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Abstract In the present paper, we investigate the cosmo-
graphic problem using the bias–variance trade-off. We find
that both the z-redshift and the y = z/(1 + z)-redshift can
present a small bias estimation. It means that the cosmogra-
phy can describe the supernova data more accurately. Min-
imizing risk, it suggests that cosmography up to the second
order is the best approximation. Forecasting the constraint
from future measurements, we find that future supernova
and redshift drift can significantly improve the constraint,
thus having the potential to solve the cosmographic problem.
We also exploit the values of cosmography on the deceler-
ation parameter and equation of state of dark energy w(z).
We find that supernova cosmography cannot give stable esti-
mations on them. However, much useful information was
obtained, such as that the cosmography favors a complicated
dark energy with varying w(z), and the derivative dw/dz < 0
for low redshift. The cosmography is helpful to model the
dark energy.

1 Introduction

Cosmic accelerating expansion is a landmark cosmological
discovery of recent decades. Till now, a number of dynamical
mechanisms have been proposed to explain this mysterious
cosmological phenomenon. However, its natural essence is
still not known to us. The theoretical attempts include dark
energy, or modified gravity, or violation of cosmological prin-
ciple. The first paradigm is based on the belief that an exotic
cosmic component called dark energy probably exists in the
form of the cosmological constant [1] or scalar field [2,3] and
possesses a negative pressure to drive the cosmic accelera-
tion. The modified gravities do not need an exotic component
but a modification to the theory of general relativity [4,5].
Violation of the cosmological principle is usually in the form
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of the inhomogeneous Lemaître–Tolman–Bondi void model
[6–8].

Different from the above dynamical templates, cosmic
kinematics is a more moderate approach in understanding this
acceleration. It only highlights a homogeneous and isotropic
universe at the large scale. In this family, kinematic param-
eters independent of the cosmic dynamical models become
very essential. For example, the scale factor a(t) directly
describes how the universe evolves over time. The decelera-
tion factor can immediately map the decelerating or acceler-
ating expansion of the universe. Collecting some kinematic
parameters, the authors in Refs. [9,10] created the cosmog-
raphy via a Taylor expansion of the luminosity distance over
the redshift z. Mathematically, this expansion should be per-
formed near a small quantity, i.e. a low redshift. Using the
standard theory of complex variables, Cattoën and Visser [11]
demonstrated that the convergence radius of Taylor expan-
sion over redshift z is at most |z| = 1. For high redshift,
z > 1, it fails to reach convergence. Nevertheless, many
observations focus on the high-redshift region. For exam-
ple, the supernova in a joint light-curve analysis (JLA) com-
pilation can span the redshift region up to 1.3; the cosmic
microwave background (CMB) even can retrospect to the
very early universe at z ∼ 1100. To legitimate the expan-
sion at high redshift, they introduced an improved redshift
parametrization y = z/(1 + z) [11]. Thus, cosmography
in the y-based expansion is mathematically safe and useful,
because of 0 < y < 1, even for the high redshift. Later, some
other methods of redshift were also proposed [12].

When confronted with observational data, the cosmogra-
phy study encounters some difficulties. Initially, the SNIa
data were used to fit with the cosmography [13,14]. Then
some auxiliary data sets [15] were also considered. The out-
put indicated that fewer series truncation lead to smaller
errors but a worse estimation; and more terms lead to more
accurate approximation but bigger errors. That is, cosmogra-
phy is in the dilemma between accuracy and precision. The
crisis naturally turns around the question of where the “sweet
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spot” is, i.e., the most optimized series truncation. In previ-
ous work [13,15,16], one found that estimation up to the
snap term is meaningless in the light of the F-test. For the
y-redshift, it presents bigger errors of the parameters [13]. In
spite of different observational data sets being used, most of
the results were consistent. Recent work [17] investigated the
cosmography using the baryon acoustic oscillations (BAO)
only. From the simulated Euclid-like BAO survey, one found
that future BAO observation also favored a best cosmography
with a jerk term. Because it only requires the homogeneity
and isotropy of the universe, cosmography was frequently
used to deduce or test the cosmological models. Recently,
it was used to test the �CDM model [18], but it turned out
that the parameter j0 �= 1 is ambiguous for different orders
of expansion; it is not enough for a test. Reconstructing dark
energy in f (R) gravities, one found that there exist extra free
parameters, which cannot be constrained by the cosmogra-
phy. The analysis was based on the mock data generated by
a unified error of magnitude σμ = 0.15. In the following,
we will test the constraint of these mock data with flat errors.
Following the work in Ref. [18], these mock data were gener-
ated assuming the same redshift distribution as the Union 2.1
catalog [19], but under the fiducial model from the best-fit
ones by JLA data.

