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Abstract In this paper, we first obtain the higher-dimen-
sional dilaton–Lifshitz black hole solutions in the presence
of Born–Infeld (BI) electrodynamics. We find that there are
two different solutions for the cases of z = n+1 and z �= n+1
where z is the dynamical critical exponent andn is the number
of spatial dimensions. Calculating the conserved and thermo-
dynamical quantities, we show that the first law of thermody-
namics is satisfied for both cases. Then we turn to the study
of different phase transitions for our Lifshitz black holes. We
start with the Hawking–Page phase transition and explore
the effects of different parameters of our model on it for
both linearly and BI charged cases. After that, we discuss
the phase transitions inside the black holes. We present the
improved Davies quantities and prove that the phase transi-
tion points shown by them are coincident with the Ruppeiner
ones. We show that the zero temperature phase transitions
are transitions in the radiance properties of black holes by
using the Landau–Lifshitz theory of thermodynamic fluctu-
ations. Next, we turn to the study of the Ruppeiner geome-
try (thermodynamic geometry) for our solutions. We investi-
gate thermal stability, interaction type of possible black hole
molecules and phase transitions of our solutions for linearly
and BI charged cases separately. For the linearly charged
case, we show that there are no phase transitions at finite
temperature for the case z ≥ 2. For z < 2, it is found that the
number of finite temperature phase transition points depends
on the value of the black hole charge and there are not more
than two. When we have two finite temperature phase tran-
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sition points, there is no thermally stable black hole between
these two points and we have discontinuous small/large black
hole phase transitions. As expected, for small black holes,
we observe finite magnitude for the Ruppeiner invariant,
which shows the finite correlation between possible black
hole molecules, while for large black holes, the correlation
is very small. Finally, we study the Ruppeiner geometry and
thermal stability of BI charged Lifshtiz black holes for dif-
ferent values of z. We observe that small black holes are ther-
mally unstable in some situations. Also, the behavior of the
correlation between possible black hole molecules for large
black holes is the same as for the linearly charged case. In
both the linearly and the BI charged cases, for some choices
of the parameters, the black hole system behaves like a Van
der Waals gas near the transition point.

1 Introduction

It has been over 40 years since Bekenstein and Hawking first
disclosed that black hole can be considered as a thermody-
namic system, with characteristic temperature and entropy
[1–4]. Taking into account the fact that black holes have no
hair, there are no classical degrees of freedom to account
for such thermodynamic properties. It is a general belief that
thermodynamic properties of a system may reflect the statis-
tical mechanics of underlying relevant microscopic degrees
of freedom. But the detailed nature of these microscopic
gravitational states has remained a mystery. The Bekenstein–
Hawking entropy, S = A/(4h̄G), depends on both Planck’s
constant and Newtonian gravitational constant, implying
that the thermodynamics of black holes may relate quan-
tum mechanics and gravity. Recently, there has been some
progress in understanding the microscopic degrees of free-
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dom of the black hole entropy, for example in string the-
ory [5–7] as well as loop quantum gravity [8–10]. But the
accounts of the black hole entropy are not complete and they
only work within some particular models and some special
domains where string theory and loop quantum gravity can
apply. Besides, despite counting very different states, many
inequivalent approaches to quantum gravity obtain identical
results and it is not clear why any counting of microstates
should reproduce the same Bekenstein–Hawking entropy
[11]. The statistical mechanical description of the black hole
entropy is still not elegant.

On the other side, black hole can be heated or cooled
through absorption and evaporation processes. According to
Boltzmann’s insight, if a system can be heated, it must have
microscopic structures. Recently, in [12], possible micro-
scopic structures of a charged anti-de Sitter black hole have
been studied and some kind of interactions between possi-
ble micromolecules have been investigated by an interest-
ing physical tool, the Ruppeiner geometry. Derived from the
thermodynamic fluctuation theory, the Ruppeiner geometry
[13,14] is considered a powerful tool in exploring the possi-
ble interactions between black hole microscopic structures.
The sign of the Ruppeiner invariant R (the Ricci scalar of
the Ruppeiner geometry) was argued to be useful for identi-
fying the physical systems similar to the Fermi (Bose) ideal
gas when R > 0 (R < 0) or the classical ideal gas when
R = 0 [15]. Besides, the sign of the Ruppeiner invariant R
can further be used to interpret the type of dominant interac-
tion between molecules of a thermodynamic system. When
R > 0, there is a repulsive interaction between molecules,
when R < 0 the interaction is attractive, and forR = 0 there
is no interaction in the microstates [16–18]. Moreover, the
magnitude of the Ruppeiner invariant |R| measures the aver-
age number of correlated Planck areas on the event horizon
for a black hole system [19]. For a review of the descrip-
tion of the Ruppeiner geometry in black hole systems, we
refer to [20,21] and the references therein. Further studies of
molecular interactions of black holes, based on the Ruppeiner
geometry, have been carried out in [12,22,23].

The phase transition is another interesting topic in black
holes thermodynamics. Davies discussed the thermodynamic
phase transition of the black holes by looking at the behav-
ior of the heat capacity [24–26]. He claimed that the dis-
continuity of the heat capacity marks a second order phase
transition in black holes. However, it was argued that phys-
ical properties do not show any particularity at this discon-
tinuity point if compared with other heat capacity values;
for example the regularity of the event horizon is not lost
and the black hole internal state remains uninfluenced [27].
Thus, it is hard to accept the discontinuity point of the heat
capacity as a true physical point of the phase transition.
Employing the Landau–Lifshitz theory of thermodynamic
fluctuations [28,29], Pavon and Rubi gave a deep under-

standing of the black hole phase transition [30,31]. They
found that some second moments in the fluctuation of rele-
vant thermodynamic quantities diverge when the black hole
becomes extreme. This divergence shows that the thermody-
namic fluctuation is tremendous and the rigorous meaning
of the thermodynamical quantities is broken down. This is
exactly the characteristic of the thermodynamic phase tran-
sition point. At this phase transition point, the Hawking tem-
perature is zero which indicates that for the extreme black
hole there is only super-radiation but no Hawking radiation,
which is in sharp difference from that of the non-extreme
black holes. Black holes phase transition in the context of
Landau–Lifshitz theory have been investigated in [32,33].
Recently, further differences in dynamical properties before
and after the black hole thermodynamical phase transition has
been disclosed in [34–36]. Also, in [37–42], black hole phase
transitions have been studied from holographic point of view.
A question now arises: how we can further understand this
macroscopic thermodynamic phase transition in black hole
physics? for example whether there is a microscopic explana-
tion of this thermodynamic phase transition. The Ruppeiner
geometry is a possible tool we can use to investigate the
thermodynamic phase transitions from microscopic point of
view. This method is safer to determine true phase transi-
tions than other methods since, regardless of the microscopic
model,R has a unique status in identifying microscopic order
(which is at the foundation of phase transitions at microscopic
level) from thermodynamics [20,21]. Some attempts in this
direction have been reported in [43–54]. In a recent work
[46], it was found that the divergence of the Ruppeiner invari-
ant coincides with the critical point in the phase transition in a
holographic superconductor model. It is interesting to inves-
tigate whether the Ruppeiner geometry [20,21] can present
us further reason to determine which of the thermodynamical
discussions mentioned above is valid for describing the ther-
modynamical phase transition. In particular, we would like to
explore whether the Davies phase transition conjecture can
reflect some special properties in microstructures and be in
consistence with the Ruppeiner geometry description. If the
Davies conjecture does not have the microscopic explana-
tion, we will further think about how to improve the Davies
conjecture to describe the black hole phase transition.

