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Abstract Exclusive p’-meson electroproduction is studied
by the HERMES experiment, using the 27.6 GeV longitudi-
nally polarized electron/positron beam of HERA and a trans-
versely polarized hydrogen target, in the kinematic region
1.0GeV? < 02 <7.0GeV2,3.0GeV < W < 6.3 GeV, and
—t' < 0.4 GeV?. Using an unbinned maximum-likelihood
method, 25 parameters are extracted. These determine the
real and imaginary parts of the ratios of several helicity
amplitudes describing p°-meson production by a virtual pho-
ton. The denominator of those ratios is the dominant ampli-
tude, the nucleon-helicity-non-flip amplitude F, 1ol which

describes the production of a longitudinal p°-meson by a lon-
gitudinal virtual photon. The ratios of nucleon-helicity-non-
flip amplitudes are found to be in good agreement with those
from the previous HERMES analysis. The transverse target
polarization allows for the first time the extraction of ratios
of a number of nucleon-helicity-flip amplitudes to Fj, 1ol
Results obtained in a handbag approach based on general-
ized parton distributions taking into account the contribution
from pion exchange are found to be in good agreement with
these ratios. Within the model, the data favor a positive sign
for the m — p transition form factor. By also exploiting the
longitudinal beam polarization, a total of 71 p® spin-density
matrix elements is determined from the extracted 25 param-
eters, in contrast to only 53 elements as directly determined
in earlier analyses.

1 Introduction

Exclusive electroproduction of vector mesons (V) on nucle-
ons (N) has been investigated for many decades (see, for
instance, Refs. [1,2]). Originally, the reaction mechanism
was of primary interest, but now it has become apparent that
this process also offers the possibility to study the structure
of the nucleon and of the vector meson [1-3], especially at
large virtuality Q2 of the photon exchanged between elec-
tron and nucleon. In the one-photon-exchange approxima-
tion, all electroproduction observables can be expressed in
terms of the virtual-photon spin-density matrix and the matrix
elements of the electromagnetic current between quantum
states of initial and final hadrons. The latter matrix elements
are called helicity amplitudes Fj, My iy They describe the
process

Y*(Ay) + NOn) = V() + Ny, ey

where y* denotes the virtual photon and the helicities of
the particles are given in parentheses. In the present paper,
the helicity amplitudes are defined in the center-of-mass
(CM) system of virtual photon and nucleon. The spin-density
matrix of the virtual photon is well known from quan-
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tum electrodynamics and the spin-density matrix elements
(SDMESs) of the produced vector meson, which describe its
final spin states, are experimentally accessible. This opens in
principle the possibility to extract the helicity amplitudes, as
it is detailed below.

The formalism describing SDME:s of the produced vector
meson was first presented in Ref. [4] for unpolarized tar-
gets only, and expressions of SDMEs in terms of helicity
amplitudes were also established. The formalism was then
extended to the case of polarized targets in Ref. [S]. An alter-
native, general formalism for the description of the process
in Eq. (1) through SDMESs was presented in Ref. [6]. In the
latter formalism, which is used throughout this paper, the
SDMEs describing the production on an unpolarized target

Ay, . .
are denoted by u AV)\,V, those describing the production on
vhy
Ay,
Ayd,
those describing the production on a transversely polarized

)‘V)‘/V AvAy, . .
.y ands, ... Here, longitudinal
14 14

a longitudinally polarized target are denoted by / and

target are denoted by n

and transverse polarization are defined with respect to the
momentum direction of the virtual photon in the CM system
of the process in Eq. (1).

The exact expressions for SDMEs [4—6], which are dimen-
sionless quantities, can be rewritten in terms of ratios of
helicity amplitudes. When fitting the experimental angular
distribution of the final-state particles, either the SDMEs or
alternatively the amplitude ratios can be considered as inde-
pendent free parameters. The first fit method is referred to
as the “SDME method” in the rest of this paper, while the
second one is referred to as the “amplitude method”.

Exclusive meson production in hard lepton-nucleon scat-
tering was shown to offer the possibility of constrain-
ing generalized parton distributions (GPDs), which pro-
vide correlated information on transverse-spatial and frac-
tional-longitudinal-momentum distributions of partons in
the nucleon (see Refs. [3,7-11] and references therein).
Vector-meson-production amplitudes contain various linear
combinations of GPDs for quarks of various flavors and
for gluons. In particular, exclusive p° production on an
unpolarized target is sensitive to the nucleon-helicity-non-
flip GPD H, while exclusive p° production on a trans-
versely polarized target is sensitive to the nucleon-helicity-
flip GPD E, as well. Through the Ji relation [12,13], the
sum of both GPDs H and E is related to the parton total
angular momentum. Access to GPDs relies on the factor-
ization property of the process amplitude, i.e., the ampli-
tude can be written as a convolution of GPDs and vector-
meson distribution amplitudes, which are both non-pertur-
bative quantities, and amplitudes of hard partonic subpro-
cesses, which are calculable within the frameworks of per-
turbative quantum chromodynamics (pQCD) and quantum
electrodynamics.
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For spin-1 particles, longitudinal (transverse) polarization
is assigned by convention to the states with helicity A = 0
(A = =1). The helicity amplitudes F Lo+l describe the
transition of a longitudinally (L) polarized virtual photon
to a longitudinally polarized vector meson, yZ‘ — Vi, and
dominate at large photon virtuality Q2. Although factoriza-
tion was rigorously proven [14] only for these amplitudes,
it was assumed in Refs. [15, 16] that factorization also holds
for the amplitudes F1,, 1 and F;1,, 1, which describe the

2 2 2 2

transition from a transversely polarized virtual photon to a
transversely polarized meson, y; — Vr, and a longitudi-
nally polarized meson, y; — Vi, respectively. The agree-
ment found between certain calculated SDMEs and those
extracted from HERMES [17], ZEUS [18], and H1 [19] data
supports this assumption. In general, the differential and total
cross sections for p®-meson production by virtual photons
are reasonably well described in the GPD-based approach
of Refs. [15,16], not only at the high energies of the HERA
collider experiments [20-24], but also at intermediate ener-
gies covered by the fixed-target experiments E665 [25] and
HERMES [26].

The real parts of the amplitude ratios in p° and ¢ meson
electroproduction on the proton were first studied by the
H1 experiment [19] at the HERA collider. In the HERMES
experiment [27], p°-meson production on unpolarized pro-
tons and deuterons was investigated. Both real and imaginary
parts of the ratios of amplitudes without nucleon helicity
flip were extracted at HERMES using a longitudinally polar-
ized electron or positron beam. The results of the analysis of
p%-meson and w-meson production on the unpolarized tar-
gets at HERMES using the SDME method were published in
Refs. [17] and [28], respectively. The SDMEs for the electro-
production on transversely polarized protons were published
in Ref. [29]. In this paper, the work of Ref. [29] is continued.
Ratios of p helicity amplitudes with respect to the amplitude
F, 1o} are extracted from HERMES data collected with lon-
gitudinally polarized electron and positron beams scattered
off transversely polarized protons. The amplitude ratios that
require measurements with a transversely polarized target are
reported for the first time in this paper.