Although the cosmography has been widely investigated,
we still are left with a lot of questions. On the one hand,
we do not present a repetitive work using more data, but
numerically excavate more detailed information as regards
the accuracy and precision in the convergence problem. The
new approach we use is the bias–variance trade-off. More-
over, we will try to investigate whether future measurement
can solve the serious convergence issue. On the other hand,
before the use of cosmography, we should make certain
what information it can provide and what it cannot pro-
vide.

Although many types of observational data were used to fit
the cosmography, our goal in this paper is to understand the
convergence problem from another side, i.e., the geometric or
dynamical measurement. Future surveys with high-precision
may present a different constraint. To understand the above
questions, we need the help of a future WFIRST-like super-
nova observation and a dynamical survey of the redshift drift.
Different from the geometric measurement, the redshift drift
is desirable to measure the secular variation of ȧ(t) [20]. In
contrast, geometric observation usually measures the inte-
gral of ȧ(t). Interestingly, this concept is also independent
of any cosmological model, requiring only the Friedmann–
Robertson–Walker universe. Taking advantage of the capac-
ity of E-ELT [21–23], numerous works agreed that this future
probe could provide an excellent contribution to understand
the cosmic dynamics, such as the dark energy [24,25] or
modified gravity models [26]. More importantly, it can be
extended to test the fundamental Copernican principle [27]

and the cosmic acceleration [28]. However, studies of the
redshift drift on kinematics have been scarce.

This paper is organized as follows: In Sect. 2, we introduce
the cosmography. In Sect. 3 we present the observational
data. According to the goals introduced above, we analyze
the problem of cosmography in Sect. 4, and explore its values
in Sect. 5. Finally, in Sect. 6 a conclusion is drawn and a
discussion presented.

2 Cosmography

Cosmography is an artful combination of kinematic param-
eters via the Taylor expansion with the hypotheses of large-
scale homogeneity and isotropy. In this framework, the intro-
duction of the cosmographic parameters of interest is appro-
priate.

The Hubble parameter

H(t) = +1

a

da

dt
(1)

accurately connects the cosmological models with observa-
tional data.

The deceleration parameter

q(t) = −1

a

d2a

dt2

[
1

a

da

dt

]−2

(2)

directly represents the decelerating or accelerating expansion
of the universe.

The jerk parameter

j (t) = +1

a

d3a

dt3

[
1

a

da
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]−3

(3)

and the snap parameter

s(t) = +1

a

d4a

dt4

[
1

a

da

dt

]−4

(4)

are often used as a geometrical diagnostic of dark energy
models [29,30]. An important feature should be announced:
it is that jerk has been a traditional tool to test the spatially flat
cosmological constant dark energy model in which j (z) = 1
all time.

The lerk parameter

l(t) = +1

a

d5a

dt5

[
1

a

da

dt

]−5

(5)

is an higher order parameter to indicate the cosmic expansion.
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With the above preparation, the Hubble parameter in cos-
mography can be expressed as [9,14]

H(z) = H0 + dH

dz
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where the subscript “0” indicates that cosmographic param-
eters are evaluated at the present epoch. According to the dif-
ferential relations with the Hubble parameter, the luminosity
distance in the study of cosmography can be conveniently
expressed as [11,14]

dcos
L (z) = z + C1z

2 + C2z
3 + C3z

4 + C4z
5, (7)

where

C1 = 1

2
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C2 = −1

6
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C3 = 1

24
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120
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As introduced above, cosmography at high redshift, z > 1,
fails to converge. To solve this trouble, a y-redshift hence
introduced [11]

y = z

1 + z
. (9)

For the new redshift, we can simplify it as y = 1 − a(t).
Obviously, it is 0 < y < 1 for the current observational
data. One benefit from the y-redshift is that it can extend
the expansion to the high redshift region. This is important
for the study of cosmography. The reason is that the model
of cosmography in Eq. (7) is theoretically valid for redshift
z < 1. With the import of the y-redshift, many observational
data, such as supernova with higher redshift and even CMB,
can be used to fit and study the cosmography. For example,
it is reduced to y = 0.56 for the supernova at maximum
redshift z = 1.3 in the JLA compilation. Moreover, its value
is y = 0.999 which guarantees the safe use of the early CMB
data. As described in Ref. [11], it even can extrapolate back

to the big bang. The other physical significance is y-redshift
also can bring us back to the future universe, but breaks down
at y = −1. In the y-redshift space, the luminosity distance
is

dcos
L (y) = y + C1y

2 + C2y
3 + C3y

4 + C4y
5, (10)

with

C1 = 1

2
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C2 = 1

6
(11 − 5q0 + 3q2

0 − j0)
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24
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120
(274 − 154q0 + 141q2

0 − 135q3
0 + 105q4

0

+ 10 j2
0 − 47 j0 + 90q0 j0 − 105q2
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In the following analysis, one test we should do is concerned
with the improvement of the y-redshift.

