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Abstract We construct a new relativistic viscous hydrody-
namics code optimized in the Milne coordinates. We split
the conservation equations into an ideal part and a viscous
part, using the Strang spitting method. In the code a Riemann
solver based on the two-shock approximation is utilized for
the ideal part and the Piecewise Exact Solution (PES) method
is applied for the viscous part. We check the validity of our
numerical calculations by comparing analytical solutions, the
viscous Bjorken’s flow and the Israel-Stewart theory in Gub-
ser flow regime. Using the code, we discuss possible devel-
opment of the Kelvin—Helmbholtz instability in high-energy
heavy-ion collisions.

1 Introduction

Since the success of production of the strongly interacting
quark—gluon plasma (QGP) at Relativistic Heavy Ion Col-
lider (RHIC) [1], relativistic viscous hydrodynamic model
has been one of promising phenomenological models. Now
at RHIC as well as at the Large Hadron Collider (LHC)
high-energy heavy-ion collisions are carried out. The strong
collective dynamics observed in experimental data at RHIC
and the LHC provides us with a clue of understanding the
QCD matter. A relativistic hydrodynamic model is suitable
for description of space-time evolution of strongly interact-
ing QCD matter produced after collisions. Besides, it has a
close relation to an equation of state and transport coefficients
of the QGP. The QCD phase transition mechanism and the
QGP bulk property is elucidated from comparison between
hydrodynamic calculation and experimental data.

#e-mail: okamoto @hken.phys.nagoya-u.ac.jp

b e-mail: nonaka@hken.phys.nagoya-u.ac.jp

A relativistic viscous hydrodynamic model plays an
important role in the quantitative understanding of the QGP
bulk property. However, introducing viscosity effect into the
framework of relativistic hydrodynamics is not an easy task,
because of the acausality problem. There is not the unique
way to extract the second-order relativistic viscous hydro-
dynamic equation. In high-energy heavy-ion collisions, cur-
rently the Israel-Stewart theory [2,3] and conformal hydro-
dynamics [4] are often used. Solving them numerically, study
of experimental data of high-energy heavy-ion collisions is
performed [5-14].

Now the relativistic viscous hydrodynamic model can
explain not only the elliptic flow but also higher harmonics
[15]. In particular, analyses of the higher harmonics bring us
progress of understanding of the QGP, because it is more sen-
sitive to the QGP bulk property. Furthermore, a lot of exper-
imental data are reported; correlation between flow harmon-
ics [16,17], event plane correlation [18,19], non-linearity
of higher flow harmonics [20] and three particle correlation
[21,22]. At the same time, we can investigate the QGP prop-
erty further using information of (3+1)-dimensional space-
time evolutions [19,21,22]. The rich experimental data real-
izes investigation of both shear and bulk viscosities and even
their temperature dependence.

We need to perform numerical calculations for relativis-
tic viscous hydrodynamics with high accuracy, to achieve
the quantitative analyses of the transport coefficients of the
QGP from comparison with high statistics and high preci-
sion experimental data. For example, the following features
in numerical calculations are demanded: A fluctuating initial
condition is correctly captured and numerical viscosity which
is needed for stability of calculation is much smaller than
physical viscosity. Furthermore, time evolution of the vis-
cous stress tensor is sensitive to numerical scheme, because
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it consists of time and space derivatives of hydrodynamic
variables.

Here we present a new relativistic viscous hydrodynamics
code optimized in the Milne coordinates. The code is devel-
oped based on our algorithm of the ideal fluid in which a
Riemann solver with the two-shock approximation [23] is
employed [24]. It is stable even with small numerical vis-
cosity [25]. We shall show comparison between numerical
calculations and analytic solutions of viscous Bjorken’s flow
and the Israel-Stewart theory in Gubser flow regime.

Using the code, we shall discuss possible development of
Kelvin—Helmholtz (KH) instability in high-energy heavy-ion
collisions. Hydrodynamic instability and turbulent flow are
discussed in Refs. [26,27] and the possibility of KH insta-
bility is argued in Ref. [28]. The hydrodynamic instability is
affected by a viscosity effect, which suggests that the numer-
ical code with less numerical viscosity is indispensable for
study of it.

This paper is organized as follows. We begin in Sect. 2
by showing the relativistic viscous hydrodynamic equations
briefly. In Sect. 3 we explain the numerical algorithm; Strang
splitting method and numerical implementation. We check
the validity of our code comparing analytic solutions of vis-
cous Bjorken flow and the Israel-Stewart theory in the Gub-
ser flow regime in Sect. 4. In Sect. 5, we discuss the possible
development of KH instability in high-energy heavy-ion col-
lisions. We end in Sect. 6 with our conclusions.

2 Relativistic viscous hydrodynamic equations

The relativistic hydrodynamics is based on the conservation
equations,

N =0, M)
TM;V’u — 0’ (2)

where N* is the net charge current and 7#" is the energy-
momentum tensor. In the case of ideal fluid, the net charge
current and energy-momentum tensor are given by

N* = nu*, 3
T = eut*u” — pA™’, %)

where n is the net charge density, e is the energy density, p
is the pressure and u* is the fluid four-velocity which sat-
isfies the normalization u*u, = 1. A"’ is the orthogonal
projection tensor to ", which is defined by

APV = gtV — Py, (5)

with the metric tensor g"V. Here the u* is determined
uniquely.

@ Springer

On the other hand, in dissipative flow, there are several
possible choices to determine u*. For example, one can
assign the u* as net charge flow (Eckart frame [29]) or as
energy flow (Landau frame [30]). The decomposition of N*
and TH" in viscous fluid depends on the choice of u*. Here
we choose the Landau frame for relativistic viscous hydro-
dynamic equations, because we focus on the high-energy
heavy-ion collisions as RHIC and the LHC where the net
baryon number is very small [31].