At fixed Q% and CM energy W in the y*N system the
cross section do/dt, which is differential in the Mandelstam
variable ¢, contains the linear combination of squares of all
helicity amplitudes. Including do'/df in an amplitude analysis
of all beam and target-polarization states would allow the
extraction of the moduli of all amplitudes and of the phase
differences between them, while the common phase would
remain undetermined.

The amplitude ratios measured at HERMES, as described
in this paper, will also be compared to those evaluated
within the GPD-based handbag approach by Goloskokov and
Kroll [15,16], hereafter referred to as “GK model”.

The paper is organized as follows. In Sect. 2, the theoret-
ical formalism is introduced. Section 3 briefly describes the
experimental setup and specifies the applied data selection.
The extraction procedure of the amplitude ratios is treated in
Sect. 4. The obtained results are discussed in Sect. 5. Sum-
mary and conclusions are given in Sect. 6.

2 Formalism
2.1 Kinematics

The process under investigation is

e+N—>e+,00—|—N, 2)
with
p0—>n++n_. A3)

In accordance with the notation of Ref. [17], the kinematic
variables of the process under study are defined as follows.
The four-momenta of the incident and outgoing leptons are
denoted by k and k', respectively, the difference of which
defines the four-momentum ¢ = k — k’ of the virtual photon
y*. The photon virtuality Q% = —¢g? is positive in leptopro-
duction. The squared invariant mass of the photon—nucleon
system is given by

W2=(p+q?=M+2Mv— 0> )

with M the nucleon mass, p the four-momentum of the inci-
dent nucleon and

p=L4Mp_ g )
M

the energy transfer from the incoming lepton to the virtual
photon in the target rest frame (“lab.” frame). Here, E (E’)
is the energy of the incident (scattered) lepton.

The Mandelstam variable ¢ is defined by the relation

t=(q—v) (6)

where v is the four-momentum of the ,00 meson, equal to
P+ + Pr-, the sum of the 7 and 7~ four-momenta. The
variables f, tp, and ’ = t — 1y are always negative, where
—1 is the minimal value of —¢ for given values of QZ, W,
and the p°-meson mass My. At small values of —¢’, the
approximation —t' =~ v% holds, where vy is the transverse
momentum of the p® meson with respect to the direction of
the virtual photon in the y*N CM system.

@ Springer
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The variable € represents the ratio of fluxes of longitudi-
nally and transversely polarized virtual photons:

2
1-y-2;
€= y24EQ2, (N
l=y+35+p
lab.

withy=p-q/p-k = v/E.
The “exclusivity” of p° production in the process in Eq. (2)
is characterized by the missing energy

M2 — M?
X T By (Egt + Eqo). ®)

where My = \/(k — k' + p — px+ — pz-)? is the recon-
structed invariant mass of the undetected hadronic system
(missing mass), Ey = v+t /(2M) is the energy of the exclu-
sively produced p° meson, and (E,+ + E,-) is the sum of
the energies of the two detected pions in the target rest frame.

2.2 Definition of angles and coordinate systems

The angles used for the description of the process are defined
inthe same way as in Ref. [17], according to Ref. [30], and are
presented in Fig. 1. According to Ref. [4], the right-handed
“hadronic CM system” of coordinates X Y Z of virtual photon
and target nucleon is defined such that the Z-axis is aligned
along the virtual-photon three-momentum ¢ and the Y -axis is
parallel to ¢ x v, where v is the p°-meson three-momentum.
The angle @ is the angle between the p°-meson production
plane (X Z plane, which coincides with the nucleon scattering
plane) and the lepton scattering plane in the CM system. The

lepton
scattering plane

p° decay plane

duction pl O+
° produc 10npaneYT/x' q) L—\ EA 0
/ﬂ_

Fig. 1 Definition of angles in the process eN — ¢p'N — extn~N.
Here, @ is the angle between the p° production plane and the lepton
scattering plane in the CM system of virtual photon and target nucleon.
The variables 0 and ¢ are respectively the polar and azimuthal angles
of the decay 7T in the p®-meson rest frame, with the z axis being anti-
parallel to the outgoing nucleon momentum. The XZ and xz planes
both contain the y* and p° three-momenta

@ Springer

angles 0 and ¢ are defined in the right-handed xyz system
of coordinates (see Fig. 1) that represents the p°-meson rest
frame. The y axis coincides with the Y axis. The angle 6
is the polar angle of the decay 7 -meson three-momentum
with respect to the z axis, where the latter is aligned opposite
to the direction of the momentum of the outgoing nucleon.
The azimuthal angle of the 7+ momentum with respect to
the p°-meson production plane in the CM system is denoted
¢. In the HERMES experiment, the vector P of the target
polarization is orthogonal to the beam direction. The angle
between the directions of the transverse part (with respect
to the beam) of the scattered electron momentum and P 7 is
denoted by ¥ and is defined in the target rest frame.

2.3 Natural and unnatural-parity-exchange helicity
amplitudes

The helicity amplitudes F;, MyAy Ay describing exclusive p°-
meson production by the virtual photon are here defined in
the hadronic CM system [4]. These helicity amplitudes can be
expressed as scalar products of the matrix element of the elec-
tromagnetic current vector J* and the virtual-photon polar-

. ),
1zation vector e, "

Ay)
Fyyngay = (DM iy pay 17 piy)el™ ©)

where a summation over the Lorentz index « is performed.
Here, e,((il) and e,((o) indicate transverse and longitudinal
polarization of the virtual photon in the CM system, respec-

tively:

e(:l:l) — (e(()j:l)’ eg(ﬂ:l)’ eg/j:l)

1 i
+1
) e(Z ))= (0, :FE, —ﬁ, 0) )
1
0 © (0 (0
O = (", e, e, D) = 592:0.0.q0). (10)
where go and gz are the energy and the Z component of

the three-momentum of the virtual photon in the CM system
given by

_ Mv—Q?
W

M /U2+Q2

W Y

q0 » 4z =
The ket vector | pAy) corresponds to the initial nucleon and
the bra vector (vAy p’A’y | represents the final state consisting
of a p° meson and the scattered nucleon.

