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Abstract In the coset model (D(1)
N ⊕ D(1)

N , D(1)
N ) at lev-

els (k1, k2), the higher spin 4 current that contains the quar-
tic WZW currents contracted with a completely symmetric
SO(2N ) invariant d tensor of rank 4 is obtained. The three-
point functions with two scalars are obtained for any finite
N and k2 with k1 = 1. They are determined also in the large
N ’t Hooft limit. When one of the levels is the dual Coxeter
number of SO(2N ), k1 = 2N − 2, the higher spin 7

2 cur-
rent, which contains the septic adjoint fermions contracted
with the above d tensor and the triple product of structure
constants, is obtained from the operator product expansion
(OPE) between the spin 3

2 current living in the N = 1 super-
conformal algebra and the above higher spin 4 current. The
OPEs between the higher spin 7

2 , 4 currents are described.
For k1 = k2 = 2N − 2 where both levels are equal to the
dual Coxeter number of SO(2N ), the higher spin 3 current
of U (1) charge 4

3 , which contains the six products of spin
1
2 (two) adjoint fermions contracted with the product of the
d tensor and two structure constants, is obtained. The cor-
responding N = 2 higher spin multiplet is determined by
calculating the remaining higher spin 7

2 , 7
2 , 4 currents with

the help of two spin 3
2 currents in the N = 2 superconformal

algebra. The other N = 2 higher spin multiplet, whoseU (1)

charge is opposite to the one of the above N = 2 higher spin
multiplet, is obtained. The OPE between these two N = 2
higher spin multiplets is also discussed.

1 Introduction

The proposal by Gaberdiel and Gopakumar [1], the duality
between the higher spin gauge theory on AdS3 space [2] and
the large N ’t Hooft limit of a family of WN (≡ W AN−1)

minimal models is the natural analog of the Klebanov and
Polyakov duality [3] relating the O(N ) vector model in three-
dimensions to a higher spin theory on AdS4 space. Then the
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obvious generalization of [1] is to consider the Klebanov and
Polyakov duality in one dimension lower. By replacing the
SU (N ) group by SO(2N ), the relevant most general coset
model is described as [4,5]

ˆSO(2N )k1 ⊕ ˆSO(2N )k2

ˆSO(2N )k1+k2

. (1.1)

One can also consider the case where the SU (N ) group by
SO(2N + 1) but this is not described in this paper. It is well
known that the conformal weight (or spin) of the primary
state is equal to the quadratic Casimir eigenvalue divided by
the sum of the level and the dual Coxeter number of the finite
Lie algebra [6,7]. For example, for SO(2N ), the quadratic
Casimir eigenvalue for the adjoint representation is given by
2N − 2, while the dual Coxeter number is 2N − 2. Then
we are left with the adjoint fermion of spin 1

2 at the critical
level which is equal to the dual Coxeter number. One can
apply this critical behavior to the two numerator factors in
(1.1) simultaneously. In the description of these adjoint free
fermions, the central charge grows like N 2 in the large N ’t
Hooft limit: the so-called stringy coset model [8]. See also
the relevant work in [9–13].

Although some constructions on the higher spin currents
in [14] have been done, there are two unknown coefficients
in the expression of higher spin 4 current. Moreover, the spin
1 currents in the numerators of (1.1) are described with the
double index notation. Each index is a vector representation
of SO(2N ) and because of the antisymmetry property of
these spin 1 currents, the number of independent fields is
given by 1

2 [(2N )2 − 2N ] = N (2N − 1). In order to obtain
the description of the above free adjoint fermions, one should
write down the spin 1 currents with a single adjoint index.
It is well known that the real free fermions transforming in
the adjoint representation of SO(2N ) realize the affine Kac–
Moody algebra for the critical level. It is equivalent to the
theory of 1

2 2N (2N − 1) = N (2N − 1) free fermions [7].
Before one considers the adjoint free fermion description,

one should obtain the higher spin 4 current from the spin
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1 currents living in the numerator factors of (1.1) and hav-
ing a single adjoint index. The higher spin 4 current is the
SO(2N ) singlet field [6]. Then one should have a quantity
contracted with the quartic terms in the above spin 1 currents.
This is known as the d symbol; it is a completely symmetric
SO(2N ) invariant tensor of rank 4. In the calculation of any
OPE between the higher spin currents, one should use various
contraction identities between the above d symbol and the
structure constant f . Recall that in the defining OPE between
the spin 1 currents, the structure constant f symbol appears.
As far as I know, there are no known identities between f
symbol and d symbol except of the f f contraction in the
literature. This is one of the reasons why the double index
notation in [14] is used.

In this paper, one starts with the definition of the d symbol
which is given by one half times the trace over six quartic
terms in the SO(2N ) generators. When one meets the rele-
vant contraction identities in the calculation of any OPE, one
can try to obtain the tensorial structure in the right-hand sides
of these identities. Of course in each term, there should be
present N dependence coefficients explicitly. The tensorial
structure in terms of multiple product of f symbol, d sym-
bol and the symmetric SO(2N ) invariant tensor δ of rank
2 occurs naturally during the explicit calculation of OPE.
As one applies for N = 2, 3, 4 and 5 cases in the SO(2N )

generators, one can determine the N dependence coefficients
explicitly.

It turns out that the higher spin 4 current is obtained com-
pletely except of overall normalization factor. The eigenvalue
equations of zero mode of the higher spin 4 current acting on
several primary states can be determined explicitly. The cor-
responding three-point functions can be obtained. By choos-
ing the overall factor correctly, one observes the standard
three-point functions in the large N ’t Hooft limit from the
asymptotic symmetry algebra in the AdS3 bulk theory.

According to the observations in [8,9], the Gaberdiel and
Gopakumar proposal in the unitary case is still valid for arbi-
trary N and k2. One of the main novelties of this paper is the
fact that the (scalar–scalar-higher spin current) three-point
functions for finite N and k2 are obtained. They do depend
on these finite values and in the large N ’t Hooft limit they
contain the ’t Hooft coupling constant which is the ratio of
these two quantities as usual. Of course, the standard three-
point functions depend on the three complex coordinates
appearing in the above three quantities via two-point func-
tion between the two scalars and some factors which can be
determined by the conformal symmetry. See also [15]. There
are also, in general, spin dependent pieces in the three-point
functions. In our case, the higher spin is fixed by s = 4.
In the large N ’t Hooft limit one can also analyze the next
leading order behavior (for example, 1

N ) of the three-point
functions. It is interesting to describe the asymptotic sym-
metry algebra in the AdS3 bulk theory and see whether the

above finite N and k2 behavior in the corresponding eigen-
values or in the corresponding three-point functions can be
reproduced.

From the description of adjoint fermions living in the
first factor in the numerator of (1.1), one obtains the well
known N = 1 superconformal algebra generated by the spin
2 stress energy tensor and its superpartner, spin 3

2 current.
It turns out that the higher spin 7

2 current consists of sep-
tic, quintic, cubic and linear terms in the adjoint fermions
with appropriate derivative terms. The N = 2 superconfor-
mal algebra is realized by two adjoint fermions living in the
two numerator factors in (1.1). In this case, the higher spin 3
current with U (1) charge 4

3 is given by the multiple product
of two fermions contracted with d f f or f f tensors without
any derivative terms. Moreover, its three partners, higher spin
7
2 , 7

2 , and 4 currents, are determined.
In Sect. 2, the higher spin 4 current is obtained, the three-

point functions are given and the OPE between the higher
spin 4 current and itself is described under some constraints.

In Sect. 3, the higher spin 7
2 current is obtained, and the

three OPEs between this higher spin 7
2 current and the higher

spin 4 current are described using the Jacobi identities.
In Sect. 4, the lowest higher spin 3 current is obtained, and

its three other higher spin 7
2 , 7

2 and 4 currents are obtained
which can be denoted as N = 2 lowest higher spin multiplet
with definite U (1) charge 4

3 . Furthermore, another N = 2
lowest higher spin multiplet with definite U (1) charge − 4

3 is
obtained. The OPEs between these higher spin multiplets in
N = 2 superspace are given using the Jacobi identities.

In Sect. 5, we list some future directions related to this
work.

In Appendices A–L, which appear in the arXiv version
only (arXiv:1701.02410), the technical details appearing in
Sects. 2–4 are given.

2 The coset model with arbitrary two levels (k1, k2)

From the spin 1 currents of the coset model, one constructs
the spin 2 stress energy tensor. By generalizing the Sug-
awara construction, the higher spin 4 current is obtained from
the quartic terms in the spin 1 currents with the SO(2N )

invariant tensors of ranks 4, 2. The corresponding three-
point functions of zero mode of the higher spin 4 cur-
rent with two scalars are described. The OPE between the
higher spin 4 current and itself for particular k1 and N is
obtained.

2.1 Spin 2 current and Virasoro algebra

The standard stress energy tensor satisfies the following OPE
[6]:
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T (z) T (w) = 1

(z − w)4

c

2
+ 1

(z − w)2 2T (w)

+ 1

(z − w)
∂T (w) + · · · . (2.1)

For the coset model in (1.1), the above stress energy tensor
can be obtained by the usual Sugawara construction [6],

T (z) = − 1

2(k1 + 2N − 2)
Ja Ja(z)

− 1

2(k2 + 2N − 2)
KaKa(z)

+ 1

2(k1 + k2 + 2N − 2)

(Ja + Ka)(Ja + Ka)(z). (2.2)

The affine Kac–Moody algebra ˆSO(2N )k1 ⊕ ˆSO(2N )k2

in (1.1) is described by the following OPEs [6]:

Ja(z) Jb(w) = − 1

(z − w)2 k1δ
ab

+ 1

(z − w)
f abc J c(w) + · · · ,

Ka(z) Kb(w) = − 1

(z − w)2 k2δ
ab

+ 1

(z − w)
f abcK c(w) + · · · . (2.3)

The adjoint indices a, b, . . . corresponding to SO(2N ) group
run over a, b = 1, 2, . . . , 1

2 2N (2N − 1). The Kronecker
delta δab appearing in (2.3) is the second rank SO(2N ) sym-
metric invariant tensor. The structure constant f abc is anti-
symmetric as usual. The diagonal affine Kac–Moody algebra
ˆSO(2N )k1+k2 in (1.1) can be obtained by adding the above

two spin 1 currents, Ja(z) and Ka(z). Of course, we have
Ja(z) Kb(w) = + · · · .

The central charge appearing in the above OPE (2.1) is
given by [6]

c(k1, k2, N ) = 1

2
2N (2N − 1)

[
k1

(k1 + 2N − 2)

+ k2

(k2+2N−2)
− (k1+k2)

(k1+k2+2N − 2)

]
.

(2.4)

Note that the dual Coxeter number of SO(2N ) is equal
to (2N − 2) and the dimension of SO(2N ) is given by
1
2 2N (2N − 1).

Then the Virasoro algebra realized in the coset model (1.1)
[5,16] is summarized by (2.1) together with (2.2) and (2.4).

2.2 Higher spin 4 current

The 28 SO(8) generators T a are given in Appendix A. Then
the structure constant introduced in the above is given by

f abc = − i

2
Tr[T cT aT b − T cT bT a]. (2.5)

Then one obtains [T a, T b] = i f abcT c.
The totally symmetric SO(2N ) invariant tensor of rank 4

is defined as [17,18]

T aT bT c + T aT cT b + T cT aT b + T bT aT c

+T bT cT a + T cT bT a = dabcd T d . (2.6)

That is, one can express the d tensor as1

dabcd = 1

2
Tr[T dT aT bT c + T dT aT cT b + T dT cT aT b

+T dT bT aT c + T dT bT cT a + T dT cT bT a]. (2.7)

Note that one uses Tr(T aT b) = 2δab.
One obtains the product of the structure constants

f abc f abd = 2(2N − 2)δcd , (2.8)

and the triple product leads to

f adb f bec f c f a = −(2N − 2) f de f . (2.9)

Furthermore, one obtains the following non-trivial triple
product between d tensor (2.7) and f tensor (2.5):

dadeb f b f c f cga = −4

3
(N − 1)dde f g + 4δd f δeg

+4δdgδe f − 8δdeδ f g

−1

3
(2N − 5) f d f h f heg

−1

3
(2N − 5) f dgh f he f . (2.10)

By multiplying f d f h into (2.10) and rearranging the indices,
one obtains with (2.9)

dabc f f agd f bde f che = 2(2N 2 − 7N + 11) f f gh . (2.11)

For the index condition f = d in (2.10) together with the
identity (2.8), one obtains

daabc = 2(4N − 1)δbc. (2.12)

Note that this behavior is different from the one of the unitary
case where the trivial result daabc = 0 arises [19]. One also
has

dabcddabce = 12[N (2N − 1) + 2]δde. (2.13)

Let us describe how one can obtain the higher spin current
with the help of the d tensor we introduced. For the second

1 One can consider the rank 3 tensor as dabc = 1
2 Tr[T aT bT c +

T bT aT c], which is identically zero.
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rank SO(2N ) invariant symmetric tensor δab, one describes
the stress energy tensor in (2.2). According to the observa-
tion of footnote 1, there is no non-trivial third rank SO(2N )

invariant symmetric tensor dabc. Then the next non-trivial
higher spin current can be constructed from the fourth rank
SO(2N ) invariant symmetric tensor dabcd (2.6).