We will employ the black hole in Lifshitz spacetime as
a configuration to study our physical problems mentioned
above. This spacetime was first introduced in [55], which
respects the anisotropic conformal transformation t → λzt ,
�x → λ�x, where z is dynamical critical exponent. For the Lif-
shitz spacetime, it is necessary to include some matter sources
such as massive gauge fields [56–60] or higher-curvature cor-
rections [61] to guarantee the asymptotic behavior of the
Lifshitz black hole. It is difficult to find an analytic Lifshitz
black hole solution for arbitrary z, although some attempts
have been performed [62]. This makes the discussion of ther-
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modynamics for such a black hole difficult. Fortunately, in
Einstein–dilaton gravity with a massless gauge field, it is
possible to find an exact Lifshitz black solution for arbitrary
z [63,64]. This model is suggested in the low energy limit
of string theory [65]. While thermodynamical behaviors of
uncharged and charged Einstein–dilaton–Lifshitz black holes
have been revealed in [63,66] and [64], respectively, ther-
modynamics of uncharged Gauss–Bonnet–dilaton–Lifshitz
solution has been studied in [67]. It is also interesting to study
Lifshitz black hole solutions in the presence of other gauge
fields such as the power-law Maxwell field [68], the logarith-
mic [69] and exponential [70] nonlinear electrodynamics. For
example, thermodynamics and thermal and dynamical stabil-
ities of Einstein–dilaton–Lifshitz solutions in the presence of
power-law Maxwell field have been studied in [71]. In the
context of AdS/CFT [72–74] application, the electrical con-
ductivity were explored for exponentially [75] and logarith-
mic [76] charged Lifshitz solutions. In the present work, we
shall consider the Born–Infeld (BI) nonlinear electrodynam-
ics in the context of Einstein–dilaton–Lifshitz black holes.
The motivation for considering the BI-dilaton action comes
from the fact that the dynamics of D-branes and some soli-
ton solutions of supergravity are governed by the BI action
[77–82]. Besides, the low energy limit of open superstring
theory suggest the BI electrodynamic action to be coupled
to a dilaton field [77–79]. It is surprising that many years
before the appearance of the BI action in superstring theory,
in the 1930s, this nonlinear electrodynamics was introduced
for the first time, with the aim of solving the infinite self-
energy problem of a point-like charged particle by imposing
a maximum strength for the electromagnetic field [83].

In this paper, we will first look for a general (n + 1)-
dimensional Lifshitz black hole solution in the context of
Einstein–dilaton gravity in the presence of BI electrodynam-
ics. We will show that the general metric function has dif-
ferent solutions for z = n + 1 and z �= n + 1 cases. It is
important to note that the difference in the metric function
has not been observed in the previous studies on Lifshitz–
dilaton black holes [71,75,76]. Based on this general solu-
tion, we will study the thermodynamics of Lifshitz–dilaton
black holes coupled to a linear Maxwell field and BI nonlin-
ear electrodynamics. We will show that the Hawking–Page
phase transition [84] exists both in the presence of linear and
nonlinear electrodynamics. There are some attempts to study
phase transitions of uncharged Lifshitz solutions for fixed z
[85] or in three [86] and four [87] dimensions. The Hawking–
Page phase transition revealed in this paper is interesting,
since it depends on different values of z in different space-
time dimensions in the presence of linear Maxwell and non-
linear BI electrodynamic fields. We will further concentrate
our attention on understanding the thermodynamic phase
transition from microstructures. We shall examine the rela-
tion between the Ruppeiner geometry and thermodynamical

descriptions of the phase transition such as the Davies conjec-
ture and the Landau–Lifshitz method. We try to give more
microscopic understanding of the thermodynamical phase
transitions in the black hole system. We explore the thermo-
dynamic geometry (Ruppeiner geometry) for linearly and
nonlinearly charged Lifshitz solutions separately and show
the properties of interactions between possible black hole
molecules. To the best of our knowledge, there is no study of
thermodynamic geometry on Lifshitz solutions in the litera-
ture. Interestingly enough, by studying Ruppeiner geometry,
we have found that our solutions show the Van der Waals like
behavior near critical point in some cases.

The layout of the paper is as follows. In the next sec-
tion, we give the basic field equations and obtain the BI
charged Lifshitz–dilaton black hole solutions. In Sect. 3, we
first explore the satisfaction of the first law of thermody-
namics for Lifshitz–dilaton black holes in the presence of BI
electrodynamics. Then we study different phase transitions
including the Hawking–Page phase transition and phase tran-
sition at zero temperature for linearly and BI charged cases.
In Sect. 4, we investigate thermodynamic geometry of the
obtained solutions for linearly and nonlinearly BI charged
cases by adopting the Ruppeiner approach. We finish with a
summary and closing remarks in Sect. 5.

2 Action and asymptotic Lifshitz solutions

In this section, we intend to obtain exact (n+1)-dimensional
dilaton–Lifshitz black holes in the presence of BI nonlin-
ear electrodynamics. Our ansatz for the line elements of the
spacetime is [64,88]

ds2 = −r2z f (r)

l2z
dt2 + l2dr2

r2 f (r)
+ r2d�2

n−1, (1)

where z(≥ 1) is the dynamical critical exponent and

d�2
n−1 = dθ2

1 +
n−1∑

i=2

dθ2
i

i−1∏

j=1

sin2 (
θ j

)

is an (n − 1)-dimensional hypersurface with constant curva-
ture (n − 1)(n − 2) and volume ωn−1. As r → ∞, the line
elements ( 1) reduce asymptotically to the Lifshitz spacetime,

ds2 = −r2zdt2

l2z
+ l2dr2

r2 + r2d�2
n−1. (2)

On the other side, as pointed out above, we would like to
consider BI nonlinear electrodynamics. In the absence of the
dilaton field, the BI Lagrangian density is written as [83]

L = 4β2

(
1 −

√

1 + F

2β2

)
, (3)

123



423 Page 4 of 21 Eur. Phys. J. C (2017) 77 :423

where β is the Born–Infeld parameter related to the Regge
slope α′ as β = 1/

(
2πα′). F = FμνFμν is Maxwell invari-

ant in which Fμν = ∂[μAν] where Aμ is electromagnetic
potential. One of the effects of the presence of a dilaton field
is its coupling with the electromagnetic field. Thus, in the
presence of the dilaton field we deal with a modified form
for the BI Lagrangian density including its coupling with the
dilaton scalar field � [89,90],

L(F,�) = 4β2e4λ�/(n−1)

⎛

⎝1 −
√

1 + e−8λ�/(n−1)F

2β2

⎞

⎠ , (4)

where λ is a constant. The Lagrangian density of the string-
generated Einstein–dilaton model [65] with two Maxwell
gauge fields [64] in the presence of BI electrodynamics can
be written in an Einstein frame as

L = 1

16π

{
R − 4

n − 1
(∇�)2 − 2�

−
2∑

i=1

e−4�λi /(n−1)Hi + L(F,�)

}
, (5)

where R is the Ricci scalar and � and the λi are some
constants. In Lagrangian (5), Hi = (Hi )μν (Hi )

μν where
(Hi )μν = ∂[μ (Bi )ν] and (Bi )μ is gauge potential. In the
large β limit, L recovers the Einstein–dilaton–Maxwell
Lagrangian in its leading order [64,71]

lim
β→∞ 16πL = · · · − e−4λ�/(n−1)F

+e−12λ�/(n−1)F2

8β2 + O

(
1

β4

)
. (6)

Varying the action S = ∫
M dn+1x

√−gL with respect to the
metric gμν , the dilaton field � and electromagnetic potentials
Aμ and (Bi )μ leads to the following field equations:

Rμν − gμν

n − 1

{
2� + 2LF F − L(F,�)

−
2∑

i=1

e−4�λi /(n−1)Hi

}

− 4

n − 1
∂μ�∂ν� + 2LF FμλF

λ
ν

− 2
2∑

i=1

e−4λi�/(n−1) (Hi )μλ (Hi )
λ
ν = 0, (7)

∇2� + n − 1

8
L� +

2∑

i=1

λi

2
e−4λi�/(n−1)Hi = 0, (8)

�μ

(
LF F

μν
) = 0, (9)

�μ

(
e−4λi�/(n−1) (Hi )

μν
)

= 0, (10)

where we use the convention XY = ∂X/∂Y . Using the metric
ansatz (1), electromagnetic field equations (9) and (10) can
be solved immediately as

Frt = qβe4λ�/(n−1)r z−n

ϒ
, (11)

(Hi )r t = qir
z−ne4λi�/(n−1), (12)

where ϒ = √
1 + q2l2z−2/(β2r2n−2), and �(r) can be

obtained by subtracting (t t) and (rr ) components of Eq. (7 )
and solving the resulting equation. We find

�(r) = (n − 1)
√
z − 1

2
ln

( r
b

)
. (13)