In the Landau frame, the net charge current and the energy-
momentum tensor of the viscous fluid are decomposed as

N"* = nu"* + n*, 6)
T = eu*u’ — (p + THA" + MV, @)

where n** is the charge diffusion current, IT is the bulk pres-
sure, and t#V is the shear tensor [30]. The relativistic exten-
sion of Navier—Stokes theory in non-relativistic fluid usually
has a problem of acausality and instability [32—34]. The prob-
lem can be resolved by introducing the second-order terms
of the viscous tensor and the derivative of fluid variables
into the hydrodynamic equations [2,3]. However, the origi-
nal Israel-Stewart theory does not reproduce the results of the
kinetic equation quantitatively [35-39]. The construction of
second-order relativistic viscous hydrodynamic equations is
still under investigation. The extension of the Israel-Stewart
theory is also proposed [40—45]. In addition to the frame-
work of the Israel-Stewart theory, other approaches such as
the AdS/CFT correspondence [4,46-48] and renormaliza-
tion group method are applied to the construction of causal
relativistic hydrodynamics [49,50].

In the second-order viscous hydrodynamics, additional
equations for evolution of the viscous tensors are needed.
Here, we introduce the convective time derivative D and the
spatial gradient operator V#, which are defined by

DAM e — uﬂAf.L'81~--ll«n7 (8)
Vg Al = AR AL ©9)

respectively. For example, in the second-order Israel-Stewart
formalism the constitutive equations of the viscous tensors
are given by

1
A¥,Dn* = —— @t — nﬁs) — Ik, (10)
n
1
A”QA"ﬂDn"‘ﬂ = —;(n’” —nlg) — I, (11)
1
DIl = ——(I1 — Ins) — I, (12)
T

where t,,, T, and tr7 are relaxation times, I\, IX", and I
represent second-order terms. nyg, Txg, and Tlns are the
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Navier-Stokes value of viscous tensors written as

nliy =0TV, (%) , (13)
2

s = (Vv - 3o, (14)

Mys = —¢0, (15)

where T is the temperature, u is the chemical potential, 6 =
u" is the expansion scalar, o is the charge conductivity, 7 is
the shear viscosity, and IT is the bulk viscosity.

We construct a relativistic viscous hydrodynamics code
in the Milne coordinates (t, x, y, 1), which is optimized for
description of the strong longitudinal expansion [51] at RHIC
and the LHC. In the Milne coordinates, the metric tensor
is given by g"’ = diag(l, —1, —1, —1/7?) and the fluid
four-velocity has the form u”* = y(1,v*, v¥,v"), where
vii =x,y,np)andy = (1 — AR . 20"12)~1/2 gre
the three-velocity and the Lorentz factor, respectively. The
conservation equations Eqs. (1) and (2) are explicitly written
as

T i 1 T
3, N" + ;N =N, (16)
9, T™ + 9, T"" = §", (17)

where i = x, y, n and the right-hand sides of them represent
geometric source terms. S” is given by

T T

T T
(18)

The constitutive equations Eqs. (10), (11), and (12) in Milne
coordinates read

(@ +v'dn¥ = == (n'* —nng) = I = Jf = K},
n
(19)
) 1
(0; + vlal.)nlw:——(n“”—nx;)—lﬁv—ffrw — KRV,
n
(20)
. 1
(81+v’8i)H=—VTH(H—HNs)—In, (2D

where 1, 7, and try are the relaxation times, and the second-
order terms are defined by

JT =1, Il =0, (22)
1 1

J = —v"n" + —n", (23)
T T

JIT =2t ™, JU = tulnd, (24)

JE = Y = Y =0, (25)

. 1 . 1 .

JI = g T, (26)
T T
2 2

JI = Sy ™ 4 S, (27)
T T

K" = n*v" Du;, (28)

KY = (™Y 4+ 7 v*) Duy, (29)

j = x,yand A = 1,x,y,n. Here, JT and J5" are the
geometric source terms which come from the convective time
derivative of n* and " respectively. K} and K%" ensures
the constraints n*u,, =0, 7*"u, = 0 and n,’f =0.

3 Numerical algorithm

In this section, we present our numerical algorithm for solv-
ing the relativistic viscous hydrodynamic equations in the
Milne coordinates.

3.1 Strang splitting method

In our algorithm, we split the conservation equations Eqgs.
(16) and (17) into two parts, an ideal part and a viscous part
using the Strang splitting method [52]. Specifically, the net
charge current and the energy-momentum tensor are divided
as follows: N#* = Ni’é + N\’fls and THY = Tigv + T\ffsv, where
Ni’é = nut, N\‘fis = nk, Tiﬁw = eutu’ — pA*’ and Tvlfsv =
7Y — TTAMY. The subscripts “id” and “vis” mean the ideal
part and the viscous part, respectively. The equations of the

ideal part are expressed by

. 1
dr Nig + 0i Njg = 7 e (30)
0T + T’ = Si GD
where Sy = (=Ti/t—tTy . -TY/t. -1 /z.