Let us consider the following higher spin 4 current, along
the line of [6,19,20]:

W (4)(z) = dabcd [A1 Ja Jb J c J d + A2 Ja Jb J cK d

+A3 Ja JbK cKd

+A4 JaKbK cKd + A5 K
aKbKcKd ](z)

+[A6 ∂ Ja∂ Ja + A7 ∂2 Ja Ja

+A8 ∂Ka∂Ka + A9 ∂2KaKa

+A10 ∂ Ja∂Ka + A11 ∂2 JaKa

+A12 Ja∂2Ka + A13 f abc J a∂ JbK c

+A14 f abc J aK b∂Kc + A15 Ja Ja Jb Jb

+A16 K
aKaKbKb + A17 Ja JaKbKb

+A18 Ja Ja JbKb + A19 JaKaKbKb

+A20 Ja JbKaKb](z). (2.14)

One should obtain the 20 relative (k1, k2, N )-dependent
coefficients. The first five quartic terms in (2.14) can eas-
ily be understood in the sense that they are the only pos-
sible terms from each spin 1 current, Ja(z) and Ka(z)
using the dabcd tensor. The next seven derivative terms in
(2.14) can be found from the second derivative of stress
energy tensor ∂2T (z). The remaining eight terms can arise
in T T (z).

First of all, the higher spin 4 current should have the regu-
lar terms with the diagonal spin 1 current in the coset model
as follows [6,19,20]:

J ′a(z)W (4)(w) = + · · · , J ′a(z) ≡ (Ja + Ka)(z).

(2.15)

Let us calculate the OPEs between the diagonal spin 1
current and the 20 terms in (2.14) in order to use the con-
dition (2.15). One can perform the various OPEs by fol-
lowing the procedures done in the unitary case [21]. Let
us focus on the A1 term in (2.14) which has the regu-
lar OPE with Ka(z). Then Eqs. (2.22), (2.23) and (2.24)
of [21] can be used. For example, Eq. (2.24) of [21] pro-
vides the information of the OPE between the J ′a(z) and the
above A1 term. Using Eqs. (2.11) and (2.8), one can simplify
the fourth-order pole in (2.24) of [21] which was given by
f ab f f f ci dbcde f geh f idg J h(w).

It turns out that we are left with Ja(w) with an N -
dependent SO(2N ) group theoretical factor. The third-order
pole,

f ab f dbcde( f hdg f f ch J g J e + f heg f f ch J d J g

+ f heg f f dh J c J g)(w) + f ac f dbcde f geh f f dg J b J h(w),

(2.16)

can be simplified with the help of (2.11). We are left with
f abc J b J c(w) in (2.16) with N dependent coefficient factor
which is proportional to ∂ Ja(w). Finally the second-order
pole,

−4k1d
abcd J b J c J d(w)

+dbcde( f ab f f f cg J g J d J e + f ab f f f dg J c J g J e

+ f ab f f f eg J c J d J g

+ f ac f f f dg J b J g J e + f ac f f f eg J b J d J g

+ f ad f f f eg J b J c J g)(w), (2.17)

can be simplified further together with (2.10).
Then we obtain the final OPE as follows:

J ′a(z) dbcde J b J c J d J e(w)

= 1

(z − w)4 2(2N − 2)(4N 2 − 14N + 22)Ja(w)

− 1

(z − w)3 2(4N 2 − 14N + 22) f abc J b J c(w)

+ 1

(z − w)2 [−(4k1 + 8(N − 1))dabcd J b J c J d

−(12 + (2N − 2)(2N − 5)) f abc∂ Jb J c

+(12 + (2N − 2)(2N − 5)) f abc J b∂ J c](w) + · · · .

(2.18)

There is no first-order pole in Eq. (2.18). One can check the
second-order pole in (2.18) from (2.17).

Let us consider the A2 term in (2.14) where there
exists a Kd(z) dependence. Starting from Eqs. (2.23) and
(2.19) of [21] with Eqs. (2.11) and (2.10), one can sim-
plify the third-order pole, f ac f f dbcde f geh f f dg J hK b(w),
as f abc J bK c(w) with an N dependent factor. Similarly, the
second-order pole,

−3k1d
abcd J c J d K b(w) − k2d

abcd J b J c J d(w)

+dbcde( f ac f f f dg J g J eK b + f ac f f f eg J d J gK b

+ f ad f f f eg J c J gK b)(w), (2.19)

can be simplified in terms of several independent terms. It
turns out that in this case also there are no first-order poles.

Therefore, one obtains the following OPE corresponding
to A2 term:

J ′a(z) dbcde J b J c J d K e(w)

= 1

(z − w)3 (4N 2 − 14N + 22) f abc J bK c(w)

+ 1

(z − w)2 [−(3k1 + 4(N − 1))dabcd J b J cK d

−k2d
abcd J b J c J d + 12Jb JbKa

123
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−12Ja JbKb − 12 f abc∂ JbK c

+(2N − 5) f abc f cde J b J eK d ](w) + · · · . (2.20)

One can see the second-order pole in (2.20) from (2.19).
Let us consider the A3 term in (2.14). From Eq. (2.22) of

[21], one has the relevant OPEs. For example, the second-
order pole,

(−2k1d
abcd J d K bK c + f ad f f f egdbcde J gK bK c

−2k2d
abcd K d Jb J c + f ad f f f egdbcdeK g Jb J c)(w),

(2.21)

can be reexpressed in terms of various independent terms
with the help of the identity (2.10). It turns out that the rele-
vant OPE coming from (2.21) can be summarized as

J ′a(z) dbcde J b J cK dK e(w) = 1

(z − w)2

×
[
−

(
2k1 + 4

3
(N − 1)

)
dabcd J bK cKd

−
(

2k2 + 4

3
(N − 1)

)
dabcd J b J cK d

+8JbKaKb + 4 f abc∂ JbK c

−8JaKbKb − 4 f abc J b∂Kc

−1

3
(2N − 5) f abc f cde J d K eKb

−1

3
(2N − 5) f abc f cde J d K bK e

−8Jb JbKa + 8Ja JbKb

−1

3
(2N − 5) f abc f cde J e J bK d

−1

3
(2N − 5) f abc f cde J b J eK d

]
(w) + · · · . (2.22)

It is useful to realize that this OPE remains the same after the
exchange of Ja(w) and Ka(w) together with k1 ↔ k2. The
left-hand side is invariant under this transformation because
the d tensor is totally symmetric. The 12 terms in the second-
order pole can be divided into two groups and each of them
has their own counterpart.

It is straightforward to complete this calculation step by
step. We summarize the remaining 17 OPEs in Appendix
B. Then we have the complete expressions in (2.18), (2.20),
(2.22), and Appendix B.

The higher spin 4 current should transform as a primary
field under the stress energy tensor (2.2). According to the
previous regular condition (2.15), the diagonal spin 1 cur-
rent J ′a(z) does not have any singular terms in the OPE with
the higher spin 4 current W (4)(w) after we use the results of
Appendix B. Then there are no singular terms in the OPE
between the stress energy tensor in the denominator of the
coset model (1.1) and the higher spin 4 current because the
former is given by J ′a J ′a(z). The singular terms can arise

from the OPE between the stress energy tensor in the numer-
ator of the coset model and the higher spin 4 current. There-
fore, one should have the following condition [6,19,20]:

T̂ (z)W (4)(w)

∣∣∣∣
1

(z−w)n , n=3,4,5,6

= 0. (2.23)

Here the stress energy tensor in the numerator is described
by

T̂ (z) ≡ − 1

2(k1 + 2N − 2)
Ja Ja(z)

− 1

2(k2 + 2N − 2)
KaKa(z). (2.24)

Of course, the higher spin 4 current has the standard OPE
(the second- and first-order poles) with stress energy tensor
(2.2) as usual.

Let us calculate the OPE between the stress energy ten-
sor (2.24) and the A1 term in (2.14). First of all, because
the A1 term does not contain the Ka(w) spin 1 current,
one can consider the OPE between the first term of (2.24)
and the A1 term. It is well known that the spin 1 current
Ja(w) transforms as a primary field under the first term
of (2.24) (i.e., the stress energy tensor in the first factor
of the numerator). Then one should obtain the OPE Jb(z)
dbcde J c J d J e(w) and it turns out that there exists a non-
trivial second-order pole given by −3k1(8N − 2)J c J c(w),
where the identity (2.12) is used. Note that the structure con-
stant term vanishes due to the presence of dbcde. Further-
more, one should calculate the OPE between the above stress
energy tensor and the previous expression dbcde J c J d J e(w)

where the order of the singular terms is greater than 2. Then
we are left with −3k1(8N − 2)J c J c(w) by combing the
contribution −2k1(8N − 2)J c J c(w) from the contraction
between the stress energy tensor and J c(w) and the con-
tribution −k1(8N − 2)J c J c(w) from the OPE between the
stress energy tensor and dbcde J d J e(w). Therefore, the final
total contribution is summarized by −6k1(8N − 2)J c J c(w)

and we present this OPE as follows:

T̂ (z) dbcde J b J c J d J e(w) = − 1

(z − w)4

×12k1(4N − 1)Ja Ja(w) + O
(

1

(z − w)2

)
. (2.25)

This result in (2.25) shows a behavior different from the cor-
responding OPE in the unitary case, because in the latter
there is no contribution from the fourth-order pole because
the above daabc tensor for the SU (N ) group vanishes [19].

Let us move on the A2 term in (2.14). In this case, the spin
1 current Kd(w) is present. However, the contribution in the
higher singular terms of the stress energy tensor coming from
the second term of (2.24) vanishes. Then one can calculate
the OPE between the stress energy tensor in the first factor of

123
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the numerator and the A2 term. By using the previous proce-
dure one can obtain the contribution −2k1(8N −2)J cK c(w)

from the contraction with Jb(w) current and the contribu-
tion −k1(8N − 2)J cK c(w) from the contraction with other
remaining factordbcde J c J d K e(w). By adding these two, one
obtains the following OPE:

T̂ (z) dbcde J b J c J d K e(w) = − 1

(z − w)4

×6k1(4N − 1)JaKa(w) + O
(

1

(z − w)2

)
. (2.26)

Now let us describe the contribution from the A3 term in
(2.14) where the quadratic KcKd(w) appears. In this case,
one should also calculate the contribution from the stress
energy tensor in the second term in (2.24). As done before,
the contribution from the contraction with the Jb(w) spin
1 current is given by −k1(8N − 2)KcKc(w). Similarly the
contribution from the contraction with the remaining factor
is given by −k2(8N − 2)J c J c(w). Then we are left with

T̂ (z) dbcde J b J cK d K e(w) = − 1

(z − w)4

×[2k2(4N − 1)Ja Ja + 2k1(4N − 1)KaKa](w)

+O
(

1

(z − w)2

)
. (2.27)

One also sees the symmetry under the transformation
Ja(z) ↔ Ka(z) and k1 ↔ k2.

It is straightforward to perform the other remaining calcu-
lations step by step. We summarize the remaining 17 OPEs
in Appendix C. Then we are left with (2.25)–(2.27), and
Appendix C.

Now one can determine the undetermined coefficient func-
tions A1, A2, . . . , A20 appearing in the higher spin 4 current
in (2.14). The 23 linear equations are given in Appendix B
explicitly. The eight linear equations are given in Appendix
C. By solving them, one obtains the final expressions in
Appendix D. They depend on k1, k2 and N . The correspond-
ing coefficients for k1 = 1 are presented in Appendix E.
Appendix F corresponds to the case where k1 = 2N − 2.

2.3 Three-point functions [22] with two scalars where
k1 = 1

The zero modes of the current satisfy the commutation
relations of the underlying finite dimensional Lie algebra
SO(2N ). For the state |(v; 0)〉, T a corresponds to i K a

0 and
for the state |(0; v)〉, T a corresponds to i J a0 as follows:

|(v; 0)〉 : T a ↔ i K a
0 , |(0; v)〉 : T a ↔ i J a0 . (2.28)

Note that from the defining equation of the OPEs (2.3), one
obtains

[Jam, Jbn ] = −k1mδabδm+n,0 + f abc J cm+n, [Ka
m, Kb

n ]
= −k2mδabδm+n,0 + f abcK c

m+n . (2.29)

In (2.29), the central terms for the zero modes vanish. Recall
that our generators for the SO(2N ) satisfy [T a, T b] =
i f abcT c [6].

The large N ’t Hooft limit is described as [23,24]

N , k2 → ∞, λ ≡ 2N

2N − 2 + k2
fixed. (2.30)

The presence of the numerical value −2 in the denominator
of (2.30) is not important in the large N ’t Hooft limit [25].

Compared to the large N = 4 holography in [10,26,27]
where one can obtain the eigenvalue equations from the sev-
eral low N values inside the package of [28], one should
analyze both the coefficients and the zero modes of the 20
terms in higher spin 4 current in order to obtain the corre-
sponding eigenvalue equations.