In our cosmographic study, we need the help of the dynam-
ical redshift drift. The story should start from the redshift.

In an expanding universe, we observe at time t0 a sig-
nal emitted by a source at tem. The source’s redshift can be
represented through the cosmic scale factor

z(t0) = a(t0)

a(tem)
− 1. (12)

Over the observer’s time interval �t0, the source’s redshift
becomes

z(t0 + �t0) = a(t0 + �t0)

a(tem + �tem)
− 1, (13)

where �tem is the time interval-scale for the source to emit
another signal. It should satisfy �tem = �t0/(1 + z). As a
consequence, the observed redshift variation of the source is

�z = a(t0 + �t0)

a(tem + �tem)
− a(t0)

a(tem)
. (14)

Taking the first order approximation with Eq. (14), the phys-
ical interpretation of redshift drift can be exposed thus:

�z ≈
[
ȧ(t0) − ȧ(tem)

a(tem)

]
�t0, (15)

where a dot denotes the derivative with respect to cosmic
time. Obviously, we should note that the secular redshift drift
monitors the variation of ȧ during the evolution of the uni-
verse. For the distance measurement, it commonly extracts
information content via the integral of a variant of ȧ. The-
oretically, the Hubble parameter, a function of ȧ, may be
more effective in probing the cosmic expansion. However,
its acquisition in observational cosmology currently is indi-
rect from the differential ages of galaxies [31–33], from the
BAO peaks in the galaxy power spectrum [34,35], or from
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the BAO peaks using the Lyα forest of quasars (QSOs) [36].
For the redshift drift, we note that it is a direct measurement
of the cosmic expansion and can become true via multiple
methods [37].

In terms of the Hubble parameter H(z) = ȧ(tem)/a(tem),
we simplify Eq. (15) to

�z

�t0
= (1 + z)H0 − H(z). (16)

What we should highlight is its independence of any prior and
dark energy model. With regard to this unique advantage,
many analyses have demonstrated that the redshift drift is
not only able to provide much stronger constraints on the
dynamical cosmological models [26,38], but also to solve
some crucial cosmological problems [39,40]; it even allows
us to test the Copernican principle [27]. Observationally, it
is convenient to probe the spectroscopic velocity drift

�υ

�t0
= c

1 + z

�z

�t0
, (17)

which is of the order of several cm s−1 year−1. The signal is
naturally accumulated with an increase of observational time
�t0.

A Taylor expansion tells us that the redshift drift should
be
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Using the Taylor series of Hubble parameter in Eq. (6), we
can put Eq. (18) into practice,
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For the y-redshift, it is simplified to
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(20)

Recently, a Taylor expansion of the redshift drift was also
provided in the varying speed of light cosmology [41]. One

can reduce it from the non-mainstream scenario to the classi-
cal case. In this paper, we mainly use it to provide a numerical
constraint on the cosmography, to test its constraint power
on the cosmic kinematics.

3 Observational data

In this section, we introduce the related data in our cal-
culation. Current data we use are the canonical distance
modulus from JLA compilation. In order to test whether
future SNIa observation can alleviate or terminate the tire-
some convergence problem, we produce some mock data
by the Wide-Field InfraRed Survey Telescope-Astrophysics
Focused Telescope Assets (WFIRST-AFTA).1 The dynami-
cal redshift drift is forecast by the E-ELT. The parameters can
be estimated through a Markov chain Monte Carlo method,
by modifying the publicly available code CosmoMC [42].
As introduced in Sect. 2, the cosmography is independent of
dynamical models. Therefore, we fix the background vari-
ables, and we relax the cosmographic parameters as free
parameters in our calculation.

3.1 Current supernova

One important reason of why the supernova data were widely
used is its extremely plentiful resource. In this paper, we use
the latest supernova JLA compilation of 740 data set from
the SDSS and SNLS [43]. The data are usually presented as
tabulated distance modulus with errors. In this catalog, the
redshift spans z < 1.3, and about 98.9% of the samples are in
the redshift region z < 1. In our calculation, we also consider
the whole covariance matrix.