Any helicity amplitude F), Myyay AN be decomposed
into the sum of an amplitude T}, MAyAn for natural-parity
exchange (NPE) and an amplitude U, , MAyAn for unnatural-
parity exchange (UPE) [4-6]:

Exvayin = Doy T Unpaia, an (12)
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where the NPE and UPE amplitudes are defined as

Ty xyngin
1 JYmY,
= E[F)Lv)»/N)mV)»N + (_1) NFA.V_A,/I\]A.V_A,N]7 (13)
Uivaiynyan
1 Y
- E[F)»V)»QVMAN - (_I)AN N F)»Vf)x;v)»y*)»N]' (14)

These amplitudes by their definition obey the symmetry rela-
tions

M=
Tyyiigay = (GOSN TN s, iy (15)

Uyagigig = =D NUL e (16)

Equations (15) and (16) permit the introduction of the fol-
lowing abbreviated notations for the amplitudes:

I _ _
Tiry = Ty = Tmga- b (17)
n _ _
Uiy = Unydayd = ~Usy-ta, -4 (18)

which are diagonal with respect to the nucleon helicity (Ay =
Aly), and

@ _ _
T)‘V)‘V - T)‘V%)‘V*% o TXV*%AV%’ (19)
@ _ B
Uivs, =Us 1,1 = Uy 15,1 (20)

hold for the amplitudes with nucleon-helicity flip. Due to
parjty conser\{ation (see, e.g., Refs. [4,6]), the amplitudes
T)f{/ ))W and U i{/ ))W obey the symmetry relations for j = 1, 2:

T)L(\l/))»y = (_1)7AV+)W T—(J)»)v—)»v’ @D
U)S{/))»V = _(_1)7AV+)W Uij)x)v—)»y. (22)

This implies that there is a linear dependence between cer-
tain amplitudes. Therefore, if some property of the amplitude
T)f‘j/ ))W w i{/ )xy) is established for some particular Ay, A, and
Jj, the amplitude T_('f\)v _a, w i’)\) v /\y) has the same property.

There are three important consequences of the symmetry
relations (21) and (22) [4,6]:

1. The number of linearly independent NPE (UPE) ampli-
tudes is equal to 10 (8);
2. No UPE amplitude exists for the transition y; — pg, SO

: : _ — 7.

that in partlc':ular Fo%o% = To%o% = Too's

3. For unpolarized targets there is no interference between
NPE and UPE amplitudes [4,6].

Atsmall values of 7, in Regge phenomenology [31,32] the
exchange of a single natural-parity reggeon, i.e., with par-

ity P = (—1)7, such as a pomeron or secondary reggeons
P, f2, az, ..., contributes only to the NPE amplitudes. The
exchange of a single unnatural-parity reggeon, i.e., with par-
ity P = —(—l)J, such as m, aj, by, . . ., contributes only to
the UPE amplitudes [33].

2.4 Asymptotic behavior of amplitudes at small |’

Considering only the behavior of a helicity amplitude at
—t' — 0, its magnitude relative to other amplitudes can
be investigated by using the following parametrization

s+2k
F _ > MM Ay [ V= 23
A Ay = 2 Ck M, , (23)
k=0
where s = |[(Ay — A)y) — (A, — An)| and M}, represents the

typical hadronic mass of the order of 1 GeV. If cSMN AN

vanishes, then the power series with respect to ¢’ starts with
aterm o< (v/—1//My,)*t?* with k > 1. The asymptotic rela-
. 1

tions for Tkvk’N?»y)»N and UAV}‘}\/AW\N’ and hence for T)fv)ky’

2 1 2
T/\(V)M U ;V)M ,and U A‘(V))\y , follow from Eq. (23) and Egs. (13)
and (14).

From the asymptotic behavior, the NPE amplitudes TO% ),
T](ll), T0<12 ), Tl(g) and the UPE amplitudes U ](}) , U(g%), U ]((2)> are
proportional to (—')? at |¢'| — 0. Therefore, the amplitude
ratios

n 2 @ (M) 2 @2
s Tor» Tig's Uiy Uors Upg (24)

defined by the relations

0 _ W) (D
Hiva, = Dy, / Too (25)
0 () (1)
uyn, = Usya, / Too (26)

for j = 1,2 can be non-zero for |t'| — 0. These ratios are
expected to attain their largest values at small —z'.
Similarly, one can conclude from Eq. (23) that the ampli-
tude ratios proportional to ~/—1’/ M), at small —t’ are
o0 17t o it 2 ugrs ulg- @7)
However, if for a UPE amplitude appearing in Eq. (27) the
pion exchange in the ¢ channel is significant, the typical scale
for ¢’ is about m% Therefore, this amplitude can be of the
order of the dominant amplitude To((i) at —t' ~ m2. Hence
some amplitude ratios from Eq. (27) can be of the same order
of magnitude as those in Eq. (24) at —¢’ ~ m%
The smallest amplitudes at |t'| — 0 are the double spin-

flip amplitudes Tl(i)l and U 1(1_)1 and the amplitude ratios

1 1
1Dl (28)

are proportional to —¢'.

@ Springer
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2.5 Spin-density matrix of the virtual photon

The spin-density matrix of the virtual photon, normalized
such that the flux of transversely polarized photons is equal
to unity, embodies the unpolarized (U) and polarized (L)
matrices [4]:

U+L U L
Qi = Qi T PB O 5 - (29)

with

gifﬂy (€. ®)

| 1 Ve F e)e™i® —ce™H?
=3 Ve Fe)e® 2¢ —Je(TF+e)e™®
—ee?i® —Je(l +e)ei¢ 1
(30)
0%, 1, (€ @)
T Vi¥e Jee ® 0
— 5 ([ iP 0 ﬁe—idﬁ ) , (31)
0 Jeel® —T+e

and where Pp is the longitudinal polarization of the beam and
€ is defined by Eq. (7). In the above formulas, the spin-density
matrices of the virtual photon are defined in the hadronic CM
system.

2.6 Spin-density matrix of the initial nucleon

The angle between the three-momenta of the initial electron
and the virtual photon in the target rest frame 6, can be
calculated as

v+ 0%/(2E)

cosf, = Neryi (32)
%
v — 02 2

sm@y_Qx/l y— Q°/(4EY) 33

The “hadronic rest system”, in which the initial proton is at
rest, has the X s )A’, and Z axes parallel to the X, Y, and Z axes
of the hadronic CM system, defined in Sect. 2.2 and shown
in Fig. 1. The components of the target polarization vector
P in the hadronic rest system are

f’x = Pr(cos @ cos¥ cos B, —sin @ sin¥), (34)
I3y = Pr(cos @ sin¥ +sin @ cos ¥ cos b)), 35)
P; = — Py cos ¥ sin 0y. (36)

The spin-density matrix of the initial nucleon in the helicity
representation can be written in this system as

1 l—ﬁz ﬁx-l-iﬁy
’ = — A A A . 37
Pkl Z(PX—iPy 1+ P, @7

@ Springer

Since the nucleon spin is anti-parallel to the Z axis for Ay =
% and parallel to the Z axis for AN = —3 Eq (37) for the
spin-density matrix of the initial nucleon does not coincide
with the standard formula (I + Po)/2 for the quantization
axis aligned along the Z axis. Here, 0 = (o, oy, 07) are
the Pauli matrices and P is the polarization vector in the
target rest frame. The hadronic CM system can be obtained
from the hadronic rest system by a boost along the virtual-
photon three-momentum, which is antiparallel to the proton
three-momentum. Since the value of the proton helicity is
invariant under this boost the spin-density matrix is also boost
invariant, hence it is given by Eq. (37) in the hadronic CM
system.