2.3.1 Eigenvalue equation of the zero mode of the higher
spin 4 current acting on the state |(0; v)〉

Let us consider the eigenvalue equation of the zero mode of
the A1 term of the higher spin 4 current in (2.14) acting on
the primary state (0; v)

dabcd(Ja Jb J c J d)0|(0; v)〉. (2.31)

Using the fact that the zero mode is nothing but the product
of each zero mode but the ordering is reversed [19,20], Eq.
(2.31) becomes

dabcd(Jd J c J b Ja)0|(0; v)〉. (2.32)

Note that the ground state transforms as a vector representa-
tion with respect to Ja0 , while the zero mode Ka

0 has vanishing
eigenvalue equation [22],

Ka
0 |(0; v)〉 = 0. (2.33)

Equation (2.32) becomes

1

2N
dabcd(−i)4Tr(T dT cT bT a)|(0; v)〉. (2.34)

In order to use the previous identity in (2.6), one can express
the above A1 term as follows:

1

6
dabcd(Ja Jb J c J d + Jb J c Ja Jd + Jb Ja J c J d

+J c Ja Jb Jd + Ja J c J b Jd + J c J b Ja Jd), (2.35)

due to the symmetric property of the d tensor. Then the equiv-
alent expression corresponding to (2.34) with (2.35) can be
written in terms of
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1

2N

1

6
dabcdTr(T dT cT bT a + T dT aT cT b + T dT cT aT b

+T dT bT aT c + T dT bT cT a + T dT aT bT c)

×|(0; v)〉. (2.36)

The reason why the extra 1
2N exists is that one should have

the eigenvalue, not the trace. Using the identity (2.6), one can
reexpress (2.36) as

1

2N

1

3
dabcddcbad = 1

2N

1

3
12[N (2N − 1) + 2]δaa

= 1

2N

1

3
12[N (2N − 1) + 2]1

2
2N (2N − 1)

→ 8N 3. (2.37)

Here the identity (2.13) is used and we take the large N limit
at the last result in (2.37).

One can analyze the other 19 terms in (2.14). Among them,
the 16 terms which have the Ka(z) spin 1 current do not
contribute to the eigenvalue equation, because one can take
the zero mode and change the ordering of the zero modes as
in (2.32). Then one can move the rightmost zero mode Ka

0 to
the right and use the previous condition (2.33). On the other
hand, the remaining A6, A7 and A15 terms can contribute to
the eigenvalue equation.

The zero mode of the A6 term of the higher spin 4 current
acting on the primary state (0; v) is

(∂ Ja∂ Ja)0|(0; v)〉 = (∂ Ja)0(∂ J
a)0|(0; v)〉

= (−Ja0 )(−Ja0 )|(0; v)〉 = Ja0 Ja0 |(0; v)〉,
(2.38)

where the zero mode of ∂ Ja in (2.38) can be obtained from
the usual mode expansion and is given by the zero mode
of −Ja . Now using the correspondence (2.28), the above
expression leads to

1

2N
Tr(iT aiT a)|(0; v)〉 = − 1

2N
2δaa

= − 1

2N
2

1

2
2N (2N − 1) → −2N ,

(2.39)

where the extra factor 1
2N is considered as in (2.36) and the

large N limit is taken.
Now the final contribution from the zero mode of the A7

term of the higher spin 4 current acting on the primary state
(0; v) is given by

(∂2 Ja Ja)0|(0; v)〉 = Ja0 (∂2 Ja)0|(0; v)〉 = Ja0 2Ja0 |(0; v)〉,
(2.40)

where the zero mode of ∂2 Ja in (2.40) can be obtained from
the usual mode expansion also and is given by the zero mode
of 2Ja . Therefore, one can follow the previous description.
It turns out that

2
1

2N
Tr(iT aiT a)|(0; v)〉

= −2
1

2N
2

1

2
2N (2N − 1) → −4N . (2.41)

For the A15 term, one has the eigenvalue equation

(Ja Ja Jb Jb)0|(0; v)〉 = δabδcd(Ja Jb J c J d)0|(0; v)〉.
(2.42)

By following the procedure in the A1 term, one sees that the
above (2.42) can be written as

1

2N

1

3
δabδcddcbad = 1

2N

1

3
2(4N − 1)

1

2
2N (2N − 1)

→ 8

3
N 2, (2.43)

where the identity (2.12) is used in (2.43). Furthermore, the
A15 term itself behaves as N 0 in Appendix E. Then there is
no contribution at the leading order approximation.

By combining (2.37), (2.39) and (2.41) with the corre-
sponding coefficients in the large N limit of Appendix E, the
zero mode eigenvalue equation leads to

W (4)
0 |(0; v)〉 =

[
8N 3A1 + (−2N )

(
N 2 12(2λ − 9)

5(2λ − 3)
A1

)

+(−4N )

(
−N 2 8(2λ − 9)

5(2λ − 3)
A1

)]

×|(0; v)〉 = N 3
[

96(λ − 2)

5(2λ − 3)

]
A1|(0; v)〉.

(2.44)

One can also calculate the same eigenvalue equation at finite
N and k2 corresponding to (2.44), which will appear later.

2.3.2 Eigenvalue equation of the zero mode of the higher
spin 4 current acting on the state |(v; 0)〉

Let us describe the eigenvalue equation of the zero mode of
the A1 term of the higher spin 4 current in (2.14) acting on
the primary state (v; 0),

dabcd(Ja Jb J c J d)0|(v; 0)〉 = dabcd J d0 J c0 J
b
0 Ja0 |(v; 0)〉.

(2.45)

Note that the ground state transforms as a vector represen-
tation with respect to Ka

0 and the singlet condition for the
primary state (v; 0) can be described as [22]

(Ja0 + Ka
0 )|(v; 0)〉 = 0. (2.46)

Then Eq. (2.45) is equivalent to

− dabcd J d0 J c0 J
b
0 K

a
0 |(v; 0)〉 = −dabcd Ka

0 J
d
0 J c0 J

b
0 |(v; 0)〉,

(2.47)

where Eq. (2.46) is used and the zero mode Ka
0 is moved to

the left. Now the singlet condition is applied to the rightmost
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Jb0 and we are left with

dabcd Ka
0 J

d
0 J c0 K

b
0 |(v; 0)〉 = dabcd Ka

0 K
b
0 J

d
0 J c0 |(v; 0)〉.

(2.48)

One can further take the previous steps and obtains

dabcd Ka
0 K

b
0 K

c
0K

d
0 |(v; 0)〉. (2.49)

Then using the correspondence (2.28), Eq. (2.49) becomes

1

2N
dabcd(−i)4Tr(T aT bT cT d)|(0; v)〉, (2.50)

which leads to the previous eigenvalue in (2.37).2

What happens for the A5 term of the higher spin 4 current
in (2.14)? According to the large N behavior of the coeffi-
cient A5, this coefficient behaves as 1

N in Appendix E and,
moreover, the analysis of eigenvalue equation leads to N 3

behavior. Therefore, the total power for the large N behavior
is given by N 2 and can be ignored in this approximation.

Let us move on the A6 term. The eigenvalue equation leads
to

(∂ Ja∂ Ja)0|(v; 0)〉 = Ja0 Ja0 |(v; 0)〉
= −Ja0 K

a
0 |(v; 0)〉 = Ka

0 K
a
0 |(v; 0)〉, (2.54)

where the singlet condition (2.46) is used. After using the
correspondence (2.28), this becomes the previous result in
(2.39).

Similarly, the A7 term eigenvalue equation gives

(∂2 Ja Ja)0|(v; 0)〉 = Ja0 2Ja0 |(v; 0)〉
= −2Ja0 K

a
0 |(v; 0)〉 = 2Ka

0 K
a
0 |(v; 0)〉, (2.55)

which leads to (2.41).

2 The eigenvalue equation of the zero mode of the A2 term of the higher
spin 4 current in (2.14) acting on the primary state (v; 0) can be written
as

dabcd (Ja Jb J cK d )0|(v; 0)〉 = dabcd K d
0 J

c
0 J

b
0 Ja0 |(v; 0)〉, (2.51)

which is equivalent to (2.47) with an extra minus sign due to the sym-
metric property of the d symbol. Then we are left with the fact that Eq.
(2.51) is equal to the previous result (2.50) with minus sign.

The eigenvalue equation of the zero mode of the A3 term of the
higher spin 4 current in (2.14) acting on the primary state (v; 0) leads
to

dabcd (Ja JbK cKd )0|(v; 0)〉 = dabcd K d
0 K

c
0 J

b
0 Ja0 |(v; 0)〉, (2.52)

which is equal to (2.48) and thus (2.52) becomes Eq. (2.50).
Similarly, the eigenvalue equation of the zero mode of the A4 term

of the higher spin 4 current in (2.14) acting on the primary state (v; 0)

can be described as

dabcd (JaKbK cKd )0|(v; 0)〉 = dabcd K d
0 K

c
0K

b
0 J

a
0 |(v; 0)〉 (2.53)

= −dabcd K d
0 K

c
0K

b
0 K

a
0 |(v; 0)〉,

where the singlet condition is used and the above expression (2.53)
leads to (2.50) with an extra minus sign.

For the A8 and A9 terms of the higher spin 4 current, these
coefficients behave as N from Appendix E in the large N
limit and the corresponding eigenvalues behave as N . Then
the total power of the large N behavior is given by 2 and
these terms can be ignored at the leading order calculation.3

Let us consider the A13 term of the higher spin 4 current
in (2.14). One can easily see that

f abc J a∂ JbK c(z) = Ja Jb JaKb(z) − Ja Ja JbKb(z),

(2.59)

by writing the derivative term as the commutator of normal
ordered product. Then the zero mode of Eq. (2.59) is given
by

(Kb
0 J

a
0 Jb0 Ja0 − Kb

0 J
b
0 Ja0 Ja0 )|(v; 0)〉

= −(Kb
0 K

a
0 K

b
0 K

a
0 − Kb

0 K
a
0 K

a
0 K

b
0 )|(v; 0)〉. (2.60)

Then Eq. (2.60) becomes

− 1

2N
(−i)4Tr(T bT aT bT a − T bT aT aT b)|(v; 0)〉. (2.61)

Furthermore, Eq. (2.61) will reduce to

− 1

2N
(−i)4i f bacTr(T bT aT c)|(v; 0)〉

= − 1

2N
(−i)4i f bac

1

2
Tr(T bT aT c − T bT cT a)|(v; 0)〉.

(2.62)

One can use the identity (2.5) and obtains, together with (2.8),

− 1

2N
(−i)4i f bac

1

2
2i f bac

= 1

2N
2(2N − 2)

1

2
2N (2N − 1) → 4N 2. (2.63)

Let us focus on the A14 term. One has the relation

f abc J aK b∂Kc(z) = JaKbKaKb(z) − JaKbKbKa(z).

(2.64)

3 Let us describe the next A10 term of the higher spin 4 current in
(2.14). One obtains

(∂ Ja∂Ka)0|(v; 0)〉 = Ka
0 J

a
0 |(v; 0)〉 = −Ka

0 K
a
0 |(v; 0)〉, (2.56)

where Eq. (2.56) is equivalent to Eq. (2.54) with an extra minus sign.
We can also calculate the eigenvalue equation for the A11 term,

(∂2 JaKa)0|(v; 0)〉 = Ka
0 2Ja0 |(v; 0)〉 = −2Ka

0 K
a
0 |(v; 0)〉. (2.57)

Equation (2.57) is equivalent to (2.55) with an extra minus sign.
One can continue to calculate the eigenvalue equation corresponding to
the A12 term as follows:

(Ja∂2Ka)0|(v; 0)〉 = 2Ka
0 J

a
0 |(v; 0)〉 = −2Ka

0 K
a
0 |(v; 0)〉. (2.58)

Then Eq. (2.58) is the same contribution from A11 term.

123



Eur. Phys. J. C (2017) 77 :394 Page 9 of 23 394

The zero mode of (2.64) can be described as

(Kb
0 K

a
0 K

b
0 J

a
0 − Ka

0 K
b
0 K

b
0 J

a
0 )|(v; 0)〉

= −(Kb
0 K

a
0 K

b
0 K

a
0 − Ka

0 K
b
0 K

b
0 K

a
0 )|(v; 0)〉. (2.65)

Then Eq. (2.65) becomes

− 1

2N
(−i)4Tr(T bT aT bT a − T aT bT bT a)|(v; 0)〉. (2.66)

Furthermore, Eq. (2.66) will reduce to

− 1

2N
(−i)4i f bacTr(T cT bT a)|(v; 0)〉, (2.67)

by combining the first two generators. Equation (2.67) is
equivalent to (2.62) and (2.63).