—3T,3"/7). They are nothing but the usual ideal hydrody-
namic equations in the Milne coordinates. On the other hand,
the equations of the viscous part are given by

; 1
9z ( ifi + \fis) + al"N\l/is = _; \fis’ (32)
0r (Tg" + T3 + i Tyl = Sy, (33)
where S\‘/)is = (_Tvrisr/r - TTV’;Z’ _Tvrigc/t’ _Tvrii}/r’

—3Tvtig / ‘L'). They give viscous corrections to the evolution

of the ideal fluid.
The Strang splitting technique is also applied to evaluate
the constitutive equations of the viscous tensors Eqs. (19)-

@ Springer
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(21). We decompose the constitutive equations into the fol-
lowing three parts: the convection equations,

3, +v'9;)n* =0, (34)
(3 + V'3 =0, (35)
0, +v'9)I =0, (36)

the relaxation equations,

dent = - (" — nyg)s 37)
1
Bt = =y, (38)
1
011 = _VTH(H — IIns), (39)

and the equations with source terms,

don = —I1 — JB — K, (40)
JerhV = I — I KRV (41)
911 = —I1. (42)

In numerical simulation of relativistic hydrodynamic equa-
tion, a time-step size At is usually determined by the
Courant-Friedrichs—Lewy (CFL) condition. However, in the
relativistic dissipative hydrodynamics, one needs to deter-
mine the value of At carefully. The relaxation times t,, T;,
and 7y in the constitutive equations show the characteris-
tic timescale of the evolutions of the viscous tensors, which
means that a small relaxation time gives us a more restrictive
condition to At than the CFL condition does. If the relax-
ation times t,, 7, and t; are much shorter than the fluid
timescale tqyiq, the time-step size At should be smaller than
the relaxation timescale, which makes the computational cost
increase. To avoid this problem, we use the Piecewise Exact
Solution (PES) method [53], instead of using a simple explicit
scheme. In the PES method, formal solutions of Eqgs. (37)—
(39),

— T
0} + b, 43)
n

n (1) = (ny — nig)exp |:— !

' (r) = (" — kg )exp |:— - T0i| + 7hs » (44)
Yin
T—17
() = (ITp — Ins)exp [——} + Ins, (45)
Y

can be used. On the other hands, if the relaxation times are
larger than At determined by the CFL condition, the PES
method is not applied [12].

In our algorithm, we solve the time evolution of n*, n¥, n',
X, ¥, oM Y 7Y g and IT directly. Other com-
ponents of viscous tensors n*, 7*", x™, 7™ and 77" are

@ Springer

derived from the orthogonality conditions n*u, = 0 and
7*u, = 0.

3.2 Numerical implementation

The decomposed hydrodynamic equations Eqs. (30)—(42) are
solved by the following procedure. Here, we represent a con-
served variable as U = Ujq + Uis, where Ujg = (N, T,5"
and Uyis = (N, ) (v = 7,x,y,n). Fluid and dis-
sipative variables are described by Vig = (n, p, vi) and
Vs = (ni, P I, j = x, y, n), respectively.

First, we solve the ideal part of the conservation equations
Egs. (30) and (31) using the Riemann solver [24]. In this step,
the conserved variable U;q(7) is evolved into U, (7 4 A7),
where the asterisk indicates a variable evolved only in the
ideal part. Viq(7) is used to evaluate the numerical flux and
the geometric source terms in Egs. (30) and (31). We calculate
the fluid variable V3 (t 4+ Art) from U3;(t 4+ Art) with the
algorithm for recovery of the primitive variables Vg from
the conserved variables Uiq [25].

Second, we solve the constitutive equations of the viscous
tensors Eqs. (34)—(42) to obtain Vis(t + At). The con-
vection equations Egs. (34)—(36), the relaxation equations
Egs. (37)—(39) and Egs. (40)—(42) are solved by the upwind
scheme, the PES method and the predictor corrector method,
respectively. The Navier—Stokes terms n{, mxg. [INs and
the second-order terms 7, K in the right-hand sides of Egs.
(37)—(42) contain not only the spatial derivatives of fluid vari-
ables but also the time derivatives of them. The time deriva-
tives in the right-hand sides of Eqgs. (37)—(42) are obtained
by 9; Vig = (Vj(t + A1) — Viq(1))/At. Here we keep the
middle time-step value of the viscous tensor Vyis(t + At/2)
for the next step.

Next, the conserved variables U i*d(r + A1) and U,is(7)
are evolved into Ujg(t + At) and Uis(t + A7) by the vis-
cous part of conservation equations Eqgs. (32) and (33). Then
we recover the fluid variables Viq(t + At) from conserved
variables Uyis(t + A7) [53]. We keep the middle time-step
value Vig(t + A/2).

To achieve the second-order accurate in time, we repeat
the above whole steps using the middle time-step values
Via(t + At/2) and Vis(t + At/2). However, we find that
numerical errors arise mainly from the constitutive equations
Egs. (34)—(42). Therefore we carry out numerical calculation
in the second-order accurate in time only in constitutive equa-
tions Eqgs. (34)—(42) and the viscous part of the conservation
equations Eqgs. (32) and (33).

Throughout all above steps, we evaluate space derivative
terms using the MC limiter [54] for the second-order accurate
in space or the piecewise parabolic method (PPM) [55-57]
for the third-order accurate in space. We shall give the explicit
expressions of the interpolation procedures, the MC limiter
and the PPM in Appendix A.
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4 Numerical tests

We check the correctness of our code in the following test
problems; the viscous Bjorken flow for one-dimensional
expansion and the Israel-Stewart theory in the Gubser flow
regime [58] for the three-dimensional calculation. We use the
ideal massless gas equation of state, p = ¢/3 and set the net
charge to be vanishing.