2.7 Spin-density matrix of the p” meson

The spin-density matrix p; X, of the produced p° meson

is related through the von Neumann formula to those of the
. U+L .

virtual photon, o Aphl and the nucleon, t; N

U+L *
F T F
_ AVILN Ay AN Q)W)L/y ANy My XK,
Py, = )
v 2N
where the sum runs over 1, A;/, AN, My, and py. The nor-
malization factor is given by

(38)

N =Nr +eNyp, 39)
with
Nr = Y (PP + 11 P+ 119 P
j=1,2
|U(/)|2 |Ué{)|2 |U(j)1|2) (40)
Ne= Y (1 P+ 21 1P+ 2103 1. @1)
j=1.2

Equation (41) is obtained by using the symmetry relations
(21) and (22).

2.8 SDME:s in the Diehl representation

The spin-density matrix elements calculated below are
defined in accordance with Ref. [6] as

v E *
AA’ J\/ xvox” x’voxy%

*
TUivor, (U)Jvax’y;> :|v (42)

ES
+ U/\Vaxy% (Tx’vowyé> } (43)
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A, 1 *
sxywyv =N Z |:T)~Vo)uy5<U)u’va)ug,%>
U::I:%
*
+ U/\Va/\y% (T/\’Vm\;,_;) :|’ (44)
Ay, 1 *
\%4
”xy;x; =N [Txvoxy; (TA’VM;—;)
U=i%
*
+Uiyoi, ! (UA’VU)\’V;) ] (45)

Here, the NPE and UPE helicity amplitudes are defined in
Egs. (13) and (14), and N denotes the normalization factor
given by Eqgs. (39-41).

2.9 Angular distribution of decay pions

The angular distribution W(®, ¥, 6, ¢) of the pions from the
p-meson decay in Eq. (3), which are produced in the process
(2), is related to the spin-density matrix Pay i, through

W(P. ¥, 0,¢) = Z PAVA;,Y1AV(9,¢)Y&/V(9,¢), (40)
AVl

where Y7, is the spherical function. The phases of Y1, are
chosen as in Ref. [6]:

3 . tig 3
Y1410, ¢) = F,/ s—=sinbfe™?, Y10(0, ¢p) =,/ — cosb.
8 4

These phases determine the phases of the extracted helicity
amplitudes. Equation (46) shows explicitly the dependence
of the angular distribution W on 6 and ¢, while the depen-
dences on @ and ¥ are hidden in the kinematic dependences
of the spin-density matrix o ;. The angular distribution
depends on the kinematic variables W, 02, and —¢’ through
the dependence of the helicity amplitudes on these variables
in Eq. (38). For simplicity of notation, these dependences are
omitted throughout the paper.

Since 1, M depends linearly on the nucleon transverse
polarization Pr, and o, X, is a linear function of the beam
polarization, the formula for the angular distribution contains
four terms:

W =W, +W,rPg + W3 Pr + Wy PpPr. 47

Note that the angular dependent functions W, for any m in
Eq. (47) are themselves independent of Pp and Pr.

It can easily be shown that the angular distribution
W(P, ¥, 6, ¢) cannot be negative for any set of values of the
complex amplitudes Fy 2,1y, €ven for unphysical ones.
This property is of great importance for the fit procedure. It
is worthwhile to note that using the SDME method one faces
the problem of a possible negativity of W(®, ¥, 6, ¢) for
some angles when SDMEs assume unphysical values. As it
is unknown in which region in the multi-dimensional space

of SDMEs W(@, ¥, 0, ¢) is not negative, serious problems
may appear when applying the maximum-likelihood method.
Hence the amplitude method is in that respect more reliable
than the SDME method.

Altogether, Egs. (46), (38—41), (29-31), and (32-37), with
the substitutions To% ) 1 and for all other amplitudes
T)\(‘j/ )/\y — t}(j/ )M and U A({/ )Ay — ”ijgxy» constitute a basis
for the amplitude method, in which the extracted quantities
are the helicity-amplitude ratios.

3 Experiment and data selection
3.1 Experiment

A detailed description of the HERMES experiment can be
found in Ref. [34]. The data analyzed in this paper were col-
lected between the years 2002 and 2005. A longitudinally
polarized positron or electron beam of 27.6 GeV was scat-
tered from a pure gaseous, transversely polarized hydrogen
target internal to the HERA lepton storage ring. The helicity
of the beam was typically reversed every 2 months. The beam
polarization was continuously measured by two Compton
polarimeters [35,36]. The average value of the beam polar-
ization for the events used in the analysis is about +0.30
with a relative uncertainty of 2%. The target polarization was
reversed every 60 to 180 s [37]. The measured mean value
of the target polarization is (| Pr|) = 0.72 £ 0.06 [38,39].

The HERMES setup included a forward spectrome-
ter [34], in which the scattered lepton and the produced
hadrons were detected within an angular acceptance of
4170 mrad horizontally and £(40—140) mrad vertically. The
tracking system had a momentum resolution of about 1.5%
and an angular resolution of about 1 mrad. Lepton identifi-
cation was accomplished using a transition-radiation detec-
tor, a preshower scintillator counter, and an electromagnetic
calorimeter. The particle-identification system included also
adual-radiator ring-imaging Cherenkov detector [40] toiden-
tify hadrons. Combining the responses of the detectors in a
likelihood method leads to an average lepton-identification
efficiency of 98%, with a hadron contamination of less than
1%.

3.2 Event selection

The event sample used in this analysis is almost the same as
that used in Ref. [29]. The most important improvement is
the application of a new tracking algorithm, which is based
on a Kalman filter [41]. For the present analysis, the data are
required to fulfill the following criteria:

1. The longitudinal beam polarization is restricted to the
interval 15% < |Pg| < 80%.
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2. Events with exactly two oppositely charged hadrons and
one lepton with the same charge as the beam lepton are
selected. All tracks are required to originate from the
same vertex.

3. The scattered lepton has to have an energy larger than
3.5 GeV in order to not introduce effects from varying
trigger thresholds.

4. The two-hadron invariant mass is required to lie a-
round the p° mass, i.e., it is required to obey 0.6 GeV
<M(rTn7) < 1.0 GeV.

5. The photon virtuality is required to obey 1 GeV? < Q2 <
7 GeV?2. The lower limit is a minimum requirement for
the application of pQCD, while the upper one delimits a
well defined kinematic phase space.

6. The ¢’ variable is restricted to —t' < 0.4 GeV? in order to
reduce non-exclusive background of the reaction under
study.

7. The invariant mass W is required to obey 3 GeV < W <
6.3 GeV. The requirement W > 3 GeV is imposed in
order to be outside of the resonance region. The upper
constraint delimits a well defined kinematic phase space.

8. For exclusive ,oo—meson production, AE as defined in
Eq. (8) must vanish. In the present analysis, taking into
consideration the spectrometer resolution, the missing
energy has to be in the region —1.0 GeV < AE < 0.6
GeV. This region is referred to as “exclusive region” in
the following.

