circular orbits are not
observed in the present case. We found that real and posi-
tive roots for V ′

eff(x) = 0 are only possible for the range of
values α2 ≥ 0.75 (given that α2 < 1), and all these values
provide V ′′

eff(x) > 0 indicating the inviability of such a kind
of dynamics for test particles moving in this spacetime.
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5 The light deflection

In this section we investigate the effects arising from both
modified gravity and the influence of the global monopole
on the phenomenon of the gravitational bending of light.
Since in Einstein gravity such effect is usually investigated
considering a weak field limit, it is convenient to restrict our
analysis of the light deviation for the metric (25).

As is well known, the equation describing the geodesic
paths of the photons through a given static and spherically
symmetric spacetime is obtained by taking ε = 0 in (36),
which will give us the orbit equation

1

r4

(
dr

dϕ

)2

+ B(r)

Y0r2 = 1

b2 , (49)

where b ≡ L/E is the impact parameter of the light ray. For
the case under consideration, B(r) is given by (25) whereas
Y0 = 1. This equation allows us to obtain a typical quantity
of the light bending physics, which is the closest approach
distance of the light ray with respect to the central mass,
denoted by r0. In practice, this parameter means the value
of r(ϕ) where the light path experiences a turning point and
the radial motion reaches a minimum value, so dr

dϕ
= 0. This

condition when used in (49) provides the algebraic equation
below for r0

r3
0 + ψ0b

2r0 − b2(1 − α2)r0 + 2GMb2 = 0. (50)

Let us recall that α2 ≡ 8πGη2, as previously introduced in
(42). The solution for this cubic equation can be written as
follows:

r0 = 2b

3

√
ψ2

0b
2 + 3(1 − α2)

× cos

{
1

3
cos−1

[−54GM − ψ0(2ψ2
0b

2+9(1 − α2))b2

2b(ψ2
0b

2 + 3(1 − α2))3/2

]}

−ψ0b
2

2
. (51)

In the appendix we present the detailed derivation of (51).
Notice that when one sets α2 = 0 and ψ0 = 0 in Eq. (51), it
becomes

r0 = 2b√
3

cos

[
1

3
cos−1

(
−3

√
3GM

b

)]
, (52)

which is its GR counterpart, as can be checked in [26]. If we
keep up to first order contributions of GM and ψ0 in (51),
we find the linearized form for the closest approach distance:

r0 
 b
√

1 − α2 − GM

1 − α2 − ψ0b2

2
, (53)

from which we easily get the following relation:

1

r0

 1

b
√

1 − α2
+ GM

b2(1 − α2)2 + ψ0

2(1 − α2)
, (54)

which is going to be useful to us later on.
It is usual to define the radial coordinate as r = u−1, so

that (49) turns out to be

(
du

dϕ

)2

+ B(u)u2

Y0
= 1

b2 , (55)

where B(u) = B(u(r)) denotes the reparametrization of B
in terms of u. For the background metric (25) this means

B(u) = 1 − α2 − 2GMu − ψ0

u
, (56)

along with Y0 = 1. This allows us to rewrite (55) as

(
du

dϕ

)2

+ (1 − α2)u2 − 2GMu3 − ψ0u = 1

b2 . (57)

Taking the derivative of (57) with respect to ϕ we obtain

d2u

dϕ2 + (1 − α2)u − 3GMu2 − ψ0

2
= 0, (58)

which is the nonlinear orbit equation corrected by the f (R)

parameter, ψ0.
A crucial point in the present analysis is the non-

asymptotically flat nature of the spacetime (25), which has
decisive consequences on the calculation of the deflection
angle. In an asymptotically flat geometry, like the standard
Schwarzschild case, one assumes that the light ray comes
from the infinity where its path corresponds to a straight line.
As it approaches a spherical distribution of mass its trajec-
tory gradually departs from the straight line getting closer
and closer to the central mass, reaches a distance of closest
approach with respect to it and then is bent by an angle δ

proceeding towards the observer, assumed to be located at
infinity. For a Schwarzschild solution (to the leading order in
GM) the magnitude of this deviation is given by δ = 4GM

c2b
.