4.1 Viscous Bjorken flow

The Bjorken flow is one of the simplest one-dimensional test
problems for the code which is optimized in the Milne coor-
dinates. In the ideal fluid, the time evolution of temperature
follows T = Ty(to/ 7)!/3, where 1y and Ty are the initial
proper time and temperature, respectively [51]. In the vis-
cous fluid, the non-vanishing components of viscous tensor
Y are m**, Y, and 7", From the symmetries of the sys-
tem, the relation 27 = 27%Y = —1 27" holds. First, we
focus on the shear viscosity effects at the Navier—Stokes limit.
In the Navier—Stokes limit, the relativistic viscous hydrody-
namic equation with the boost invariance is written as

de e+ p+t2all
. _u’ (46)
at T
where )¢ is the Navier—Stokes value of shear tensor,
4n
m
= ——°L. 47
NS 373 47

If n/s is constant, Egs. (46) and (47) give the time evolution
of the temperature,

@ 0@ e

The numerical calculation is carried out on the space-grid size
An = 0.1 with the time-step size At = 0.179An. The initial
temperature 7o and the proper time tp are set to 7p = 300
MeV and 1y = 1 fm, respectively. We set the relaxation time
to be T, = 0.0001 fm as the Navier—Stokes limit. Since 7, is
smaller than At, the PES method is applied to solve the relax-
ation equations Eqgs. (37)—(39). Figure 1 shows the analytical
and numerical results of the Bjorken flow with and without
shear viscosity. In the case of finite shear viscosity, the tem-
perature decreases with proper time more slowly, compared
to that of the ideal fluid. In both cases, our numerical results
show good agreement with the analytical solutions.

Next, we check the time evolution of the bulk pressure in
the viscous Bjorken’s flow. Ignoring the second-order terms
Ir1 in Eq. (21), we write the relaxation equation of the bulk
pressure,

300

. .
numerical +
analytic

280
260
240
220
200 |

T(MeV)

180

160

140

120 . . . . . . . .
1

Fig. 1 The numerical and analytical results of the time evolution of
the temperature in the Bjorken flow with and without shear viscosity.
The viscosity to entropy density ratio is n/s = 0 and 0.2

0 T T T T T

T T
numerical +
analytic

-100

-200

-300

I(MeV/fm®)

-400

1 2 3 4 5 6 7 8 9 10
T(fm)

-500

Fig. 2 The numerical and analytical results of the time evolution of
the Bulk pressure in the Bjorken flow. The bulk viscosity is ¢ =
1000 MeV/fm?

aTIl 1
5o =~ (M=Tlxs). (49)
T 1t

with the Navier—Stokes value of the bulk pressure IIns =
¢/t. If we assume ¢ and tpp are constant, we obtain the
analytical solution of Eq. (49),

M = Moe™ /M 4 £ o=/ [Ei(zy/zpy) — Bi(e /7)),

mn
(50)

where I is the initial value of the bulk pressure and Ei(x)
is the exponential integral function.

In the numerical calculation, we set [Ty = 0, ¢ = 1000
MeV/fm2, 79 = 1 fm, and 71 = 1 fm. The space-grid size
An = 0.1 and the time-step size At = 0.1t9An are uti-
lized. Figure 2 shows the analytical and numerical results of
the time evolution of the bulk pressure in the Bjorken flow.

@ Springer
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0.2 —
numerical +
analytic

0.18
0.16
0.14
0.12

0.1F
0.08

T(GeV)

0.06

0.04

0.02 . . . . .

09 T:72fm 4

0.7 T\\Qf’h 1

T=, 3fim 1

0.1 H numerical +
0 ‘ ‘ ‘ analytic

0 1 2 3 4 5 6
x(fm)

Fig. 3 Comparison between the solutions for temperature 7 (left panel) and the x component of fluid velocity v* (right panel) from the Gubser
flow and our numerical calculation as a function of x. The solid lines stand for the semi-analytic solutions and the pluses stand for numerical results

Our numerical calculation is consistent with the analytical
solution.

4.2 Israel-Stewart theory in the Gubser flow regime

Based on the symmetry arguments developed by Gubser [59,
60], a semi-analytic solution of the Israel-Stewart theory in
the Gubser flow regime is obtained [58]. The semi-analytic
solution is a useful test problem for the code of relativistic
viscous hydrodynamics which is developed for application to
the high-energy heavy-ion collisions [13,14,58,61,62]. The
velocity profile of the semi-analytic solution is the same as
that of the ideal Gubser flow,

J_”J_

v = =,
ut 1+¢%t2 + qzxi

2q%tx) 51)

where ¢ is an arbitrary dimensional constant with unit of
inverse length of the system size and set to ¢ = 1 in com-
parison with numerical computation. The solutions of the
temperature and the shear tensors are derived by solving a
set of two ordinary differential equations numerically [58].
The second-order terms and the relaxation time in Eq. (20)
are given by

4

1 = Sne. (52)
1

=ci, (53)

where c is a constant [58].

We carry out the numerical calculation with the finite
shear viscosity n/s = 0.2. We set the relaxation time to
7, = 5n/(T's). The numerical simulation starts at 7p = 1
fm. The time-step size and the space-grid size in numerical
simulation are set to At = 0.1Ax and (Ax, Ay, An) =
(0.05 fm, 0.05 fm, 0.1), respectively.

@ Springer

Figure 3 shows the numerical results and the semi-analytic
solutions of temperature and x component of fluid velocity
as a function of x at T = 1.2, 2 and 3 fm. The numerical
results are consistent with the semi-analytic solutions. In our
previous test calculation of the ideal Gubser flow the tem-
perature and the fluid velocity follow the analytic solution
until T = 7 fm [24]. On the other hand, in the finite viscosity
calculation the difference between the numerical calculation
and the semi-analytic solution appears after 7 = 4 fm.