3.2 Future supernova

In the study of cosmology, forecasting the constraint of
future observations on the cosmological model is quite use-
ful for theoretical research. Estimation of the uncertainty
of the observational variable is a core matter. In a previ-
ous cosmography study, one usually uses several mock data
from a conceptual telescope or satellite [15], or extrapolation
from current observational data [44]. To be more reliable, in
the present paper, we plan to use a current program. The
WFIRST-2.4 not only stores tremendous potential on some
key scientific programs, but also enables one to make a survey
with more supernovae in a more uniform redshift distribu-
tion. One of its scientific issues is to measure the cosmic
expansion history. According to the updated report by the
Science Definition Team [45], we obtain 2725 SNIa over the
region 0.1 < z < 1.7 with a bin �z = 0.1 of the redshift.

1 http://wfirst.gsfc.nasa.gov/.
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The photometric measurement error per supernova is
σmeas = 0.08 magnitudes. The intrinsic dispersion in lumi-
nosity is assumed to be σint = 0.09 magnitudes (after correc-
tion/matching for light-curve shape and spectral properties).
The other contribution to the statistical errors is gravitational
lensing magnification, σlens = 0.07 × z mags. The overall
statistical error in each redshift bin is then

σstat = [(σmeas)
2 + (σint)

2 + (σlens)
2]1/2/

√
Ni , (21)

where Ni is the number of supernova in the i th redshift bin.
According to the estimation, a systematic error per bin is

σsys = 0.01(1 + z)/1.8. (22)

Therefore, the total error per redshift bin is

σtot = [(σstat)
2 + (σsys)

2]1/2. (23)

In our simulation, the fiducial models are taken from the best-
fit values by current supernova on the cosmographic models.
We should note that although we have considered the various
error sources, it is still difficult to provide the total covariance
matrix of future WFIRST-like current supernova data. It may
inevitably underestimate the errors of cosmographic param-
eters. However, this forecast is helpful for us in our study
of whether future observation can improve the convergence
problem.

3.3 Redshift drift

As suggested by Loeb [37], the redshift drift probe can come
true via the wavelength shift of the QSO Lyα absorption
lines, emission spectra of galaxies, and some other radio tech-
niques. There, the ground-based largest optical/near-infrared
telescope E-ELT will provide a continuous monitor from the
Lyα forest in the spectra of high-redshift QSOs [46]. These
spectra are not only immune from the noise of the peculiar
motions relative to the Hubble flow, but also they have a large
number of lines in a single spectrum [47]. According to the
capability of E-ELT, the uncertainties of the velocity drift can
be modeled as [21,47]

σ�υ = 1.35

(
S/N

2370

)−1 (
NQSO

30

)−1/2 (
1 + zQSO

5

)q

cm/s,

(24)

with q = −1.7 for 2 < z < 4, or q = −0.9 for z > 4, where
the signal-to-noise ratio S/N is assumed as 3000, the number
of QSOs NQSO = 30 and zQSO is the redshift at 2 < z < 5.
Following previous work [23,24,26,38], we can obtain the
mock data assumed to be uniformly distributed among the
redshift bins: zQSO = [2.0, 2.8, 3.5, 4.2, 5.0] under the
fiducial model from the best-fit ones by JLA data. With no
specific declaration, the observational time is set as 10 years.

4 Problem of the cosmography

The convergence problem has always been a top priority in
the study of cosmography. According to the requirement of
a Taylor expansion, we will, respectively, perform a related
calculation for data at z < 1 and y < 1. In this section, we
will analyze the convergence issue in current observational
data, and forecast the constraint of future measurement. To
ensure the physical meaning of the constraint, we should
apply a prior on the Hubble parameter,

H(z) > 0,

in our calculation for both the z-redshift and the y-redshift.

4.1 Convergence issue in current data

Using the JLA compilation, we obtain the cosmographic
parameters up to the fourth order. We show the corresponding
results in Figs. 1, 2 and 3 and Table 1.

For the z-redshift, we can roughly distinguish the data and
cosmographic models by residuals in Fig. 3. On the one hand,
most of the data locate at the low redshift, and fit well with the
models. On the other hand, some of the data at high redshift
present a little bigger residual with the cosmographic mod-
els. Thus, more low-z data make the cosmography study more
precise. From the constraints in Table 1, we note that all of
the constraints on the parameter q0 in 1σ confidence level are
negative, which shows a recent accelerating expansion. How-
ever, some recent work has tried to find a slowing down of the
acceleration. Moreover, this novel phenomenon has attracted
much attention [48–53], including the recent work of [54].
Using the dark energy parameterizations, one found that the