After application of all these constraints, the data sample
contains 8741 events. These data are referred to in the fol-
lowing as data in the “entire kinematic region”. The applied
requirements do not fully suppress contributions from back-
ground processes. The exclusive sample contains contribu-
tions from non-resonant T~ pair production, which is
of the order of 1-2% [38], and from semi-inclusive deep-
inelastic scattering (SIDIS) events. The presented results are
not corrected for the former process, while a correction is
applied for SIDIS background. The uncertainty of the cor-
rection for background from SIDIS events is considered to be
one of the main contributions to the total systematic uncer-
tainty.

4 Extraction of amplitude ratios
4.1 Fit of the angular distribution

A maximum-likelihood method is used to fit the angular
distribution of the p®-meson decay pions and the scattered
lepton. The probability to measure p° decay pions in the
small angular region d2 = d@dV¥ sinfdfd¢ is propor-
tional to W(®, ¥, 0, p)E(P, ¥, 0, ¢)dS2. Here, the detec-
tor efficiency is denoted by £(®, ¥, 0, ¢). It includes geo-
metric detector acceptance, particle-detection and particle-
identification efficiencies as well as track-reconstruction effi-
ciency. In order to become a probability, this expression needs
to be normalized to unity:

W(R, Pg, Pr, @, ¥,0,$)E(D, W, 0, $)d2
JW(R, Pg, Pr, @, ¥,0,$)E(P, W0, $)d2"
(48)

dw(R) =

Here, we have changed the notation of the angular distribu-
tion to W(R, Pg, Pr, @, ¥, 0, ¢), as VYV depends on the set
‘R of all amplitude ratios (due to Egs. (46), (38) and (39-41))
as well as on the beam and target polarization. All factors that
are independent of the set of amplitude ratios can be omitted
in the expression of the likelihood function. The likelihood
function is evaluated in 3 x 4 (Q2, —¢) cells. Within each
of the 12 cells, the detector efficiency is considered to be
independent of Q2 and —1’. The lower and upper boundaries
of the cells and the mean values of the variables W, QZ, and
—1t are presented in Table 1. Within each of these cells, the
logarithm of the likelihood function can be written as the sum
over all experimental events in thiscell ( = 1,2, ..., I):

1
In L(R)=_IWDV(R, Ppi, Pri, @i, i, 6;, ¢)/Ni(R)].
i=1

(49)

Here, N; is the normalization factor for the i-th event in the
corresponding (Q2, —t’) cell, with

N,'(R):[ W(R, Pgi, Pri, ®, ¥, 0, 9)E(P, ¥, 0, ¢p)dS2.

Table 1 Mean values for the
kinematic variables W, Q2, —¢’,

and fp, under the exclusive peak
in each of the (Q2, —¢') cells

(50)
, Cell limits (W), GeV (0?), GeV2 (—t'), GeV? foe

1.0 GeV2 < 0% < 1.4 GeV? 4.70 1.19 0.128 0.065
1.4 GeV? < 0% < 2.0 GeV? 475 1.67 0.128 0.073
2.0GeV2 < 0% < 7.0 GeV? 4.80 3.06 0.136 0.122
0.00 GeV?2 < —' < 0.05 GeV? 475 1.89 0.023 0.064
0.05 GeV? < —t' < 0.10 GeV?2 4.75 1.92 0.074 0.085
0.10 GeV?2 < —1' < 0.20 GeV? 471 1.94 0.145 0.108
0.20 GeV? < —t' < 0.40 GeV?2 4.72 2.00 0.281 0.147
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Using the expression for V¥ from Eq. (47), the normalization
factor can be represented as

Ni(R) = K1(R) + K2(R) Pgi
+ K3(R)Pri + K4(R) Ppi Pri, (5D

where the functions /C,, (m = 1,2, 3,4) are given by the
integrals

Kn(R) = /Wm(R, DU, 0,0)E(P, W, 0,09)d2. (52)

In order to evaluate the integrals in Eq. (52), a dedicated
PYTHIA Monte Carlo (MC) [42] simulation was used to gen-
erate exclusively produced p° events with a uniform angular
distribution, hereafter referred to as “uniform exclusive ,0O
MC” [17,38]. The total number of generated events is by
a factor of one hundred larger than that of the experimental
data. The same event selection requirements are applied to the
reconstructed events from the simulation as to the events from
experimental data. The integrals in Eq. (52) can be approxi-
mated using the MC as follows:

L
C
Kn(R) ~ a > Wn(R, @1, . 601, ¢n). (53)
=1

Here, L is the total number of reconstructed MC events and
C at L — o0 is a constant equal to 2(27)3, which is the
total volume for the variables cos 6, @, ¥, and ¢. Since this
constant does not depend on the free parameters, the know-
ledge of its value is unimportant for the maximum-likelihood
method and it is set to unity below. In order to avoid computer
calculations with very large values when building up the sum
in Eq. (53), the right-hand side is divided by L. The value of
K (R) is evaluated separately in each of the 3 x 4 (Q2, —t)
cells. According to their experimental occurrence, the vari-
ous settings of target and beam polarizations are assigned as
(Pg, Pr) = (+1,+1), (+1,-1), (—=1,+1), and (-1, —1)
to the generated MC events. Thus four independent equa-
tions for N; can be obtained in each (Q2, —¢) cell and the
four functions /C,,, (R) can then be determined in each of the
corresponding cells. The value of /), (R) is also evaluated
separately for electron and positron data. The finally maxi-
mized logarithm of the likelihood function is the sum of the
logarithms of the likelihood function from Eq. (49) over all
cells for both electron and positron data.

4.2 Background corrections

One of the main sources of background contamination
to exclusive p’-meson electroproduction in deep-inelastic
scattering originates from SIDIS. A PYTHIA MC using
GEANTS3 [43] to simulate the HERMES apparatus and tuned
to the kinematics of the HERMES experiment [44], hereafter

referred to as “SIDIS MC”, is used for the estimation of this
background contribution. The same kinematic and geometri-
cal requirements are imposed on both simulated and real data
samples. The normalization of the MC data to the experimen-
tal data is performed in the region 2 GeV < AE < 20 GeV
(see Fig. 3in Ref. [29]), and the number of background events
in the exclusive region is estimated. The fraction of SIDIS
background fp, as estimated from the SIDIS MC is shown
in the fifth column in Table 1.

It is assumed that the angular distribution of the SIDIS
background events is reasonably well reproduced by the
SIDIS MC simulation. The fit of the angular distribution
of the SIDIS MC events under the exclusive peak for each
(0%, —t') cell is performed using Eq. (49) in which the sub-
stitutions W — Wp,, N; — Nl.bg, and R — S must be
performed, and the sum runs over all background MC events.
The set of free parameters S represents the complete set of

:;,V SDME:s describing the background.
Y

The normalization factor for the background, N,.bg , 1s deter-
mined in an analogous way as done for the signal events, but
in the present analysis the background angular distribution is
considered to be independent of the beam and target polar-
izations, i.e., Pgp and Py are set to zero. After the fit of the
SIDIS MC events, the angular distribution of the background
is considered to be fixed, hence W), (S, D, ¥, 0;, ¢;), Nl.bg,
and fp, do not contain any free parameters.