Substituting Eqs. (11), (12) and (13) in the field equations
(7) and (8), one can solve the equations for f (r) to obtain

f (r) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − m
rn+z−1 + (n−2)2l2

(n+z−3)2r2 + 4β2l2b2z−2

r2z−2(n−1)(n−z+1)
− 4β2l2b2z−2

(n−1)rn+z−1

∫
ϒrn−zdr, for z �= n + 1,

1 − m
r2n + (n−2)2l2

4(n−1)2r2 − 4β2b2nl2

(n−1)2r2n

[
1 − ϒ + ln

( 1+ϒ
2

)]
, for z = n + 1,

(14)

where we should set

λ = −√
z − 1, λ1 = n − 1√

z − 1
, λ2 = n − 2√

z − 1
,

q2
1 = −� (z − 1) b2(n−1)

(z + n − 2) l2(z−1)
, q2

2 = (n − 1)(n − 2)(z − 1)b2(n−2)

2(z + n − 3)l2(z−1)
,

� = − (n + z − 1)(n + z − 2)

2l2
, (15)

so that the field equations are fully satisfied. In the solution
(14), m is a constant which is related to the total mass of
black brane as we will see in next section. The integral of
the last term of f (r) for z �= n + 1 can be done in terms of
hypergeometric function. Thus, f (r) can be written as

f (r) = 1 − m

rn+z−1 + (n − 2)2l2

(n + z − 3)2r2 + 4b2z−2l2β2(1 − ϒ)

(n − 1)(n − z + 1)r2z−2

+ 4q2b2z−2l2zϒ

(n + z − 3)(n − z + 1)r2(n+z−2)

× F
(

1,
2n + z − 4

2n − 2
,

3n + z − 5

2n − 2
, 1 − ϒ2

)
. (16)

Note that solution (16) obviously satisfies the fact that
f (r) → 1 as r → ∞ (note that F (a, b, c, 0) = 1). The
behavior of f (r) for large β is
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f (r) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − m
rn+z−1 + (n−2)2l2

(n+z−3)2r2 + 2q2b2z−2l2z

(n−1)(n+z−3)r2n+2z−4 − q4b2z−2l4z−2

4(n−1)(3n+z−5)β2r4n+2z−6 + O
(

1
β4

)
, for z �= n + 1,

1 − m
r2n + (n−2)2l2

4(n−1)2r2 + q2b2nl2n+2

(n−1)2r4n−2 − q4b2nl4n+2

8(n−1)2β2r6n−4 + O
(

1
β4

)
, for z = n + 1.

(17)

which reproduces the result of [71] for every z in linear
Maxwell case. The behaviors of the metric function for
z = n + 1 and z �= n + 1 have been depicted in Fig. 1a
and b, respectively. It is notable to mention that in the case of
z = n + 1, there is no Schwartzschild-like black hole since
in this case f (r) goes to positive infinity as r goes to zero.
However, for z �= n + 1, we may have Schwartzschild-like
black hole (dash-dotted line in Fig. 1a) in addition to non-
extreme (solid line) and extreme (dotted line) black holes
and naked singularity (dashed line). For non-extreme case,
there are two inner (Cauchy) and outer (event) horizons. In
both Fig. 1a and b, we see that the larger the nonlinearity
parameter β is, the smaller the distance between two inner
and outer horizons is so that, for large enough β, we have
just one horizon (extreme case) or naked singularities. The
Schwartzschild-like case occurs for lower β’s in the case of
z �= n + 1 as Fig. 1a shows.

As one can see in (17), the fourth term in expansions
for both z = n + 1 and z �= n + 1 cases reproduce the
charge term of [71] in linear Maxwell case as one expects.
The temperature of the black hole horizon can be obtained
via

T = 1

2π

√
−1

2
∇bχa∇bχa

∣∣∣∣∣
r=r+

, (18)

where χ = ∂t is the Killing vector and r+ is the radius of
event horizon. Using (18), one can calculate the Hawking
temperature as

T = r z+1 f ′

4πlz+1

∣∣∣∣
r=r+

= (n + z − 1)r z+
4πlz+1 + (n − 2)2l1−z

4π(n + z − 3)r2−z+

+β2b2z−2r2−z+ (1 − ϒ+)

π(n − 1)lz−1 , (19)

where prime denotes the derivative with respect to r and
ϒ+ = ϒ (r = r+). For the temperature one has the same
formula as (19) for the two cases z = n + 1 and z �= n + 1.
One can check that, for large β, (19) reduces to the tempera-
ture of Einstein–Maxwell–dilaton–Lifshitz black holes [71],
namely

T = (n + z − 1)r z+
4πlz+1 + (n − 2)2l1−z

4π(n + z − 3)r2−z+

− q2lz−1b2z−2

2π(n − 1)r2n+z−4+
+ q4l3z−3b2z−2

8π(n − 1)r4n+z−6+ β2
+ O

(
1

β4

)
.

(20)

The entropy of the black holes can be calculated by using
the area law of the entropy [2,91,92] which is applied to
almost all kinds of black holes in Einstein gravity including
dilaton black holes [93–96]. Therefore, the entropy of the
black brane per unit volume ωn−1 becomes

S = rn−1+
4

. (21)

Having Eqs. (11), (13) and (15) at hand, we can find electro-
magnetic gauge potential At = ∫

Frtdr in terms of hyperge-
ometric function as

At (r) = − qb2z−2

(n + z − 3)rn+z−3 F
(

1

2
,
n + z − 3

2n − 2
,

3n + z − 5

2n − 2
, 1 − ϒ2

)
.

(22)

The large β behavior of gauge potential is in agreement with
[71]

At (r) = − qb2z−2

(n + z − 3)rn+z−3 + q3b2z−2l2z−2

(3n + z − 5) r3n+z−5β2
+ O

(
1

β4

)
.

(23)

In next section, we will study thermodynamics of dila-
ton Lifshitz black holes in the presence of BI electrodynam-
ics by seeking for satisfaction of thermodynamics first law
through calculation of conserved and thermodynamic quan-
tities. We also show that our Lifshitz solutions can exhibit the
Hawking–Page phase transition. Then we discuss the inside
phase transitions of our Lifshitz black holes.

3 Thermodynamics of Lifshitz black holes

3.1 First law of thermodynamics

This subsection is devoted to a study of the first law of ther-
modynamics for Lifshitz–dilaton black hole solutions in the
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(a) (b)

Fig. 1 The behavior of f (r) versus r for l = 1, b = 0.8 and q = 1.3

presence of BI nonlinear electrodynamics. As the first step,
we calculate the fundamental quantity for thermodynamics
discussions namely mass. For this purpose, we apply the
modified subtraction method of Brown and York (BY) [97–
99]. In order to use this method, the metric should be written
in the form

ds2 = −X (R)dt2 + dR2

Y (R)
+ R2d�2

n−1. (24)

For our case, it is clear that R = r and thus

X (R) = r(R)2z f (r(R))

l2z
, Y (R) = r(R)2 f (r(R))

l2
. (25)

The metric of background is chosen to be the Lifshitz metric
(24) i.e.

X0(R) = r(R)2z

l2z
, Y0(R) = r(R)2

l2
. (26)

The quasilocal conserved mass can be obtained through

M = 1

8π

∫

B
d2ϕ

√
σ

{
(Kab − Khab)

−
(
K 0
ab − K 0h0

ab

) }
naξb, (27)

where σ is the determinant of the boundary B metric, K 0
ab

is the background extrinsic curvature, na is the timelike unit
normal vector to the boundary B and ξb is a timelike Killing
vector field on the boundary surface. Applying the above
modified BY formalism, the mass of the space-time per unit
volume ωn−1 can be calculated as

M = (n − 1)m

16πlz+1 , (28)

where the mass parameter m can be obtained from the fact
that f (r+) = 0 as

m(r+) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

rn+z−1+ + (n−2)2l2rn+z−3+
(n+z−3)2 + 4b2z−2l2β2(1−ϒ+)

(n−1)(n−z+1)r z−n−1+
+ 4q2b2z−2l2zϒ+

(n+z−3)(n−z+1)rn+z−3+
F

(
1, 2n+z−4

2n−2 , 3n+z−5
2n−2 , 1 − ϒ2+

) for z �= n + 1,

r2n+ + (n−2)2l2r2n−2+
4(n−1)2 − 4β2b2nl2

(n−1)2

[
1 − ϒ+ + ln

(
1+ϒ+

2

)]
for z = n + 1.