Are there any contributions from the A15–A20 terms?
These coefficients behave as N 0, 1

N2 , 1
N , N 0, 1

N and N 0,
respectively, from Appendix E. There are no contributions.
Then one obtains the final eigenvalue equation as follows:

W (4)
0 |(v; 0)〉 =

[
8N 3A1 − 8N 3

(
4λ

(λ − 1)

)
A1

+8N 3
(

12λ2

(λ − 1)(2λ − 3)

)
A1

−8N 3
(

8λ3

(λ − 3)(λ − 1)(2λ − 3)

)
A1

−2N

(
N 2 12(2λ − 9)

5(2λ − 3)

)
A1 − 4N

(
−N 2 8(2λ − 9)

5(2λ − 3)

)
A1

+2N

(
N 248(λ − 2)λ

5(λ − 1)(2λ − 3)

)
A1

+4N

(
−N 2 16(λ − 12)λ

5(λ − 1)(2λ − 3)

)
A1

+4N

(
−N 2 16λ

(
λ2 + 15λ + 6

)
5(λ − 3)(λ − 1)(2λ − 3)

)
A1

+4N 2
(

−N
24λ

(λ − 1)(2λ − 3)

)
A1

+4N 2
(
N

48λ2

(λ − 3)(λ − 1)(2λ − 3)

)
A1

]

×|(v; 0)〉=−N 3
[

96(λ+1)(λ+2)(λ+3)

5(λ − 3)(λ − 1)(2λ − 3)

]
A1|(v; 0)〉.

(2.68)

The eigenvalue has a simple factorized form.
With the following normalization:

A1 = − 5

96N 3 (λ − 3)(λ − 1)(2λ − 3), (2.69)

the two eigenvalue equations (2.44) and (2.68) lead to

W (4)
0 |(v; 0)〉 = (1 + λ)(2 + λ)(3 + λ)|(v; 0)〉,

W (4)
0 |(0; v)〉 = (1 − λ)(2 − λ)(3 − λ)|(0; v)〉. (2.70)

If one takes the overall normalization factor for the W (4)(z)
as A4 rather than A1 as in (2.69), then A4 becomes A4 =
− 5

12N3 λ3. In principle, one can calculate the OPE between

W (4)(z) and W (4)(w) from the explicit 20 terms in (2.14),
although the complete computation of the eighth-order sin-
gular terms is rather involved for general (k2, N ) manually.
Then one expects that the central term, the eighth-order pole
of the above OPE, is given by A2

4 f (λ, N ) where f (λ, N ) is
a (fractional) function of λ and N (after the large N limit is
taken). That is, our normalization is given by the central term
of the OPE between the higher spin 4 current and itself which
behaves as 25

144N6 λ6 f (λ, N ) where f (λ, N ) is not known at
the moment.

The above eigenvalues are also observed in [24] by fol-
lowing the descriptions in [29] where the unitary case is ana-
lyzed.

One of the primaries is given by (v; 0) ⊗ (v; 0) and the
other primary is given by (0; v)⊗ (0; v) by pairing up identi-
cal representations on the holomorphic and antiholomorphic
sectors in the context of diagonal modular invariant [15]. Let
us denote them as follows:

O+ = (v; 0) ⊗ (v; 0), O− = (0; v) ⊗ (0; v). (2.71)

The ratio of the three-point functions, from (2.70), is given
by

〈O+O+W (4)〉
〈O−O−W (4)〉 = (1 + λ)(2 + λ)(3 + λ)

(1 − λ)(2 − λ)(3 − λ)
, (2.72)

in the notation of (2.71). This is the same form as for the
unitary case [21,30]. In the corresponding unitary bulk cal-
culation of [15], for λ = 1

2 , this ratio for generic spin is given
by (−1)s(2s−1) with spin s. One expects that the orthogonal
bulk computation will give rise to the behavior of (2.72).

2.3.3 Eigenvalue equation of the zero mode of the higher
spin 4 current acting on the state |(v; v)〉

For the primary (v; v) with the condition Ja0 |(v; v)〉 = 0,
one can calculate the eigenvalue equation [8]. The non-trivial
contributions arise from the A5, A8, and A9 terms. It turns
out that

W (4)
0 |(v; v)〉 = −N 2 48λ2(λ2 + 1)

5(λ − 3)(λ − 1)(2λ − 3)
A1|(v; v)〉.

(2.73)

In (2.73), Appendix E is used.

2.3.4 Further eigenvalue equations

We also present the eigenvalue equations [30] at finite N and
k2, by using Appendix E, as follows:
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W (4)
0 |(0; v)〉 = 6A1

(3k2 + 2N − 2)d(1, k2, N )

×(32k3
2 N

4 − 64k3
2 N

2 + 96k3
2 N − 55k3

2

+160k2
2 N

5 − 168k2
2 N

4 − 268k2
2 N

3

+690k2
2 N

2 − 617k2
2 N + 203k2

2

+128k2N
6 − 64k2N

5 − 680k2N
4

+1548k2N
3 − 1726k2N

2 + 987k2N

−220k2 + 256N 6 − 1024N 5

+1584N 4 − 1384N 3 + 900N 2

−382N + 68)|(0; v)〉,
W (4)

0 |(v; 0)〉 = 6(k2 + 2N − 1)(k2 + 4N − 3)(3k2 + 8N − 5)A1

k2(k2 + 2N − 2)(3k2 + 2N − 2)(3k2 + 4N − 4)d(1, k2, N )

×(32k3
2 N

4 − 64k3
2 N

2 + 96k3
2 N − 55k3

2

+224k2
2 N

5 − 120k2
2 N

4 − 500k2
2 N

3

+1038k2
2 N

2 − 907k2
2 N + 292k2

2

+384k2N
6 − 64k2N

5 − 1752k2N
4

+3636k2N
3 − 3930k2N

2 + 2213k2N

−487k2 + 1024N 6 − 3328N 5

+5184N 4 − 5576N 3 + 3976N 2

−1566N + 250)|(v; 0)〉. (2.74)

Of course, the eigenvalue equations (2.74) become (2.44)
and (2.68), respectively, in the large N ’t Hooft limit. Com-
pared to the unitary case in [30], the above eigenvalues do
not have a simple factorized form. This is because of the fact
that the identities between f and d symbols contain rather
complicated functions of N .

For convenience, we also present the eigenvalue equations
for the spin 2 stress energy tensor (2.2) with k1 = 1,

T0|(0; v)〉 = k2

2(k2 + 2N − 1)
|(0; v)〉 → (1 − λ)

2
|(0; v)〉,

T0|(v; 0)〉 = (k2 + 4N − 3)

2(k2 + 2N − 2)
|(v; 0)〉 → (1 + λ)

2
|(v; 0)〉.

(2.75)

Note that the conformal dimension of (0; v) can be obtained
from the formula [4,8,23,31,32]

h(0; v) = 1

2
(2N−1)

[
1

1+(2N−2)
− 1

1+k2+(2N − 2)

]

= k2

2(k2 + 2N − 1)
, (2.76)

where the overall factor 1
2 (2N − 1) is the quadratic Casimir

eigenvalue of the SO(2N ) vector representation. Similarly,
the conformal dimension of (v; 0) can be obtained,

h(v; 0) = 1

2
(2N − 1)

[
1

1 + (2N − 2)
+ 1

k2 + (2N − 2)

]

= (k2 + 4N − 3)

2(k2 + 2N − 2)
. (2.77)

Then the two results (2.76) and (2.77) are coincident with the
ones in (2.75).4

2.4 The OPE between the higher spin 4 current and itself
where k1 = 1, N = 4 and k2 is arbitrary

Let us describe the OPE between the higher spin 4 current
and itself. Because it is rather involved to calculate this OPE
manually, one fixes the value of N and then one can com-
pute this OPE inside the package of [28]. For fixed N = 4,
which is the lowest value one can consider non-trivially, one
obtains the fourth-order pole of this OPE, by realizing that
the right structure constants should behave according to the
well-known results [33], as follows:

W (4)(z)W (4)(w)

∣∣∣∣
1

(z−w)4

= 3

10
∂2T (w) + 42

(5c + 22)

×
(
T 2 − 3

10
∂2T

)
(w) +

√
18(c + 24)

(5c + 22)
W (4)(w)

+W (4′)(w). (2.81)

Here the central charge reduces to

c(k1 = 1, k2, N = 4) = 4k2(k2 + 13)

(k2 + 6)(k2 + 7)
, (2.82)

which can be obtained from (2.4) by substituting the two
values of k1 = 1 and N = 4. The overall factor can be fixed
as

4 Furthermore, one can write down the eigenvalue equation for the
state |(v; v)〉

T0|(v; v)〉 = (2N − 1)

2(k2 + 2N − 2)(k2 + 2N − 1)
|(v; v)〉 → λ2

4N
|(v; v)〉.

(2.78)

Note that in the large N ’t Hooft limit the eigenvalue (2.78) reduces to
zero.

The conformal dimension of (v; v) can be obtained as follows:

h(v; v) = 1

2
(2N − 1)

[
1

k2 + (2N − 2)
− 1

1 + k2 + (2N − 2)

]

(2.79)

= (2N − 1)

2(k2 + 2N − 2)(k2 + 2N − 1)
.

This looks similar to the unitary case [29]: the overall factor is again the
quadratic Casimir eigenvalue of SO(2N ) in the vector representation.
In the denominator one has (k2 + 2N − 2) and this quantity plus one.
There exists a relation together with (2.76), (2.77) and (2.79),

h(v; v) = h(0; v) + h(v; 0) − 1, (2.80)

which was also observed in [23]. The identity in (2.80) is checked from
(2.75) and (2.78).
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A1(k1 = 1, k2, N = 4) = k2

2520(k2 + 7)

×
√

(k2 + 2)(k2 + 4)

3(k2 + 9)(k2 + 11)
, (2.83)

by comparing the coefficient of the first term in the right-hand
side of (2.81).

Let us emphasize that there exists a new primary field in
(2.81) which is given by

W (4′)(z)

∣∣∣∣
k1=1,k2,N=4

= 1

(k2 + 2)(k2 + 11)

×
[
−1

9
dabcd Ja JbK cKd + 2

35
(k2 − 1)k2 ∂ Ja∂ Ja

− 4

105
(k2 − 1)k2 ∂2 Ja Ja + 28

15
∂ Ja∂Ka

+ 64

105
(k2 − 1) ∂2 JaKa

− 4

35
(k2 − 1) f abc J a∂ JbK c − 2

735
(k2 − 1)k2 Ja Ja Jb Jb

− 68

315
Ja JaKbKb

+ 8

105
(k2 − 1) Ja Ja JbKb − 28

45
Ja JbKaKb

+ 1

90
dabe f de f cd J a J bK cKd

]
(z). (2.84)

In other words, there exists a nonzero expression by com-
bining the fourth-order pole with the first line of (2.81)
with minus sign. Furthermore, one can express the various
nonzero terms as the one in (2.84). One can easily see that
the ten operators except the last operator appear in the pre-
vious higher spin 4 current in (2.14). It is straightforward to
analyze the description appearing in Appendices B and C for
the last operator in (2.84).

Let us further restrict to the simplest case where one can
see the full structure of the corresponding OPE without los-
ing any terms in the right-hand side. In other words, in the
particular limit where k2 → ∞ corresponding to c = 4, the
structure constants do not vanish. That is, there is no (c− 4)

factor in the right-hand side of the OPE.
Then the higher spin 4 current can be written in terms of

W (4)(z)

∣∣∣∣
k1=1,k2→∞,N=4

= 1

2520
√

3
(dabcd Ja Jb J c J d

+18∂ Ja∂ Ja − 12 ∂2 Ja Ja

−3 Ja Ja Jb Jb)(z), (2.85)

by substituting N = 4 and k2 → ∞ limit in Appendix E.
The normalization factor is consistent with the general form
in (2.83). The field contents in (2.85) are given in terms of
the numerator spin 1 current (having the level k1 = 1) of

the coset model. Of course, the stress energy tensor contains
only the first term with k1 = 1 in (2.2) in this limit.

Then one can obtain the corresponding higher spin 4′ cur-
rent from (2.84) by taking the k2 → ∞ limit and it turns out
that

W (4′)(z)

∣∣∣∣
k1=1,k2→∞,N=4

= 2

35

(
∂ Ja∂ Ja − 2

3
∂2 Ja Ja

− 1

21
Ja Ja Jb Jb

)
(z). (2.86)

In (2.86), there is no d symbol.
Now we can calculate the OPE between the higher spin 4

current (2.85) and itself as follows:

W (4)(z) W (4)(w)

∣∣∣∣
k1=1,k2→∞,N=4

= 1

(z − w)8

c

4

+ 1

(z − w)6 2 T (w) + 1

(z − w)5

1

2
2 ∂T (w)

+ 1

(z − w)4

[
3

20
2 ∂2T + 42

(5c + 22)

×
(
T 2 − 3

10
∂2T

)
+ C4

44 W
(4)

]
(w)

+ 1

(z − w)3

[
1

30
2 ∂3T + 1

2

42

(5c + 22)

× ∂

(
T 2 − 3

10
∂2T

)
+ 1

2
C4

44 ∂W (4)

]
(w)

+ 1

(z − w)2

[
1

168
2 ∂4T + 5

36

42

(5c + 22)

× ∂2
(
T 2 − 3

10
∂2T

)
+ 5

36
C4

44 ∂2W (4)

+ 24(72c + 13)

(5c + 22)(2c − 1)(7c + 68)

(
T (T 2 − 3

10
∂2T )

−3

5
∂2T T + 1

70
∂4T

)

− (95c2 + 1254c − 10904)

6(5c + 22)(2c − 1)(7c + 68)

(
1

2
∂2(T 2 − 3

10
∂2T )

−9

5
∂2T T + 3

70
∂4T

)

+ 28

3(c + 24)
C4

44

(
TW (4) − 1

6
∂2W (4)

)
+ C6

44 W
(6)

]
(w)

+ 1

(z − w)

[
1

1120
2 ∂5T + 1

36

42

(5c + 22)

× ∂3
(
T 2 − 3

10
∂2T

)
+ 1

36
C4

44 ∂3W (4)

+1

2

24(72c + 13)

(5c + 22)(2c − 1)(7c + 68)

× ∂

(
T (T 2 − 3

10
∂2T ) − 3

5
∂2T T + 1

70
∂4T

)
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−1

2

(95c2 + 1254c − 10904)

6(5c + 22)(2c − 1)(7c + 68)

× ∂

(
1

2
∂2(T 2 − 3

10
∂2T ) − 9

5
∂2T T + 3

70
∂4T

)

+1

2

28

3(c + 24)
C4

44 ∂

(
TW (4) − 1

6
∂2W (4)

)

+1

2
C6

44 ∂W (6)

]
(w)

+ 1

(z − w)4 W (4′)(w) + 1

(z − w)3

1

2
∂W (4′)(w)

+ 1

(z − w)2

1

3

(
TW (4′) − 1

6
∂2W (4′)

)
(w)

+ 1

(z − w)

1

2

1

3
∂

(
TW (4′) − 1

6
∂2W (4′)

)
(w) + · · · .

