
Eur. Phys. J. C (2017) 77:387
DOI 10.1140/epjc/s10052-017-4954-y

Regular Article - Theoretical Physics

Augmented superfield approach to gauge-invariant massive
2-form theory

R. Kumar1,a, S. Krishna2,b

1 Department of Physics and Astrophysics, University of Delhi, New Delhi 110007, India
2 Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Punjab 140306, India

Received: 2 May 2017 / Accepted: 26 May 2017 / Published online: 12 June 2017
© The Author(s) 2017. This article is an open access publication

Abstract We discuss the complete sets of the off-shell
nilpotent (i.e. s2

(a)b = 0) and absolutely anticommuting (i.e.
sbsab + sabsb = 0) Becchi–Rouet–Stora–Tyutin (BRST)
(sb) and anti-BRST (sab) symmetries for the (3 + 1)-
dimensional (4D) gauge-invariant massive 2-form theory
within the framework of an augmented superfield approach
to the BRST formalism. In this formalism, we obtain the
coupled (but equivalent) Lagrangian densities which respect
both BRST and anti-BRST symmetries on the constrained
hypersurface defined by the Curci–Ferrari type conditions.
The absolute anticommutativity property of the (anti-) BRST
transformations (and corresponding generators) is ensured
by the existence of the Curci–Ferrari type conditions which
emerge very naturally in this formalism. Furthermore, the
gauge-invariant restriction plays a decisive role in deriving
the proper (anti-) BRST transformations for the Stückelberg-
like vector field.

1 Introduction

The antisymmetric 2-form B(2) = 1
2! (dx

μ ∧dxν)Bμν gauge
field Bμν(= −Bνμ) [1,2] has paved a great deal of interest of
the theoretical physicists during the past few decades because
of its relevance in the realm of (super-) string theories [3,4],
(super-) gravity theories [5], dual description of a massless
scalar field [6,7] and modern developments in noncommuta-
tive geometry [8]. It has also been quite popular in the mass
generation of the 1-form A(1) = dxμAμ gauge field Aμ,
without taking any help of Higgs mechanism, where 2-form
and 1-form gauge fields merged together in a particular fash-
ion through a well-known topological (B ∧ F) term [9–14].

The Becchi–Rouet–Stora–Tyutin (BRST) formalism is
one of the most elegant and intuitively appealing theoreti-
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cal approaches to covariantly quantizing gauge theories [15–
18]. The gauge symmetry is always generated by the first-
class constraints present in a given theory, in Dirac’s termi-
nology [19,20]. In the BRST formalism, the classical local
gauge symmetry of a given physical theory is traded with
two global BRST and anti-BRST symmetries at the quantum
level [21,22]. These symmetries obey two key properties:
(1) nilpotency of order two, and (2) absolute anticommuta-
tivity. The first property implies that these symmetries are
fermionic in nature whereas second property shows that they
are linearly independent of each other. In the literature, it has
been shown that only the BRST symmetry is not sufficient
to yield the ghost decoupling from the physical subspace of
the total quantum Hilbert space of states. The addition of
a nilpotent anti-BRST symmetry plays an important role in
removing the unphysical ghost degeneracy [23]. Thus, the
anti-BRST symmetry is not just a decorative part; rather, it
is an integral part of this formalism and plays a fundamental
role in providing us with the consistent BRST quantization.

The superfield approach to BRST formalism is the the-
oretical approach that provides the geometrical origin as
well as deep understanding about the (anti-) BRST sym-
metry transformations [24–26]. The Curci–Ferrari condi-
tion [21], which is a hallmark of the non-Abelian 1-form
gauge theory, emerges very naturally as an off-shoot of the
superfield formalism. This condition plays a central role in
providing the absolute anticommutativity property of the
(anti-) BRST transformations and also responsible for the
derivation of the coupled (but equivalent) Lagrangian den-
sities. In recent years, the “augmented” superfield formal-
ism, an extended version of Bonora–Tonin superfield for-
malism, has been applied to the interacting gauge systems
such as (non-)Abelian 1-form gauge theories interacting
with Dirac fields [27–31] and complex scalar fields [32,33],
gauge-invariant version of the self-dual chiral boson [34], 4D
Freedman–Townsend model [35], 3D Jackiw–Pi model [36],
vector Schwinger model in 2D [37] and modified version
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of 2D Proca theory [38]. In this approach, the celebrated
horizontality condition and gauge-invariant restrictions are
blend together in a physically meaningful manner to derive
the proper off-shell nilpotent and absolutely anticommuting
(anti-) BRST symmetry transformations.

As far as the quantization of the 4D (non-)Abelian 2-form
gauge theories is concerned, the canonical and BRST quan-
tizations have been carried out [39–44]. The 2-form gauge
theory is a reducible theory and, thus, requires ghost for ghost
in the latter quantization scheme. In the non-Abelian case, a
compensating auxiliary vector field is required for the consis-
tent quantization as well as in order to avoid the well-known
no-go theorem [45]. In fact, this auxiliary field is needed to
close the symmetry algebra and, thus, the theory respects the
vector gauge symmetry present in the theory. Furthermore,
within the framework of BRST formalism, the free Abelian
2-form gauge theory in (3+1) dimensions of spacetime pro-
vides a field-theoretic model for the Hodge theory where all
the de Rham cohomological operators (d, δ,�) and Hodge
duality (∗) operation of differential geometry find their physi-
cal realizations in the language of the continuous symmetries
and discrete symmetry, respectively [46,47]. In addition, it
has also been shown that the free Abelian 2-form gauge the-
ory, within the framework of BRST formalism, provides a
new kind of quasi-topological field theory (q-TFT), which
captures some features of Witten type TFT and a few aspects
of Schwarz type TFT [48].

We have also studied the 4D topologically massive (non)-
Abelian 2-form theories where 1-form gauge bosons acquire
mass through a topological (B∧F) term without spoiling the
gauge invariance of the theory. With the help of superfield
formalism, we have derived the off-shell nilpotent as well
as absolutely anticommuting (anti-) BRST transformations
and also shown that the topological (B ∧ F) term remains
unaffected by the presence of the Grassmannian variables
when we generalize it on the (4, 2)-dimensional supermani-
fold [49,50]. In the non-Abelian case, we have found some
novel observations. For the sake of brevity, the conserved
and nilpotent (anti-) BRST charges do not generate the proper
(anti-) BRST transformations for the compensating auxiliary
vector field [51,52]. Moreover, in contrast to the Nakanishi–
Lautrup fields, the nilpotency and absolute anticommutativ-
ity properties of the (anti-) BRST transformations also fail to
produce the correct (anti-) BRST symmetry transformations
for the compensating auxiliary field.

The contents of our present investigation are organized as
follows. In Sect. 2, we briefly discuss the 4D massive 2-form
theory and its constraints structure. Section 3 is devoted to the
coupled (but equivalent) Lagrangian densities that respect the
off-shell nilpotent (anti-) BRST symmetries. We discuss the
salient features of the Curci–Ferrari type conditions in this
section, too. In Sect. 4, we discuss the conserved charges as
the generator of the off-shell nilpotent (anti-) BRST transfor-

mations. The global continuous ghost-scale symmetry and
BRST algebra among the symmetry transformations (and
corresponding generators) are shown in Sect. 5. Section 6
deals with the derivation of the proper (anti-) BRST sym-
metry transformations with the help of augmented superfield
formalism. We capture the (anti-) BRST invariance of the
coupled Lagrangian densities in terms of the superfields and
Grassmannian translational generators in Sect. 7. Finally, in
Sect. 8, we provide the concluding remarks.

