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Abstract On the space of generic conformal blocks the
modular transformation of the underlying surface is realized
as a linear integral transformation. We show that the analytic
properties of conformal block implied by Zamolodchikov’s
formula are shared by the kernel of the modular transforma-
tion and illustrate this by explicit computation in the case of
the one-point toric conformal block.
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1 Introduction and results

Conformal blocks (CBs) can be defined as universal parts
of the holomorphically factorized CFT correlation functions
[1]. They are recognized as a new independent class of spe-
cial functions relevant for many problems in modern physics
including gauge theories [2]. This paper is concerned with
properties of the toric Virasoro one-point conformal block
which is hereafter referred to simply as conformal block.

a e-mail: nnemkov@gmail.com

This special representative of CBs is in some sense the sim-
plest one, although it captures a lot of the important proper-
ties present in its more sophisticated counterparts such as the
spheric Virasoro blocks, WN - and WZW-conformal blocks,
superconformal blocks etc.

The toric CB is naturally defined as the following trace:

B�(q) = Tr�
(
qL0− c

24 V�e

)
. (1)

Here q is the toric nome q = e2π iτ ; V�e is the primary field
of dimension �e, the external dimension; � is the internal
dimension—the dimension of the Verma module over which
the trace is taken; and finally c is the central charge of the
theory. We will suppress the parameters �e and c in our
notation. Definition (1) allows one to compute CB as a series
expansion in powers of q,

B�(q) = q�− c
24

(
1 + q

�e(�e − 1)

2�
+ O(q2)

)
. (2)

In the present paper we only consider conformal blocks with
generic values of parameters. Then the q-expansion coeffi-
cients at arbitrary order are not known in a simple closed
form.1 Nevertheless, some non-perturbative aspects of CB
are developed. In particular, it is well known that as a func-
tion of the internal dimension � the conformal block has only
simple poles located at the Kac zeros � = �r,s (11) and that
the q-dependence of the corresponding residues is described
by the CBs with specific external dimensions � = �r,−s

(note that these are not the Kac zeros)

Res
�=�r,s

B�(q) = Rr,s B�r,−s (q) (3)

1 However, various complementary representations exist. As examples
we mention the AGT-inspired representation via the Nerkasov functions
[2–4] and the expansion in terms of the global conformal blocks [5],
which are basically the hypergeometric functions.
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where Rr,s are certain explicit q,�-independent multipliers
(12). It is also possible to find the regular part of CB and
extend (3) to arbitrary � [6–10]

B�(q) = χ�(q) +
∑
r,s≥1

Rr,s

� − �r,s
q�−�r,s B�r,−s (q) (4)

where χ�(q) = q�− c−1
24 /η(q) is the Virasoro character.2

Interestingly, this equation provides a recurrent relation
among q-expansion coefficients and can be used to compute
CB order by order in q without reference to the definition
(1).

Another non-perturbative property of CB is related to the
modular transformations acting on the torus and generated
by the S : τ → −1/τ and T : τ → τ + 1 moves. Invariance
of the correlation functions together with the linear indepen-
dence of CBs with different � (B�(q) ∼ q�) imply that S
and T are represented as linear integral transformations on
the space of CBs. The T transformation acts simply as a phase
shift and will not be considered while the S transformation is
non-trivial. Denoting the kernel of the S-transformation by
M��′ one writes

B�(q) =
∫

�′
M��′ B�′(q̃) (5)

where q̃ = q−2π i/τ . Note that the lhs and the rhs in (5)
are defined as expansions in q about different points and
hence one cannot study this modular transformation pertur-
batively in q. Instead, the full q-dependence must be taken
into account.