The total probability dw;,, to measure final-state particles
from the reaction in Egs. (2) and (3) or from SIDIS back-
ground in the small angular region d§2 is given by

13 . ”» )\'
15 “unpolarized” u,

dwior (R) = (1 = fog)dw + fpgdwpg, (54)

where dw is given by Eq. (48) and dwy, is its analogue for the
background process. In a similar manner as done in Eq. (49),
the logarithm of the likelihood function L;,;, which takes
into account the background events, is given by

lnﬁtol(R)
I
Pg;, Pri, i, ¥;, 0;, ¢
:Zln[(l_fbg)w(na B T}:]' i 19 ¢)
i=1 !
Whe (S, @i, Wi, 0;, ¢i)
+ fog— oo : (55)

1

The logarithms of the likelihood function are again calcu-
lated separately in each (Q2, —t") cell for both electron and
positron data, and the finally maximized logarithm of the
likelihood function is the sum of the logarithms of the like-
lihood function from Eq. (55) over all cells for both electron
and positron data. As a result, the amplitude ratios in the
entire kinematic region are obtained.
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4.3 Choice of free parameters

As explained in Sect. 1, the angular distribution of the
detected particles depends on the amplitude ratios. The total
number of linearly independent helicity-amplitude ratios
defined by Eqgs. (25) and (26) is 17, which means that 34
real functions of 02, —¢', and W determine all SDMEs and
angular distributions. As established in Ref. [27], the lar%e
amplitudes at —t' < 0.4 GeV? and Q% > 1 GeV? are T00 ,
Tl(l1 ), U 1(}), and To(ll ). For the ratios of large amplitudes, the
parameterization of the Q2 and —¢’ dependences is chosen
as in Ref. [27]. For the small amplitude ratios, only the —¢’
dependence following from angular momentum conservation
(see for instance Ref. [6]) is taken into account, while aver-
aging over the kinematic range in Q2. If all other amplitudes
are expected to be significantly smaller than the large ampli-
tudes, a possibility to extract the small amplitudes exists only
if they are multiplied by large amplitudes. This means that
they contribute linearly to the angular distribution.

The easiest way to interpret the extractability of the various
helicity-amplitude ratios is through their contribution to the
SDMEs, as detailed in Ref. [6]. For the transversely polarized

target, the SDMEs nivl\" and sivkv contribute [6], while the

contribution of the SDMEs [, v V isneglected in this analysis,
since the latter are multlphed by the longltudmal component
of the target polarization |PZ| Indeed, |PZ| is proportional
to sin 8, (see Eq. (36)), which in turn is proportional to Q /v
(according to Eq. (33)). At HERMES kinematics Q is much
smaller than v, with Q/v of the order of 0.1. The helicity-
amplitude ratios t)(f/)xy and uizv) 3, €an be extracted from data

collected with a transversely polarized target, as they con-
tribute linearly to the SDMEs ni::,/" and si:;,/‘/, respectively.
Contributions of squares of moduli of the helicity-amplitude
ratios u(()ll) s u%), uglll tou i :, are much smaller than the con-
tribution of |“11) | according to the hierarchy of amplitudes
established in Refs. [17] and [27]. The small helicity ampli-

tude ratios uil)ky with Ay # A, contribute linearly to the

SDMEs livk/v The latter are multiplied by the small factor

P7/T = ¢ and cannot be extracted from the angular distri-
butions of final-state pions. Therefore the helicity-amplitude
ratios ufxlv) hy? with the exception of u(lll), are set equal to zero
in the fit. o

For an unpolarized target, only the SDMEs ”A:A/VV con-
tribute to the angular distribution. As follows from the
previous analysis at HERMES [27] the ratios tﬁ))‘y and

|u§11)|2 + |u§21)|2 can be reliably extracted from data col-

lected with an unpolarized target. The value of |u§ll)| can be
extracted from the unpolarized data, since the numerators of

@ Springer

Av A .
some SDMEs ukvk,v contain |u§ll>|2 + |u(2)|2 However, the
vhy

phase §, of ugll) cannot be obtained reliably given the limited
statistics in the present analysis. Another function that cannot
be reliably extracted from the present data is Im{tl(i)}. The
reason is that it contributes mainly to the imaginary parts of

the SDMEs u;::,v, which are multiplied by the small factor
v

Pp+/1 — €. This factor is smaller than 0.15, since € is about
0.8 and the mean value of | Pg| is about 0.3.

If Im{tl(})} and the phase of uﬁll) are considered as free
parameters, the fit to the angular distribution becomes unsta-
ble, leading to several local minima in the fit. In order to
avoid such instabilities, the function Im{tl(})} is taken from
the previous analysis at HERMES [27], where the number
of events and the value of | Pp| were larger than those in the
present analysis, the fit was stable, and the minimum was
unique. In order to take into account the Q% dependence of
Im{tl(i) }, the parametrization

Im{r\)} = bQ, (56)

with b taken from Ref. [27] is used. The phase §,, is fixed from
the data collected with a longitudinally polarized hydrogen
target [45,46]. A detailed discussion of this problem is given
in Appendix A.

It is shown in Appendix B that

@
~ Re @) 57
=3 (1> oo (>7)

does not contnbute linearly to the angular distribution and
hence is set to zero.

In the fit, 25 parameters b; (see Table 2) are extracted,
which determine the following 25 real functions:

Re{r{}'}, Reftly)), Imfry)}, Refr\”)), Imfr(")},

(2)
1 1 1 !
Relfrg)}, Im{rg)}, |u))], & = {%}
t
11

@
1 t
2 2 2 2
Im{1s)}, ¢ = SRe {r&f ‘(})} Re{t()}, Im{r{y)),

Re{t®,}, Im{r®}, Re(s}}, Imfr{P},
Ref{u'?}, Im{u'?}, Re(u'})}, Im{uly),
Re{u(? )}, Im{u”,}, Reful), Im{ul)). (58)

@)
Note that Im { tl(i) } is used rather than Im {tl(l)} since the
I

latter is not independent of x and the inclusion of « in the
fit leads to a divergence of the fit. Table 2 also shows the
resulting parameters with their uncertainties. The correla-
tions between the 25 parameters are listed in Table 3 in
Appendix C.
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Table 2 Parametrization of the

- . . Parametrization
helicity-amplitude ratios and

Value of parameter

Statistical uncertainty Total uncertainty

parameter values extracted from

1

the fit. The combinations of the Re{t'} =b1/0Q by = 1.145 GeV 0.033 GeV 0.081 GeV

helicity-amplitude ratios & and ¢ [ul})| = by by = 0.333 0.016 0.088

are defined in Eq. (58). An _ _

additional scale uncertainty of Re{ulzl b=b3 by = —0.074 0.036 0.054

8% originating from the Im{u}} = by by = 0.080 0.022 0.037

unlcehtairtty on the targ;t . £ = bs bs = —0.055 0.027 0.029

po arlzz(igon 1s<£))resent or the ¢ = bs bs = —0.013 0.033 0.044

ratios ’Avk S Usyny ,& and ¢, but @

not shown. An extra scale Im{z5y'} = b7 b7 =0.040 0.025 0.030

uncertainty of 2% originating Rell})} = bg/—1 by = 0.471 GeV~! 0.033 GeV~! 0.075 GeV~!