(29)

Now, we turn to a calculation of the electric charge of the
solution. Using the Gauss law, we can calculate the electric
charge via

Q = 1

4π

∫
rn−1LF Fμνn

μuνd�, (30)

where

nμ = 1√−gtt
dt = lz

r z
√

f (r)
dt,

uν = 1√
grr

dr = r
√

f (r)

l
dr,

are, respectively, the unit spacelike and timelike normals to
the hypersurface of radius r . Using (30), the charge per unit
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volume ωn−1 can be computed as

Q = qlz−1

4π
. (31)

The electrostatic potential difference (U ) between the hori-
zon and infinity is defined as

U = Aμχμ
∣∣r→∞ − Aμχμ

∣∣
r=r+ . (32)

Using Eqs. (22) and (32), one can obtain the electric potential

U = qb2z−2

(n + z − 3)rn+z−3+
F

(
1

2
,
n + z − 3

2n − 2
,

3n + z − 5

2n − 2
, 1 − ϒ2+

)
,

(33)

which is the same for the cases z = n + 1 and z �= n + 1. In
order to investigate the first law of black hole thermodynam-
ics, we should obtain the Smarr-type formula for mass (28).
With Eqs. (29), (31) and (21) at hand, the mass can be writ-
ten as a function of the extensive thermodynamic quantities
S and Q in the form of

M (S, Q) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(n−1)(4S)(n+z−1)/(n−1)

16πlz+1 + (n−1)(n−2)2(4S)(n+z−3)/(n−1)

16πlz−1(n+z−3)2 + β2(4S)(n−z+1)/(n−1)(1−�)

4πlz−1b2(1− z)(n−z+1)

+ 4(n−1)πQ2b2z−2l1−z�

(n+z−3)(n−z+1)(4S)(n+z−3)/(n−1)F
(

1, 2n+z−4
2n−2 , 3n+z−5

2n−2 , 1 − �2
)

,
for z �= n + 1,

(n−1)(4S)2n/(n−1)

16πln+2 + (n−2)2S2

4π(n−1)ln − β2b2n

4π(n−1)ln
[
1 − � + ln

( 1+�
2

)]
, for z = n + 1,

(34)

where � = √
1 + π2Q2/(β2S2). Calculations show that

intensive quantities

T =
(

∂M

∂S

)

Q
and U =

(
∂M

∂Q

)

S
, (35)

coincide with those computed by Eqs. (19) and (33). There-
fore, the thermodynamics quantities satisfy the first law of
thermodynamics,

dM = T dS +UdQ, (36)

for the two solutions z = n + 1 and z �= n + 1.
In the next part of this section, we will discuss the

Hawking–Page and inside black hole phase transitions for
our Lifshitz solutions.

3.2 Black hole phase transitions

3.2.1 Hawking–Page phase transition

As it is clear from Fig. 1, there are some parameter choices for
which we have extreme black holes and therefore zero tem-

perature. In addition, as one can see from Fig. 2, there are
some other choices of the parameters that show a non-zero
positive minimum for temperature Tmin. The influences of
different parameters on Tmin can be seen from Fig. 2. When
we increase the dimension n, Tmin increases too, while it
decreases with increasing z. Comparing Fig. 2a and b, one
finds that the effect of nonlinearity implies increasing in Tmin.
The behaviors illustrated in Fig. 2 show a Hawking–Page
phase transition for the obtained solutions. Let us have a
closer look on Fig. 2. In the first part of the T –S curves
where we have small black holes (note that S = rn−1+ /4),
∂T/∂S < 0, which implies negative heat capacity and there-
fore small black holes are thermally unstable. But in the large
black hole part of the curves we have a positive heat capac-
ity and therefore large black holes are thermally stable. In
addition to small and large black holes, we have a thermal
Lifshitz or radiation solution too. Since small black holes are
thermally unstable, the system has a choice between large
black hole and thermal Lifshitz solutions and chooses one
of them according to the Gibbs free energy. The Gibbs free
energy,

G (T,U ) = M − T S − QU, (37)

can be obtained by using (19), (21), (28), (31) and (33). Fig-
ures 3 and 4 show the behavior of the Gibbs free energy
for some choices of the parameters. The two up and bottom
branches correspond to small and large black holes, respec-
tively. The positive Gibbs free energy shows that the system
is in a radiation phase, while there is a Hawking–Page phase
transition at the intersection point of the bottom branch and
G = 0. This fact that the Gibbs free energy of large black
holes always has the lower energy in comparison to small
ones confirms the above arguments as regards their thermal
stability. As one moves rightward on the temperature axis
in the G–T diagram, first one has the radiation regime or
the thermal Lifshitz solution for which G > 0. At G = 0,
the Hawking–Page phase transition between the thermal Lif-
shitz case and large black holes occurs, and for G < 0 we are
at the large black hole phase. The temperature at which the
phase transition occurs is called the Hawking–Page temper-
ature THP. The effects of a change in the electric potential U ,
the critical exponent z and the nonlinearity parameter β can
be seen from Figs. 3 and 4. Increasing the electric potentialU
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(a) (b)

Fig. 2 The behavior of T versus S for l = 1, b = 1

(a) (b)

Fig. 3 The behavior of G versus T for linearly charged case with l = 1, b = 1 and n = 3

(a) (b)

Fig. 4 The behavior of G versus T for nonlinearly charged case with l = 1, b = 1 and n = 3

and the critical exponent z makes THP lower. Also, the lower
the nonlinearity parameter β is, the lower the Hawking–Page
temperature THP is. Note that a lower β makes the electro-
dynamics more affected by nonlinearity.

3.2.2 Phase transitions inside the black hole

There are at least three well-known ways to discuss the phase
transitions inside the black hole. Two of these ways are based
on the macroscopic point of view and one of them is based

on the microscopic viewpoint. The two macroscopic ways
are Davies [24] and Landau–Lifshitz [28,29] methods, which
discuss, respectively, the behavior of heat capacities and ther-
modynamic fluctuations. Thermodynamic geometry or Rup-
peiner geometry [16,20,21] is the microscopic way; it dis-
cusses the phase transitions in addition to type and strength of
interactions. In what follows, we discuss the relation between
the phase transitions predicted by Ruppeiner geometry and
the Davies method. Next, we will turn to the Landau–Lifshitz
theory of thermodynamic fluctuations.
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Ruppeiner and Davies phase transitions

In order to discuss thermodynamic geometry, one should
study the divergences, sign and magnitude of Ricci scalar
corresponding to Ruppeiner metric (usually called Ruppeiner
invariant) to determine phase transitions and strength and
type of dominated interaction between possible black hole
molecules [16,20,21]. To do that, we define the Ruppeiner
metric in (M , Q) space where the entropy S is the thermo-
dynamic potential,

gαβ = − ∂2S

∂Xα∂Xβ
, Xα = (M, Q). (38)

The above metric can also be rewritten in the Weinhold form,

gαβ = 1

T

∂2M

∂Y α∂Y β
, Y α = (S, Q). (39)

The Ruppeiner invariant corresponding to (39) can be
expressed in a general form as

R = N(S, Q)

D(S, Q)
, (40)

where N and D stand for the numerator and the denomi-
nator of R. The divergences of the Ruppeiner invariant is

determined by the roots of D, equal to T
[
HM

S,Q

]2
where

HM
S,Q = MSSMQQ − M2

SQ is the determinant of the Hes-

sian matrix and XY Z = ∂2X/∂Y ∂Z . Of course, at these
divergence points the numerator N should be finite. These
divergences show both zero temperature and vanishingHM

S,Q .

The root of HM
S,Q may show the boundary between thermal

stability and instability. For thermal stability, in addition to
positivity of the determinant of the Hessian, MQQ and MSS

should be positive too [100,101].
It is remarkable that at the point where MSS vanishes or

equivalently heat capacity at constant charge CQ diverges,
we have a thermally unstable system due to negativity of
HM

S,Q if MSQ �= 0 (which occurs in many black hole sys-
tems). Thus, the heat capacity at constant charge CQ can-
not be a suitable thermodynamic quantity to show the phase
transition of such systems when we have two changing ther-
modynamic parameters, for instance S and Q. There is some
work in the literature (for instance [102]) in which the cor-
rectness of the Ruppeiner method for recognizing the phase
transitions has been judged by comparing the Ruppeiner and
CQ transition points. This procedure of course seems to be
incorrect according to what we pointed out above. Also, as
we discussed in the introduction, the divergences of R are
safer if we determine phase transitions. On the other hand,
in [43,48], the authors have suggested some suitable ther-
modynamic quantities to show the phase transitions pre-

dicted by the Ruppeiner invariant. These quantities are the
specific heat at constant electrical potential, CU , the ana-
log of the volume expansion coefficient, α, and the ana-
log of the isothermal compressibility coefficient κT defined
as

CU = T

(
∂S

∂T

)

U
, α = 1

Q

(
∂Q

∂T

)

U
, κT = 1

Q

(
∂Q

∂U

)

T
.