With these arrangements in place we can describe the main
result of the present paper. We note that the analytic structure
of conformal block (3) implies the same analytic structure
for the modular kernel. Indeed, taking the residue of (5) at
� = �r,s and using (3) we obtain

Rr,s B�r,−s (q) =
∫

�′
Res

�=�r,s
M��′ B�′(q̃) (6)

In turn, the conformal block B�r,−s (q) can itself be expanded
via the modular transformed blocks

B�r,−s (q) =
∫

�′
M�r,−s�′ B�′(q̃). (7)

Comparing the two above equations and making use of the
linear independence of CBs with different �′ one discovers
that

Res
�=�r,s

M��′ = Rr,sM�r,−s�′ . (8)

This equation represents a non-trivial constraint required by
consistency of the CB analytic structure and modular proper-

2 η(q) is the Dedekind eta function η(q) = q1/24 ∏
n≥1(1 − qn).

ties. In the remainder of the text we explicitly check relation
(8) to find complete agreement.

2 Modular kernel

2.1 Notation

We start by defining our notation. It is useful to introduce
the Liouville-type variables α, α′, μ, b replacing the original
CFT data

c = 1 + 6Q2, Q = b + b−1,

� = Q2/4 − α2, �′ = Q2/4 − α′2, �e = μ(Q − μ).

(9)

With a little abuse of notation we will use the same letters for
functions of the original and the newly introduced variables.
Note, however, that, due to a non-trivial Jacobian of the trans-
formation from � to α property, (8) is slightly different in
terms of α, namely

Res
α=αr,s

Mαα′ = − Rr,s

2αr,s
Mαr,−sα′ . (10)

The Kac zeros are described by

�r,s = Q2/4 − α2
r,s, αr,s = rb + sb−1

2
(11)

for r, s ≥ 1. We emphasize that there are no poles in CB
at �r,−s for r, s ≥ 1. Note, however, that �r,s = �−r,−s .
Without loss of generality throughout this paper we assume
that r, s ≥ 1. The multipliers entering (3) read

Rr,s = Ar,s Pr,s (12)

where

Ar,s = 1

2

r∏
n=1−r

s∏
m=1−s

(n,m) �=(0,0),(r,s)

1

nb + mb−1 ,

Pr,s =
r∏

n=1−r

s∏
m=1−s

(
nb + mb−1 − μ

)
. (13)

2.2 Explicit formula

The modular kernel for the toric Virasoro blocks is known
in closed form as an integral [11] or a series [12] represen-
tation. For our current purposes the most handy form is the
following:

Mαα′ = Vα

Vα′
nα′Mαα′ (14)
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where Vα is a convenient renormalization function3

Vα = �b(Q + 2α)�b(Q − 2α)

�b(μ + 2α)�b(μ − 2α)
; (15)

nα′ is an α-independent factor

nα′ = e2π iμα′
sin 2πbα′ sin 2πb−1α′/Sb(μ), (16)

irrelevant for property (10), while Mαα′ is an essential con-
tribution,

Mαα′ = Kαα′ + K−α,α′ , (17)

Kαα′ = e4π iαα′ ∑
n,m≥0

e8π iαn,mα′
Knm(α),

Knm(α) = Sb(2α + 2αn,m + μ)Sb(2αn,m + μ)

Sb(2α + 2αn+1,m+1)S′
b(2αn+1,m+1)

. (18)

Here S′
b(z) denotes the derivative of Sb(z). Now everything

is set up and we can proceed with the proof of Eq. (10).

3 Proof of the residue formula

We will prove assertion (10) by an explicit computation
which appears to be straightforward but tedious. We would
like to outline the important steps beforehand. Definition (14)
represents a modular kernel as the product of the normaliza-
tion factor Vα/Vα′ (15) and the non-trivial series Mαα′ (17).
It turns out that the normalization factor Vα features poles
exactly at the Kac zeros and furthermore it satisfies

Res
α=αr,s

Vα = − Rr,s

2αr,s
Vαr,−s . (19)

In contrast, the remainder Mαα′ appears to be regular at
α = αr,±s and to satisfy

Mαr,s ,α′ = Mαr,−s ,α′ . (20)

Combined, these properties lead to (10). In the rest of this
section we show that Eqs. (19) and (20) hold.