from the uncertainty on the ) N

beam polarization is present for Imiry,} = b9T by = 0.307 0.148 0.354

. 2

the ratios Im{r;,); }, Refr;>), }, Re{z01 } = bio bio = —0.074 0.060 0.080

Re{um }, and ¢, but also not Im{r$?} = by b1 = —0.067 0.026 0.036

shown. The correlations between

the 25 parameters are listed in Re{um b=bn b1y = 0.032 0.060 0.072

Table 3 in Appendix C Im{u } =by3 b13 = 0.030 0.026 0.033

{zm } = bia/—t' by = —0.025 GeV~! 0.034 GeV~! 0.063 GeV~!
Im{tlo } = bis/—t bis = 0.080 GeV~! 0.063 GeV~! 0.118 GeV~!
Re{t(d)} = big big = —0.038 0.026 0.030

Im{t)} = by b7 = 0.012 0.018 0.019
Ref{u'y)} = big big = —0.023 0.030 0.039
Im{uﬁff } = bo bro = —0.045 0.018 0.026
Re{t } = T) byo = —0.008 GeV~! 0.096 GeV~! 0.212 GeV~!
Im{r"”)} = by by = —0.577 GeV~! 0.196 GeV~! 0.428 GeV~!
Re{t?} = b by = 0.059 0.036 0.047
Im{t®,} = bas bz = 0.020 0.022 0.026
Re{u'” |} = by bas = —0.047 0.035 0.039
Im{u',|} = bas bas = 0.007 0.022 0.029

4.4 Systematic uncertainties

In this subsection, the sources of systematic uncertainties
and their effect on the extracted amplitude ratios are dis-
cussed. All systematic uncertainties except the one due to
the uncertainty on the target and beam polarization measure-
ments are added in quadrature to calculate the total systematic
uncertainty. The statistical uncertainty and the total system-
atic uncertainty are added in quadrature to form the total
uncertainty.

4.4.1 Systematic uncertainties due to beam and target
polarization uncertainties

The measured mean value of the target polarization is
(|Pr]) = 0.724£0.06 [38,39], i.e., the fractional uncertainty
of the target polarization amounts to 0.08. The ratios [(2)

and u;V)/\y have a corresponding scale uncertainty of 8%,

since through their linear contribution to the “transverse”

Ay, Ay, .
SDMEs n AVVNV and sAVVA,V, they are multiplied by (| Pr|). It
Y Y

was checked that the amplitude ratios tl(}), t]((l)), tl(])l, t(gp,

and |u(111) |, which can be extracted from data taken with an
unpolarized target (see Ref. [27]), are effectively insensitive
to the uncertainty on the target polarization.

The fractional uncertainty on the beam polarization
amounts to 2% [47] This results in an additional scale
uncertainty on Im{u/\ w V1, Re {",\ A,V} and Re{sAVA,V} of
2%, since these SDMEs enter the expressmn of the angu-
lar distribution of final-state particles multiplied by the beam
polarization [6]. From the expression of SDMEs in terms
of helicity-amplitude ratios, it follows that there is an addi-
tional scale uncertainty of 2% for Im{t(l)k 1, Re{t(z) } and

Re{u; (2) }, while the influence of the uncertainty on the beam
polarlzatlon can be neglected for Re{t(l) } Im{tk(%/)ky }, and

Im{ukv }w}' The scale uncertainty arising from the uncer-
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tainty on the beam and target polarizations is not shown in
the figures but quoted separately.

4.4.2 Systematic uncertainty due to the extraction method

In order to estimate the uncertainty due to the extraction
method, yet another MC data sample was produced using
a uniformly distributed angular distribution for exclusive p°
production, which in contrast to the unweighted one used
above for the normalization procedure, is weighted in order to
mimic experimental data. It is obtained with the accept/reject
method based on the experimental angular distribution and
making use of the relevant parameters extracted from data.
Using values of £0.30 for the beam polarization and £0.72
for the target polarization, it is analyzed in a way similar
to the experimental data. The MC sample is divided into 20
independent sets such that each set contains the same num-
ber of exclusive events as the experimental data. In order to
evaluate the systematic uncertainty, the difference between
the output value of the j-th amplitude ratio in the k-th set

rj(.olf " and the input value of the same amplitude ratio rj(m)

compared with the statistical uncertainty 8r(0"t) of the out-
put amplitude ratio in the k-th set. Averaglng over the twenty
sets, the relation

[( (our) _ (in))z _ ((Sr(OMY))Z]

(Armehy? = e sk (59)

with Ko = 20 is used to calculate the systematic uncertainty
due to the extraction method. If the sum in Eq. (59) is pos-
itive, then the obtained value of Ar;"et " is set as systematic
uncertainty; otherwise the systematic uncertainty is set to

Z€ro.

4.4.3 Systematic uncertainty due to the background
contribution

The helicity-amplitude ratios are extracted from the experi-
mental data once taking into account the background contri-
bution (see Eq. (55)) and once neglecting this contribution
(see Eq. (49)). The systematic uncertainty from the back-
ground contribution of each amplitude ratio is computed as
the modulus of the difference of the amplitude ratios obtained
for these two cases. This conservative approach is used, since
the background correction is estimated frf)m MC dat/a instead
of experimental data. The SDMEs n Ay )):,V and S )?/V are, as
shown in Ref. [29], much less sens/ltlve to the background
contribution than the SDME ui:;\,", since they enter the

formula for the angular distribution multiplied by the tar-
get polarization. As the amplitude ratios t(z) and uiz,) .
contribute linearly to these SDMEs, they are expected t(}>v be
less sensitive to the background contribution than the ampli-

@ Springer

tudes relevant for scattering off an unpolarized target. It was
checked that this is indeed the case. The small influence of
the background correction to the nucleon-helicity-flip ampli-

) @ . L
tude ratios tkﬁv . andu " can be explained by the statistical
M 1) I

correlations between these amplitude ratios and 1 iy’ |u§
N
4.4.4 Systematic uncertainty due to the omission of

inaccessible amplitude ratios

Another source of systematic uncertainty originates from set-
ting uﬁ)), u(()ll), ugl)l and «, given by Eq. (57), equal to zero
in the fit. In order to estimate this systematic uncertainty,
the following procedure is applied. Since |TO(§)/ T()(d)| and
|T1(12 ) / Tl(l1 ) | are proportional to A /(2M), the unmeasured

parameter « is estimated as
K =+v—t'/2M). (60)

The calculations are performed for both signs in Eq. (60)
and the corresponding systematic uncertainties are averaged
in quadrature (see Eq. (64)).
For one-pion exchange, the ratios of the UPE amplitudes
(1)/U1({), Ué})/Ul(}), and U(l) /U(l) are known. Suppos-
ing that these ratios have approx1mate1y the same value for
the full amplitudes, one obtains