In Fig. 4 the numerical results of the shear tensors 7%,
¥, 7™ and 7*¥ at t = 1.2, 2 and 3 fm are presented
together with the semi-analytic solutions. Here the profile
of 7*Y is shown along a line x = y, since the value of 7*”
vanishes on the x and y axes. The shear tensors 7**, 77 and
77 in our numerical calculations show good agreement with
the semi-analytic solutions. However, in 7 the deviation
from the semi-analytic solution starts to appear at T = 2 fm
and grows at later time.

Since in the Israel-Stewart theory the second-order terms
in 7Y become small compared with the first-order terms,
choice of numerical scheme for evaluation of the convec-
tion term in Eq. (35) is important. For example, in Ref. [58],
they show that adjustment of the flux limiter which controls
possible artificial oscillation in a higher order discretization
scheme is crucial for good agreement with the semi-analytic
solution. Here we employ the PPM for solving the convec-
tion part numerically, instead of the MC limiter. In the case of
three-dimensional calculation we use the dimensional split-
ting method [24]. We find that the Corner Transport Upwind
(CTU) scheme [63], which is a three-dimensional unsplit
method, realizes good agreement of the semi-analytic solu-
tion even with the MC limiter.

We discuss the numerical scheme dependence on the shear
tensors in solving the convection term in Eq. (35). We com-
pare the three numerical schemes; a dimensional splitting
method with the MC limiter, a dimensional splitting method
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numerical +

W/ 1=1.2fm ‘
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Fig. 4 Comparison between the solutions for shear tensors 7** (top left), w¥¥ (top right), t>x " (bottom leff) and ¥ (bottom righ) from the
Gubser flow and our numerical calculation as a function of x. The solid lines stand for the semi-analytic solutions and the pluses stand for numerical

results

with the PPM and the CTU method [63] with the MC lim-
iter for three-dimensional unsplit method. We shall explain
the details of each scheme in Appendices A and B. Figure 5
shows the semi-analytic solutions and numerical results of
the shear tensors 7**, 777, t27" and 7 at T = 3 fm. In
75 7YY and 7 M the results of all numerical schemes
are reasonably consistent with the semi-analytic solutions.
In addition, differences among them are small. However, in
*Y we can clearly see the scheme difference. In the solution
obtained with the MC limiter, the large deviation from the
semi-analytic solution at the peak around x = 2 fm appears,
whereas the PPM and the CTU methods keep the good agree-
ment with the semi-analytic solution. The CTU method can
achieve the high numerical accuracy with the second-order
accurate in space, but it needs the more computer memory
than the dimensional splitting method with the PPM does.
Therefore we employ the dimensional splitting method with
the PPM for solving the convection term.

5 Kelvin—Helmholtz instability in Bjorken expansion

We discuss the possible development of the KH instabil-
ity in relativistic heavy-ion collisions. The KH instabil-

ity is one of the hydrodynamic instabilities. It occurs on
the interface between two horizontal streams which have
different velocities [64]. If it takes place, perturbations to
the interface between fluids grow and result in vortex for-
mation. In heavy-ion collisions, the color-flux tube struc-
ture in initial condition can be the origin of the KH insta-
bility; fluctuations in the longitudinal direction are ampli-
fied with the KH instability, however, vortex formation is
not observed [28]. Recently initial fluctuations and QGP
expansion not only in the transverse direction but also in
the longitudinal direction have attracted interest [19,21,22].
Using the new relativistic viscous hydrodynamics code
which has small numerical viscosity, we investigate the
KH instability and vortex formation in heavy-ion colli-
sions.

For simplicity, we focus on hydrodynamic expansion in
the (x, n) plane. The heavy ion accelerated with high-energy
still has about 1 fm width in the longitudinal direction (z
direction) due to the uncertainty principle. In other words, a
thin disk composed of large-x partons is covered by a cloud
of small-x partons. As a result, in the high-energy heavy-
ion collisions parton—parton interactions may take place in
the area within around 1 fm from z = 0 fm. Then if we
consider the color-flux tube structure in the initial condition,
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Fig. 5 Numerical results of shear tensors 7**, 7YY, t27" and 7% at T = 3 fm as a function of x, together with the semi-analytic solution (solid
line). The solid circles, crosses and pluses denote the solutions obtained with the MC limiter, the CTU and the PPM method, respectively

each color-flux tube may evolve from a different interaction
point in |z| < 1 fm.

Suppose that two initial flow fluxes are located in x > 0
and x < O which represent two color-flux tubes starting to
expandatz = Azandz = —Agz,respectively. Energy density
and n component of velocity of the flow flux are assumed to
be described by Bjorken’s scaling solution ez = eq(70/7)*/3
and UZ = 0. Shifting the Bjorken scaling solution to £ Az (=
0.3 fm) in the z direction, we obtain the energy density ey
(ep) and the 7 component of velocity of the flow flux v, (v())
inx >0(x <0),

EU(T, 77) = eB(t, zZ+ AZ)7

4/3
= e i LG8
V12 — 2tsinhnAz — AZ2
ep(t,n) = ep(t,z — Az)
4/3
= ¢ i ENEL)
V12 4+ 2tsinhnAz — Az2
Az  coshpy
n n
vi(t,n) =vpt,z+ A7) = 5 —F, 56
(T n) = vp( ) 2 T Biginhy (56)
Az cosh
(T, ) = vtz — A7) = — = d (57)

2 1+ %sinhf
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where 79 and eq are the initial time and the energy density,
respectively. Figure 6 shows the energy densities ey and ep,
and the ) component of velocity of the flow flux v{, and v}} in
x > 0and x < 0. The energy density and the n components
of velocity of the flow flux are dependent on n in x > 0
and x < 0, because of the translational transformation of
Bjorken’s scaling solution in the z direction. Importantly,
one can see that the shear flow is created between the two
initial flow fluxes.