(41)

As one can see in the Appendix, these thermodynamic quan-
tities have the forms

CU = T
MSS

HM
S,Q

, α = − 1

Q

MSQ

HM
S,Q

, κT = −α
∂T

∂U

∣∣∣∣
Q

. (42)

It is obvious that these quantities show the same phase
transitions as the Ruppeiner geometry because all of them
diverge at roots of HM

S,Q and CU vanishes at zero tempera-
ture where R diverges. To show the coincidence of the Rup-
peiner phase transitions and CU divergences, some proofs
have been presented in [50,54]. The above quantities can be
considered as improved Davies quantities [24] which show
the phase transitions to coincide with the Ruppeiner ones. In
the next part, we study the Landau–Lifshitz theory of ther-
modynamic fluctuations to explore the possible signature of
black hole phase transitions and the properties of black hole
radiance.

Landau–Lifshitz theory (non-extreme/extreme phase transi-
tion)

Here, we seek any possible effect of a transition on black
hole radiance by using the Landau–Lifshitz theory of ther-
modynamic fluctuations [28,29]. We focus on the (3 + 1)-
dimensional linearly charged case. The extension to higher-
dimensional or nonlinearly charged cases is trivial and gives
no novel result. Based on Landau–Lifshitz theory [28,29],
in a fluctuation–dissipative process, the flux Ẋi of a given
thermodynamic quantity Xi is given by

Ẋi = −
∑

j

�i jχ j , (43)

where a dot shows the temporal derivative and χi and �i j

are, respectively, the thermodynamic force conjugate to the
flux Ẋi and the phenomenological transport coefficients.
In addition, the rate of entropy production is expressed
by

Ṡ =
∑

i

±χi Ẋi , (44)
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where “+” (“−”) holds for the entropy rate contributions
which come from the non-concave (concave) parts of S. The
second moments corresponding to the flux fluctuations are
(we set kB = 1)

〈
δ Ẋiδ Ẋ j

〉 = (
�i j + � j i

)
δi j , (45)

where the mean value with respect to the steady state is
denoted by the angular brackets and the fluctuations δ Ẋi are
the spontaneous deviations from the value of steady state〈
Ẋi

〉
. To guarantee that the correlations are zero when two

fluxes are independent, the Kronecker δi j is put in Eq. (45).
According to [71], the mass M , electric potential energy

U and temperature T can be obtained for (3+1)-dimensional
linearly charged case as

M = (4S)(z+2)/2

8πlz+1 + (4S)z/2

8π z2lz−1 + 2πQ2b2z−2

zlz−1(4S)z/2 , (46)

U = πb2z−2Q

z2z−2lz−1Sz/2 and T = 2z−4�

π zlz−1Sz/2+1 , (47)

where

� = Sz + 4z(z + 2)Sz+1l−2 − 42−z zπ2b2z−2Q2.

We know that in extreme black hole case, the Hawking tem-
perature on the event horizon vanishes and therefore in this
case we have � = 0. Using Eq. (46), we can obtain the
entropy production rate as

Ṡ(M, Q) = χM Ṁ − χQ Q̇, (48)

where

χM = π zlz−1Sz/2+1

2z−4�
and χQ = π2b2z−2QS

4z−2�
.

The mass loss rate is given by [103]

dM

dt
= −bασT 4 +U

dQ

dt
. (49)

The first term on the right side of Eq. (49) is the thermal
mass loss corresponding to Hawking radiation, which is just
the Stefan–Boltzmann law, with b = π2/15 (we set h̄ =
1) as the radiation constant. The constant α depends on the
number of species of massless particles and the quantity σ is
the cross-section of geometrical optics. The second term on
the right side of Eq. (49) is responsible for the loss of mass
corresponding to charged particles. In fact, it is the UdQ
term which arises in the first law of black hole mechanics.

With references to what was explained and computed
above, one can calculate the second moments or correlation
functions of the thermodynamical quantities,

〈
δṀδṀ

〉 = − 2z−3�

π zlz−1Sz/2+1 Ṁ,
〈
δ Q̇δ Q̇

〉 = 22z−5b2−2z�

π2SQ
Q̇,

〈
δṀδ Q̇

〉 = U
〈
δ Q̇δ Q̇

〉
, (50)

〈
δ Ṡδ Ṡ

〉 = π2z2l2z−2Sz+2

4z−4�2

[〈
δṀδṀ

〉 + π2b4z−4Q2

4z−2z2l2z−2Sz

× 〈
δ Q̇δ Q̇

〉 − πb2z−2Q

2z−3zlz−1Sz/2

〈
δṀδ Q̇

〉]

= −π zlz−1Sz/2+1

2z−5�

[
Ṁ + πb2z−2Q

z2z−2lz−1Sz/2 Q̇

]
, (51)

〈
δṪ δṪ

〉 =
[
(z − 2)Sz + 4z2(z + 2)l−2Sz+1 + π2z(z + 2)42−zb2z−2Q2

]2

4S2�2
〈
δṀδṀ

〉

+42−zπ2b4z−4Q2
[
(z − 1)Sz + 4z2(z + 2)l−2Sz+1 + π2z42−zb2z−2Q2

]2

z2l2z−2Sz+2�2
〈
δ Q̇δ Q̇

〉

−πb2z−2Q
[
(z − 1)Sz + 4z2(z + 2)l−2Sz+1 + π2z42−zb2z−2Q2

] [
(z − 2)Sz + 4z2(z + 2)l−2Sz+1 + π2z(z + 2)42−zb2z−2Q2

]

z2z−2lz−1Sz/2+2�2
〈
δṀδ Q̇

〉

= − 2z−5

π zlz−1Sz/2+3�

{[
(z − 2)Sz + 4z2(z + 2)l−2Sz+1

+ π2z(z + 2)42−zb2z−2Q2
]2

Ṁ

− πb2z−2Q

2z−4zlz−1Sz/2

[
(z − 1)Sz + 4z2(z + 2)l−2Sz+1

+ π2z42−zb2z−2Q2
] [

Sz − 16π24−z Q2b2z−2z(z + 1)
]
Q̇

}
, (52)
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〈
δ ṠδṪ

〉 = π zSz/2
[
(z − 2)Sz + 4z2(z + 2)l−2Sz+1 + π2z(z + 2)42−zb2z−2Q2

]

2z−3lz−1�2
〈
δṀδṀ

〉

+π3b4z−4Q2
[
(z − 1)Sz + 4z2(z + 2)l−2Sz+1 + π2z42−zb2z−2Q2

]

z23z−8lz−1Sz/2�2
〈
δ Q̇δ Q̇

〉

−π2b2z−2Q
[
(3z − 4)Sz + 12z2(z + 2)l−2Sz+1 + π2z(z + 4)42−zb2z−2Q2

]

22z−5�2
〈
δṀδ Q̇

〉

= −
[
(z − 2)Sz + 4z2(z + 2)l−2Sz+1 + π2z(z + 2)42−zb2z−2Q2

]

l2z−2S�

×
[
Ṁ + πb2z−2lz−1Q

2z−2zS
1
2 z

Q̇

]
. (53)

It is clear that the second moments
〈
δ Ṡδ Ṡ

〉
,

〈
δṪ δṪ

〉
and〈

δ ṠδṪ
〉

diverge for the extreme black hole case where �

vanishes (see Eq. 47). It means that there is a phase tran-
sition in this case. This phase transition is between extreme
and non-extreme black holes for which we have a sudden
change in emission properties. In the non-extreme case, the
black hole can give off particles and radiation through both
spontaneous Hawking emission and superradiant scattering,
whereas in the extreme case, the black hole can just radiate
via superradiant scattering.