In Appendix A, we show an explicit proof of the anticom-
mutativity of the conserved (anti-) BRST charges.

2 Preliminaries: (3+ 1)-dimensional massive Abelian
2-form theory

We begin with the (3 + 1)-dimensional (4D) massive
Abelian 2-form theory which is described by the following
Lagrangian density1:

L = 1

12
HμνηHμνη − m2

4
BμνBμν, (1)

where the totally antisymmetric 3-form H (3) = 1
3! (dx

μ ∧
dxν ∧ dxη)Hμνη defines the curvature tensor Hμνη =
∂μBνη + ∂νBημ + ∂ηBμν for the Abelian 2-form B(2) =
1
2! (dx

μ ∧dxν)Bμν antisymmetric field Bμν . The 3-form cur-
vature H (3) = dB(2) owes its origin in the exterior derivative
d = dxμ∂μ (with d2 = 0). In the above, m represents a con-
stant mass parameter.

It is evident that due to the existence of mass term, the
Lagrangian density does not respects the following gauge
symmetry:

δBμν = ∂μΛν(x) − ∂νΛμ(x), (2)

where Λμ(x) is an infinitesimal local vector gauge parameter.
In fact, the above Lagrangian density transforms as δL =
−m2Bμν(∂μΛν). The basic reason behind this observation
is that the above Lagrangian density is endowed with the
second-class constraints, in language of Dirac’s prescription
for the classification scheme of constraints [19,20], namely

χ i = Π0i ≈ 0, ξ i = −(2∂ jΠ
i j + m2B0i ) ≈ 0, (3)

where Π0i and Π i j are the canonical conjugate momenta cor-
responding to the dynamical fields B0i and Bi j , respectively.
Here, the symbol ‘≈’ defines weak equality in the sense of
Dirac. Due to the existence of mass term in the Lagrangian

1 We adopt the conventions and notations such that the 4D flat
Minkowski metric endowed with mostly negative signatures: ημν =
ημν = diga(+1,−1,−1,−1). Here, the Greek indices μ, ν, κ, . . . =
0, 1, 2, 3 correspond to the spacetime directions, whereas the Latin
indices i, j, k, . . . = 1, 2, 3 stand for the space directions only. We
also follow the convention δBμν

δBκσ
= 1

2! (δ
κ
μδσ

ν − δκ
ν δσ

μ).
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density, both constraints belong to the category of second-
class constraints as one can check that the primary (χ i ) and
secondary (ξ j ) constraints lead to a non-vanishing Poisson
bracket:

[
χ i (x, t), ξ j (x′, t)

] = m2δijδ
3(x − x′). Thus, the

mass term in the Lagrangian density spoils the gauge invari-
ance. However, on one hand, the gauge invariance can be
restored by setting mass parameter equal to zero (i.e.m = 0).
But this leads to the massless 2-form gauge theory. On other
hand, we can restore the gauge invariance by exploiting the
power and strength of the well-known Stückelberg technique
(see, e.g. [53,54] for details). Thus, we re-define the field Bμν

as

Bμν −→ Bμν = Bμν − 1

m

μν, (4)

where 
μν = (∂μφν − ∂νφμ) and φμ is the Stückelberg-
like vector field. As a consequence, we obtain the following
gauge-invariant Stückelberg-like Lagrangian density for the
massive 2-form theory [55,56]:

Ls = 1

12
HμνηHμνη − m2

4
BμνBμν − 1

4

μν
μν

+m

2
Bμν
μν. (5)

Here 
μν defines the curvature for the Stückelberg-like vec-
tor field φμ. In the language of differential form, we can write

(2) = dφ(1) = 1

2! (dx
μ ∧dxν)
μν . We, interestingly, point

out that the above Lagrangian density and the Lagrangian
density for the 4D topologically massive (B ∧ F) theory
have shown to be equivalent by Buscher’s duality procedure
[55,56]. Furthermore, due to the introduction of Stückelberg-
like vector field, the second-class constraints get converted
into the first-class constraints [19,20]. These first-class con-
straints are listed as follows:

Θ = Π0 ≈ 0, Θ i = Π0i ≈ 0,

Σ = ∂iΠ
i ≈ 0, Σ i = −(

2∂ jΠ
i j + mΠ i ) ≈ 0, (6)

where Π0 and Π i are canonical conjugate momenta corre-
sponding to the fields φ0 and φi , respectively. It is elementary
to check that the Poisson brackets among all the first-class
constraints turn out to be zero. Further, the first-class con-
straints Σ and Σ i are not linearly independent. They are
related as ∂iΣ

i +mΣ = 0 which implies that the Lagrangian
(5) describes a reducible gauge theory [56]. These first-class
constraints are the generators of two independent local and
continuous gauge symmetry transformations, namely

δ1φμ = ∂μ�, δ1Bμν = 0,

δ2Bμν = −(∂μΛν − ∂νΛμ), δ2φμ = −mΛμ, (7)

where the Lorentz scalar �(x) and Lorentz vector Λμ(x)
are the local gauge parameters. It is straightforward to check
that under above the gauge transformations, the Lagrangian
density remains invariant (i.e. δ1 Ls = 0 and δ2Ls = 0). As

a consequence, the combined gauge symmetry transforma-
tions δ = (δ1 + δ2) also leave the Lagrangian density (Ls)

invariant.

3 Coupled Lagrangian densities: off-shell nilpotent and
absolutely anticommuting (anti-) BRST symmetries

The coupled (but equivalent) Lagrangian densities for the 4D
Stückelberg-like massive Abelian 2-form theory incorporate
the gauge-fixing and Faddeev–Popov ghost terms within the
framework of BRST formalism. In full blaze of glory, these
Lagrangian densities (in the Feynman gauge) are given as
follows:

LB = 1

12
HμνηH

μνη − 1

4
m2BμνB

μν − 1

4

μν


μν

+1

2
mBμν


μν − B2 − B(∂μφμ + mϕ)

+BμB
μ − Bμ(∂νBνμ − ∂μϕ + mφμ)

−(∂μC̄ − mC̄μ)(∂μC − mCμ) − m2β̄β

+(∂μC̄ν − ∂νC̄μ)(∂μCν) + ∂μβ̄∂μβ

+
(

∂μC̄
μ + 1

2
ρ + mC̄

)
λ

+
(

∂μC
μ − 1

2
λ + mC

)
ρ, (8)

LB̄ = 1

12
HμνηH

μνη − 1

4
m2BμνB

μν − 1

4

μν


μν

+1

2
mBμν


μν − B̄2 + B̄(∂μφμ − mϕ)

+B̄μ B̄
μ + B̄μ(∂νBνμ + ∂μϕ + mφμ)

−(∂μC̄ − mC̄μ)(∂μC − mCμ) − m2β̄β

+(∂μC̄ν − ∂νC̄μ)(∂μCν) + ∂μβ̄∂μβ

+
(

∂μC̄
μ + 1

2
ρ + mC̄

)
λ

+
(

∂μC
μ − 1

2
λ + mC

)
ρ, (9)

where the vector fields B̄μ, Bμ and scalar fields B̄, B are
the Nakanishi–Lautrup type auxiliary fields, the vector fields
(C̄μ)Cμ and scalar fields (C̄)C (with C̄μC̄μ = CμCμ = 0,
CμC̄ν + C̄νCμ = 0, CμCν + CνCμ = 0, C̄2 = C2 = 0,
CC̄+C̄C = 0, etc.) are the fermionic (anti-) ghost fields, β̄, β
are the bosonic ghost-for-ghost fields, (ρ)λ are the fermionic
auxiliary (anti-) ghost fields. The fermionic (anti-) ghost
fields (C̄μ)Cμ, (C̄)C and (ρ)λ carry ghost number equal
to (−1) + 1 whereas bosonic (anti-) ghost fields (β̄)β have
ghost number equal to (−2) + 2. The remaining fields carry
zero ghost number. The commuting (anti-) ghost fields (β̄)β

and scalar field ϕ are required for the stage-one reducibility
in the theory (see, e.g. [42] for details).
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The above Lagrangian densities respect the following off-
shell nilpotent (i.e. s2