However, for a non-asymptotically flat spacetime it does not
make any sense to consider a light ray emitted at infinity
(neither detected by an observer at infinity), due to the exis-
tence of a horizon at a given finite radial distance far from
the spherical mass. This feature suggests that the procedure
to compute the bending angle for a non-asymptotically flat
background should be somehow different from the standard
method used for the Schwarzschild spacetime.

The typical case where such discussion is usually raised
is in the context of a SdS metric. During a long time, many
authors claimed that the cosmological constant should not
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give any contribution to the light deflection, as it is absent
in the second order differential equation for the orbit [27–
32]. On the other hand, in [33] the authors demonstrated
that a contribution of � to the bending in fact emerges
from the structure of the SdS spacetime itself and one intro-
duced a method for calculating explicitly such an effect for a
given static and radial metric, considering a light ray emitted
from a finite arbitrary position P(r(ϕ), ϕ). Besides, they also
emphasized that a non-zero effect of the cosmological con-
stant should arise, since � does appear in the first integral of
the second order orbit equation, namely (49), and one expects
that the corresponding solution u(ϕ) obeys both. So, (49)
would work as a complementary equation necessary to fix
the integration constants of the solution, endowing the gen-
eral solution u(ϕ) necessarily with a �-dependence. Since
then, other authors reexamined the problem, seeking to fill
possible gaps remaining in the original Rindler’s approach
[34–36]. For instance, [34] and [36] investigated the influ-
ence on the deflection angle of the angular position both of
the source and the observer, showing that these two variables
should play an important role in the understanding of the
bending of light in SdS spacetime. Likewise, finite-distance
corrections on the light deflection were also explored in [37].
In [38] the author looked for possible effects of the back-
ground expansion on the bending angle; however, he did not
find any contribution. For the sake of simplicity and bearing
in mind that this issue keeps being a matter of vivid debate
in the literature, for this moment we will restrict ourselves
to the Rindler–Ishak formalism in order to assess the impact
of the contributions of both modified gravity and the global
monopole. We will postpone a deeper and more detailed anal-
ysis to a future opportunity.

Throughout this paper we are considering a Schwarzschild
black hole which swallowed a global monopole and incorpo-
rated its charge. However, notice that even without such an
interaction with the black hole, the defect is able to affect the
trajectory of light particles moving nearby due to the solid
deficit angle that appears in its surroundings. So, it is con-
venient to provide a definition for the angle ϕ that accounts
for the residual influence of the solid deficit angle even if
M = 0 (as well as ψ0 = 0). In this vein, from now on we
will consider the change of variable

√
1 − α2ϕ −→ ϕ̄ and

hence u(ϕ(ϕ̄)) = ū(ϕ̄), which renders (57) into the form

(
dū

dϕ̄

)2

+ ū2 − 2GMū3

(1 − α2)
− ψ0ū

(1 − α2)
= 1

b2(1 − α2)
,

(59)

whereas (58) now is

d2ū

dϕ̄2 + ū − 3GMū2

(1 − α2)
− ψ0

2(1 − α2)
= 0. (60)

One possible way to solve (59) is resorting to a perturbative
method, in which the function ū(ϕ̄) is split into the different
perturbative orders. Here we will consider up to first order
effects on the bending of light, which implies that one adopt
the following decomposition:

ū = ū0 + ū1. (61)

For our purposes both GM and ψ0 will be considered as first
order quantities. Substituting (61) in (59) we are left with the
two equations

d2ū0

dϕ̄2 + ū0 = 0 (62)

and

d2ū1

dϕ̄2 + ū1 = 3GMū2
0

(1 − α2)
+ ψ0

2(1 − α2)
, (63)

at zeroth and first orders, whose solutions are given by

ū0 = sinϕ̄

R
(64)

and

ū1 = 3GM

2R2(1 − α2)

(
1 + 1

3
cos2ϕ̄

)
+ ψ0

2(1 − α2)
, (65)

respectively. Hence, using (61) we write the linearized solu-
tion for (63)

ū = sinϕ̄

R
+ 3GM

2R2(1 − α2)

(
1 + 1

3
cos2ϕ̄

)
+ ψ0

2(1 − α2)
.