3.1 Normalization factor

Let us compute the residue of Vα at α = αr,s and the value
at α = αr,−s . For r, s ≥ 1, which we assume without loss
of generality, there is a single singular multiplier in Vα at
α = αr,s , while at α = αr,−s everything is regular (for a
summary of the analytic properties of �b(z) see Appendix
5). Note also that αr,s + αn,m = αr+n,s+m and Q = 2α1,1.

3 The double gamma �b and sine Sb functions to be extensively used
below are described in Appendix 5.

Therefore, one writes

Res
α=αr,s

Vα =
�b(2αr+1,s+1) Res

α=αr,s
�b(Q − 2α)

�b(μ + 2αr,s)�b(μ + 2α−r,−s)
,

Vαr,−s = �b(2αr+1,1−s)�b(2α1−r,s+1)

�b(μ + 2αr,−s)�b(μ + 2α−r,s)
. (21)

The ratio reads

Res
α=αr,s

Vα

Vαr,−s

=
Res

α=αr,s
�b(Q − 2α)

�b(2αr+1,1−s)︸ ︷︷ ︸
R1

�b(2αr+1,s+1)

�b(2α1−r,s+1)︸ ︷︷ ︸
R2

�b(μ + 2αr,−s)

�b(μ + 2α−r,−s)︸ ︷︷ ︸
R3

× �b(μ + 2α−r,s)

�b(μ + 2αr,s)︸ ︷︷ ︸
R4

. (22)

Let us calculate the first factor

R1 =
Res

α=αr,s
�b(Q − 2α)

�b(2αr+1,1−s)
= lim

ε→0

−ε

2

�b(α1−r,1−s + ε)

�b(2αr+1,1−s + ε)

= lim
ε→0

−ε

2

r∏
n=1−r

�(nb2 + 1 − s + bε)√
2πbnb2+1/2−s+ε

= lim
ε→0

−ε

2

�(1 − s + bε)√
2πb1/2−s

r∏
n=1−r
n �=0

�(nb2 + 1 − s + ε)√
2πbnb2+1/2−s+ε

= (−1)s

2
√

2πb3/2−s(s − 1)!
r∏

n=1−r
n �=0

�(nb2 + 1 − s)√
2πbnb2+1/2−s

. (23)

Here the difference equation on the double gamma function
(54) was used.

Computation of the second factor is more straightforward
as there is no limiting procedure involved,

R2 = �b(2αr+1,s+1)

�b(2α1−r,s+1)
=

r∏
n=1−r

√
2πbnb

2+1/2+s

�(nb2 + 1 + s)
. (24)

Multiplying R1 by R2 one obtains

R1 · R2 = (−1)sb2s−1

2(s − 1)!s!
r∏

n=1−r
n �=0

b2s �(nb2 + 1 − s)

�(nb2 + 1 + s)

= (−1)sb2s−1

2(s − 1)!s!
r∏

n=1−r
n �=0

s∏
m=1−s

1

nb + mb−1

123



368 Page 4 of 7 Eur. Phys. J. C (2017) 77 :368

= (−1)sb2s−1

2(s − 1)!s!
s∏

m=1−s
m �=0

mb−1
r∏

n=1−r

s∏
m=1−s

(n,m) �=(0,0)

1

nb + mb−1

= −1

2

r∏
n=1−r

s∏
m=1−s

(n,m) �=(0,0)

1

nb + mb−1 , (25)

which is exactly equal to − Ar,s
2αr,s

with Ar,s defined in (13).
In a very similar manner one shows that the product of the
remaining factors R3 · R4 is equal to Pr,s defined in (13).
Therefore, we conclude that Eq. (19) is satisfied.

3.2 Regular part

In order to prove (10) it remains to show that Mαα′ is regular
at α = αr,±s and satisfies (20). Care must be taken here since
the function Kαα′ (18) is singular at these points, but the sum
of Kαα′ and K−αα′ defining Mαα′ turns out to be regular.