(a)b = 0) and absolutely anticommuting
(i.e. sbsab + sab sb = 0) (anti-) BRST symmetry transforma-
tions (s(a)b):

sbBμν = −(∂μCν − ∂νCμ), sbCμ = −∂μβ,

sbφμ = ∂μC − mCμ, sbC̄μ = Bμ, sbβ̄ = −ρ,

sbC = −mβ, sbC̄ = B, sb B̄ = −mλ, sbϕ = λ,

sb B̄μ = −∂μλ, sb[B, ρ, λ, β, Bμ, Hμνκ ] = 0, (10)

sabBμν = −(∂μC̄ν − ∂νC̄μ), sabC̄μ = −∂μβ̄,

sabφμ = ∂μC̄ − mC̄μ, sabCμ = B̄μ, sabβ = −λ,

sabC̄ = −mβ̄, sabC = B̄, sabB = −mρ, sabϕ = ρ,

sabBμ = −∂μρ, sab[B̄, ρ, λ, β̄, B̄μ, Hμνκ ] = 0. (11)

It is straightforward to check that the Lagrangian densitiesLB

and LB̄ under the off-shell nilpotent BRST and anti-BRST
symmetry transformations transform to the total spacetime
derivatives, respectively, as

sbLB = −∂μ[B(∂μC − mCμ) − Bν(∂
μCν − ∂νCμ)

+ρ(∂μβ) − λBμ],
sabLB̄ = ∂μ[B̄(∂μC̄ + mC̄μ) − B̄ν(∂

μC̄ν − ∂νC̄μ)

−λ(∂μβ̄) + ρ B̄μ]. (12)

As a consequence, the action integrals remain invariant (i.e.
sb

∫
dx4LB = 0, sab

∫
dx4LB̄ = 0) under the nilpotent

(anti-) BRST transformations (10) and (11).
At this juncture, the following remarks are in order:

1. The above Lagrangian densities are coupled because
the Nakanishi–Lautrup type auxiliary fields B, B̄ and
Bμ, B̄μ are related to each other through the celebrated
Curci–Ferrari (CF) type of conditions:

B + B̄ + mϕ = 0, Bμ + B̄μ + ∂μϕ = 0. (13)

2. It is to be noted that LB and LB̄ transform under the con-
tinuous anti-BRST and BRST transformations, respec-
tively, as follows:

sabLB = ∂μ[Bν(∂
μC̄ν − ∂νC̄μ) − B(∂μC̄ − mC̄μ)

+ ρ(∂νB
νμ + B̄μ + mφμ) − λ(∂μβ̄)]

+mρ[B + B̄ + mϕ]
−(∂μρ)[Bμ + B̄μ + ∂μϕ]
−m[Bμ + B̄μ + ∂μϕ](∂μC̄ − mC̄μ)

+ ∂μ[B + B̄ + mϕ](∂μC̄ − mC̄μ)

+ ∂μ[Bν + B̄ν + ∂νϕ](∂μC̄ν − ∂νC̄μ),

sbLB̄ = ∂μ[B̄(∂μC − mCμ)

− B̄ν(∂
μCν − ∂νCμ)

− λ(∂νB
νμ − Bμ + mφμ) − ρ(∂μβ)]

+mλ[B + B̄ + mϕ]
− (∂μλ[Bμ + B̄μ + ∂μϕ]
+m[Bμ + B̄μ + ∂μϕ](∂μC − mCμ)

− ∂μ[B + B̄ + mϕ](∂μC − mCμ)

+ ∂μ[Bν + B̄ν + ∂νϕ](∂μCν − ∂νCμ), (14)

As a consequence, the coupled Lagrangian densities
respect both BRST and anti-BRST symmetries on the 4D
constraints hypersurface defined by the CF conditions
(13). This reflects the fact that the coupled Lagrangian
densities are equivalent on the constrained hypersurface
defined by CF type of restrictions.

3. The CF conditions are (anti-) BRST invariant as one can
check that

s(a)b[B + B̄ + mϕ] = 0,

s(a)b[Bμ + B̄μ + ∂μϕ] = 0. (15)

Thus, these conditions are physical conditions.
4. Further, the absolute anticommutativity property of the

(anti-) BRST symmetry transformations is satisfy due the
existence of the CF conditions. For the sake of brevity,
we note that

{sb, sab}Bμν = −∂μ(Bν + B̄ν) + ∂ν(Bμ + B̄μ),

{sb, sab}φμ = +∂μ(B + B̄) − m(Bμ + B̄μ). (16)

Now, it is clear from the above that {sb, sab}Bμν = 0
and {sb, sab}φμ = 0 if and only if the CF conditions are
satisfied. For the remaining fields, the anticommutativity
property is trivially satisfied.

To sum up the above results, we again emphasize on the
fact that the CF conditions play a decisive role in providing
the absolute anticommutativity of the (anti-) BRST trans-
formations. These are also responsible for the coupled (but
equivalent) Lagrangian densities. Furthermore, the CF type
conditions are the physical restrictions (on the theory) in the
sense that they are (anti-) BRST invariant conditions. We
shall see later on that these CF conditions emerge very natu-
rally within the framework of superfield approach to BRST
formalism (cf. Sect. 6, below).

4 Conserved (anti-) BRST charges

According to Noether’s theorem, the invariance of the actions
(corresponding to the coupled Lagrangian densities) under
the continuous (anti-) BRST symmetries yield the conserved
(anti-) BRST currents Jμ

(a)b:
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Jμ
b = −1

2
(∂νCη − ∂ηCν)H

μνη + Bν(∂
μCν − ∂νCμ)

−B(∂μC − mCμ) − (∂νC − mCν)(

μν − mBμν)

+(∂μC̄ν − ∂νC̄μ)(∂νβ) − mβ(∂μC̄ − mC̄μ)

−ρ(∂μβ) + λBμ,

Jμ
ab = −1

2
(∂νC̄η − ∂ηC̄ν)H

μνη − B̄ν(∂
μC̄ν − ∂νC̄μ)

+B̄(∂μC̄ − mC̄μ) − (∂νC̄ − mC̄ν)(

μν − mBμν)

−(∂μCν − ∂νCμ)(∂νβ̄) + mβ̄(∂μC − mCμ)

−λ(∂μβ̄) + ρ B̄μ. (17)

The conservation law (∂μ J
μ
b = 0) for the BRST current

Jμ
b can be proven by using the following Euler–Lagrange

equations of motion:

∂μH
μνη − (∂νBη − ∂ηBν) − m(
νη − mBνη) = 0,

∂μ
μν + ∂νB − m(∂μB
μν + Bν) = 0,

Bμ = 1

2
(∂νBνμ − ∂μϕ + mφμ),

B = −1

2
(∂μφμ + mϕ), ∂μB

μ + mB = 0,

�Cμ − ∂μ(∂νC
ν) + ∂μλ − m(∂μC − mCμ) = 0,

�C̄μ − ∂μ(∂νC̄
ν) − ∂μρ − m(∂μC̄ − mC̄μ) = 0,

�C − m(∂νC
ν) + mλ = 0, (� + m2)β = 0,

�C̄ − m(∂νC̄
ν) − mρ = 0, (� + m2)β̄ = 0,

λ = (∂μC
μ + mC), ρ = −(∂μC̄

μ + mC̄). (18)

These equations of motion have been derived from LB . Sim-
ilarly, for the conservation (∂μ J

μ
ab = 0) of anti-BRST cur-

rent Jμ
ab, we have used the equations of motion derived from

LB̄ . We point out that most of the equations of motion are
the same for LB and LB̄ . The Euler–Lagrange equations of
motion that are different from (18) and derived from LB̄ are
listed as follows:

∂μH
μνη + (∂ν B̄η − ∂η B̄ν) − m(
νη − mBνη) = 0,

∂μ
μν − ∂ν B̄ − m(∂μB
μν − B̄ν) = 0,

B̄μ = −1

2
(∂νBνμ + ∂μϕ + mφμ),

B̄ = 1

2
(∂μφμ − mϕ), ∂μ B̄

μ + mB̄ = 0. (19)

It is interesting to mention that the appropriate equations of
motion derived from LB and LB̄ [cf. (18) and (19)] produce
the CF conditions (13).