As one can see from Eq. (49), Ṁ and Q̇ are related. There-
fore, all of the above second moments can be reexpressed in
terms of Q̇. Let us calculate Q̇ for our case. The rate of charge
loss can be stated as

−dQ

dt
= e

∫ ∞

r+

∫ 2π

0

∫ π

0

√−g�dθdφdr, (54)

where � is the rate of electron–positron pair creation per four-
volume and e is charge of electron. According to Schwinger’s
theory [104] for (3 + 1) dimensions, the rate of electron–
positron pair creation in a constant electric field E is

� = 4e2b4z−4

πl2z−2 E2 exp

(
− 1

EQ0

) [
1 + O

(
e3E

m2

)
+ · · ·

]
,

(55)

where Q0 = 4πeb2z−2/πm2lz−1 and m is the mass of elec-
tron. In the presence of linear Maxwell electrodynamics, the
electric field is E = Q/r z+1 and therefore

� = 4e2b4z−4Q2

πl2z−2r2z+2 exp

(
− r z+1

QQ0

)

×
[

1 + O

(
e3Q

m2r z+1

)
+ · · ·

]
. (56)

Combining Eqs. (55) and (56), we arrive at

dQ

dt
= −16e3b4z−4Q(z+2)/(z+1)

(z + 1)l3z−3Qz/(z+1)
0

�

[
− z

z + 1
,
r z+1+
QQ0

]
, (57)

where � [a, b] is incomplete gamma function. When r+ 

Q, Eq. (57) reduces to

dQ

dt
≈ − 64e4b6z−6Q3

(z + 1)m2l4z−4r2z+1+
exp

(
− r z+1+
QQ0

)
+ · · · , (58)

where we have used

�

[
− z

z + 1
, x

]
≈ exp (−x) x1/(z+1)

×
[

1

x2 + O

(
1

x3

)
+ · · ·

]
, (59)

in which x−1 � 1.
In the following section, we turn to the study of thermody-

namic geometry of our black hole solutions to figure out the
behavior of the black hole’s possible molecules and phase
transitions.

4 Ruppeiner geometry

In this section we study thermodynamic geometry of the
Lifshitz–dilaton black holes for linearly Maxwell and non-
linearly BI gauge fields, separately. We have introduced this
method in Sect. 3.2.2 with focus on the study of the phase
transitions which occur at divergence of the Ruppeiner invari-
ant R. In addition to divergences, R has other properties
which give us information about thermodynamic of the sys-
tem. The sign of R gives us the information about the dom-
inated interaction between possible black hole molecules,
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while its magnitude measures the average number of corre-
lated Planck areas on the event horizon [16,19–21]. R > 0
means the domination of repulsive interaction, R < 0 shows
the attraction dominated regime and when R vanishes the
system behaves like an ideal gas i.e. there is no interaction.
In the following, we first study thermodynamic geometry in
the presence of linear Maxwell electrodynamics. Then we
extend our study to nonlinearly charged black holes where
BI electrodynamics has been employed. There is just a nec-
essary comment. As we stated before in Sect. 3.2.2, for ther-
mal stability, MQQ , MSS and HM

S,Q = MSSMQQ − M2
SQ

should be positive [100,101]. One can show that the positiv-
ity of HM

S,Q and MQQ (MSS) imposes the positivity of MSS

(MQQ). Therefore, we just turn to the study of the signs of
HM

S,Q and MQQ in the following discussions to guarantee the
thermal stability.

4.1 Linear Maxwell case

The mass and Hawking temperature of black holes in the
presence of linear Maxwell (LM) electrodynamics are

TLM = (n + z − 1)r z+
4πlz+1 + (n − 2)2l1−z

4π(n + z − 3)r2−z+

− q2lz−1b2z−2

2π(n − 1)r2n+z−4+
, (60)

MLM (S, Q) = (n − 1)(4S)(n+z−1)/(n−1)

16πlz+1

+ (n − 1)(n − 2)2(4S)(n+z−3)/(n−1)

16π(n + z − 3)2lz−1

+2πQ2b2z−2(4S)(3−n−z)/(n−1)

(n + z − 3)lz−1 . (61)

As we mentioned above, for investigating thermal stability
we need to check the signs of MQQ and HM

S,Q . In our case

MQQ = πb2z−2S−(n+z−3)/(n−1)

(n + z − 3) lz−122(z−2)/(n−1)
> 0. (62)

Thus, in order to disclose the thermal stability of system,
we need to study the sign of the determinant of the Hessian
matrix. We find

HM
S,Q =

⎧
⎪⎪⎨

⎪⎪⎩

(z−2)(n−2)2b2z−2S−2[2+(z−2)/(n−1)]

4(n−1)(n+z−3)2l2z−2 F(S, Q) z �= 2

(n+1)b22(n−5)/(1−n)S2(n−2)/(1−n)

(n−1)2l4
z = 2

,

(63)

where

F(S, Q) ≡
[
S2[1+(z−2)/(n−1)]

+ z(n + z − 3)(n + z − 1)S2[1+(z−1)/(n−1)]

2−4/(n−1)(z − 2)(n − 2)2l2

−π2(n + z − 3)Q22(n−4z+7)/(n−1)

(n − 1)(n − 2)2b2(1−z)

]
. (64)

The numerator N of (40) is a complicated finite function
of S and Q in this case, including long terms that we do not
express explicitly for brevity. However, as mentioned in Sect.
3.2.2, one can find the denominator D in the form of

D(S, Q) = TLM
[
HM

S,Q

]2
, (65)

where TLM andHM
S,Q have been give in (60) and (63), respec-

tively.
Having Eqs. (63) and (65) at hand, we are in a position

to investigate the divergences of R, which play the central
role in thermodynamic geometry discussions, and also ther-
mal stability of system. As one can see from Eqs. (63) and
(65), for z = 2, the divergences occur just in the case of the
extremal black holes where TLM = 0. For z �= 2, in addition
to extremal black hole case, R diverges in zeros of (63). In
the latter case, we can calculate the corresponding tempera-
ture by solving F = 0 for Q and then putting this Q in Eq.
(60) to arrive at

T = (n + z − 1)2(2z−n+1)/(n−1)Sz/(n−1)

π(2 − z)lz+1 . (66)

The above temperature is negative for z > 2 i.e. there is no
black hole at this diverging point and therefore the diver-
gences of R occur just for extremal black hole case when
z > 2. However, for z < 2 when T > 0, we can see an upper
limit in entropy and charge of system. The largest entropy S
for which F = 0 (which we call it critical entropy Sc) can be
calculated by finding the extremum point where ∂F/∂S = 0
as

S2/(1−n)
c = z(n + z − 1)(n + z − 2)24/(n−1)

(2 − z)(n − 2)2l2
, (67)

at which

Q2
c = (n − 2)2(n+z−2)

l−2(n+z−3)b2(z−1)π2

× (n − 1)(n + z − 2)2−n−z(n + z − 1)3−n−z

25(n + z − 3)

×
(

2

z
− 1

)n+z−3

(68)

and
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(a) (b)

Fig. 5 The behavior of HM
S,Q versus T for the linear Maxwell case with l = b = 1

(a) (b)

Fig. 6 The behavior of the Ruppeiner invariant R versus T for the linear Maxwell case with l = b = 1

∂2F

∂S2

∣∣∣∣
S=Sc

= − (n + z − 3) 4(n−2z+3)/(n−1)

(n − 1)2

×
[
(n + z − 1) (n + z − 2) z

(2 − z) (n − 2)2 l2

]2−z

< 0. (69)

One should note that the absolute value of Qc is also the
largest charge value which satisfies F = 0. Another remark
to be mentioned is that (67) imposes an upper limit on the size
of black hole too (see (21)). At this point, the corresponding
temperature can be obtained:

Tc = (n − 2)z

2πl
√

(z(n + z − 2))z

(
n + z − 1

2 − z

)(2−z)/2

. (70)

For charges greater than Qc, the Ruppeiner invariant diverges
only in the case of extremal black holes. For Q = Qc, in
addition to TLM = 0, we have one other divergence in R

specified by (67) and (70). For Q < Qc, in addition to TLM =
0, we have at most two other divergences, since the order
of the polynomial in terms of S is always lower than 3 for
n ≥ 3 and z < 2. One should note that, in the latter case, the
temperature region between two divergences is not allowed
since HM

S,Q < 0 (Fig. 5).