3.2.1 Expansion near α = αr,s

Let us expand Mαα′ near α = αr,s ,

Mαr,s+ ε
2 ,α′ = e−4π iαr,s

×
(
e8π iαr,sα′

e2π iεα′
Kαr,s+ ε

2 ,α′ + e−2π iεα′
K−αr,s− ε

2 ,α′
)

= e−4π iαr,s
∑
n,m

e8π iαn,mα′Mr,s
n,m(ε) (26)

where we have denoted

Mr,s
n,m(ε) = e2π iεα′

Kn−r,m−s

(
αr,s + ε

2

)
δn≥r,m≥s

+ e−2π iεα′
Kn,m

(
α−r,−s − ε

2

)
. (27)

Consider

Kn−r,m−s

(
αr,s + ε

2

)

= Sb(2αn,m + μ + ε)Sb(2αn−r,m−s + μ)

Sb(2αn+1,m+1 + ε)S′
b(2αn−r+1,m−s+1)

. (28)

Taking into account that the function Sb(2αn+1,m+1 + ε) has
a simple zero at ε = 0 (see Appendix 5) one writes the
following small ε expansion:

e2π iεα′
Kn−r,m−s

(
αr,s + ε

2

)

= Sb(2αn,m + μ)Sb(2αn−r,m−s + μ)

S′
b(2αn+1,m+1)S′

b(2αn−r+1,m−s+1)

×
(

1

ε
+ 2π iα′ + S′

b(2αn,m + μ)

Sb(2αn,m + μ)

−1

2

S′′
b (2αn+1,m+1)

S′
b(2αn+1,m+1)

+ O(ε)

)
. (29)

Now we turn to

Kn,m

(
α−r,−s − ε

2

)

= Sb(2αn−r,m−s + μ − ε)Sb(2αn,m + μ)

Sb(2αn−r+1,m−s+1 − ε)S′
b(2αn+1,m+1)

. (30)

This term has different expansions depending on the balance
of indices. If n ≥ r,m ≥ s we have an expansion similar to
(29),

e−2π iεα′
Kn,m

(
α−r,−s − ε

2

)

= Sb(2αn−r,m−s + μ)Sb(2αn,m + μ)

S′
b(2αn−r+1,m−s+1)S′

b(2αn+1,m+1)

×
(

−1

ε
+ 2π iα′ + S′(2αn−r,m−s + μ)

Sb(2αn−r,m−s + μ)

− 1

2

S′′
b (2αn−r+1,m−s+1)

S′
b(2αn−r+1,m−s+1)

+ O(ε)

)
. (31)

We see that the sum of (29) and (31) is indeed regular at
ε = 0 and given by

Mr,s
n,m(0) = Sb(2αn−r,m−s + μ)Sb(2αn,m + μ)

S′
b(2αn−r+1,m−s+1)S′

b(2αn+1,m+1)

×
(

4π iα′ + S′
b(2αn,m + μ)

Sb(2αn,m + μ)
+ S′

b(2αn−r,m−s + μ)

Sb(2αn−r,m−s + μ)

− 1

2

S′′
b (2αn+1,m+1)

S′
b(2αn+1,m+1)

− 1

2

S′′
b (2αn−r+1,m−s+1)

S′
b(2αn−r+1,m−s+1)

)
,

n ≥ r,m ≥ s. (32)

When n < r andm < s function S−1
b (2αn−r+1,m−s+1−ε) =

O(ε) so the second term in (27) vanishes at ε = 0, while the
first term is absent due to the factor δn≥r,m≥s ; hence

Mr,s
n,m(0) = 0, n < r,m < s. (33)

Finally, when n < r and m ≥ s or n ≥ r and m < s the
function S−1

b (2αn−r+1,m−s+1 − ε) is regular at ε = 0 and
we have

Mr,s
n,m(0) = Sb(2αn−r,m−s + μ)Sb(2αn,m + μ)

Sb(2αn−r+1,m−s+1)S′
b(2αn+1,m+1)