Furthermore, we put the fluctuation x, = 0.01sin(2wn/A)
with a wavelength A along the boundary between the flow
fluxes. Finally our initial energy density and flow velocity
are written by

ey (10, n) + ep(0, 1)

e(to, x,n) = 5
eu(to, 1) — ep(70, 1) (x —xb)
tanh ,
2 A
(58)
n n
v"(‘to, X, T)) — UU(tO’ 77) + vD(th 77)

2
U n
70, — 70, —
T UU( 0 7]) . vD( 0 n)tanh ()C )Cb) ’

(59)
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(54) and (56). The blue dotted lines indicate the profile of Egs. (55) and
(57)

where the energy density and flow velocity around the bound-
ary are connected from ey and v}, to ep and v}, smoothly
with the parameter A. Here, we set the wavelength of a
fluctuation and the width of boundary between two fluid
fluxes to A = 0.4 and A = 0.02 fm, respectively. Focus-
ing the hot spots in a fluctuating initial condition at the
LHC, we fix the initial energy density (temperature) to
eo = 741 GeV/fm3(Ty = 800 MeV). Figure 7 shows the
velocity field and profile of the vorticity w” of the ini-
tial condition Egs. (58) and (59). Here the definition of the
vorticity w”,

x n
Wy — L[ p0uTy (60)
T\ I ax

The arrows stand for the velocity field in (zv", v¥).

We start the numerical calculation on the grid (Ax, An) =
(0.005 fm, 0.00625) at tp = 1 fm with time-step size At =
0.2Ax. We use the ideal gas equation of state ¢ = 3p.

w(@m™
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D e i i i I e e e e i el =
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0 0.1 02 03 04 05 06 07 08

n

Fig. 7 Initial condition for the shear flow with the Bjorken expansion.
The color profile show the distribution of vorticity —w?. The arrows
indicate the three-fluid vector (zv", v¥)

First we argue on the KH instability in the ideal fluid.
We find a starting vortex formed around the boundary at
v ~ 3 fm. In Fig. 8 the velocity field and the profile of the
vorticity wY at T =4 and 7 fm are shown. We observe that
the boundary with the two vortexes tilt toward negative x.
The initial conditions Egs. (58) and (59) and Fig. 6 suggest
that ey is larger than ep and |[v*| in x > O is larger than
that in x > 0. The ey decreases more slowly than ep does
due to the time dilation from larger |v*|. The energy density
and the flow differences between x > 0 and x < O cause
the flow in the negative x direction. The two vortices expand
with time and their sizes grow because of the existence of
the Bjorken flow. As a result, the intensity of the vortices
becomes small. The larger the difference of velocity in the
shear flow is, the faster the growth of instability is. That is
why the development of vortex at n ~ 0.6 is faster than
that at n ~ 0.2. The fluctuation with a longer wavelength
grows slower in the KH instability than that with a shorter
wavelength does. If we set the wavelength A to A > 0.5 in
the region || < 0.8, the growth of fluctuation is too slow
to form the vortex and the fluctuation is smeared with the
Bjorken flow. However, at the forward rapidity, a fluctuation
with a long wavelength can survive to form a vortex.

Next we discuss the KH instability with finite viscosity.
We employ the same values of the second-order term and the
relaxation time in Eq. (20) as those in Sect. 4.2. The shear
viscosity is set to /s = 0.01. Figure 9 shows the numerical
results of KH instability at t = 4 and 7 fm. In contrast to
Fig. 8, we cannot find the clear vortex but small and vague
enhancement of vorticity around n ~ 0.2 and 0.6. Again we
can see that the flow in the negative x direction is produced.
The width between two fluid fluxes expands and the fluctua-
tion is washed away before it forms a vortex because of the
viscosity effect. The KH instability is not developed. In vis-
cous fluid, a small size vortex compared with the Kolmogorov
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length scale is smeared by the viscosity and cannot exist. The
fluctuation with the wavelength A = 0.4 at tp = 1 fm may
be smaller than the Kolmogorov length scale. In the mid
rapidity, |n| < 0.8, a fluctuation with long wavelength dis-
appears due to the Bjorken flow and a fluctuation with short
wavelength is smeared by the viscosity. However, because at
forward rapidity a fluctuation with long wavelength grows
faster, there may be a chance that the KH instability occurs.
Or if the longitudinal flow is smaller than Bjorken’s flow,
a fluctuation with long wavelength survives and can form a
vortex. The existence of the KH instability depends on the
viscosity and the flow distribution.

6 Summary

In this paper we have developed the new relativistic viscous
hydrodynamics code. In the code, we employed the Milne
coordinates which are suitable for the initial strong longi-
tudinal expansion at high-energy heavy-ion collisions. After
the brief explanation of the relativistic viscous hydrodynamic
equations, we showed the numerical algorithm of the code
which has the ideal part and the viscous part. For the ideal
part we employed the Riemann solver with the two-shock