(66)

In the solution above the integration constants are chosen
with the aid of the initial conditions ū(π/2) = 1/r0 and
dū(ϕ̄)

dϕ̄
|ϕ̄=π/2, which means that one assume a symmetric

scheme where the light ray reaches its turning point in the
middle of its full path, whose corresponding angular posi-
tion is ϕ̄ = π/2, comprised between the light source and the
observer. The first condition tells us that in order for (66) to
be consistent with (54) it is necessary to fix the remaining
integration constant R as R = √

1 − α2b.
Following the Rindler–Ishak procedure, we define � as

the angle between the radial direction and the light trajectory
at a given point P(r, r(ϕ)). It is easy to check that � is related
to the angular position ϕ through the equation

tan� = r
√
B(r)

∣∣∣∣ dr

dϕ

∣∣∣∣
−1

. (67)
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Given a angular position ϕ, the corresponding radial one r(ϕ)

is immediately found from the solution of the orbit equation.
For the Schwarzschild case, the desired bending angle δ is
just the double of the magnitude of �. However, as pointed
out in [35], this relation is based on fundamental proper-
ties of the euclidean geometry, and they can be only applied
for asymptotically flat spaces and very far from the central
mass. Therefore, we have to bear in mind that it is not cor-
rect to obtain the bending angle merely by δ = 2|�| in a
non-asymptotically flat background, as is usually done in the
Schwarzschild context. Nevertheless, � can give us a pri-
mary idea about the influence on the light deflection of non-
asymptotically flat corrections on the Schwarzschild metric.

It is convenient to make a change of variable in (67) and
rewrite it in terms of ū and ϕ̄. Furthermore, assuming a small
enough �, the following approximation holds:

tan� 
 � 
 √
B(ū)(1 − α2)−1/2ū

∣∣∣∣ dū

dϕ̄

∣∣∣∣
−1

. (68)

Now, let us consider the specific example ϕ̄ = 0. For this
case, using (68) we obtain the following bending angle:

� 
 2GM

b(1 − α2)3/2

√
1 − ψ2

0b
4(1 − α2)

(4GM)2 . (69)

Taking ψ0 and α2 in the result above, we have the standard
bending angle δ = 2|�| = 4GM

b (assuming c = 1), where
one usually considers ϕ ∼ 0 and r → ∞ (u → 0). This
result indicates that the modified gravity contributes to the
decreasing of �. On the other hand, if α2 = 0 and the depar-
ture from GR is not significant when comparing to GM , so
that δ 
 2|�|, the reduction of the Schwarzschild bending
angle due to the modified gravity corrections shall be negli-
gible.

6 Concluding remarks

In this paper we revisit and provide some contributions to
the study of the f (R) global monopole. We considered the
hypothetical case where a global monopole was swallowed
by a Schwarzschild black hole, within a f (R) gravity frame-
work. For such a system we derived the field equations in
the metric formalism, according to the Multamaki and Vilja
[20] method, and we obtained an exact solution for the prob-
lem. We showed how to obtain some particular cases from
this general solution. We also studied the asymptotic behav-
ior of the Higgs field very far from the monopole’s core,
demonstrating the explicit dependence on the background
geometry for a wide class of static and radial metrics. This
result extends other ones obtained previously in the context

of a dS/AdS spacetime [21]. In order to better understand the
gravitational effects of the f (R) global monopole, we stud-
ied the motion of test particles in its spacetime, analyzing
the conditions for obtaining stable and circular orbits. In this
case, we found that stable orbits keep being possible; how-
ever, their positions are slightly shifted far from the black
hole as the modification of the gravity is increased. Further-
more, we noticed that unstable orbits turned out to be allowed
as well, differently from what happens in GR.