,

×n < r,m ≥ s or n ≥ r,m < s. (34)

3.2.2 Expansion near α = αr,−s

Now let us expand Mαα′ near α = αr,−s :

Mαr,−s+ ε
2 ,α′ = e−4π iαr,s

(
e2π iεα′

e8π iαr,0α′
Kαr,s+ ε

2 ,α′

+ e−2π iεα′
e8π iα0,sα

′
Kα−r,s− ε

2 ,α′
)

= e−4π iαr,s
∑
n,m

e8π iαn,mα′Mr,−s
n,m (ε) (35)
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where we have denoted

Mr,−s
n,m (ε) = e2π iεα′

Kn−r,m

(
αr,−s + ε

2

)
δn≥r

+e−2π iεα′
Kn,m−s

(
α−r,s − ε

2

)
δm≥s . (36)

We emphasize that Mr,−s
n,m (ε) is not obtained from Mr,s

n,m(ε)

(27) by flipping the sign of s.
Proceeding in full analogy with the previous subsection

one shows that Mr,−s
n,m (ε) is regular at ε = 0 with different

expansions depending on n− r and m − s. For n ≥ r,m ≥ s
one obtains

Mr,−s
n,m (0) = Sb(2αn,m−s+μ)Sb(2αn−r,m+μ)

S′
b(2αn−r+1,m+1)S′

b(2αn+1,m−s+1)

×
(

4π iα′ + S′
b(2αn−r,m + μ)

Sb(2αn−r,m + μ)

+ S′
b(2αn,m−s + μ)

Sb(2αn,m−s + μ)
− 1

2

S′′
b (2αn+1,m−s+1)

S′
b(2αn+1,m−s+1)

− 1

2

S′′
b (2αn−r+1,m+1)

S′
b(2αn−r+1,m+1)

)
, n ≥ r,m ≥ s.

(37)

When n < r and m < s Mr,−s
n,m (0) is vanishing due, to the

Kronecker deltas

Mr,−s
n,m (0) = 0, n < r,m < s, (38)

and finally when n < r and m ≥ s or n ≥ r and m < s there
are no singular terms and one has

Mr,−s
n,m (0) = Sb(2αn−r,m + μ)Sb(2αn,m−s + μ)

Sb(2αn−r+1,m+1)S′
b(2αn+1,m−s+1)

,

n < r,m ≥ s, (39)

Mr,−s
n,m (0) = Sb(2αn−r,m + μ)Sb(2αn,m−s + μ)

Sb(2αn+1,m−s+1)S′
b(2αn−r+1,m+1)

,

n ≥ r,m < s. (40)

3.2.3 Comparison

Let us first compare Eqs. (32) and (37), which are valid for
n ≥ r, n ≥ s. Consider the ratio of μ-dependent terms in the
overall prefactors. Using property (56) one obtains

Sb(2αn,m−s + μ)Sb(2αn−r,m + μ)

Sb(2αn−r,m−s + μ)Sb(2αn,m + μ)

=

n−1∏
k=n−r

2 sin π(kb2 + μb + m − s)

n−1∏
k=n−r

2 sin π(kb2 + μb + m)

= (−1)rs . (41)

Now, differentiating (56), substituting z = 2αn+1,m+1, and
taking into account that Sb(2αn+1,m+1) = 0 we have

S′
b(2αn+2,m+1) = 2 sin 2πbαn,mS

′
b(2αn+1,m+1). (42)

Using this equation one computes the ratio of the remaining
μ-independent terms in the overall prefactors of (32) and
(37),

S′
b(2αn−r+1,m−s+1)S′

b(2αn+1,m+1)

S′
b(2αn+1,m−s+1)S′

b(2αn−r+1,m+1)

=

n∏
k=n−r+1

2 sin π(kb2 + m + 1)

n∏
k=n−r+1

2 sin π(kb2 + m − s + 1)

= (−1)rs . (43)

Hence, the overall factors are the same in (32) and (37) and
the α′-dependent terms agree exactly. Now, consider