The temporal components of the conserved currents (i.e.
Q(a)b = ∫

d3x J 0
(a)b) lead to the following charges Q(a)b:

Qb =
∫

d3x

[
− 1

2
(∂iC j − ∂ jCi )H

0i j

+Bi (∂
0Ci − ∂ iC0) − B(∂0C − mC0)

−(∂iC − mCi )(

0i − mB0i ) − mβ(∂0C̄ − mC̄0)

+(∂0C̄i − ∂ i C̄0)(∂iβ) − ρ(∂0β) + λB0
]
,

Qab =
∫

d3x

[
− 1

2
(∂i C̄ j − ∂ j C̄i )H

0i j

−B̄i (∂
0C̄i − ∂ i C̄0) + B̄(∂0C̄ − mC̄0)

−(∂i C̄ − mC̄i )(

0i − mB0i ) + mβ̄(∂0C − mC0)

−(∂0Ci − ∂ iC0)(∂i β̄) − λ(∂0β̄) + ρ B̄0
]
. (20)

It turns out that these conserved charges are the generators of
the corresponding symmetry transformations. For instance,
one can check that

s(a)bΨ = −i[Ψ, Q(a)b]±,

Ψ = Bμν, φμ,Cμ, C̄μ, β, β̄,C, C̄, ϕ, (21)

where (±) signs, as the subscript, on the square bracket cor-
respond to the (anti)commutator depending on the generic
fieldΨ being (fermionic) bosonic in nature. We, further, point
out that the conserved (anti-) BRST charges do not produce
the proper (anti-) BRST symmetry transformations for the
Nakanishi–Lautrup type auxiliary fields B, B̄, Bμ, B̄μ and
the auxiliary (anti-) ghost fields (ρ)λ. The transformations of
these auxiliary fields can be derived from the requirements
of the nilpotency and absolute anticommutativity properties
of the (anti-) BRST symmetry transformations.

The (anti-) BRST charges are nilpotent and anticommut-
ing in nature. These properties can be shown in a straight-
forward manner by exploiting the definition of a generator.
For the nilpotency of the (anti-) BRST charges, the following
relations are true:

sbQb = −i{Qb, Qb} = 0 ⇒ Q2
b = 0,

sabQab = −i{Qab, Qab} = 0 ⇒ Q2
ab = 0. (22)

In a similar fashion, one can also show the anticommutativity
of the (anti-) BRST charges as

sbQab = −i{Qab, Qb} = 0 ⇒ QbQab + QabQb = 0,

sabQb = −i{Qb, Qab} = 0 ⇒ QbQab + QabQb = 0.

(23)

The above computations are more algebraically involved. For
the shake of completeness, in our Appendix A, we shall pro-
vide a complete proof of the first relation that appear in (23)
in a simpler way.

Before we wrap up this section, we dwell a bit on the con-
straint structure of the gauge-invariant Lagrangian density (5)
within the framework of BRST formalism. We define a physi-
cal state (|phys〉) in the quantum Hilbert space of states which
respects the (anti-) BRST symmetries. The physicality crite-
ria Q(a)b|phys〉 = 0 state that the physical state |phys〉 must
be annihilated by the conserved and nilpotent (anti-) BRST
charges Q(a)b. In other words, we can say that Faddeev–
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Popov ghosts are decoupled from the physical states of the
theory. Thus, the physicality criterion Qb|phys〉 = 0 pro-
duces the following constraint conditions:

− B|phys〉 = 0,

∂i (

0i − mB0i )|phys〉 = 0,

Bi |phys〉 = 0,

−(∂ j H
0i j + m(
0i − mB0i ))|phys〉 = 0, (24)

which, finally, imply the familiar constraint conditions on the
physical state: Π0|phys〉 = 0, ∂iΠ i |phys〉 = 0,Π0i |phys〉 =
0, −(2∂ jΠ

i j + mΠ i )|phys〉 = 0, where Π0, Π i , Π0i ,
Π i j are the canonical conjugate momenta with respect to
the dynamical fields φ0, φi , B0i , Bi j , respectively. These
momenta have been derived from the Lagrangian density
(8). The very similar constraint conditions also emerge when
we exploit the physicality criterion Qab|phys〉 = 0. These
constraint conditions are consistent with gauge-invariant
Lagrangian (5). As a consequence, the BRST quantization
is consistent with the requirements of the Dirac quantization
scheme for the constrained systems.

5 Ghost-scale symmetry and BRST algebra

The coupled Lagrangian densities, in addition to the (anti-)
BRST symmetries, also respect the following continuous
ghost-scale symmetry transformations:

Cμ → e+ϑCμ, C̄μ → e−ϑ C̄μ,

C → e+ϑC, C̄ → e−ϑ C̄, ρ → e−ϑρ,

β → e+2ϑβ, β̄ → e−2ϑ β̄, λ → e+ϑλ,

(Bμν, φμ, Bμ, B̄μ, B, B̄, ϕ)

→ e0(Bμν, φμ, Bμ, B̄μ, B, B̄, ϕ), (25)

where ϑ is a (spacetime independent) global scale parameter.
The numerical factors in the exponentials (i.e. 0,±1, ±2)
define the ghost number of the various fields present in the
theory. The infinitesimal version of the above ghost-scale
symmetry (with ϑ = 1) leads to the following symmetry
transformations (sg):

sgCμ = +Cμ, sgC̄μ = −C̄μ, sgρ = −ρ,

sgC = +C, sgC̄ = −C̄, sgλ = +λ,

sgβ = +2β, sgβ̄ = −2β̄,

sg[Bμν, φμ, Bμ, B̄μ, B, B̄, ϕ] = 0, (26)

under which the (coupled) Lagrangian densities remain
invariant (i.e. sgLB = sgLB̄ = 0).

According to the Noether theorem, the continuous ghost-
scale symmetry yields the conserved current Jμ

g and corre-
sponding charge Qg , namely

Jμ
g = (∂μC̄ν − ∂νC̄μ)Cν + (∂μCν − ∂νCμ)C̄ν

−(∂μC̄ − mC̄μ)C − (∂μC − mCμ)C̄

+2β(∂μβ̄) − 2β̄(∂μβ) − ρCμ + λC̄μ,

Qg =
∫

d3[(∂0C̄i − ∂ i C̄0)Ci + (∂0Ci − ∂ iC0)C̄i

−(∂0C̄ − mC̄0)C − (∂0C − mC0)C̄

+2β(∂0β̄) − 2β̄(∂0β) − ρC0 + λC̄0]. (27)

It is evident that the above charge is the generator of the
corresponding ghost-scale symmetry transformations as one
can check that

sgΨ = ±i[Ψ, Qg], (28)

where Ψ is the generic field of the theory. The (±) signs
in front of the commutator are used for the generic field Ψ

being (fermionic) bosonic in nature.
At this moment, the following remarks are in order:

1. The conserved ghost charge Qg does not produce the
proper transformations for the auxiliary fields ρ and λ.
These transformations can be obtained from other con-
siderations (see (29) below).