Fig. 1 Constraints on cosmographic parameters in the 4 order from
the JLA compilation for redshift z < 1
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Fig. 2 Constraints on cosmographic parameters in the fourth order
from the JLA compilation for y-redshift

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1 order
2 order
3 order
4 order

Fig. 3 Residuals between the cosmographic distance modulus with
different orders and the observational SNIa data. The vertical coordi-
nates �μ(z) = μcos(z) − μobs(z) denotes the residuals

cosmic acceleration may already have peaked, and the expan-
sion may be slowing down from the deceleration parameter
being q0 > 0. In recent work [55,56], a model-independent
analysis on this interesting subject was presented, using the
powerful Gaussian processes technique. It was found that no
slowing down is detected within 2σ C.L. from current data.
Moreover, we analyzed the inconsistency in Ref. [56]. We
further deduced what physical condition should be satisfied
by the observational data [57]. These results are consistent
with the cosmographic constraint from JLA data.

Comparison between Figs. 1 and 2 shows that degen-
eracies among the parameters in the y-redshift are similar
to the z-redshift. The difference is that it provides much
bigger errors on some parameters. Taking the parameter l0
as an example, we find that its absolute value shows an
increasing trend. Moreover, its relative error in the y-redshift

2478.44/2056.97 is also bigger than that of the z-redshift
158.08/149.54. This is consistent with the result in previous
work, namely, the y-redshift brings about worse constraints.

In recent years, much work has focused on the question
of which series truncation fits the data best. In previous work
[13,15,16], one introduced the F-test to find the answer,
by favoring one model, and assessing the other alternative
model. Although it showed that expansion up to the jerk term
is a better description for the observational luminosity dis-
tance, the cosmographic problem is still vague. It is difficult
for us to escape from the maze of cosmography in the accu-
racy and precision. We should underline that a small error
does not mean a credible description, and a large error is not
necessarily a bad thing. For further analysis of this issue, we
recommend the bias–variance trade-off [58]; we have

risk = bias2 + variance

=
N∑
i=1

[μcos(zi ) − μ̃(zi )]2 +
N∑
i=1

σ 2(μcos(zi )) (25)

where μcos(zi ) is the reconstructed cosmographic distance
modulus in different series truncations, μ̃(zi ) is the fiducial
value, σ(μcos(zi )) is the uncertainty of reconstruction. Obvi-
ously, the bias–variance trade-off can reveal more detailed
information. The term bias2 describes its accuracy (about
the deviation from the true values), the variance conveys the
precision (about the errors) of the constraint. Theoretically,
minimizing risk corresponds to a balance between bias and
variance. In cosmology, this promising approach has been
widely utilized to find an effective way of obtaining informa-
tion as regards the dark energy equation of state w(z) [59,60].
In order to investigate the influence from fiducial model on
the risk, we respectively consider the fiducial �CDM model
with �m = 0.305 and wCDM model with w = −1.027 in
the combination of JLA and complementary probes [43].

4.1.1 Accuracy

Accuracy is a deviation from the true value, which can be
expressed by the bias square. In Fig. 4 we show the bias2 of
current data at the basis of fiducial �CDM model. First, we
find that all of the bias are small, which indicates that the cos-
mographic models fit well with the JLA data. It implies that
cosmography is sufficiently accurate to describe the obser-
vational JLA data. This is not difficult to understand; about
99% of the JLA data are at low redshift. Thus, application of
the JLA data in cosmology would be a very useful strategy.
Second, we see that bias square slightly increases for higher
order. Finally, importantly, we find that the z-redshift and
y-redshift both favor the second order, which indicates that
expansion up to the jerk term is in best agreement with the
true values.
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Table 1 Constrained cosmographic parameters by the JLA compilation and mock data within 1σ confidence level

Data q0 j0 s0 l0

Best fit Mean Best fit Mean Best fit Mean Best fit Mean

model: z-redshift

JLA −0.46 −0.46 ± 0.04

−0.45 −0.44 ± 0.09 0.41 0.42 ± 0.24

−0.62 −0.50 ± 0.09 1.93 1.06 ± 0.56 1.77 0.50 ± 1.15

−0.67 −0.58 ± 0.29 2.54 1.45 ± 3.82 3.98 4.97 ± 20.35 19.90 149.54 ± 158.08

model: y-redshift

JLA −0.72 −0.71 ± 0.07

−0.42 −0.45 ± 0.20 −0.15 0.14 ± 1.82

−0.86 −0.88 ± 0.44 7.71 8.64 ± 7.92 81.72 114.83 ± 113.52

−0.78 −0.74 ± 0.45 6.36 6.16 ± 10.06 69.69 89.06 ± 160.80 851.04 2056.97 ± 2478.44