(2.87)

Here the central charge coming from (2.82) is given by

c(k1 = 1, k2 → ∞, N = 4) = 4, (2.88)

from (2.4) by substituting the right numbers. Moreover, the
two structure constants are given by

C4
44 =

√
18(c + 24)

(5c + 22)
, C6

44 =
√

12(c − 1)(11c + 656)

(2c − 1)(7c + 68)
,

(2.89)

together with (2.88). Note that there are two extra last lines
in (2.87) associated with the new primary higher spin 4′ cur-
rent, compared to the previous result in [33]. Equation (2.89)
already appeared in [33–35].

2.5 Next higher spin currents

In the second-order pole of (2.87), there exists a primary
higher spin 6 current. One can imagine the six products of
spin 1 current with correct contractions of SO(2N ) indices.
Let us consider the higher spin 4 current W (4)(z) which
contains dabcd Ja Jb J c J d(z) and the same higher spin 4
current which contains dd

′e f g J d
′
J e J f J g(z). Then one has

the second-order pole of this OPE, dabcddd
′e f gδdd

′
Ja Jb J c

J e J f J g(w), by considering the singular term between Jd(z)
and Jd

′
(w). This gives rise to the term of dabcddde f g J a

J b J c J e J f J g(w). Then one expects that the higher spin
6 current contains this term and is given by W (6)(z) =
dabcddde f g J a J b J c J e J f J g(z) + · · · . According to the
description of [17,18], the tensorial structure of SO(2N )

symmetric invariant tensor of rank 6 can be determined by the
product of two rank 4 d symbols. Therefore the above expres-
sion can be rewritten in terms of d tensor of rank 6 and one
should have W (6)(z) = dabce f g J a J b J c J e J f J g(z)+ · · · . It
would be interesting to observe the full expression for the
higher spin 6 current.

3 Higher spin currents withN = 1 supersymmetry in
the stringy coset model with two levels (2N − 2, k2)

In the presence of adjoint fermions coming from the equality
of one of the levels and the dual Coxeter number of SO(2N ),
one can construct the higher spin 7

2 current which is the super-
partner of the previous higher spin 4 current. In doing this,
the role of the spin 3

2 current living in the N = 1 super-
conformal algebra is crucial. The OPE between this N = 1
lowest higher spin multiplet, denoted by ( 7

2 , 4), is described
using the Jacobi identities.

3.1 Spin 3
2 , 2 currents and N = 1 superconformal algebra

The spin 3
2 current can be obtained from the spin 1

2 current
and spin 1 current as follows [6,16]:

G(z) =
√

4(N − 1)

(2N − 2 + k2)(4N − 4 + k2)

×
(

k2

6(N − 1)
ψa Ja − ψaKa

)
(z). (3.1)

Here one has

ψa(z) ψb(w) = − 1

(z − w)

1

2
δab + · · · . (3.2)

Furthermore, we can express the spin 1 current from the
above spin 1

2 current satisfying (3.2) as

Ja(z) ≡ f abcψbψc(z). (3.3)

It is easy to check that this spin 1 current satisfies the first
equation of (2.3) with k1 = (2N − 2).

Then it is easy to see that there are only two terms in (3.1)
and the relative coefficients can be fixed by using the above
spin 3

2 current, which should transform as a primary field
under the stress energy tensor (2.2) with k1 = (2N − 2) as
follows:

T (z)G(w) = 1

(z − w)2

3

2
G(w) + 1

(z − w)
∂G(w) + · · · .

(3.4)

In other words, the condition (3.4) determines the relative
coefficients of (3.1).

The overall factor in (3.1) can be determined by the fol-
lowing OPE between the spin 3

2 current and itself:

G(z)G(w) = 1

(z − w)3

2c

3
+ 1

(z − w)
2T (w) + · · · .

(3.5)

Here the central charge in (3.5) is given by (2.4) with the
condition k1 = (2N − 2).
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It is useful to write down the following OPEs which will
be used in later calculations:

Ĝ(z) ψa(w) = 1

(z − w)

1

2

[
− k2

2(N − 1)
Ja + Ka

]
(w) + · · · ,

Ĝ(z) Ja(w) = − 1

(z − w)2 k2ψ
a(w)

+ 1

(z − w)

[
− k2∂ψa − f abcψbK c

]
(w) + · · · ,

Ĝ(z) Ka(w) = 1

(z − w)2 k2ψ
a(w)

+ 1

(z − w)

[
k2∂ψa + f abcψbK c

]
(w) + · · · ,

(3.6)

where we introduce the following quantity:

Ĝ(z) ≡
(

k2

6(N − 1)
ψa Ja − ψaKa

)
(z). (3.7)

Compared to the unitary case [36–38], the behavior of relative
coefficient, which is equal to one over three times the level
divided by the dual Coxeter number, occurs in (3.7). See also
[6,16].

3.2 Eigenvalue equation of the zero mode of the higher
spin 4 current

We also present the eigenvalue equations for the spin 2 stress
energy tensor (2.2) with k1 = (2N − 2),

T0|(0; v)〉 = k2(2N − 1)

8(N − 1)(k2 + 4N − 4)
|(0; v)〉

→ (1 − λ)

4(1 + λ)
|(0; v)〉,

T0|(v; 0)〉 = (2N − 1)(k2 + 6N − 6)

8(N − 1)(k2 + 2N − 2)
|(v; 0)〉

→ (1 + 2λ)

4
|(v; 0)〉. (3.8)

In (3.8), the large N ’t Hooft limit is taken at the final stage.
Note that the conformal dimension of (0; v) can be obtained
from the formula

h(0; v) = 1

2
(2N − 1)

[
1

(2N − 2) + (2N − 2)

− 1

(2N − 2) + k2 + (2N − 2)

]

= k2(2N − 1)

8(N − 1)(k2 + 4N − 4)
, (3.9)

where the overall factor 1
2 (2N − 1) is the quadratic Casimir

eigenvalue of the SO(2N ) vector representation. Similarly,

the conformal dimension of (v; 0) can be obtained:5

h(v; 0) = 1

2
(2N − 1)

[
1

(2N − 2) + (2N − 2)

+ 1

k2 + (2N − 2)

]

= (2N − 1)(k2 + 6N − 6)

8(N − 1)(k2 + 2N − 2)
. (3.13)

As done in Sect. 2, one obtains the following eigenvalue
equations:

W (4)
0 |(0; v)〉 = −N 3

[
48

(2λ − 3)

]
A1|(0; v)〉,

W (4)
0 |(v; 0)〉 = −N 3

[
48(λ + 1)2(2λ + 1)(4λ + 3)

(λ − 3)(λ − 1)(2λ − 3)

]

A1|(v; 0)〉,
W (4)

0 |(v; v)〉 = −N 3
[

96λ2
(
4λ2 + λ + 1

)
(λ − 3)(λ − 1)(2λ − 3)

]

A1|(v; v)〉. (3.14)

Using Eqs. (3.14), one can obtain the several three-point
functions. The relevant coefficients are given in Appendix
F.

3.3 Higher spin 7
2 , 4 currents

One way to determine the higher spin 7
2 current is to use the

OPE between the spin 3
2 current and the higher spin 4 current

in previous section. Note that the corresponding coefficients
at the critical level k1 = (2N − 2) are given in Appendix
F. In other words, from the N = 1 super primary condition
[36,37], one should have

5 Moreover, the eigenvalue equation for the state |(v; v)〉 can be
obtained as follows:

T0|(v; v)〉= (N−1)(2N−1)

(k2+2N−2)(k2+4N−4)
|(v; v)〉→ λ2

2(λ+1)
|(v; v)〉.

(3.10)

The conformal dimension of (v; v) in (3.10) can also be obtained as
follows:

h(v; v) = 1

2
(2N−1)

[
1

k2 + (2N − 2)
− 1

(2N − 2)+k2+(2N−2)

]

= (N − 1)(2N − 1)

(k2 + 2N − 2)(k2 + 4N − 4)
. (3.11)

There exists a relation together with (3.9), (3.13) and (3.11),

h(v; v) = h(0; v) + h(v; 0) − (2N − 1)

4(N − 1)
. (3.12)

Here the last term in (3.12) is the ratio of quadratic Casimir eigenvalue
for the vector representation and the dual Coxeter number of SO(2N ).
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Ĝ(z)W (4)(w)

∣∣∣∣
1

(z−w)2

= 1

(z − w)2 7

×
√

(2N − 2 + k2)(4N − 4 + k2)

4(N − 1)
W ( 7

2 )(w)

+O
(

1

(z − w)

)
. (3.15)

In order to calculate the second-order pole of (3.15), one
can use the three OPEs in (3.6). The explicit results are given
in Appendix G. Of course, this will give us the final higher
spin 7

2 current but it is rather non-trivial to simplify in simple
form. Therefore, after we identify the correct field contents
for fixed N = 4, we introduce the undetermined coefficients
and fix them using the previous methods we used in pre-
vious section. That is, the higher spin 7

2 current should not
have any singular terms with the diagonal spin 1 current and
transform as a primary higher spin current under the stress
energy tensor.

Then one can express the higher spin 7
2 current as follows

[6,19,20]:

W ( 7
2 )(z) = B1 d

abcdψa J b J c J d(z)

+B2 d
abcd f ae f f beg J c J dψ f K g(z)

+B3 d
abcd JaK bψcK d(z)

+B4 d
abcd f ae f f begK cKdψ f K g(z)

+B5 Jaψa J b Jb(z) + B6 K
aKaψbK b(z)

+B7 Ja JaψbK b(z) + B8 Ja Jaψb J b(z)

+B9 ψaKaKbKb(z)

+B10 f abc f cdeK aK eψbK d(z)

+B11 JaψaK bKb(z) + B12 ψa J bKaKb(z)

+B13 Ja JbψaK b(z)

+B14 f abc f cde J a J eψbK d(z)

+B15 Ja JbKaψb(z)

+X (k2, N )(GT − 1

8
∂2G)(z). (3.16)

The B7 term can be written as (ψa J b JbKa − 2 f abcψa∂

JbK c − (2N − 2)∂2ψaKa)(z) by moving the field ψb

to the left. Similarly, the B8 term can be described as
(ψa Ja Jb Jb+(2N−2)∂2ψa Ja−(2N−2)ψa∂2 Ja+2(2N−
2)∂ψa∂ Ja)(z). For the B13 term one obtains (ψa J b JaKb +
(2N − 2)∂2ψaKa)(z). For the B14 term one can write down
(3(2N −2) f abcψa∂ JbK c+(2N −2)2∂2ψaKa)(z). For the
B15 term, one has (ψa J b JaKb+ f abcψa∂ JbK c)(z)by mov-
ing ψb to the left. Furthermore, the B2 term and the B4 term
can be simplified using the identity (2.10). For the remaining
other terms, the fermion ψa can be moved to the leftmost
position without any extra terms because of the properties
of the f and d symbols. The B5, B6, B7, B11, B12, and B13

terms can be seen from GT (z). The B8, B9, and B15 terms

are written in terms of B5, B6, and B13 terms plus derivative
terms, respectively.

Note that the last term in (3.16) is a quasiprimary field in
the sense that the OPE between the stress energy tensor and
this field does not contain the third-order pole. We realize
that this term does not appear for the particular N = 4 case.

We would like to determine the undetermined coefficients
B1–B15 and X (k2, N ) in (3.16). As in (2.15), one should
have the regular condition as follows:

J ′a(z)W ( 7
2 )(w) = + · · · . (3.17)

In Appendix H, we present the OPEs between the diagonal
spin 1 current and the 15 fields in (3.16). Moreover, the higher
spin 7

2 current transforms as a primary field under the stress
energy tensor. In other words, one has

T̂ (z)W ( 7
2 )(w)

∣∣∣∣
1

(z−w)n ,n=3,4,5

= 0, (3.18)

as in (2.23). One obtains the corresponding OPEs in
Appendix I.