2. The continuous symmetry transformations (in their oper-
ator form) obey the following algebra:

s2
b = 0, s2

ab = 0, {sb, sab} = 0, [sg, sg] = 0,

[sg, sb] = +sb, [sg, sab] = −sab. (29)

3. By exploiting the last two relations of the above equation,
we can obtain the proper transformations for ρ and λ. For
instance, one can check that

[sg, sb]β = +sbβ̄ ⇒ sgρ = −ρ. (30)

Similarly, the transformation for the auxiliary field λ can
be derived, too.

4. The operator form of the conserved (anti-) BRST charges
together with the ghost charge obeys the following graded
algebra:

Q2
b = 0, Q2

ab = 0, {Qb, Qab}, [Qg, Qg] = 0,

[Qg, Qb] = −i Qb, [Qg, Qab] = +i Qab, (31)

which is also known as standard BRST algebra.
As a consequences of the above algebra, we define an
eigenstate |ζ 〉n (in the quantum Hilbert space of states)
with respect to the operator i Qg such that i Qg|ζ 〉n =
n|ζ 〉n . Here n defines the ghost number as the eigenvalue
of the operator i Qg . Using the above algebra among the
conserved charges, it is straightforward to check that the
following relationships are true:
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i QgQb|ζ 〉n = (n + 1)Qb|ζ 〉n,
i QgQab|ζ 〉n = (n − 1)Qab|ζ 〉n, (32)

which imply that the eigenstates Qb|ζ 〉n and Qab|ζ 〉n
have the eigenvalues (n + 1) and (n − 1), respectively.
In other words, The conserved (anti-) BRST charges
Q(a)b (decrease)increase the ghost number of the eigen-
state i Qg|ζ 〉n by one unit. Also, we can say that the
(anti-) BRST charges Q(a)b carry ghost number equal
to (−1) + 1 while ghost charge Qg does not carry any
ghost number. These observations also reflect from the
expressions of the conserved charges if we look carefully
for the ghost number of the various fields that appear in
the charges.

6 Augmented superfield approach to BRST formalism

In this section, we shall derive the proper off-shell nilpotent
and absolutely anticommuting (anti-) BRST symmetry trans-
formations with the help of an extended version of Bonora–
Tonin superfield formalism [24,25] where the horizontality
condition and gauge-invariant restriction are used in a phys-
ically meaningful manner. In this formalism, we generalize
our ordinary 4D spacetime to (4, 2)D superspace parame-
terized by an additional pair of the Grassmannian variables
(θ, θ̄ ) as

xμ → ZM = (xμ, θ, θ̄ ), ∂μ → ∂M = (∂μ, ∂θ , ∂θ̄ ), (33)

where xμ (μ = 0, 1, 2, 3) are the (bosonic) spacetime coor-
dinates. The super coordinates ZM = (xμ, θ, θ̄ ) parametrize
the (4, 2)D superspace (with θ2 = 0, θ̄2 = 0, θ θ̄ + θ̄ θ = 0)
and ∂θ = ∂/∂θ, ∂θ̄ = ∂/∂θ̄ are the Grassmannian trans-
lational generators along the Grassmannian directions θ , θ̄ .
We generalize the exterior derivative d and 2-form B(2) to
the super exterior derivative d̃ and super 2-form B̃(2) on the
(4, 2)D supermanifold as follows:

d → d̃ = dZM∂M

≡ dxμ∂μ + dθ∂θ + d θ̄∂θ̄ , d̃2 = 0, (34)

B(2) → B̃(2) = 1

2! (dZ
M ∧ dZN )B̃MN

≡ 1

2! (dx
μ ∧ dxν)B̃μν(x, θ, θ̄ )

+(dxμ ∧ dθ) ˜̄Fμ(x, θ, θ̄ )

+(dxμ ∧ d θ̄ )F̃μ(x, θ, θ̄ )

+(dθ ∧ dθ) ˜̄β(x, θ, θ̄ )

+(d θ̄ ∧ d θ̄ )β̃(x, θ, θ̄ )

+(dθ ∧ d θ̄ )
̃(x, θ, θ̄ ). (35)

The super multiplets as the components of the super 2-from
can be expanded along the Grassmannian directions (θ and
θ̄ ) as follows:

B̃μν(x, θ, θ̄ ) = Bμν(x) + θ R̄μν(x) + θ̄Rμν(x)

+iθ θ̄ Sμν(x),

F̃μ(x, θ, θ̄ ) = Cμ(x) + θ B̄(1)
μ (x) + θ̄B(1)

μ (x)

+iθ θ̄ fμ(x),

˜̄Fμ(x, θ, θ̄ ) = C̄μ(x) + θ B̄(2)
μ (x) + θ̄B(2)

μ (x),

+iθ θ̄ f̄μ(x),

β̃(x, θ, θ̄ ) = β(x) + θ f̄1(x) + θ̄ f1(x)

+iθ θ̄b1(x),
˜̄β(x, θ, θ̄ ) = β̄(x) + θ f̄2(x) + θ̄ f2(x)

+iθ θ̄b2(x),


̃(x, θ, θ̄ ) = ϕ(x) + θ f̄3(x) + θ̄ f3(x)

+iθ θ̄b3(x), (36)

where the secondary fields Rμν , R̄μν , fμ, f̄μ, f1, f̄1, f2, f̄2,

f3, f̄3 are fermionic in nature and Sμν , B(1)
μ , B̄(1)

μ , B(2)
μ , B̄(2)

μ ,
b1, b2, b3 are bosonic secondary fields. We shall determine
the precise value of these secondary fields with the help of
superfield formalism.

It is to be noted that the horizontality condition (HC),

dB(2) = d̃B̃(2) ⇐⇒ H (3) = H̃(3), (37)

determines the value of all secondary fields in terms of the
basic and auxiliary fields of the theory. This HC implies that
the l.h.s. is independent of the Grassmannian variables θ and
θ̄ when we generalize it on the (4, 2)D supermanifold. The
r.h.s. of (37), in its full blaze of glory, can be written as

H̃(3) = d̃B̃(2)

= 1

3! (dx
μ ∧ dxν ∧ dxκ )(∂μB̃νκ + ∂νB̃κμ + ∂κ B̃μν)

+ 1

2! (dx
μ ∧ dxν ∧ dθ)[∂θ B̃μν + ∂μ

˜̄Fν − ∂ν
˜̄Fμ]

+ 1

2! (dx
μ ∧ dxν ∧ d θ̄ )[∂θ̄ B̃μν + ∂μF̃ν − ∂νF̃μ]

+(dθ ∧ dθ ∧ dθ)(∂θ
˜̄β) + (d θ̄ ∧ d θ̄ ∧ d θ̄ )(∂θ̄ β̃)

+(dxμ ∧ dθ ∧ d θ̄ )[∂μ
̃ + ∂θ F̃μ + ∂θ̄
˜̄Fμ]

+(dxμ ∧ dθ ∧ dθ)[∂θ F̄μ + ∂μ
˜̄β]