We have summarized the above discussion in Figs. 6 and
7. These figures also show the sign of the Ruppeiner invari-
ant for different choices of the parameters that determines the
type of interaction between black hole molecules [16,20,21].
Figure 6a is depicted for RN-AdS case (n = 3, z = 1). In
this case, it can be seen that, for Q > Qc, the Ruppeiner
invariant diverges only for extremal black holes. As Fig. 6a
shows, there is also a range of T for which R < 0, namely
the dominated interaction between black hole molecules is
attractive. Furthermore, the interactions near zero tempera-
ture is the same as interactions of Fermi gas molecules near
zero temperature [16]. According to Fig. 5a, for Q > Qc,
HM

S,Q is positive (also MQQ > 0 (see (62))), and therefore
the system is stable for all T region. For Q = Qc, in addition
to the zero temperature, we have another temperature (Tc),
where a divergence of R occurs (see Fig. 6a). At zero tem-
perature, the Ruppeiner invariant goes to +∞, while at Tc it
goes to −∞. The latter case is similar to the Van der Waals
gas phase transition at the critical point in the sense that at
the phase transition temperature, R goes to −∞ [14,21]. For
Q = Qc, R becomes positive when we go away from the
second divergence (Tc) on the temperature axis. In Q = Qc

case, HM
S,Q is positive and just vanishes at Tc (Fig. 5a), so,
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(a) (b)

Fig. 7 The behavior of the Ruppeiner invariant R versus T for the linear Maxwell case with l = b = 1

the system is always thermally stable. For Q < Qc, there
are three divergences; one at T = 0, one at T < Tc and one
at T > Tc. In this case, according to Fig. 5a, HM

S,Q is neg-
ative in the temperature region between two roots and show
instability. This not-allowed region is equivalent to the tem-
perature region between two divergences of the Ruppeiner
invariant for Q < Qc (Fig. 6a). Figures 5b and 6b show the
same properties for black holes with different parameters. In
this case, Tc is greater than one of previous case while Qc is
lower. Figure 7 shows the behavior of the Ruppeiner invari-
ant for z ≥ 2. As this figure shows, there are just divergences
at T = 0. The properties of black hole molecular interac-
tions (R > 0: Repulsion, R = 0: No interaction and R < 0:
Attraction) depend on parameters such as the dimension of
space time and the charge, in this case. According to Eq. (63),
for z = 2, HM

S,Q is always positive. For z > 2, we can find

Q from TLM = 0 and put it in HM
S,Q to obtain

HM
S,Q,T=0 = (n + z − 1)b2z−22(n−5)/(1−n)

(n − 1)(n + z − 3)l2z S(n−2)/(n−1)
> 0. (71)

Thus, since HM
S,Q nowhere vanishes for z > 2 (see discus-

sions below (66)) and is positive at T = 0 according to above
equation, it is positive throughout the temperature region and
therefore the system is always thermally stable for z > 2.

Regarding the nature of the phase transition occurring at
zero temperature where the Ruppeiner invariant diverges, we
discussed in previous section via Landau–Lifshitz theory of
thermodynamic fluctuations. However, regarding the phase
transitions occurred at divergences of R at finite tempera-
tures, we can give some comments here. We have seen two
kinds of phase transitions here for z < 2 (see Fig. 6) namely
continuous (for Q = Qc where R diverges at just one finite
temperature or entropy) and discontinuous (for Q < Qc

where R diverges at two finite temperatures or entropies
and we have a jump between these two points since there
is no thermally stable black hole between them). Both of

these phase transitions can be considered as small/large black
holes phase transitions. The first reason for this argument is
that as temperature increases, entropy or equivalently size
of black hole increases (note that ∂S/∂T = M−1

SS > 0).
Therefore,on the left side of phase transition points where
the temperature is lower, we have small size black holes and
the right side where the temperature is higher we have large
size ones. This fact can also be seen from the behavior of
the Ruppeiner invariant magnitude at the two sides of the
phase transitions. For small black holes, we expect a finite
correlation between possible black hole molecules (of course
far from phase transition points) because those are close to
each other. For large black holes, we expect the correlation
between possible molecules to tend to a small value near zero
since molecules become approximately free. These expected
behaviors can be seen in Fig. 6.

4.2 Born–Infeld case

For the Born–Infeld case, we can calculate the Ruppeiner
invariant by using Eqs. (19), (34) and (39). The Ruppeiner
invariant in this case is very complicated due to the presence
of hypergeometric functions. Therefore, in this case we dis-
cuss the thermodynamic geometry non-analytically and by
looking at plots. We study the cases z < 2, z > 2, z = 2 and
z = n + 1 separately. First, we study the case z < 2. Figure
8a shows that changing β can cause a change in the dominant
interaction. For instance, in a range of T , we have negative
R (attraction) for β = 1 (note that in this range the system is
thermally stable as one can see from Figs. 9a and 10a). For
β = 1, the system behaves like a Fermi gas at zero tempera-
ture, namely R goes to positive infinity at zero temperature
[16]. For β = 0.82, the Ruppeiner invariant diverges at two
points; one of them is the zero temperature. According to
Fig. 9a, for temperatures lower than the second divergence
point, HM

S,Q is negative and therefore the system is thermally
unstable. Since MQQ > 0 (Fig. 10a), the system is thermally
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(a) (b)

Fig. 8 The behavior of the Ruppeiner invariant R versus T for the Born–Infeld case with l = b = 1

(a) (b)

Fig. 9 The behavior of the determinant of the Hessian matrix HM
S,Q versus T for the Born–Infeld case with l = b = 1

(a) (b)

Fig. 10 The behavior of MQQ versus T for Born–Infeld case with l = b = 1

stable just for temperatures greater than the temperature of
second divergence for β = 0.82. Figure 8a shows that there
is no extremal black hole for β = 0.5 i.e. we have a black
hole with just a single horizon. The allowed temperatures are
greater than the temperature of divergence according to Figs.
9a and 10a. In Figs. 8b, 9b and 10b, respectively, the Rup-
peiner invariant, HM

S,Q and MQQ are depicted for different
choices of the parameters. It is remarkable that, in the case of
β = 0.046, Fig. 8b shows that the behavior of system looks

like Van der Waals gas at phase transition temperature i.e.
R goes to negative infinity at this point [14,21]. For z > 2,
the behavior of R is depicted in Fig. 11a. It can be seen that
the type of dominated interaction changes for different β and
we have negative R for some cases. In this case, we have a
behavior like a Fermi gas at zero temperature for extremal
black holes. For β = 0.13, there is a divergence at non-zero
temperature; for lower temperatures, the system is unstable
(Fig. 11b, c). In the case of z = 2, HM

S,Q and MQQ are
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(a)

(b) (c)

Fig. 11 The behavior of the Ruppeiner invariant R, HM
S,Q and MQQ versus T for the Born–Infeld case with b = 0.9, l = 0.76, n = 6, z = 3 and

Q = 0.018

Fig. 12 The behavior of the Ruppeiner invariant R versus T for the
Born–Infeld case with z = 2 and l = b = 1

HM
S,Q

∣∣∣
z=2

= (n + 1)b2

2(n−5)/(n−1)l4(n − 1)2S2n/(n−1)�
, (72)

and

MQQ
∣∣
z=2 = b2π

(n − 1)l S�
,

which are always positive and therefore the system is always
stable andR experiences no divergence (Fig. 12). In this case,
for different values of nonlinear parameter β, we have differ-

ent dominated interaction. For this case, possible molecules
of black hole behave like Fermi gas at zero temperature. The
last case is z = n + 1. In this case MQQ is

MQQ
∣∣
z=n+1 = b2nβ2 (� − 1)

4π(n − 1)Q2ln�
, (73)

which is positive for all temperatures. The behavior of the
Ruppeiner invariant and HM

S,Q are depicted in Fig. 13a and b
for this case, respectively. As one can see the type of inter-
action is β-dependent for some temperatures. For β = 0.04,
HM

S,Q is positive just for temperatures greater than the finite
temperature of divergence (Fig. 13b) and therefore the sys-
tem is thermally stable for this range of temperatures.

Most of the phase transitions discovered above in the
presence of BI electrodynamics at finite temperatures can-
not be interpreted as small/large black hole phase transitions
because in these cases small size black holes are unstable.
Further studies to disclose the nature of these phase transi-
tions are called for.