By solving the various linear equations on the coeffi-
cients satisfying the above requirements (3.17) and (3.18),
one obtains the final coefficients in Appendix J.

For consistency check, one can calculate the OPE between

Ĝ(z) and W ( 7
2 )(w). The first-order pole should behave as√

(2N−2+k2)(4N−4+k2)
4(N−1)

W (4)(w). In doing this, the OPEs in
(3.6) are crucial. In order to see the presence of higher spin
4, the rearrangement of the normal ordered product should
be taken because the above first-order pole terms contain
unwanted terms. Of course, we do not have to worry about
the extra contractions in the OPEs because we are interested
in the first-order pole as described above.

3.4 The OPEs between the higher spin 7
2 , 4 currents

It is natural to ask how the OPEs between the higher spin 7
2

current and the higher spin 4 current arise. They have rather
long expressions for the N = 4 case.

Therefore, one tries to obtain the corresponding OPEs
from the Jacobi identities for the above higher spin currents
and other relevant higher spin currents. We will consider

only the three OPEs, W ( 7
2 )(z)W ( 7

2 )(w), W ( 7
2 )(z)W (4)(w)

and W (4)(z)W (4)(w). What kind of new primary higher
spin currents are present in the right-hand side of OPEs?

From the OPEs of W ( 7
2 )(z)W (4)(w) or W (4)(z)W ( 7

2 )(w),
one can think of the presence of a new higher spin 13

2
current at the first order pole. Furthermore, from the OPE
W (4)(z)W (4)(w), the new higher spin 6 current can appear
in the second-order pole of this OPE. Note that there is no
new higher spin 7 current in the first-order pole. The reason
is as follows. One can calculate the OPE W (4)(w)W (4)(z)
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in the presence of the new higher spin 7 current at the first-
order pole, use the symmetry z ↔ w and end up with the
OPE W (4)(z)W (4)(w). By focusing on the new higher spin
7 current, one realizes that there exists an extra minus sign.
Therefore, the new higher spin 7 current should vanish.

Then one can assign the above two higher spin cur-
rents as one single N = 1 higher spin current, denoted by
(6′, 13

2 ) where the numbers stand for each spin. From the
OPE in W (4)(z)W (4)(w), the second-order pole provides a
new higher spin 6 current. Then one can turn to the N = 1
higher spin current denoted by ( 11

2 , 6). Furthermore, from the
bosonic higher spin 4′ current in the previous section, one can
introduce its superpartner whose spin is given by 9

2 . The cor-
responding N = 1 higher spin current is characterized by
(4′, 9

2 ) using the above notation.

For N = 4, one can calculate the OPE inW ( 7
2 )(z)W ( 7

2 )(w).
By requiring that the seventh-order pole should be equal to
2c
7 , one can determine the coefficient A1 as

A1(k1 = 6, k2, N = 4) = k2

5040(k2 + 12)

×
√

(k2 + 2)(k2 + 4)

6(k2 + 6)(k2 + 12)(k2 + 14)(k2 + 16)
. (3.19)

The fifth-order pole gives 2T (w) and the fourth-order pole
gives ∂T (w). Similar behaviors arise in (2.87). Let us
describe the third-order pole. One can easily check that the
following quantity together with (3.19):

1

(4c + 21)(10c − 7)

[
8(37c + 3)T T + 3(2c − 117)∂GG

− 3

10
(302c − 327)∂2T

]
(w) (3.20)

is a quasiprimary field. The third-order pole subtracted by
both (3.20) and 3

10∂2T (w) (which is a descendant field) is
a primary field. However, this is not written in terms of the
previous higher spin 4 current. This implies that there exists
a new primary higher spin 4′ current. The structure constants
appearing in (3.20) are obtained from the Jacobi identities.
Because we are dealing with the extensions of the N = 1
superconformal algebra, the ∂GG(w) term appears in addi-
tion to T T (w) and ∂2T (w).

By assuming that the N = 1 OPE between the N = 1
higher spin 7

2 multiplet contains the N = 1 higher spin
4′, 11

2 , 6′ multiplets, one obtains the complete structure of
these OPEs in a component approach (and N = 1 super-
space). They are given in Appendix K in terms of the cen-
tral charge and some undetermined structure constants. It
would be interesting to see whether there exist other addi-
tional higher spin currents or not. See also the work in [39]
where the Jacobi identities are used.

3.5 The OPE in the N = 1 superspace

From the three OPEs in a component approaches described
in Appendix K, one summarizes its N = 1 superspace in
simple notation as follows:[
W

(
7
2

)
· W

(
7
2

)]
= [I] +

[
W

(
7
2

)]
+

[
W(4′)

]

+
[
W

(
11
2

)]
+

[
W(6′)

]
, (3.21)

where [I] appearing in (3.21) is the N = 1 superconformal
family of the identity operator. According to the field contents
in [40], where k2 is fixed as k2 = 1, the above OPE should
not contain the N = 1 higher spin integer multiplets. See
also [41]. The right-hand side should contain the first, the
second and the fourth terms. It would be interesting to observe
this behavior explicitly. First of all, the single higher spin 4
current should exist by combining the previous two kinds of
higher spin 4 currents under the constraint k2 = 1.

4 Higher spin currents withN = 2 supersymmetry in
the stringy coset model with two levels
(2N − 2, 2N − 2)

The additional adjoint fermions allow us to construct the
spin 1, 3

2 currents in the N = 2 superconformal algebra.
Furthermore, the additional higher spin 3, 7

2 currents can be
found explicitly along the line of [42]. The lowest higher spin
3 current ofU (1) charge 4

3 is obtained and it can be written in
terms of two adjoint fermions. There exists another N = 2
higher spin multiplet, which consists of the above same spin
contents, (3, 7

2 , 7
2 , 4) with different U (1) charges. Finally,

the OPE between these two N = 2 higher spin multiplets is
described.

4.1 Spin 1, 3
2 , 3

2 , 2 currents and N = 2 superconformal
algebra

Let us introduce the second adjoint fermions which satisfy
the following OPE:

χa(z) χb(w) = − 1

(z − w)

1

2
δab + · · · . (4.1)

It is easy to see that one can express the spin 1 current from
the above spin 1

2 current with (4.1) as

Ka(z) ≡ f abcχbχc(z). (4.2)

This spin 1 current satisfies the second equation of (2.3) with
k2 = (2N − 2).

Then it is straightforward to construct the four generating
currents, denoted by (1, 3

2 , 3
2 , 2), corresponding to theN = 2
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superconformal algebra as follows [43]:

J (z) = 2

3
i ψaχa(z),

G+(z) = − 1

6
√

3(2N − 2)

× [
ψa Ja − 3 ψaKa − i χaKa + 3 i χa Ja

]
(z),

G−(z) = − 1

6
√

3(2N − 2)

× [
ψa Ja − 3 ψaKa + i χaKa − 3 i χa Ja

]
(z),

T (z) = − 1

4(2N − 2)
Ja Ja(z) − 1

4(2N − 2)
KaKa(z)

+ 1

6(2N − 2)
(Ja + Ka)(Ja + Ka)(z). (4.3)

By realizing that the difference between G+(z) and G−(z)
occurs in the third and fourth terms, under χa(z) → −χa(z),
one sees the relation G+(z) ↔ G−(z).

Let us introduce the following spin 1 current by taking the
product of two adjoint fermions:

La ≡ f abcψbχc. (4.4)

The central charge can be reduced to

c = 1

3
N (2N − 1), (4.5)

which can be obtained from (2.4) by substituting the cor-
responding two levels. In order to construct the higher spin
currents, let us introduce the following intermediate spin 2
current:

Ma
1 ≡ dabcdψbχc J d ,

Ma
2 ≡ dabcdψbχcK d ,

Ma
3 ≡ dabcdψbχcLd , (4.6)

together with (3.3), (4.2) and (4.4). Compared to the unitary
case in [44], the contracted indices appear in the two different
adjoint fermions (because of the symmetric d tensor) as well
as the spin 1 currents.

4.2 Higher spin 3, 7
2 , 7

2 , 4 currents

From the experience of Sects. 2 and 3, there exist the higher
spin 4 current and the N = 1 higher spin 7

2 current denoted
by ( 7

2 , 4); then there are two choices where the above N = 1
higher spin 7

2 multiplet can arise from the lower two compo-
nent currents or higher two component currents. Let us try
to find the higher spin currents by taking the second choice.

By writing the possible candidate terms for the higher spin
3 current, one can think of the product of spin 1 currents (3.3),
(4.2) or (4.4) and the intermediate spin 2 currents in (4.6).
Furthermore, one can think of the product of each component
field in the spin 3

2 currents living in the N = 2 supercon-
formal algebra. Of course, one should consider the possible

derivative terms. Therefore, one can consider the following
higher spin 3 current [6]:

W (3)
4
3

(z) = a1 JaMa
1 (z) + a2 K

aMa
1 (z) + a3 L

aMa
1 (z)

+a4 JaMa
2 (z) + a5 K

aMa
2 (z) + a6 L

aMa
2 (z)

+a7 JaMa
3 (z) + a8 K

aMa
3 (z) + a9 L

aMa
3 (z)

+a10 Ja∂ Ja(z) + a11 Ja∂Ka(z)

+a12 Ja∂La(z) + a13 ∂ JaKa(z) + a14 K
a∂Ka(z)

+a15 K
a∂La(z) + a16 ∂ JaLa(z)

+a17 ∂KaLa(z) + a18 L
a∂La(z)

+a19 (ψa Ja)(ψb J b)(z) + a20 (ψa Ja)(ψbK b)(z)

+a21 (ψa Ja)(χb J b)(z) + a22 (ψa Ja)(χbK b)(z)

+a23 (ψaK a)(ψbK b)(z)

+a24 (ψaK a)(χb J b)(z) + a25 (ψaK a)(χbK b)(z)

+a26 (χa Ja)(χb J b)(z)

+a27 (χa Ja)(χbK b)(z) + a28 (χaK a)(χbK b)(z).

(4.7)

The U (1) charge 4
3 will be determined later.

As done in previous sections, one can use two require-
ments in order to fix the above coefficients. One of them is
the regularity with the diagonal spin 1 current as follows:

J ′a(z)W (3)
4
3

(w) = + · · · . (4.8)

Here the diagonal spin 1 current in (4.8) is the sum of (3.3)
and (4.2). The other is given by the primary condition, which
can be described as follows together with (4.7):

T̂ (z)W (3)
4
3

(w)

∣∣∣∣
1

(z−w)n ,n=3,4,5

= 0. (4.9)

Here the stress energy tensor is given by (2.24) substituted
by (3.3) and (4.2).

It turns out, from (4.8) and (4.9), that the above higher
spin 3 current with the explicit coefficients is given by

W (3)
4
3

(z) =
[

− i

4
(a7 − a8) J

aMa
1 + i

2
(a7 − a8) K

aMa
1

−a8 L
aMa

1 − i

4
(a7 − a8) K

aMa
2

−a7 L
aMa

2 + a7 JaMa
3 + a8 K

aMa
3

+i(a7 − a8) L
aMa

3

+3i

4
(a7 − a8) J

a∂La + 3i

4
(a7 − a8) K

a∂La

+3i

4
(a7 − a8) ∂ JaLa + 3i

4
(a7 − a8) ∂KaLa

+(−a7 + a8) (ψa Ja)(ψbK b)

+ i

2
(a7 − a8) (ψa Ja)(χb J b)

− i

2
(a7 − a8) (ψa Ja)(χbK b)
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+3i

2
(a7 − a8) (ψaKa)(χb J b)

+ i

2
(a7 − a8) (ψaKa)(χbK b)

+(a7 − a8) (χa Ja)(χbK b)

]
(z). (4.10)

Note that there exist also a4, a11, a14, a20, a24, and a28

dependent terms (other coefficients depend on these six coef-
ficients and a7 and a8 after the above two conditions are used)
but they are identically zero, respectively. From the defini-
tions of (4.6), the first eight terms in (4.10) contain the rank 4
d symbol. One can see the common nonderivative expression
in the third term and sixth term and then one can combine
them with the coefficient (a7 − a8). Similarly, the fifth term
and the seventh term share the common nonderivative term
with the coefficient −(a7 − a8). Furthermore, the compos-
ite fields appearing in (4.10) contain the various derivative
terms (it is obvious that the ninth–twelfth terms do have the
derivative terms and also they can appear from the ordering
for the composite fields) but the precise coefficients will lead
to the vanishing of these derivative terms.

For the extended N = 2 superconformal algebra, there is
one additional condition for the higher spin current which is
the U (1) charge (i.e., the coefficient of the first-order pole of
the OPE with the spin 1 current). That is [44],

J (z)W (3)
q (w) = 1

(z − w)
q W (3)

q (w) + · · · . (4.11)

It turns out that the U (1) charge is fixed and for q = 4
3 , there

is a relation a12 = 3i
4 (a7−a8). This relation is used in (4.10).