WFIRST σq0 = 0.15 σ j0 = 4.11 σs0 = 69.52 σl0 = 1146.30

Redshift drift σq0 = 0.51 σ j0 = 4.75 σs0 = 242.11 σl0 = 1299.17

1 2 3 4
order

0

0.1

0.2

0.3

0.4

0.5

Fig. 4 Bias square in the z-redshift and y-redshift of the JLA com-
pilation with different cosmographic series truncations at the basis of
fiducial �CDM model

4.1.2 Precision

Precision is usually statistic, and it represents errors. Vari-
ance, the set of errors, is independent of the fiducial model.
In Fig. 5, we plot the variance of the cosmographic model
in the z-redshift and y-redshift. First, variances at low order
in these two redshift spaces are both small, almost zero. It
indicates that current observational data can present a pre-
cise measurement on the parameters q0 and j0. Second,
we note that variance at the third order starts to increase
rapidly, especially for the y-redshift, which means that cur-
rent data cannot give a physical measurement on the s0 term,
even higher orders. However, it has enough information for
us to infer that the universe will continue to accelerate or
slow down. Third, we should admit that variance in the y-
redshift space at the fourth order is larger than that of the
z-redshift.

1 2 3 4
order

0

2

4

6

8

10

va
ria

nc
e

Fig. 5 Variance in the z-redshift and y-redshift of the JLA compilation
with different cosmographic series truncations

4.1.3 Risk

Risk is used to balance the bias square and variance, and
to find which series truncation is the best description of the
observational data. Due to the model dependence of the bias
square, in this section we also investigate the influence of
different fiducial models on the final risk analysis. In Fig. 6,
we plot the risk for fiducial �CDM model and wCDM model.
From the comparison between two panels, we first find that
risk affected by the fiducial model is so little. They both favor
the idea that cosmography up to the j0 term is a better choice
to describe current JLA data. This consequence is consistent
with our previous work via the F-test [15]. It also proves that
the risk analysis is a stable and scientific tool to analyze the
convergence problem.

From the bias–variance trade-off, we conclude that the
JLA data is so precise that the cosmographic model at z-
redshift and y-redshift both can present an estimation with
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Fig. 6 Risk with different cosmographic series truncations in diverse
fiducial models. The panel (a) is for the �CDM model, and the panel
(b) is for the wCDM model

high accuracy. Of course, the introduction of the y-redshift
can improve the cosmography study to a higher-redshift
region, even to the early epoch. With its help, the past uni-
verse can be understood more objectively. Meanwhile, the
risk analysis is also stable. The effects of the redshift param-
eter and fiducial model are not significant.

4.2 Forecasting

The above analysis shows that cosmography at high order
suffers from an unphysical estimation, i.e., a large variance.
We anticipate that future observation is able to give tighter
constraints on the cosmography, with the improvement of
observational precision, thus leading to a relaxation of the
convergence problem. In this section, we forecast the con-
straint from future WFIRST and redshift drift on cosmog-
raphy. In order to test the constraint from the mock dis-
tance modulus with flat errors σμ = 0.15, we also generate
some data following the work in Ref. [18]. The compari-
son in Table 1 shows that future measurements can improve
the constraints. For example, compared with σl0 = 2478.44
from the JLA sample, the redshift drift gives a more robust
constraint on the parameters, e.g., σl0 = 1299.17, almost
improving by double than current JLA data. Due to future
measurements mainly focusing on the high-redshift region,
we make a comparison of the variance for the y-redshift
in Fig. 7. On the one hand, we find that all the future
observations can improve the constraints at low order with
high significant. Especially, the redshift drift can present an
error σq0 ∼ 10−5 for the first order model. On the other
hand, the future observations, including the mock data with
σμ = 0.15 all improve the constraint at high order dramati-
cally. Variances in these cases are much smaller than current
data. Thus, we can see that the bias-trade off is effective
to estimate the cosmographic problem. The future observa-
tions also have the potential to solve the cosmographic prob-
lem.
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Fig. 7 Variance for different cosmographic series truncations in the
y-redshift by current and future observations

5 Values of the cosmography

In previous work, cosmography has been widely used to
reconstruct some special cosmological parameters, because
of its model independence. In this section, we are interested
in investigating its values to report what information we can
obtain from the cosmography, and what we cannot get.

5.1 Deceleration parameter

The deceleration parameter is important for its sharp sense on
the cosmic expansion. Especially, its negative (positive) sign
immediately indicates the accelerating (decelerating) expan-
sion. However, it is not an observable quantity temporarily.
Most studies were performed in multiform parameterized
q(z). Therefore, a model-independent analysis is appreci-
ated.