5 Summary and closing remarks

In many condensed matter systems, fixed points governing
the phase transitions respect dynamical scaling, t → λzt ,
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(a) (b)

Fig. 13 The behavior of the Ruppeiner invariant R and HM
S,Q versus T for the Born–Infeld case with b = 0.91, l = 0.72, n = 3, z = 4 and

Q = 0.012

�x → λ�x where z is the dynamical critical exponent. The
gravity duals of such systems are Lifshitz black holes. In this
paper, we first sought for the (n+1)-dimensional Born–Infeld
(BI) charged Lifshitz black hole solutions in the context of
dilaton gravity. We found that these solutions are different
for the cases z = n + 1 and z �= n + 1. We found that both
solutions and showed that the solution for the case z = n+1
can never be Schwartzschild-like. Then we studied the ther-
modynamics of both cases by calculating conserved and ther-
modynamical quantities and checking the satisfaction of the
first law of thermodynamics. After that, we looked for the
Hawking–Page phase transition for our solutions, both in the
cases of linearly and BI charged black holes. We studied
this phenomenon and the effects of different parameters on
it by presenting the behaviors of temperature T with respect
to entropy S at fixed electrical potential energy U and also
Gibbs free energy G with respect to T . Then we turned to
discuss the phase transitions inside the black holes. In this
part, we first presented the improved Davies quantities that
show the phase transition points coincided with the ones of
the Ruppeiner geometry. This coincidence has been proved
directly in the Appendix. All of our solutions, provided that
those are thermally stable at zero temperature, show the diver-
gence at this point both from the Ruppeiner and the Davies
points of view. Using the Landau–Lifshitz theory of thermo-
dynamic fluctuations, we showed that this phase transition is
a transition of the radiance properties of black holes. At zero
temperature, an extreme black hole can just radiate through
superradiant scattering whereas a non-extreme black hole at
finite temperature can give off particles and radiation via both
spontaneous Hawking radiation and superradiant scattering.

Next, we turned to study Ruppeiner geometry for our solu-
tions. We investigated thermal stability, interaction type of
possible black hole molecules and phase transitions of our
solutions for linearly and nonlinearly BI charged cases sep-
arately. For the linearly charged case, we showed that there
are no diverging points for Ricci scalar of the Ruppeiner

geometry (Ruppeiner invariant) at finite temperature for the
case z ≥ 2. For z < 2, it was found that the number of
divergences (which show the phase transitions) at finite tem-
peratures depend on the value of the charge Q. We introduced
a critical value for the charge, Qc; for greater values there is
no divergence at finite temperature, for values lower than it
there are at most two divergences and for Q = Qc, there is
just one diverging point for the Ruppeiner invariant. For the
case of Q < Qc, there is a thermally unstable region for sys-
tems between two divergences at finite temperatures. So, this
phase transition can be claimed as a discontinuous phase tran-
sition between small and large black holes. For small black
holes not close to the transition point, we observed a finite
magnitude for the Ruppeiner invariant R. This is reasonable
since the magnitude of R shows the correlation of possible
black hole molecules. Also, for large black holes the magni-
tude of the Ruppeiner invariant tends to a very small value
as expected. For Q = Qc, the solutions show a continuous
small/large black holes phase transition at finite temperature.
In the case of BI charged solutions, we investigated the Rup-
peiner geometry and thermal stability for z < 2, z > 2, z = 2
and z = n+1 separately. In some of these cases, small black
holes were thermally unstable. So, more studies are called for
to discover the nature of phase transitions at diverging points
of R. In both the linearly and nonlinearly charged cases,
for some choices of the parameters, the black hole system
behaves like a Van der Waals gas near the transition point.

Finally, we would like to suggest some related interesting
issues which can be considered for future studies. It is inter-
esting to repeat the studies such as regards the Hawking–Page
phase transition, Ruppeiner geometry and Landau–Lifshitz
theory for black branes to discover the effect of different
constant curvatures of the (n − 1)-dimensional hypersurface
on those phenomena. One can also seek for any signature
of different phase transitions discovered here such as the
Hawking–Page phase transition, and phase transitions deter-
mined by the Ruppeiner geometry, in dynamical properties
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of solutions by investigating quasi-normal modes. Some of
this work is in progress by the authors.
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AppendixA:Suitable thermodynamicquantities todeter-
mine phase transitions

In [43,48], the authors have shown that the divergences of
the specific heat at constant electrical potential, CU , the ana-
log of the volume expansion coefficient, α, and the analog of
the isothermal compressibility coefficient κT are in coinci-
dence with the phase transitions specified by the Ruppeiner
invariant. The definitions of these quantities are

CU = T

(
∂S

∂T

)

U
, α = 1

Q

(
∂Q

∂T

)

U
and κT = 1

Q

(
∂Q

∂U

)

T
.

(A1)

Here we will prove that these quantities are exactly suitable
to characterize the phase transitions shown by the Ruppeiner
invariant. We showed in Sect. 4 that the divergences of the
Ruppeiner invariant occurs at roots of the determinant of the
Hessian matrix HM

S,Q = MSSMQQ − M2
SQ and also zero

temperature. In our proof, we will show that HM
S,Q exactly

exists at denominator for all above suitable thermodynamic
quantities.

Let us start with CU . We have

∂T (S, Q (U, S))

∂S

∣∣∣∣
U

= ∂T

∂S

∣∣∣∣
Q

+ ∂T

∂Q

∣∣∣∣
S

∂Q

∂S

∣∣∣∣
U

. (A2)

On the other hand we know that

∂Q

∂S

∣∣∣∣
U

= − ∂Q

∂U

∣∣∣∣
S

∂U

∂S

∣∣∣∣
Q

. (A3)

With the above relations at hand, one can show that

∂T (S, Q (U, S))

∂S

∣∣∣∣
U

= ∂T

∂S

∣∣∣∣
Q

− ∂T

∂Q

∣∣∣∣
S

∂Q

∂U

∣∣∣∣
S

∂U

∂S

∣∣∣∣
Q

= ∂T

∂S

∣∣∣∣
Q

−
∂T
∂Q

∣∣∣
S

∂U
∂S

∣∣
Q

∂U
∂Q

∣∣∣
S

=
∂T
∂S

∣∣
Q

∂U
∂Q

∣∣∣
S

− ∂T
∂Q

∣∣∣
S

∂U
∂S

∣∣
Q

∂U
∂Q

∣∣∣
S

= MQQMSS − M2
SQ

MSS
= HM

S,Q

MSS
. (A4)

In the last line of (A4), we have used (35). Equation (A4)
shows that HM

S,Q = MSSMQQ − M2
SQ is in denominator of

CU = T (∂S/∂T )U and therefore it exactly diverges at the
point where the Ruppeiner invariant diverges. To show this
fact for α, we should obtain

∂T (Q, S (U, Q))

∂Q

∣∣∣∣
U

= ∂T

∂Q

∣∣∣∣
S

+ ∂T

∂S

∣∣∣∣
Q

∂S

∂Q

∣∣∣∣
U

. (A5)

As is well known

∂S

∂Q

∣∣∣∣
U

= − ∂S

∂U

∣∣∣∣
Q

∂U

∂Q

∣∣∣∣
S
, (A6)

and therefore we have

∂T (Q, S (U, Q))

∂Q

∣∣∣∣
U

= ∂T

∂Q

∣∣∣∣
S

− ∂T

∂S

∣∣∣∣
Q

∂S

∂U

∣∣∣∣
Q

∂U

∂Q

∣∣∣∣
S

= ∂T

∂Q

∣∣∣∣
S

−
∂T
∂S

∣∣
Q

∂U
∂Q

∣∣∣
S

∂U
∂S

∣∣
Q

=
∂T
∂Q

∣∣∣
S

∂U
∂S

∣∣
Q − ∂T

∂S

∣∣
Q

∂U
∂Q

∣∣∣
S

∂U
∂S

∣∣
Q

= −MQQMSS − M2
SQ

MSQ
= −HM

S,Q

MSQ
.

(A7)

The above relation shows that α = Q−1 (∂Q/∂T )U diverges
at the point where Ruppeiner invariant does. Finally, to obtain
a similar result for κT , we write

∂U

∂Q

∣∣∣∣
T

= − ∂U

∂T

∣∣∣∣
Q

∂T

∂Q

∣∣∣∣
U

= − 1

Qα

∂U

∂T

∣∣∣∣
Q

. (A8)

The above relation shows that κT = Q−1 (∂Q/∂U )T is pro-
portional to α and therefore diverges at the same points as
the Ruppeiner invariant.
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