@ Springer

approximation which achieves stable calculation even with
the small numerical viscosity [25] and for the viscous part
we utilized the PES method [53]. Because we found that the
order of accurate in space in the convection part of the vis-
cous part is important, we applied the PPM instead of the MC
limiter to the convection part. Next we examined the validity
of our code using two test calculations; the viscous Bjorken
flow for the one-dimensional test and the Israel-Stewart the-
ory in the Gubser flow regime for the three-dimensional test.
In both tests, our numerical calculations showed good agree-
ment with analytical solutions. Besides, we pointed out that
in the Gubser flow the shear tensors are sensitive to numerical
scheme. Finally, we discussed the possible vortex formation
through the KH instability in high-energy heavy-ion colli-
sions. We focused on the mid rapidity and started the numer-
ical calculations with the simple initial conditions inspired
by the color-flux tube structure of hot spots in fluctuating
initial conditions. In the case of the ideal fluid we found
the vortex formation after T ~ 3 fm, however, we did not
observe the vortex formation in the viscous fluid even with
very small viscosity. To obtain a more conclusive result for
the vortex formation in high-energy heavy-ion collisions, we
need to use the more realistic initial conditions. For example,
the existence of shear flow is found in the initial condition
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based on the Color Glass Condensate [65,66]. In addition,
the effect of deviation from the Bjorken flow in a realistic ini-
tial condition is also important. Furthermore we shall apply
our new code to analyses of experimental data at RHIC and
the LHC; correlation between flow harmonics [16,17], event
plane correlation [18,19], non-linearity of higher flow har-
monics [20] and three particle correlation [21,22]. A compre-
hensive investigation of experimental data with the accurate
numerical method of the relativistic viscous hydrodynamics
gives us deep insight of QCD matter.
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Appendix A: Interpolation procedures

We give the explicit expressions for the interpolation proce-
dure used in our relativistic viscous hydrodynamics code.
We use the MC limiter for the second-order accurate in
space and the PPM for the third-order accurate in space.
We denote the center of the ith cell by x; and the boundary
between the ith and the i + 1th cell by x;11/2. We assume
that we have the average value g; of the quantity a(x) in
the cell (x;—1/2,xi+1/2) where a(x) stands for fluid vari-
ables and viscous tensors. In the interpolation procedure, we
evaluate the values of a(x) at the right and left interfaces,
ar,; = limx_)xl.“/za(x) and ap ; = limx_mxfl/za(x) from
the average value a;.

Appendix A.1: MC limiter

The second-order accuracy in space is achieved by the linear
interpolation. In the second-order interpolation, we evaluate
the interpolated values of a(x) at right and left interfaces,

ari =a; +Aa;/2, ap;=a; — Aa;/2. (A.1)

In the MC limiter [54], Aq; is given by

Aa; = min(|aj 1 — a;i-11/2, 2|ai+1 — a;l, 2|la; — a; 1))
x sign(a;+1 —ai—1) if (aj41 —a;j)(a; —a;—1) >0,

=0 otherwise. (A2)

We define space averages of an interpolation function,
Fi r(oi) and Fj 1. (07),

1 Xi+1/2
Fir= / a’ (x)dx, (A.3)
Oi AX Jxi1jp—0i Ax
1 Xj—1/2+0; Ax
Fip = / a’ (x)dx, (A.4)
oiAx J,

i—1/2

where a’ (x) is an interpolation function of a(x) and o; =
|ui|At/Ax. Here we use the sound velocity (the fluid veloc-
ity) for u; in the conservation equation (the convection equa-
tion). We utilize F; g(o;) and Fj41,1(oj4+1) for the initial
condition of the Riemann problem at the cell interface x; 11,2
in the conservation equation. In the convection equation,
F; r(oi) or Fit1,1(0j4+1) corresponds to the numerical flux
passing through the cell boundary x;41/2 (Appendix B). In
the linear interpolation, F; g(o;) and F; 1 (o;) are expressed
by

o; Ax Aa;

Fi r(0i) = aj,gr — 12 A_xl (A.5)
o; Ax Aa;

Fip(oi) =aiL + A (A.6)

Appendix A.2: Piecewise parabolic method (PPM) [55-57]

First, we calculate the interpolated values of a (x) at cell inter-
faces using fourth-order interpolation:

7 1
ai+12 = E(ai +ai+1) — E(ai—l + ai12). (A7)

If the condition min(a;, a;+1) < a;+1/2 < max(a;, a;+1) is
not satisfied, a; 1,2 is limited as follows:

(D*a)iy1)n = m(ai —2aiy12 +ait1), (A.8)
1

(D*a)ip12,0 = ~o (@1 = 2 +aig), (A.9)
1

(D*a)is1,8 = 7@ = 201 + ais). (A.10)

If the Signs of (Dza),'_;,_l/z, (Dza),'_;,_l/z’R and (Dza),'_;,_l/z,[‘
are all the same,

(D*@)i1/2,m = min (CI(D2)is1/2.L1, CID*@i1/2.8],

(D2a)is1pal ) sign(D2@)s1 ). (AL

otherwise, (Dza)i+1 /2,im = 0. Then the modified values of
aj41/2 read
2

1 X
ait12 = E(ai +aj+1) — T(Dza)i+1/2,lims (A.12)
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where C > 1 is a constant. We set C to C = 1.25 [57]. Then
the interpolated values of a(x) at right and left interfaces are
initiated as ay ;11 = ag,; = aj+1,2-

We perform the flattening algorithm near strong shocks to
prevent numerical oscillations,

(A.13)
(A.14)

ar,; — a; fi +ag;(1 = f),
ar; — ai fi +ari(1— fi).

The flattening parameter f; is fixed by f; = max(f;, fiﬂi),
where s; = +1 for p;y1 — pi-1 > Oand s; = —1 for

pi+1 — pi-1 <0,
wm>wm>>‘

ﬁ = min <]’ w;max <0, <M —

Pi+2 — Pi-2
(A.15)
The constant w; is chosen by
o |pix1 — pi—1]
wi =1 if ——— > €, vi_1 > V41,
min(pj+1, pi—1)
= (0 otherwise. (A.16)

The parameters are set to € = 1, w® = 0.52, and w® =
10 [56]. The flattening algorithm is applied for conservation
equations.