In the right panel of Fig. 8, we plot the reconstructed
deceleration factor over y-redshift using the best-fit values
of supernova data. We find that the q(y) in various series
truncations are quite different. They strongly depend on the
order of Taylor expansion. Therefore, it is difficult to obtain a
model-independent and stable estimation on the deceleration
parameter via cosmography.

In order to find the reason why we cannot obtain a stable
estimation of the deceleration parameter, we also compare
the cosmographic distance modulus and Hubble parameter
for different orders. For the distance modulus, they are almost
indistinguishable at all redshifts, which indicates that cos-
mography fit well with the observational data. However, for
the Hubble parameter, we can only obtain a relatively sta-
ble estimation at low redshift y < 0.2. For high redshift,
they gradually deviate from each other. When we extract
the information of the deceleration parameter, we only can
obtain a similar estimation at redshift y ≈ 0.1. This compari-
son tells us that despite the cosmographic models fitting well
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Fig. 8 Cosmographic distance modulus, Hubble parameter and deceleration parameter with different orders in the y-redshift

with the data, their contradictions become more and more
prominent, with our increasing requirement on the cosmic
expansion study. Therefore, it is difficult to obtain a more
detailed expansion history via cosmography.

In fact, Fig. 8 implies that a dynamical measurement may
be useful to solve this contradiction. In our previous work
[15], we found that inclusion of Hubble parameter data can
lead to stronger constraints on the cosmographic parame-
ters. In Ref. [61], the authors also showed that the distance
indicator cannot directly measure q0 with both accuracy and
precision. However, the redshift drift possibly does it. There-
fore, it is reasonable for us to anticipate that inclusion of the
dynamical redshift drift could present a much more stable
evaluation on cosmic expansion history.

5.2 Dark energy equation of state

In previous work, cosmography was often used to reconstruct
the dynamical cosmological model. For example, with two
cosmographic parameters (q0, j0), one can derive the con-
stant equation of state (EoS) dark energy model [62],

�m(q0, j0) = 2( j0 − q0 − 2q2
0 )

1 + 2 j0 − 6q0
,

w0(q0, j0) = 1 + 2 j0 − 6q0

−3 + 6q0
. (26)

However, it needs a background model. In order to get an
undamaged map of dark energy, our study is concerned with
the normal cosmological model,

H2(z) = H2
0

[
�m(1 + z)3

+ (1 − �m) exp

[
3
∫ z

0

1 + w(z)

1 + z

]
dz

]
. (27)

In our analysis, we do not impose any style of dark energy,
but the common w(z). Solving Eq. (27), we obtain

1 + w(z) = 1

3

[H2(z) − H2
0 �m(1 + z)3]′(1 + z)

H2(z) − H2
0 �m(1 + z)3

, (28)

where the prime denotes the derivative with respect to red-
shift z. For Eq. (28), we note that the denominator may be
zero for H(z)2 = H2

0 �m(1 + z)3. This case may lead to a
singularity in the EoS reconstruction. In Fig. 9, we plot the
reconstruction of dark energy with different cosmographic
series. In order to investigate the influence of matter density
parameter, we relax parameter �m from 0.25 to 0.35. On the
one hand, we find that cosmography has all favored a cosmo-
logical constant EoS recently. On the other hand, however, a
reliable estimation of w(z) is difficult to obtain. In addition,
we find that w(z) at redshift z ∼ 0.8 shows a sharp change,
independent of the matter density parameter.

Usually, it is difficult to determine the EoS constant or
varying model independently. A model-independent analysis
of the derivative of EoS can be studied using the cosmography

w′ = dw

dz
. (29)

In Fig. 10, we plot the derivative w′(z) by cosmography with
different series. We also consider the parameter �m in a wide
region. At first, we find that w′(z = 0) is not zero in differ-
ent cosmographic models. This indicates that a constant EoS
dark energy model may be inappropriate. Moreover, w′(z)
at low redshift are generally negative. Thus, the cosmog-
raphy may suggest a varying EoS and more complicated
dark energy candidate. A linear EoS like w(z) = w0 + waz
may be improper. According to the above picture, we infer
that cosmography may favor a dark energy with w(z) =
−1 + waz + wbz2 + · · · , where wa < 0 and wb �= 0. How-
ever, an accurate determination on the derivative w′(z) needs
more data to join in, because it also strongly depends on the
cosmographic series truncation.
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Fig. 9 Cosmographic EoS for different orders with matter density �m = 0.25, 0.30 and 0.35, respectively
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Fig. 10 Derivative of dark energy EoS dw/dz for different cosmographic orders with varying parameter �m from 0.25 to 0.35

6 Conclusion and discussion

In the present paper, we analyze the problem of cosmography
using the bias–variance trade-off, and investigate its values.