For q = − 4
3 , there is a relation a12 = − 3i

4 (a7 − a8). It is
useful to express the above higher spin 3 current in a mani-
festly U (1) charge symmetric way. Let us focus on the first
term in (4.10). If one substitutes the definition of Ma

1 in (4.6),
one has f abcψbψcdade f ψdχe J f (w) where Ja is replaced
by the fermions. One substitutes for the J f using the rela-
tion (3.3) and obtains f abcdade f f f ghψbψcψdχeψgψh(z).
Now move the composite field ψdχe to the right. One obtains
f abcdade f f f ghψbψcψgψhψdχe(z), which can be written
in terms of i

2 f abcdade f f f ghψbψcψgψh(ψd + iχd)(ψe −
iχe)(z) from the symmetric property of dade f . Then the over-
all factor is given by 1

8 (a7 −a8) by considering the numerical
factor − i

4 (a7 − a8).6 Let us describe the eighth term which
is the last term which contains the d symbol. So one has

6 Similarly, the second term can be analyzed also. The relevant term can
be written in terms of f abcdade f f f ghχbχcψdχeψgψh(z), which can
also be expressed as f abcdade f f f ghχbχcψgψhψdχe(z). Once again
this can be described as − i

2 f abcdade f f f ghiχbiχcψgψh(ψd +
iχd )(ψe − iχe)(z) as done before. The overall factor of the
second term is given by i

2 (a7 − a8). Then the total overall
factor gives 1

4 (a7 − a8). Intentionally, we rewrite the above as
1
8 (a7 −a8) f abcdade f f f gh(iχbiχcψgψh + iψbiψcχ gχh)(ψd + iχd )

f abcdade f f f ghψbχcψgχhψdχe(z), which can be identi-
fied with − i

2 f abcdade f f f ghψbiχcψgiχh(ψd + iχd)(ψe −
iχe)(z). By multiplying the overall factor i(a7 − a8),
one obtains 1

2 (a7 − a8) f abcdade f f f ghψbiχcψgiχh(ψd +
iχd)(ψe − iχe)(z). This can be further rewritten in terms of
1
8 (a7 −a8) f abcdade f f f gh(ψbiχcψgiχh +ψbiχciχ gψh +
iχbψcψgiχh + ψbiχciχ gψh)(ψd + iχd)(ψe − iχe)(z).
Finally, one can summarize the first eight terms in (4.10) that
are given by 1

8 (a7 − a8)dabcd f ae f f bgh(ψe + iχe)(ψ f +
iχ f )(ψg + iχ g)(ψh + iχh)(ψc + iχc)(ψd − iχd)(z).

Now we are considering the last six terms in (4.10).
The first term is given by −(a7 − a8) f acdψaψcψd f be f ψb

χeχ f (z). This can be rewritten as − 1
4 (a7 − a8)( f acdψaψc

ψd f be f ψbχeχ f + 3 f acdψaiχciχd f be f ψbψeψ f )(z)
where we use the fact that there exists a minus sign when
the first three factors ψaiχciχd move to the right. Therefore,
there should be an overall factor 1

4 . One can analyze the other
four terms.7 Finally, one can summarize the last six terms in
(4.10) are given by − 1

4 (a7 − a8) f abc f de f (ψa + iχa)(ψb +
iχb)(ψc + iχc)(ψd + iχd)(ψe + iχe)(ψ f − iχ f )(z).

By putting (a7 − a8) = 1, one obtains the higher spin 3
current with U (1) charge 4

3 as follows:

W (3)
4
3

(z) = 1

8
dabcd f ae f f bgh(ψe + iχe)(ψ f + iχ f )

×(ψg + iχ g)(ψh + iχh)(ψc + iχc)(ψd − iχd)(z)

−1

4
f abc f de f (ψa + iχa)(ψb + iχb)(ψc + iχc)

×(ψd + iχd)(ψe + iχe)(ψ f − iχ f )(z). (4.13)

One can calculate the U (1) charges for the adjoint fermions
with (4.3) as follows:

J (z) (ψa + iχa)(w) = 1

(z − w)

1

3
(ψa + iχa)(w) + · · · ,

J (z) (ψa−iχa)(w) = 1

(z − w)
(−1)

1

3
(ψa−iχa)(w)+· · · .

(4.14)

Footnote 6 continued
(ψe − iχe)(z) using the property of the d symbol. One can analyze the
other terms up to the seventh term.
7 Let us describe the last term, which is given by −(a7 −
a8) f acd iχaψcψd f be f iχbχeχ f (z). As above, this can be
written as − 1

4 (a7 − a8)(3 f acd iχaψcψd f be f iχbχeχ f −
f acd iχaχcχd f be f iχbψeψ f )(z).
There are also identities as follows:

f abcψaψbψc f de f ψdψeψ f = 0, f abcψaχbχc f de f ψdχeχ f = 0,

f abcχaψbψc f de f χdψeψ f = 0, f abcχaχbχc f de f χdχeχ f = 0.

(4.12)

As explained before, Eq. (4.12) can be checked by moving the first three
fermions to the right; there exists a minus sign.
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Then it is obvious that the above higher spin 3 current (4.13)
has U (1) charge 4

3 : there exist five factors with U (1) charge
1
3 and one factor with U (1) charge − 1

3 according to (4.14).
For the unitary case [44], one sees the factor f ae f f bgh(ψe

+iχe)(ψ f +iχ f )(ψg+iχ g)(ψh+iχh) and the other factor
is given by dabc f chi (ψh−iχh)(ψ i−iχ i ) of theU (1) charge
− 2

3 in the nonderivative terms. However, the orthogonal case
contains the different factor dabcd(ψc + iχc)(ψd − iχd) of
U (1) charge 0 in (4.13).

In order to obtain the other higher spin currents, it is useful
to calculate the following OPEs:

G+(z) (ψa + iχa)(w) = + · · · ,

G+(z) (ψa − iχa)(w) = 1

(z − w)

× 1

2
√

3(2N − 2)
f abc(ψb + iχb)(ψc + iχc)(w) + · · · ,

G−(z) (ψa − iχa)(w) = + · · · ,

G−(z) (ψa + iχa)(w) = 1

(z − w)

1

2
√

3(2N − 2)
f abc(ψb − iχb)(ψc − iχc)(w) + · · · .

(4.15)

We will use this property to calculate the OPEs for the partic-
ular singular terms. One sees the U (1) charge conservation
in (4.15).

How does one determine the other higher spin currents
related to the lowest one? Let us recall the following OPE
[44–46]:

G+(z)W (3)
4
3

(w) = − 1

(z − w)
W

( 7
2 )

7
3

(w) + · · · . (4.16)

Here the higher spin current appears in the first-order pole.
Once we have obtained the first-order pole in the above OPE,
then we obtain the higher spin current. See also the relevant
work in [47]. Because the lowest higher spin 3 current is
written in terms of adjoint fermions, it is better to calculate
the OPE between G+(z) and fermions appearing in (4.13).
According to the observations of (4.15), the spin 3

2 current
G+(z) has non-trivial OPE with the spin 1

2 current of U (1)

charge − 1
3 , while the spin 3

2 current G−(z) has non-trivial
OPE with the spin 1

2 current of U (1) charge 1
3 . Then it is

obvious that when one calculates the left-hand side of (4.16),
the only non-trivial singular terms appear at the location of
the last factors, (ψd −iχd)(w) and (ψ f −iχ f )(w) in (4.13).
This leads to the following higher spin 7

2 current of U (1)

charge 7
3 :

W
( 7

2 )

7
3

(z) = 1

2
√

3(2N − 2)

[
1

8
dabcd f ae f f bgh f di j

×(ψe+iχe)(ψ f +iχ f )(ψg+iχ g)(ψh+iχh)

×(ψc + iχc)(ψ i + iχ i )(ψ j + iχ j )

−1

4
f abc f de f f f gh

×(ψa+iχa)(ψb+iχb)(ψc+iχc)(ψd+iχd)

×(ψe + iχe)(ψg + iχ g)(ψh + iχh)

]
(z).

(4.17)

In (4.17), the N dependence appears in the overall factor
rather than the relative coefficients. One easily sees that the
above two expressions preserve theU (1) charge by counting
the U (1) charge at each factor. In other words, each factor
has a U (1) charge of 1

3 .
From the OPE [44]

G−(z)W (3)
4
3

(w) = 1

(z − w)
W

( 7
2 )

1
3

(w) + · · · , (4.18)

one can obtain the other higher spin 7
2 current ofU (1) charge

1
3 . It turns out, from the first-order pole of (4.18), that

W
( 7

2 )

1
3

(z) = 1

2
√

3(2N − 2)

1

8
dabcd f ae f f bgh

×[+ f ei j ((ψ i − iχ i )(ψ j − iχ j ))(ψ f + iχ f )(ψg + iχ g)

×(ψh + iχh)(ψc + iχc)(ψd − iχd)

− f f i j (ψe + iχe)((ψ i − iχ i )(ψ j − iχ j ))(ψg + iχ g)

×(ψh + iχh)(ψc + iχc)(ψd − iχd)

+ f gi j (ψe + iχe)(ψ f + iχ f )((ψ i − iχ i )(ψ j − iχ j ))

×(ψh + iχh)(ψc + iχc)(ψd − iχd)

− f hi j (ψe + iχe)(ψ f + iχ f )(ψg + iχ g)

×((ψ i − iχ i )(ψ j − iχ j ))(ψc + iχc)(ψd − iχd)

+ f ci j (ψe + iχe)(ψ f + iχ f )(ψg + iχ g)(ψh + iχh)

×((ψ i − iχ i )(ψ j − iχ j ))(ψd − iχd)](z)
− 1

2
√

3(2N − 2)

1

4
f abc f de f

×[+ f ai j ((ψ i − iχ i )(ψ j − iχ j ))(ψb + iχb)

×(ψc + iχc)(ψd + iχd)(ψe + iχe)(ψ f − iχ f )

− f bi j (ψa + iχa)((ψ i − iχ i )(ψ j − iχ j ))(ψc + iχc)

×(ψd + iχd)(ψe + iχe)(ψ f − iχ f )

+ f ci j (ψa + iχa)(ψb + iχb)((ψ i − iχ i )(ψ j − iχ j ))

×(ψd + iχd)(ψe + iχe)(ψ f − iχ f )

− f di j (ψa + iχa)(ψb + iχb)(ψc + iχc)

×((ψ i − iχ i )(ψ j − iχ j ))(ψe + iχe)(ψ f − iχ f )

+ f ei j (ψa + iχa)(ψb + iχb)(ψc + iχc)(ψd + iχd)

×((ψ i − iχ i )(ψ j − iχ j ))(ψ f − iχ f )](z). (4.19)

From (4.15), the OPE between G−(z) and (ψa − iχa)(w)

does not have any singular terms and the contribution from
this OPE in (4.19) vanishes. Note that the big bracket stands
for the normal ordered product [19,20]. Of course, one can
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move those factors to the right in order to simplify further.
Each term has the U (1) charge 1

3 because there are four fac-
tors for the U (1) charge 1

3 and three factors for the U (1)

charge − 1
3 . Totally one has 1

3 U (1) charge.
From the relation [44]

G−(z)W
( 7

2 )
7
3

(w) = 1

(z − w)2 (−1)
7

3
W (3)

4
3

(w)

+ 1

(z − w)

[
W (4)

4
3

− 1

2
∂W (3)

4
3

]
(w) + · · · ,

(4.20)

one obtains, by calculating the left-hand side of (4.20) with
(4.3) and (4.17) and reading off the first order pole,

(W (4)
4
3

− 1

2
∂W (3)

4
3

)(z) = 1

2
√

3(2N − 2)

1

8
dabcd f ae f f bgh f di j

×[+ f ekl((ψk − iχk)(ψ l − iχ l))(ψ f + iχ f )(ψg + iχ g)

×(ψh + iχh)(ψc + iχc)(ψ i + iχ i )(ψ j + iχ j )

− f f kl(ψe + iχe)((ψk − iχk)(ψ l − iχ l))(ψg + iχ g)

×(ψh + iχh)(ψc + iχc)(ψ i + iχ i )(ψ j + iχ j )

+ f gkl(ψe + iχe)(ψ f + iχ f )((ψk − iχk)(ψ l − iχ l))

×(ψh + iχh)(ψc + iχc)(ψ i + iχ i )(ψ j + iχ j )

− f hkl(ψe + iχe)(ψ f + iχ f )(ψg + iχ g)((ψk − iχk)

×(ψ l − iχ l))(ψc + iχc)(ψ i + iχ i )(ψ j + iχ j )

+ f ckl(ψe + iχe)(ψ f + iχ f )(ψg + iχ g)(ψh + iχh)

×((ψk − iχk)(ψ l − iχ l))(ψ i + iχ i )(ψ j + iχ j )

− f ikl(ψe + iχe)(ψ f + iχ f )(ψg + iχ g)(ψh + iχh)

×(ψc + iχc)((ψk − iχk)(ψ l − iχ l))(ψ j + iχ j )

+ f jkl(ψe + iχe)(ψ f + iχ f )(ψg + iχ g)(ψh + iχh)