+(dxμ ∧ d θ̄ ∧ d θ̄ )[∂θ̄ F̃μ + ∂μβ̃]
+(dθ ∧ d θ̄ ∧ d θ̄ )[∂θ̄ 
̃ + ∂θ β̃]
+(d θ̄ ∧ dθ ∧ dθ)[∂θ 
̃ + ∂θ̄

˜̄β]. (38)

The above HC implies the following interesting relationships
amongst the superfields:
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∂θ B̃μν + ∂μ
˜̄Fν − ∂ν

˜̄Fμ = 0, ∂θ
˜̄β = 0,

∂θ̄ B̃μν + ∂μF̃ν − ∂νF̃μ = 0, ∂θ̄ β̃ = 0,

∂μ
̃ + ∂θ F̃μ + ∂θ̄
˜̄Fμ = 0,

∂μ
˜̄β + ∂θ

˜̄Fμ = 0, ∂μβ̃ + ∂θ̄ F̃μ = 0,

∂θ 
̃ + ∂θ̄
˜̄β = 0, ∂θ̄ 
̃ + ∂θ β̃ = 0. (39)

Exploiting the above expressions for the superfields given in
(36), we obtain the value of all secondary fields,

Rμν = −(∂μCν − ∂μCμ), B(1) = −∂μβ,

R̄μν = −(∂μC̄ν − ∂μC̄μ), B̄(2) = −∂μβ̄,

Sμν = i(∂μB
(2)
ν − ∂νB

(2)
μ ) ≡ −i(∂μ B̄

(1)
ν − ∂ν B̄

(1)
μ ),

fμ = i∂μ f3 ≡ −i∂μ f̄1, f̄μ = −i∂μ f̄3 ≡ i∂μ f2,

B(2)
μ + B̄(1)

μ + ∂μϕ = 0, f1 = 0, f̄2 = 0,

f2 + f̄3 = 0, f̄2 + f3 = 0,

b1 = 0, b2 = 0, b3 = 0. (40)

Substituting these values in the expression of the superfields
(36), we obtain the following super-expansions:

B̃(h)
μν (x, θ, θ̄ ) = Bμν(x) − θ(∂μC̄ν − ∂νC̄μ)(x)

− θ̄ (∂μCν − ∂νCμ)(x)

+ θ θ̄(∂μBν − ∂νBμ)(x),

F̃ (h)
μ (x, θ, θ̄ ) = Cμ(x) + θ B̄μ(x) − θ̄ (∂μβ)(x)

− θ θ̄(∂μλ)(x),

˜̄F (h)

μ (x, θ, θ̄ ) = C̄μ(x)

− θ(∂μβ̄)(x) − θ̄Bμ(x)

+ θ θ̄(∂μρ)(x),

β̃(h)(x, θ, θ̄ ) = β(x) − θλ(x),

˜̄β(h)
(x, θ, θ̄ ) = β̄(x) − θ̄ρ(x),


̃(h)(x, θ, θ̄ ) = ϕ(x) + θρ(x) + θ̄λ(x). (41)

The superscript (h) on the superfields denotes the expan-
sion of the superfields obtained after the application of HC.
In the above super-expansions, we have chosen f̄3 = ρ =
− f2, f3 = λ = − f̄1, B̄

(1)
μ = B̄μ, B(2)

μ = Bμ where Bμ and
B̄μ play the role of Nkanishi–Lautrup type auxiliary fields.
These auxiliary fields are required for the linearization of the
gauge-fixing terms as well as for the off-shell nilpotency of
the (anti-) BRST symmetry transformations.

It is clear from the above super-expansions of the super-
fields that the coefficients of θ̄ are the BRST transformations
whereas the coefficients of θ are the anti-BRST transforma-
tions. To be more precise, the BRST transformation (sb) for
any generic field Ψ (x) is equivalent to the translation of the
corresponding superfield Ψ̃ (h)(x, θ, θ̄ ) along the θ̄ -direction
while keeping θ -direction fixed. Similarly, the anti-BRST
transformation (sab) can be obtained by taking the transla-

tion of the superfield along the θ -direction while θ̄ -direction
remains intact. Mathematically, these statements can be cor-
roborated in the following fashion:

sbΨ (x) = ∂

∂θ̄
Ψ̃ (h)(x, θ, θ̄ )

∣∣∣
θ=0

,

sabΨ (x) = ∂

∂θ
Ψ̃ (h)(x, θ, θ̄ )

∣∣∣
θ̄=0

,

sbsabΨ (x) = ∂

∂θ̄

∂

∂θ
Ψ̃ (h)(x, θ, θ̄ ). (42)

It is worthwhile to mention that the (anti-) BRST transfor-
mations of the fermionic auxiliary fields ρ, λ and Nakanishi–
Lautrup type fields Bμ, B̄μ have been derived from the
requirements of the nilpotency and absolute anticommutativ-
ity properties of the (anti-) BRST symmetry transformations.

So far, we have obtained the off-shell nilpotent and abso-
lutely anticommuting (anti-) BRST symmetries for the 2-
form field Bμν and corresponding (anti-) ghost fields. But
the (anti-) BRST symmetry transformations of the Stückel-
berg vector field φμ and corresponding (anti-) ghost fields
are still unknown. For this purpose, it is to be noted that the
following quantity remains invariant under the gauge trans-
formations (δ = δ1 + δ2):

δ

[
Bμν − 1

m
(∂μφν − ∂νφν)

]
= 0. (43)

This is a physical quantity in the sense that it is gauge-
invariant. Thus, it remains independent of the Grassman-
nian variables when we generalize it on the (4, 2)D super-
manifold. This gauge-invariant quantity will serve our pur-
pose in deriving the proper (anti-) BRST transformations
for the Stückelberg-like vector field φμ and corresponding
(anti)ghost fields (C̄)C . In terms of the differential forms,
we generalize this gauge-invariant restriction on the (4, 2)D
supermanifold as

B(2) − 1

m
dφ(1) = B̃(2) − 1

m
d̃�̃

(1)
, (44)

where the super 1-form is defined as

�̃
(1) = dZM�M

= dxμ�̃μ(x, θ, θ̄ ) + dθ ˜̄F(x, θ, θ̄ )

+ d θ̄F̃(x, θ, θ̄ ). (45)

The multiplets of super 1-form, one can express, along the
Grassmannian directions as

�̃μ(x, θ, θ̄ ) = φμ(x) + θ R̄μ(x) + θ̄Rμ(x) + iθ θ̄ Sμ(x),

F̃(x, θ, θ̄ ) = C(x) + θ B̄1(x) + θ̄B1(x) + iθ θ̄s(x),
˜̄F(x, θ, θ̄ ) = C̄(x) + θ B̄2(x) + θ̄B2(x) + iθ θ̄ s̄(x), (46)

where Rμ, R̄μ, s, s̄ and Sμ, B1, B̄1, B2, B̄2 are fermionic and
bosonic secondary fields, respectively.
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The explicit expression of the r.h.s. of (44) can be written
in the following fashion:

B̃(2) − 1

m
d̃�̃

(1) = 1

2! (dx
μ ∧ dxν)[B̃(h)

μν

− 1

m
(∂μ�̃ν − ∂ν�̃ν)]

+(dxμ ∧ dθ)[ ˜̄F (h)

μ − 1

m
(∂μ

˜̄F − ∂θ �̃μ)]

+(dxμ ∧ d θ̄ )

[
F̃ (h)

μ − 1

m
(∂μF̃ − ∂θ̄ �̃μ)

]

+(dθ ∧ d θ̄ )

[

̃(h) + 1

m
(∂θ F̃ + ∂θ̄

˜̄F)

]

+(dθ ∧ dθ)

[
˜̄β(h) + 1

m
∂θ

˜̄F
]