T r,s
n,m = S′

b(2αn−r,m−s + μ)

Sb(2αn−r,m−s + μ)
+ S′

b(2αn,m + μ)

Sb(2αn,m + μ)
, (44)

T r,−s
n,m = S′

b(2αn−r,m + μ)

Sb(2αn−r,m + μ)
+ S′

b(2αn,m−s + μ)

Sb(2αn,m−s + μ)
, (45)

which enter Eqs. (32) and (37), respectively. We will show
by induction in r, s that these functions coincide. For r, s = 0
this is trivial. Assume that T r,s

n,m = T r,−s
n,m for some r, s and

consider

T r+1,s
n,m

= S′
b(2αn−r+1,m−s + μ)

Sb(2αn−r−1,m−s + μ)
+ · · · = 2 sin πb(2αn−r,m−s + μ)

Sb(2αn−r,m−s + μ)

× S′
b(2αn−r,m−s+μ)−2πb cos πb(2αn−r−1,m−s+μ)Sb(2αn−r−1,m−s+μ)

2 sin πb(2αn−r,m−s+μ)

+ · · · = T r,s
n,m − πb cot π((n − r − 1)b2 + μb) (46)

where in the intermediate steps the r -independent part of
T r,s
n,m is denoted by ellipses. Also, besides Eq. (56) we have

used the relation

S′
b(z + b) = 2 sin πbzS′

b(z) + 2πb cos πbzSb(z), (47)

which is obtained by differentiating (56). Mimicking the
above computation one shows that

T r+1,−s
n,m = T r,−s

n,m − πb cot π((n − r − 1)b2 + μb). (48)

Hence T r+1,s
n,m = T r+1,−s

n,m . Induction in s proceeds in full
analogy and we will omit it.

A last step in verifying agreement between (32) and (37)
is to show that the functions

Ur,s
n,m = S′′

b (2αn−r+1,m−s+1)

S′
b(2αn−r+1,m−s+1)

+ S′′
b (2αn+1,m+1)

S′
b(2αn+1,m+1)

, (49)

Ur,−s
n,m = S′′

b (2αn−r+1,m+1)

S′
b(2αn−r+1,m+1)

+ S′′
b (2αn+1,m−s+1)

S′
b(2αn+1,m−s+1)

, (50)
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also coincide. We confine ourselves to pointing out that the
property

S′′
b (2αn+2,m+1) = 2 sin 2πbαn+1,m+1S

′′
b (2αn+1,m+1)

+ 4πb cos 2πbαn+1,m+1S
′
b(2αn+1,m+1)

(51)

reduces the comparison of Ur,s
n,m and Ur,−s

n,m to basically the
same computation as we carried out for T r,±s

n,m and we will not
present it here. Equation (51) is obtained from (56) by double
differentiation and substitution of z = 2αn+1,m+1 together
with using Sb(2αn+1,m+1) = 0.

Hence we have shown that

Mr,s
n,m(0) = Mr,−s

n,m (0), n ≥ r,m ≥ s. (52)

Coincidence of these functions for n < r,m < s is trivial
since they both vanish; see Eqs. (33) and (38). It remains to
compare (34) with (39) and (40). This is again a straight-
forward but somewhat bulky exercise making use of Eqs.
(56) and (42). We will omit the computation and only report
complete agreement. This completes our proof of Eq. (20).

4 Discussion

The non-perturbative aspects of CBs are hard to reveal.
Zamolodchikov’s formula (4), describing the analytic struc-
ture of CB to all orders in q, is a remarkable exception. The
fact that the explicit expression for the modular kernel of
generic CB is available (14) is also quite non-trivial. It is
instructive to recall how this expression is derived [11,12].
The algebra of modular transformations features non-linear
consistency relations such as the pentagon and the hexagon
identities and their toric counterparts [13]. Certain specifica-
tions of these non-linear relations give rise to linear differ-
ence equations on the generic modular kernel with degener-
ate modular kernels entering as coefficients. Degenerate CBs
correspond to finite representations of the Virasoro algebra
and satisfy the differential BPZ equations. They can be found
exactly and the corresponding modular kernels (which are
simply finite matrices) can be computed. Hence, in deriv-
ing Eq. (18) only properties of a very special class of CBs
was explicitly used, but the result is supposed to describe
the modular transformations of generic CB. The validity of
Eq. (10) following from the analytic structure of generic CB
furnishes a highly non-trivial test of this assertion.