Furthermore, we modify the values of a; g and a; 1
to ensure the interpolated function remains monotonic. If
(ai,r — aj)(a; —a;,r) < 0or(ai—1 —a;j)(a —aiy1) <0,
the ith cell contains a local extremum. The values of a; g and
a;,1, are modified as follows:

2a¢.;
2 o 6,i
(Dah——Aﬂ, (A.17)
1
(D*a)i.c =—(ai-1 — 2a; + aiy1), (A.18)
AXx
1
(D*a)iL =—(ai—2 — 2ai—1 + ap), (A.19)
Ax
1
(D*a)i,k =——5 (@i = 21 + i), (A.20)

where ag; = 6a; — 3(Cli,L + a,-,R). If (Dza)i and
(Dza),-,{L,c,R} have the same sign,

(D?a); jim = min(C|(D*a); 1|, Cl(D*a); rl, Cl(D*a)i.cl,

|(D?a);))sign((D%a);), (A21)
otherwise, (Dza),',lim = 0. Then we obtain
(D?a); )i
ai R — a;i + (aig — "f)(pT;);m’ (A.22)
(D%a); )i
%L%aH%%L—m%aﬁ$%. (A.23)
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If (D%a); = 0, we set the second term of Egs. (A.22) and
(A.23) to be zero. In the last limiter, the values of a; g and
a;,1, are modified as

air —> ai —2(a;,L —a;) if |a; g —a;| > 2|a; L — a;l,
(A.24)

aj.L — a;i —2(a; g —a;) if |la; 1 — a;i| > 2la; g — a;l.
(A.25)

The space averages of a parabolic interpolant are written

(oF] 2
Fi r(0i) = aj gr — 5 \@ir—aiL— 1 - 30 ) a6 )

(A.26)

o; 2
Fip(o)) = a; + 5> \@ir—aiL +|1- 30 | a6 |-
(A.27)

Again, F; g(o;) and F;1,1 (0;4+1) are used for the initial con-
dition of the Riemann problem at the cell interface x;11,2
in the conservation equation. In the convection equation,

F; r(o;i) or Fiy1,1(0j4+1) corresponds to the numerical flux
passing through the cell boundary x; 1,2 (Appendix B).

Appendix B: Numerical schemes for convection equations
Appendix B.1: High-resolution upwind method

We consider the one-dimensional convection equation,

da(t, dal(t,
At 2) |y 2080 g, (B.28)
ot ax

In the high-resolution upwind method, we obtain the solution
of the convection equation Eq. (B.28),

ntl — gn

al 1 Ax

uj At ( n1/2 n+1/2> (B.29)

div12 —4i-12
where aj is the value of a(t, x) at (¢, x) = (¢", x;), al."+1 is
the value of a at next time step t = "*! = " 4+ Atr. The

. n+1/2
numerical flux Y reads

1/2 .
a;lil/z = Fi r(o;) ifu; >0,

= ,‘+1,L(O‘,‘+1) otherwise. (B.30)
We evaluate the F; r(0;) and F; 1 (0;), using the MC limiter
(Egs. (A.5) and (A.6)) or the PPM (Eqs. (A.26) and (A.27)).

In the case of multidimensional problems, we employ the
Strang splitting method [52]. Using the operator Lf.‘ , which
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represents one-dimensional evolution in the i direction dur-
ing the time k Az, we express the two-dimensional expansion
in the (x, y) coordinates as

atl = ]/2L L2, (B.31)

Similarly the three-dimensional expansion in (x, y, z) coor-
dinates is written by

1/6 ,1/6 1 1/3,1/6,1/3 . 1/6

=0/ P Loy e

x LYPLY°LPLYOL a". (B.32)

Appendix B.2: Corner transport upwind (CTU) scheme [63]

We consider two-dimensional convection equation,

da(t, x, da(t, x, da(t, x,
( y)+u(x’y) ( y)+v(x’y) ( y)zo.
at ox dy
(B.33)

In the CTU, the solution of the convection equation Eq.
(B.33) reads

nil _ on Wi jAL 412 nt1/2
Gij TUGT Tax w2y T G2
Vi, j AL 12 SR
N (@ 412 = 4 j-12) (B.34)
Whereanj isthevalueofa(t, x, y)att =", x =x;, y = yj,
n+

g Uis the value of a(r, x, y) at next time step t = "' =
t" 4+ At, the second and third terms stand for the numerical
flux passing through the cell boundary. The numerical flux
is given by

i Ax - Ar\ Mg
ai+l/2,j _ai,j_’_(T_ul’/? Ax
At
— max(v; j, O)E(a;fj —ai 1)

. t .
— mll’l(l)i’j, O)E(aln’]—i_l — a?,j if Ui j = 0,

Ax At A%ajyyj
s = (5 Huns g ) S

At n
—max(v,+1j,0) (az+1,] i+1,j*1)
—min(viﬂj,o)A—(al'1 L1~ i)
s ZAy i+1,j+ i+l
n+l/2 Ay At Alaij
ajji1p =di;+ (7 ~ U ) TAy
At n
— max(u;, ,,0) ( ij~di-1,))

. . noy -
— mm(u,;j,())ﬂ(aiﬁ’j —a; if v; j >0,

Ay AYa; L+l
@ —< > T UL+ )A—y

— max(u; j1, 0)2A (a gL T zn—l,j+l)
— min(u; j11, O)E(‘lﬁ-l,jﬂ - agfj+1)
if v, < 0. (B.36)

Here we evaluate the variation of a(#, x, y) in the x (A%q; ;)
and y direction (A”q; ;) using the MC limiter (A.2).
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