To solve the convergence issue in cosmography, an
improved redshift y = z/(1 + z) was introduced. Using
the bias–variance trade-off, we find that the y-redshift pro-
duces bigger variances at high orders. For the low cosmo-
graphic order (i.e., first and second order), y-redshift does
not bring about bigger errors, but a nearly identical variance
as z-redshift. For the JLA data, we find that most of them are
distributed in the low-redshift region with high precision.
Therefore, the z-redshift is sufficiently accurate to describe
the data. Although the y-redshift does not present a smaller
bias than the z-redshift for the JLA data, it still can ensure
the correctness of cosmography at high redshift.

Minimizing risk, it suggests that expansion up to the j0
term is the best choice for current supernova data, regard-
less of the z-redshift or y-redshift. We also test the influ-
ence of the fiducial model on risk analysis. The comparison
demonstrates that it is trivial. Although a previous F-test also
obtained a similar result, our paper is not a repeated work
using more data. Our analysis finds a deeper insight in the
convergence issue. First, it not only can tell us the conver-
gence problem is in the accuracy or the precision, but also can
provide us more objective information about how serious the
divergence problem is. Because if the crux lies in the accu-

racy, the convergence problem maybe still cannot be solved
even though more data were included. Second, in previous
work, most focus was on the pursuit of a “sweet spot”, which
has masked the physical meaning of the y-redshift. In our
study, we not only find it is influenced by the distribution of
data, but also forecast whether future observations can solve
the convergence problem. Our analysis in Fig. 8 and Sect. 5.1
also indicates that the dynamical measurement is a potential
clue to solve this problem.

Our forecast finds that future WFIRST and redshift drift
can significantly improve the constraints. Therefore, inclu-
sion of dynamical measurement such as Hubble parameter
data, redshift drift, etc. may be able to improve the constraint
in accuracy and precision with high significance. As studied
in our previous work [15], inclusion of the H(z) data can
lead to stronger constraints on the cosmographic parameters.
This discovery is helpful to understand or solve the conver-
gence issue of supernova data. This is because a dynami-
cal probe like the canonical redshift drift can provide direct
measurement to the cosmic expansion history. While dis-
tance measurement is geometric. As studied in Ref. [63], the
luminosity distance determines the EoS w through a multi-
ple integral relation that smears out much information. For
the redshift drift, it not only directly measures the change
of Hubble parameter, but also can be realized via multiple
wavebands and methods [37,64]. Moreover, it is immune
from extra systematic errors, and does not need photometric
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calibration, etc. Recently, a test in German Vacuum Tower
Telescope demonstrates that the Laser Frequency Combs also
have an advantage with long-term calibration precision, accu-
racy to realize the redshift drift experiment [65].

Our investigation also promotes the study of the values of
cosmography. In previous work, most attention were focus
on a special model. However, our analysis presents an almost
undamaged map of dark energy. It breaks the limitation of
extrapolation to other models. Setting the dark energy w(z)
as free, we find that cosmography cannot give reliable esti-
mations on q(z) and w(z). However, we find that it does
not favor a constant EoS, but a complicated w(z), such as
w(z) = −1 + waz + wbz2 + · · · , where wa < 0 and
wb �= 0. These estimations are useful for modeling the dark
energy.

Cosmography has been an useful tool with great potential
to study the cosmology. For the dark energy, it was usually
reconstructed by parametrization, such as the Chevallier–
Polarski–Linder [66,67], Jassal–Bagla–Padmanabhan [68];
or the non-parameterization, such as the Gaussian processes
[55,69], principal component analysis [60,70]. Cosmogra-
phy is another model-independent method to assess dark
energy models. Moreover, cosmography has also been widely
used in another fields, such as to test the power of supernova
data [71]. Therefore, we have to say that cosmography is an
important method to study the cosmology. Our study pro-
vides a straightforward and scientific reference. Of course,
we will also devote ourselves to improving the cosmography
study in our future work. We would like to study the influ-
ence of the inclusion of BAO and CMB data on cosmogra-
phy. Throughout previous work, we find that many different
observational data or combinations favor the best cosmog-
raphy to second order. In our future work, we will also be
interested in exploring their subtle relations to further under-
stand the cosmography. Moreover, we also have an interest
in improving the cosmographic problem by proposing some
other physical redshift.
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