Moreover, these equations partly explain an unexpected
structure of Eq. (18). As confirmed from many perspectives
[12,14–19] the Fourier-type contribution e4π iαα′

is always
present in the modular kernel at the perturbative level.4

4 Here the perturbative expansion in inverse powers of � as � → ∞ is
implied. This should not be confused with the perturbative q-expansion
which we usually discuss in the text.

From this point of view, the expansion in (18) looks like
a non-perturbative completion with powers of parameters
e4π ibα, e4π ib−1α which do not appear in q-expansion of CB.
Equation (10), valid on general grounds, cannot be satisfied
by the Fourier kernel alone and necessitates the introduction
of the aforementioned non-perturbative terms.

One more remark is in order. Zamolodchikov’s relation for
CB is powerful enough to replace the definition and give an
efficient computational approach. Although we already have
an explicit formula for the modular kernel it is interesting
to understand whether a relation similar to Zamolodchikov’s
recursion can be found for the modular kernel based solely
on property (10). We argue that this is not the case. It is the
non-trivial series expansion part of the modular kernel Mαα′
(17) for which we would like to obtain a recursive definition.
However, this part is regular and only satisfies condition (20).
This is not enough to construct a recurrence equation valid
for all α. In other words, in the full modular kernel Mαα′
(14) all the poles come from an α′-independent normalization
factor Vα , and hence they are common to all coefficients of
the expansion that we wish to describe. In contrast, in the
expansion of the conformal block (2) additional poles appear
as the order of q increases. This is the reason why (3) relates
different orders of the q-expansion allowing for recursive
computations.

Finally, we would like to stress that although we have only
checked Eq. (8) for the toric Virasoro block; the derivation
is very general and extensions to many other cases should
exist. For example, the spheric modular kernel should satisfy
(8) if the toric residue coefficients Rr,s are replaced by their
spheric counterparts.
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5 Double gamma and sine functions

The double gamma function �b(z) can be defined as the ana-
lytic continuation of the following integral:
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�b(z) =
∫ ∞

0

dt

t

(
e−zt − e−Qt/2

(1 − e−bt )(1 − e−b−1t )
− (Q − 2z)2

8et

− Q − 2z

2t

)
,

Q = b + b−1. (53)

�b(z) is meromorphic with no zeros and only simple poles
located at z = −nb −mb−1 for n,m ≥ 0, i.e. schematically
�b(z) ∝ ∏

n,m≥0
1

z+rb+sb−1 . The double gamma function
satisfies the following difference equations:

�b(z + b) = �b(z)

√
2πbbz−1/2

�(bz)
,

�b(z + b−1) = �b(z)

√
2πb1/2−b−1z

�(b−1z)
, (54)

related to each other by the replacement b → b−1, which is a
symmetry of the double gamma function, �b(z) = �b−1(z).

The double sine function Sb(z) is defined as

Sb(z) = �b(z)

�b(Q − z)
. (55)

It shares poles with the double gamma function but possesses
additional zeros at z = nb+mb−1 for n,m ≥ 1, i.e. schemat-
ically Sb(z) ∝ ∏

n,m≥0
z−(n+1)b−(m+1)b−1

z+nb+mb . The double sine
function satisfies the following difference equations:

Sb(z + b) = 2 sin(πbz)Sb(z), Sb(z + b−1)

= 2 sin(πb−1z)S−1
b (z) (56)

and the symmetry property Sb(z) = Sb−1(z).
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