We finished our analysis by studying the bending of light
for a f (R) global monopole, focusing on the metric (25).
Since for this case the spacetime is not asymptotically flat,
an alternative procedure for the calculation of the bending
has to be employed. In line with the Rindler–Ishak formalism
[33], we computed the angle � between the light trajectory
and its radial position using ϕ = 0 for the angular position
of the light ray. In the standard Schwarzschild case � is just
half the bending angle. We found that the modification of the
gravity ψ0 contributes for the decreasing of this angle. Any-
way, if ψ0 is small enough so that � can be considered as
half of the deflection angle, the deviation from the standard
GR situation shall be negligible. We are aware of the impor-
tance of extending our analysis and we totally agree that in
a more complete study, based on a non-asymptotically flat
spacetime, the positions of both the source and the observer
should necessarily come into play. However, we just wanted
to give an illustration about some immediate gravitational
consequences of the f (R) global monopole, so we leave a
deeper investigation in this respect for future work.
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Appendix: Solving the cubic equation for r0

For the sake of simplicity, let us rewrite (50) in the form

x3 + dx2 − cx + a = 0, (A1)

where we clearly have x = r0, d = ψ0b2, c = (1 − α2)b2

and a = 2GMb2. We are interested in expressing x in terms
of a new variable w in the following way:

x = A cos w + B, (A2)
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where A and B are arbitrary constants to be fixed later in
terms of the parameters a, c and d. So, we shall look for A,
B and w so that Eq. (A2) is possible. When we substitute
(A2) into (A1) we have

(A cos w+B)3+d(A cos w+B)2−c(A cos w+B)+a = 0.

(A3)

Now let us expand (A3) by collecting terms in powers of
cos w as follows:

A3 cos3 w + A2(3B + d) cos2 w + A(3B2 + 2Bd − cA) cos w

+ a + B3 − cB + B2d = 0. (A4)

Then, by using the trigonometric identity 4 cos3 w = cos w+
3 cos w, we can eliminate cos3 w in (A4), we have

A3
(

cos 3w

4
+ 3 cos w

4

)
+ A2(3B + d) cos2 w

+ A(3B2 + 2Bd − cA) cos w + a + B3 − cB + B2d = 0,

A3

4
cos 3w + A2(3B + d) cos2 w

+ A

(
3A2

4
+ 3B2 + 2Bd − cA

)
cos w + a + B3

−cB + B2d = 0. (A5)

For our purposes, in order to better compare with the gen-
eral relativistic equation (52), we want to express (A5) as
cos 3w ∝ const. This requires the vanishing of the coef-
ficients both of cos2 w and cos w in (A5), resulting in the
following system of equations:

{
3B + d = 0,

3A2

4 + 3B2 + 2Bd − cA = 0.
(A6)

Notice that the only unknowns in the equation above are A
and B, since c and d were introduced as redefinitions for the
quantities (1 − α2)b2 and ψ0b2, respectively. So, the system
above indeed admits a single solution, S0 = {A, B}. From
(A6) it is easy to find

B = −d/3 (A7)

and

A = 2

3

√
d2 + 3c. (A8)

With (A7) and (A8) Eq. (A5) reduces to

cos 3w = −
[

27a + d(2d2 + 9c)

2(d2 + 3c)3/2

]
, (A9)

which gives us

w = 1

3
cos−1

[−27a − d(2d2 + 9c)

2(d2 + 3c)3/2

]
. (A10)

Now let us take cos on both sides of (A10)

cos w = cos

{
1

3
cos−1

[−27a − d(2d2 + 9c)

2(d2 + 3c)3/2

]}
. (A11)

Substituting (A7), (A8) and (A11) into (A2) we arrive at the
desired expression for x :

x = A cos

{
1

3
cos−1

[
−27a − d

(
2d2 + 9c

)
2(d2 + 3c)3/2

]}
+ B

=
(

2

3

√
d2 + 3c

)
cos

{
1

3
cos−1

[
−27a − d

(
2d2 + 9c

)
2(d2 + 3c)3/2

]}
− d

3
.

(A12)

Now we are ready to recover the original values of a, c, d and
x , as it has been defined in the beginning of this appendix.
This will allow us to write (A12) as

r0 = 2b

3

√
ψ2

0 b
2 + 3(1 − α2)

× cos

{
1

3
cos−1

[−54GM − ψ0
(
2ψ2

0 b
2 + 9(1 − α2)

)
b2

2b
(
ψ2

0 b
2 + 3(1 − α2)

)3/2

]}
− ψ0b

2

2
,

(A13)

which is exactly Eq. (51).
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