×(ψc + iχc)(ψ i + iχ i )
(
(ψk − iχk)(ψ l − iχ l)

)
](z)

− 1

2
√

3(2N − 2)

1

4
f abc f de f f f gh

×[+ f ai j ((ψ i − iχ i )(ψ j − iχ j ))(ψb + iχb)(ψc + iχc)

×(ψd + iχd)(ψe + iχe)(ψg + iχ g)(ψh + iχh)

− f bi j (ψa + iχa)((ψ i − iχ i )(ψ j − iχ j ))(ψc + iχc)

×(ψd + iχd)(ψe + iχe)(ψg + iχ g)(ψh + iχh)

+ f ci j (ψa + iχa)(ψb + iχb)((ψ i − iχ i )(ψ j − iχ j ))

×(ψd + iχd)(ψe + iχe)(ψg + iχ g)(ψh + iχh)

− f di j (ψa + iχa)(ψb + iχb)(ψc + iχc)((ψ i − iχ i )

×(ψ j − iχ j ))(ψe + iχe)(ψg + iχ g)(ψh + iχh)

+ f ei j (ψa + iχa)(ψb + iχb)(ψc + iχc)(ψd + iχd)

×((ψ i − iχ i )(ψ j − iχ j ))(ψg + iχ g)(ψh + iχh)

− f gi j (ψa + iχa)(ψb + iχb)(ψc + iχc)(ψd + iχd)

×(ψe + iχe)((ψ i − iχ i )(ψ j − iχ j ))(ψh + iχh)

+ f hi j (ψa + iχa)(ψb + iχb)(ψc + iχc)(ψd + iχd)

×(ψe + iχe)(ψg + iχ g)((ψ i − iχ i )(ψ j − iχ j ))](z).
(4.21)

The properties in (4.15) are used. One can check that the
U (1) charge of each term is equal to 4

3 where there are six
positive ones and two negative ones. In order to obtain the
primary current, one should consider (W (4)

4
3

− 1
9∂W (3)

4
3

)(z)

[44] which can be obtained from (4.21) and (4.13).
Then the higher spin 3, 7

2 , 7
2 , and 4 currents are summa-

rized by (4.13), (4.17), (4.19) and (4.21) with addition of the
derivative of (4.13).

4.3 Other higher spin 3, 7
2 , 7

2 , 4 currents

In the description of (4.11), for the opposite U (1) charge,
there exists also another solution for the higher spin 3 current.
One obtains the higher spin 3 current of U (1) charge − 4

3 as
follows:

W (3)

− 4
3
(w) = W (3)

4
3

(w)

∣∣∣∣
χa→−χa

. (4.22)

More explicitly, one can read off the explicit expression
which can be obtained from (4.13) by replacing the second
adjoint fermions with those together with minus sign. It is
obvious that the U (1) charge − 4

3 of this higher spin current
can be seen during this process: five factors of U (1) charge
− 5

3 and one factor with U (1) charge 1
3 .

Let us calculate the other higher spin currents. From the
well-known OPE [44]

G+(z)W (3)

− 4
3
(w) = − 1

(z − w)
W

( 7
2 )

− 1
3
(w) + · · · , (4.23)

one obtains the higher spin 7
2 current together with (4.22)

and (4.23) as follows:

W
( 7

2 )

− 1
3
(w) = −W

( 7
2 )

1
3

(w)

∣∣∣∣
χa→−χa

. (4.24)

Note that under the change of χa → −χa , the original
U (1) charge is changed into the negative one. More explic-
itly, one can take this operation in (4.18). Then the left-hand
side of (4.18) leads to the left-hand side of (4.23) with the
help of (4.22) and the right-hand side of (4.18) becomes

W
( 7

2 )

1
3

(w)

∣∣∣∣
χa→−χa

. By using the first-order pole from (4.23),

then we are left with (4.24).
Similarly, the OPE [44] with (4.22),

G−(z)W (3)

− 4
3
(w) = 1

(z − w)
W

( 7
2 )

− 7
3
(w) + · · · , (4.25)

provides the following result for the higher spin current, by
considering Eq. (4.16), where the operation χa → −χa is
taken, and Eq. (4.22),

W
( 7

2 )

− 7
3
(w) = −W

( 7
2 )

7
3

(w)

∣∣∣∣
χa→−χa

. (4.26)
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In other words, the left-hand side of (4.25) is equal to the left-
hand side of (4.16) with the additional operation χa → −χa .
We also use Eq. (4.22). Then the right-hand side of (4.25) can
be read off from this relation and we arrive at (4.26).

From the relation [44],

G+(z)W
( 7

2 )

− 7
3
(w) = 1

(z − w)2
7

3
W (3)

− 4
3
(w)

+ 1

(z − w)

[
W (4)

− 4
3

+ 1

2
∂W (3)

− 4
3

]
(w) + · · · ,

(4.27)

one sees that the first-order pole of (4.27) leads to(
W (4)

− 4
3

+ 1

2
∂W (3)

− 4
3

)
(w)

= −
(
W (4)

4
3

− 1

2
∂W (3)

4
3

)
(w)

∣∣∣∣
χa→−χa

, (4.28)

where Eq. (4.20) together with the operation χa → −χa is
used. Moreover, Eq. (4.26) is used also. As described before,
the field (4.28) is not a primary under the stress energy tensor.
The primary current is given by (W (4)

− 4
3
+ 1

9∂W (3)

− 4
3
)(w), which

can be obtained from (−W (4)
4
3

+ 1
9∂W (3)

4
3

)(w) by changing of

χa(w) → −χa(w).
Therefore, the higher spin 3, 7

2 , 7
2 , 4 currents are summa-

rized by (4.22), (4.24), (4.26), and (4.28). They are obtained
from the higher spin currents appearing in previous subsec-
tion by simple change of the adjoint fermions χa(z) up to
signs.

4.4 The OPE between the two lowest higher spin currents
in N = 2 superspace

Because the coset with the critical levels has the N = 2
supersymmetry, one can describe the OPE between the two
lowest higher spin multiplets in the N = 2 superspace. Let
us consider the OPE between the two N = 2 lowest higher
spin 3 multiplets where they have two oppositeU (1) charges.
That is,

W(3)
4
3

(Z1)W
(3)

− 4
3
(Z2), (4.29)

where each four component current, obtained in the previous
subsection, is given by

W(3)
4
3

≡
(
W (3)

4
3

, W
( 7

2 )

7
3

, W
( 7

2 )

1
3

, W (4)
4
3

)
,

W(3)

− 4
3

≡
(
W (3)

− 4
3
, W

( 7
2 )

− 1
3
, W

( 7
2 )

− 7
3
, W (4)

− 4
3

)
. (4.30)

In principle, in order to obtain the explicit OPE in (4.29),
one should calculate only the four OPEs between the four
component currents living in W(3)

4
3

(Z1) in (4.30) and the

lowest component current in W(3)

− 4
3
(Z2) in (4.30), due to the

N = 2 supersymmetry. See also the relevant work in [48–
50] where the various N = 2 multiplets in different coset
models are studied. From the four OPEs, one can realize that
the right-hand sides of these OPEs should haveU (1) charges
0, 1, or −1 by adding the U (1) charges. Recall that the four
currents characterized by the N = 2 stress energy tensor
T ≡ (J,G+,G−, T ) of the N = 2 superconformal algebra
have 0, 1,−1, and 0, respectively. It is natural to consider the
right-hand side of (4.29) in terms of the N = 2 stress energy
tensor T(Z2) with its various descendant fields in a minimal
way.

Inside of the package of [51], one can introduce the OPEs,
T(Z1)T(Z2), which is the standard OPE corresponding to
the N = 2 superconformal algebra, T(Z1)W

(3)
4
3

(Z2), which

is the N = 2 primary condition with U (1) charge 4
3 and

T(Z1)W
(3)

− 4
3
(Z2), which is theN = 2 primary condition with

U (1) charge − 4
3 . All the coefficients appearing in these OPEs

are constants except the central charge c, which is a function
of N in (4.5). Then one can write down the right-hand side
of OPE (4.29) with arbitrary coefficients which depend on
c or N . After using the Jacobi identities, we summarize the
structure constants in Appendix L explicitly. See also the
relevant work in [52].

One expects that there should be present other higher
spin multiplets in the various OPEs. For example, W(3)

4
3

(Z1)

W(3)
4
3

(Z2) or W(3)

− 4
3
(Z1)W

(3)

− 4
3
(Z2) as in the unitary case [44].

It would be interesting to obtain these higher spin multiplets
explicitly further.

5 Conclusions and outlook

In the coset model (1.1), we have constructed the higher spin 4
current for general levels. For k1 = 1 with arbitrary N and k2,
the eigenvalue equations of the zero mode of the higher spin
4 current acting on the states are obtained. The corresponding
three-point functions are also determined. The N = 1 higher
spin multiplet characterized by ( 7

2 , 4) for k1 = 2N − 2 in
terms of adjoint fermions and spin 1 current is obtained. The
two N = 2 higher spin multiplets denoted by (3, 7

2 , 7
2 , 4)

for k1 = k2 = 2N − 2 in terms of two adjoint fermions are
determined. Some of the OPEs in the N = 1 or N = 2 coset
models are given explicitly.

We consider the possible related open problems as fol-
lows:

• One can also try to obtain the higher spin currents in the
following coset model:
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ˆSO(2N + 1)k1 ⊕ ˆSO(2N + 1)k2

ˆSO(2N + 1)k1+k2

. (5.1)

It seems that the minimum value of N for the non-trivial
existence of the d symbol (and corresponding higher spin 4
current) is given by N = 2. In the present paper, the minimum
value of N is given by N = 4 and the number of independent
fields in the higher spin currents is rather big, implying that
it is rather non-trivial to extract the corresponding OPEs. In
the coset model (5.1), for the N = 2 or N = 3 case, one
expects that one can analyze the OPEs further and observe
more structures in the right-hand sides of the OPEs.

• Further algebraic structures.

In order to observe the algebraic structures living in the
bosonic, N = 1 or N = 2 higher spin multiplets for
generic N (and generic k2), one should calculate the vari-
ous OPEs between them manually. In practice, this is rather
involved because, for example, the higher spin 4 current in
the bosonic coset model consists of 20 terms and the number
of OPEs is greater than 200. In [28], one can try to obtain
the various OPEs for the fixed low N values (for example,
N = 4, 5, 6, 7, . . .) and expect the N dependence of structure
constants appearing in the right-hand side of the OPEs.

• N = 2 enhancement of [25].

One considers the critical level condition in [25,53]. It
would be interesting to observe any N = 2 enhancement
or not. One can easily see the breaking of the adjoint rep-
resentation in SO(2N + 1) into the adjoint representation
of SO(2N ) plus the vector representation of SO(2N ). The
first step is to construct the N = 2 superconformal algebra
realization.

• The additional numerator factors.

For example, one considers the following coset model
where the extra numerator factor exists in the coset:

ˆSO(2N )2N−2 ⊕ ˆSO(2N )2N−2 ⊕ ˆSO(2N )2N−2

ˆSO(2N )6N−6
. (5.2)

It is an open problem to see whether one constructs theN = 3
superconformal algebra [54] from the three kinds of adjoint
fermions or not. It is non-trivial to obtain the three spin 3

2 cur-
rents satisfying the standard OPEs between them. Then one
can try to obtain the higher spin currents living in the above
coset model (5.2). Furthermore, one can describe another
coset model where the additional numerical factor occurs.
It is an open problem to construct the linear (or nonlinear)
N = 4 superconformal algebra from the four kinds of adjoint
fermions.

• Further identities between f and d tensors of SO(2N ).

One can analyze the various identities involving f and d
tensors by following the description of [17,18]. They will be
useful in order to calculate the OPEs between the higher spin
currents in the context of Sects. 3 and 4.

• Zero mode eigenvalue equations in other representations

There exists an adjoint representation of SO(2N ). It is an
open problem to describe the eigenvalue equations for the
zero mode of the higher spin 4 current acting on the states
associated with the adjoint representation. For the SO(8)

generators in the adjoint representation, one has 28 × 28
matrices whose elements are given by the structure constant.

• Marginal operator.

One of the motivations in Sect. 4 is based on the pres-
ence of the perturbing marginal operator [55], which breaks
the higher spin symmetry but preserving the N = 2 super-
symmetry. It would be interesting to obtain this operator and
calculate the mass terms with the explicit eigenvalues along
the lines of [56–59]. In the large c limit, the right-hand side
of the OPE has the simple linear terms.

• N = 2 superspace description for the adjoint fermions.

We obtained the two N = 2 higher spin multiplets. It is
an open problem to see whether one can write down the two
adjoint fermions in N = 2 superspace. This will allow us
to write down the N = 2 higher spin multiplets in N = 2
superspace.

• Asymptotic quantum symmetry algebra.

We have obtained the eigenvalue equations and three-point
functions at finite N and k2 in Sect. 2. Along the lines of
[9], it is an open problem to study the asymptotic quantum
symmetry algebra of the higher spin theory on the AdS3

space. See also [24] where a brief sketch for the large N ’t
Hooft limit is given.
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