+(d θ̄ ∧ d θ̄ )

[
β̃(h) + 1

m
∂θ̄ F̃

]
. (47)

Using (44) and setting all the coefficients of the Grassman-
nian differentials to zero, we obtain the following interesting
relationships:

˜̄F (h)

μ − 1

m
(∂μ

˜̄F − ∂θ �̃μ) = 0,

F̃ (h)
μ − 1

m
(∂μF̃ − ∂θ̄ �̃μ) = 0,

˜̄β(h) + 1

m
∂θ

˜̄F = 0, β̃(h) + 1

m
∂θ̄ F̃ = 0,


̃(h) + 1

m
(∂θ F̃ + ∂θ̄

˜̄F) = 0. (48)

Exploiting the above equations together with (41) for the
super-expansions given in (46), we obtain the precise value
of the secondary fields in terms of the basic and auxiliary
fields, namely;

Rμ = ∂μC − mCμ, R̄μ = ∂μC̄ − mC̄μ,

B1 = −mβ, B̄2 = −mβ, s = im λ,

B2 + B̄1 + mϕ = 0, s̄ = −im ρ,

Sμ = −i(∂μB2 − mBμ) ≡ +i(∂μ B̄1 − mB̄μ). (49)

Putting the above relationships into the super-expansions of
the superfields (46), we obtain the following explicit expres-
sions for the superfields (46), in terms of the basic and aux-
iliary fields:

�̃
(h,g)
μ (x, θ, θ̄ ) = φμ(x) + θ(∂μC̄ − mC̄μ)(x)

+θ̄ (∂μC − mCμ)(x)

+θ θ̄(∂μB − mBμ)(x),

F̃ (h,g)(x, θ, θ̄ ) = C(x) + θ B̄(x) − θ̄ (mβ)(x)

−θ θ̄(mλ)(x),

˜̄F (h,g)
(x, θ, θ̄ ) = C̄(x) − θ(mβ̄)(x) + θ̄B(x)

+θ θ̄(mρ)(x). (50)

Here the superscript (h, g) on the superfields denotes the
super-expansions obtained after the application of gauge-
invariant restriction (44). In the above, we have made the
choices B2 = B and B̄1 = B̄ for the additional Nakanishi–
Lautrup type fields B and B̄. These fields are also required
for the off-shell nilpotency of the (anti-) BRST symmetry
transformations and linearization of the gauge-fixing term
for the Stückelberg vector field φμ. Again, the (anti-) BRST
transformations for the auxiliary fields B and B̄ have been
derived from the requirements of the nilpotency and abso-
lute anticommutativity of the (anti-) BRST transformations.
Thus, one can easily read-off all the (anti-) BRST transforma-
tions for the vector field φμ and corresponding (anti-) ghost
fields (C̄)C [cf. (10) and (11)].

Before we wrap up this section, we point out that the
CF conditions (13) which play the crucial role (cf. Sect. 3)
emerge very naturally in this formalism. The first CF con-
dition Bμ + B̄μ + ∂μϕ = 0 arises from the HC (28). In

particular, the relation ∂μ
̃ + ∂θ F̃μ + ∂θ̄
˜̄Fμ = 0, which is

a coefficient of the wedge product (dxμ ∧ dθ ∧ d θ̄ ), leads
to the first CF condition. Similarly, the second CF condition
B + B̄ +mϕ = 0 emerges from (48) when we set the coeffi-
cient of the wedge product (dθ∧d θ̄ ) equal to zero. In fact, the
last relation of Eq. (48) produces the second CF condition.
Furthermore, it is interesting to note that Eq. (44) imposes its
own integrability condition [42]. Thus, if we operate super
exterior derivative d̃ = d + dθ∂θ + d θ̄∂θ̄ on (44) from left,
we obtain

d̃

(
B(2) − 1

m
dφ(1)

)
= d̃

(
B̃(2) − 1

m
d̃�̃

(1)
)

. (51)

In the above, B(2) and φ(1) are independent of the Grassman-
nian variables (θ, θ̄ ) and d2 = d̃2 = 0. As a result, the above
equation turns into the horizontality condition (37).

7 (Anti-) BRST invariance of the coupled Lagrangian
densities: superfield approach

In this section, we shall provide the (anti-) BRST invariance
of the coupled Lagrangian densities in the context of super-
field formalism. To accomplish this goal, we note that the
coupled Lagrangian densities, in terms of the off-shell nilpo-
tent and absolutely anticommuting (anti-) BRST symmetries,
can be written as

LB = Ls + sbsab

[
1

2
φμφμ − 1

4
BμνB

μν + C̄μC
μ

+1

2
ϕϕ + 2β̄β + CC̄

]
, (52)
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LB̄ = Ls − sabsb

[
1

2
φμφμ − 1

4
BμνB

μν + C̄μC
μ

+1

2
ϕϕ + 2β̄β + CC̄

]
. (53)

For our present 4D model, all terms in square brackets are
chosen in such a way that each term carries mass dimension
equal to [M]2 in natural units (h̄ = c = 1). In fact, the
dynamical fields Bμν, φμ,Cμ, C̄μ, β, β̄, ϕ,C, C̄ have mass
dimension equal to [M]. The operation of sb and sab on any
generic field increases the mass dimension by one unit. In
other words, sb and sab carry mass dimension one. Further-
more, sb increases the ghost number by one unit when it
operates on any generic field whereas sab decreases the ghost
number by one unit when it acts on any field. As a conse-
quence, the above coupled Lagrangian densities are consis-
tent with mass dimension and ghost number considerations.
The constant numerals in front of each term are chosen for
our algebraic convenience. In full blaze of glory, the above
Lagrangian densities (52) and (53) lead to (8) and (9), respec-
tively, modulo the total spacetime derivatives.

In our earlier section (cf. Sect. 2), we have already men-
tioned that Ls is gauge-invariant and, thus, it remains invari-
ant under the (anti-) BRST symmetries. As a consequence,
both LB and LB̄ given in (52) and (53) remain invariant
under the operation of s(a)b due to the nilpotency property
(i.e. s2

b = 0, s2
ab = 0) of s(a)b. In terms of the superfields

(41), (50) and Grassmannian translational generators, we can
generalize the 4D Lagrangian densities to super Lagrangian
densities on the (4, 2)D supermanifold as

L̃B = L̃s + ∂

∂θ̄

∂

∂θ

[
1

2
�̃

(h,g)
μ �̃

μ(h,g) − 1

4
B̃(h)

μν B̃μν(h)

+ ˜̄F (h)

μ F̃μ(h) + 1

2

̃(h)
̃(h) + 2 ˜̄β(h)

β̃(h)

+F̃ (h,g) ˜̄F (h,g)
]
, (54)

L̃B̄ = L̃s − ∂

∂θ

∂

∂θ̄

[
1

2
�̃

(h,g)
μ �̃

μ(h,g) − 1

4
B̃(h)

μν B̃μν(h)

+ ˜̄F (h)

μ F̃μ(h) + 1

2

̃(h)
̃(h) + 2 ˜̄β(h)

β̃(h)

+F̃ (h,g) ˜̄F (h,g)
]
, (55)

where the super Lagrangian density L̃s is the generalization
of the gauge-invariant Lagrangian density Ls on the (4, 2)D
superspace. The former Lagrangian density is given as fol-
lows:

L̃s = 1

12
H̃(h)

μνηH̃μνη(h) − m2

4
B̃(h)

μν B̃μν(h)

−1

4
�̃

μν(h,g)
�̃

(h,g)
μν + m

2
B̃(h)

μν �̃
μν(h,g)

. (56)

A straightforward computation shows that L̃s is independent
of the Grassmannian variables θ and θ̄ (i.e. L̃s = Ls) which
shows that Ls is gauge-invariant as well as (anti-) BRST
invariant Lagrangian density. Mathematically, latter can be
expressed in terms of the translational generators as

∂

∂θ̄
L̃s = 0 ⇒ sbLs = 0,

∂

∂θ
L̃s = 0 ⇒ sabLs = 0. (57)

It is clear from (54) and (55) together with (57), the follow-
ings are true:

∂

∂θ̄
L̃B = 0 ⇒ sbLB = 0,

∂

∂θ
L̃B̄ = 0 ⇒ sabLB̄ = 0, (58)

which clearly show the (anti-) BRST invariance of the cou-
pled Lagrangian densities within the framework superfield
formalism. The above equation is true due to the validity
of the nilpotency (i.e. ∂2

θ = 0, ∂2
θ̄

= 0) of the translational
generators ∂θ and ∂θ̄ .

8 Conclusions

In our present investigation, we have studied the 4D gauge-
invariant massive Abelian 2-form theory within the frame-
work of BRST formalism where the local gauge symme-
tries given in (7) are traded with two linearly independent
global BRST and anti-BRST symmetries [cf. (10) and (11)].
In this formalism, we have obtained the coupled (but equiv-
alent) Lagrangian densities [cf. (8) and (9)] which respect
the off-shell nilpotent and absolutely anticommuting BRST
and anti-BRST symmetry transformations on the constrained
hypersurface defined by the CF type conditions (13). These
CF conditions are (anti-) BRST invariant as well as they also
play a pivotal role in the proof of the absolute anticommuta-
tivity of the (anti-) BRST transformations and the derivation
of the coupled Lagrangian densities. The anticommutativ-
ity property for the dynamical fields Bμν and φμ is satisfied
due to the existence of the Curci–Ferrari type conditions [cf.
(16)].

The continuous and off-shell nilpotent (anti-) BRST sym-
metries lead to the derivation of the corresponding conserved
(anti-) BRST charges. In addition to these symmetries, the
coupled Lagrangian densities also respect the global ghost-
scale symmetry which leads to the conserved ghost charge.
The operator form of the continuous symmetry transfor-
mations and corresponding generators obeys the standard
graded BRST algebra [cf. (29) and (30)]. We lay empha-
sis on the fact that the physicality criterion Q(a)b|phys〉 = 0
produces the first-class constraints, as the physical conditions
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(24) on the theory, which are present in the gauge-invariant
Lagrangian density (5). Thus, the BRST quantization is con-
sistent with the Dirac quantization of the system having first-
class constraints.

It is worthwhile to point out that the (anti-) BRST charges
which are the generators of the corresponding symmetry
transformations are unable to produce the proper (anti-)
BRST symmetry transformations for the Nakanishi–Lautrup
fields B, B̄, Bμ, B̄μ and other fermionic auxiliary fields ρ, λ.
The transformations of these fields have been derived from
the requirements of the nilpotency and absolute anticom-
mutativity properties of the (anti-) BRST transformations.
Similarly, the ghost charge is also incapable to generate the
proper transformations for the auxiliary ghost fields ρ and λ.
We have derived these symmetries from other considerations
[cf. (30)] where we have used the appropriate relations that
appear in the algebra (29).

Furthermore, we have exploited the augmented version of
superfield approach to BRST formalism to derive the off-
shell nilpotent and absolutely anticommuting (anti-) BRST
symmetries for the 4D dimensional Stückelberg-like mas-
sive Abelian 2-form gauge theory. In this approach, besides
the horizontality condition (37), we have used the gauge-
invariant restriction (44) for the derivation of the complete
sets of the BRST and anti-BRST symmetry transforma-
tions. The gauge-invariant restriction is required for the
derivation of the proper (anti-) BRST transformations for
the Stückelberg-like vector field φμ. One of the spectacular
observations, we point out that the horizontality condition,
which produces the (anti-) BRST transformations for the 2-
form field and corresponding (anti-) ghost fields, can also be
obtained from the integrability of (44) [42]. The CF condi-
tions, which are required for the absolute anticommutativ-
ity of the (anti-) BRST symmetries, emerge very naturally
in the superfield formalism. These (anti-) BRST invariant
CF conditions are conserved quantities. Thus, it would be
an interesting piece of work to show that these CF condi-
tions commute with the Hamiltonian within the framework
of BRST formalism (see, e.g. [57,58]).

Using the basic tenets of BRST formalism, we have writ-
ten the coupled (but equivalent) Lagrangian densities in terms
of (anti-) BRST symmetries where the mass dimension and
ghost number of the dynamical fields have been taken into
account. Within the framework of superfield, we have pro-
vided the geometrical origin of the (anti-) BRST symmetries
in terms of the Grassmannian translational generators. Also,
one can capture the basic properties of the (anti-) BRST trans-
formations in the language of the translational generators.
Thus, we have been able to write the coupled Lagrangian den-
sities in terms of the superfields and Grassmannian deriva-
tives. As a result, the (anti-) BRST invariance of the super
Lagrangian densities become quite simpler and straightfor-

ward due to the nilpotency property of the Grassmannian
derivatives.
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Appendix A: Anticommutativity of the BRST and anti-
BRST charges

In this appendix, we provide an explicit proof of the anticom-
mutativity of the BRST and anti-BRST charges in a simpler
way. The BRST and anti-BRST charges given in (20) can
also be simplified by using the equations of motion (18) and
(19), respectively, as

Qb =
∫

d3x[Bi (∂0Ci − ∂ iC0) − (∂0Bi − ∂ i B0)Ci

−B(∂0C − mC0) + (∂0B − mB0)C

−ρ(∂0β) + β(∂0ρ) + λB0], (A.1)

Qab =
∫

d3x[−B̄i (∂
0C̄i − ∂ i C̄0) + (∂0 B̄i − ∂ i B̄0)C̄i

+B̄(∂0C̄ − mC̄0) − (∂0 B̄ − mB̄0)C̄

−λ(∂0β̄) + β̄(∂0λ) + ρ B̄0]. (A.2)

Applying sab on Qb and using the equation of motion for the
ghost field C0 [cf. (18)], we obtain

sabQb =
∫

d3x[Bi (∂0 B̄i − ∂ i B̄0) − B̄i (∂
0Bi − ∂ i B0)

−B(∂0 B̄ − mB̄0) + B̄(∂0B − mB0)]. (A.3)

Now eliminating B̄i , B̄0 and B̄ by using the CF conditions,
the above expression further simplifies as

sabQb =
∫

d3x[ϕ(∂i∂
i B0 + m2B0)

−ϕ∂0(∂i B
i + mB)]. (A.4)

Exploiting the equation of motion ∂μBμ + mB = 0 and an
off-shoot (�+m2)Bμ = 0 of the Euler–Lagrange equations
of motion (18), we obtain

sabQb = −i{Qb, Qab} = 0. (A.5)

Similarly, operating BRST transformations sb on (A.2) and
exploiting the equation of motion for the anti-ghost field C̄0
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[cf. (18)], we finally obtain the r.h.s. of (A.3). In fact, we
yield

sbQab = sabQb. (A.6)

As a result of the above equations, the relation sbQab =
sabQb = −i{Qb, Qab} = 0 implies the anticommutativity
(i.e. QbQab + QabQb = 0) of the (anti-) BRST charges
Q(a)b. Here, we again lay emphasis on the fact that the CF
conditions play a crucial role in the anticommutativity of the
(anti-) BRST charges (and corresponding symmetry trans-
formations).
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