. ~N20vr D
1

0~ Qz 2 (61)
NONS _fmva| (1) gidu, (62)
Ugy ~ 2y U

0%+
M A (), is,
up = —Q2+ 5y et (63)

For the calculation of the systematic uncertainty, the value
|u(111)| is obtained from the fit in the present analysis, while
the phase shift §, = —39.2°, which is taken from the
results of the measurement of the longitudinal double-spin
asymmetry in exclusive p%-meson electroproduction from
Refs. [17,45,46], corresponds to the value A’f = 0.24 (see
Appendix A). The systematic uncertainty due to the omis-
sion of all inaccessible amplitude ratios is estimated from
the relation

(Ar;na(:)2 _ [(rj _ r(in+))2 + (rj _

) rY2, 0 (64)

where the values of ; are those obtained in the 25-parameter
fit when all the amplitudes not extracted are set to zero. The

ratios "™ and r(l" denote the extracted j-th amplitude

J
ratio obtained in the fit in which the amplitude ratios “(15)’

u(()ll) , and u(l) | are calculated using Egs. (61-63), while « is
taken accordmg to Eq. (60), once with positive sign and once

with negative sign, respectively.
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4.4.5 Systematic uncertainty due to the experimental
uncertainty of A'f

The uncertainty on the asymmetry A?, as explained in
Appendix A, leads to a range of §, between —26.2° and
—51.1°, corresponding to A‘f = 0.24 + 0.14 and A’f =
0.24 —0.14.

In order to estimate the systematic uncertainty of the
obtained amplitude ratios due to the experimental uncer-

tainty of Af , the 25-parameter fits with §, = —26.2° and
8, = —51.1° are performed in addition to the fit with
8, = —39.2°. Two sets of the amplitude ratios r](Jr) and rj(.f)

are obtained, correspondingly. The systematic uncertainty is
calculated as

(Arf™2 = [(rj = i)+ (rj = r)/2. (65)
The systematic uncertainty due to the experimental uncer-
tainty on Ap is less than the statistical uncertainty. It was

(1)

found that the most important ratios ¢, and |u§11)| are

almost insensitive to the value of Af .

4.4.6 Systematic uncertainty due to the experimental
uncertainty oflm{tﬂ)}

The parameter b, which enters the parametrization of Im{tl(i) }
as given in Eq. (56), is equal to (0.340 £0.025) GeV~! [27].
Its uncertainty is another source of systematic uncertainty.
The basic fit performed with b = 0.340 GeV~! gives
the amplitude ratios r;, while the values (b = 0.340 &
0.025) GeV~! correspond to the ratios #m ) and r]('m )
The systematic uncertainty of the helicity-amplitude ratio 7;
is calculated as

Ar™h2 = [y = ri" )2

+ (=™ 2. (66)

5 Results on the amplitude ratios
5.1 Discussion of results on the amplitude ratios

The result obtained from the 25-parameter fit is presented
in Fig. 2. The results for the large amplitudes are calculated
at —/ = 0.132 GeV? and Q% = 1.93 GeV2, while inte-
grating W over the entire kinematic region. The results for
the small amplitudes are calculated at —' = 0.132 GeV?,
while integrating 02 and W over the entire kinematic region.
Here, the values —¢’ = 0.132 GeV? and Q2 = 1.93 GeV?>
are the mean values of the kinematic variables over the
entire kinematic region, 0.0 GeV? < —t < 0.40 GeV?,
1.0GeV2 < 02 <7.0GeVZ,and3.0GeV < W < 6.3 GeV.
The mean value of W over the entire kinematic region
is 4.73 GeV. The NPE amplitude ratio without nucleon-

helicity flip, t” , is the dominant amplitude ratio. Its real
and imaginary parts differ from zero by more than five
standard deviations. As also already known from the pre-
vious analysis [27], Re{téi)} is significantly non-zero. In this
analysis, the UPE amplitude ratios without nucleon-helicity
flip, Re{u(lll)} and Im{uill)}, are individually extracted and
found to be nonzero with a significance of about four stan-
dard deviations of the total uncertainty. The values of |u1 |

and [u(?], with /]ulY12 + {72 = 0.35 + 0.06, agree
with the result \/|uY 2 + 4?2 ~ 0.40 + 0.02 obtained

in the previous HERMES analysis [27]. The extracted val-
ues of the amplitude ratios show that the main contribu-

tion to the term |u(1)|2 + |u(2)|2 comes from the ampli-

tude U 1(}) without nucleon-helicity flip, and in particular they
show that |U 1(})|2 >> |U ](2) |2. The amplitude ratios Im{t(()%)},
Im{ uﬁ) }, and Im{ u' 10 } deviate from zero by about two stan-
dard deviations, while the other extracted amplitude ratios
with nucleon-helicity flip are consistent with zero within
two standard deviations. The amplitude ratios Im{t(z)} and

Im{u%) } are part of those ratios in Eq. (24), which can be
nonzero at —t’ = 0. Among the amplitude ratios that can be
zero at —t' = 0, only the amplitude ratio Im{uﬁ)}, which is
proportional to /—¢" at —t' — 0, differs from zero by about
two standard deviations of the total uncertainty.

5.2 Comparison of calculated SDMEs with directly
extracted SDMEs

A comparison of the SDMEs obtained from the SDME
method in Refs. [17] and [29] to those calculated from the
amplitude ratios extracted in the present analysis is presented
in Figs. 3, 4 and 5. The SDMEs are calculated in each indi-
vidual bin using the average kinematics in the parameteri-
zations obtained for the amplitude ratios. Furthermore, their
mean value is then determined by weighting the SDME value
calculated in a given bin by the number of events in this
bin. The correlation matrix for the 25 parameters is taken
into account for the c&lvc)}ﬂatiokrzj Aof the statkistkical uncertain-
ties of the SDMEs u, k;’, N A;, and s, A,VV obtained in
the amphtude method. A/s already mentioned in Sect. 1, the
SDMEs n, ;/V and siyvf/y", presented in Figs. 4 and 5, can
only be extracted from measurements with a transversely

polarized target so that the helicity-flip amplitude ratios tizv)xy

and uiz) ;. are extracted in this paper for the first time. The
Viy

systematic uncertainties of the SDMEs from the amplitude
method are determined in an analogous way as for the ampli-
tude ratios by varying the relevant parameters, as explained
in Sects. 4.4.2-4.4.6, and recalculating the corresponding
SDME:s. The total uncertainty is the sum in quadrature of the
statistical and the total systematic uncertainties.
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Fig. 2 Helicity-amplitude ratios obtained from the 25-parameter fit

characterized by (W) = 4.73 GeV, (Q?) = 1.93 GeV?, (—t') = 0.132

GeV?, as explained in the text. While the phase of u(lll) is fixed accord-

ing to the results of Refs. [27,45,46], its modulus is fit so that the two
crosses represent the results of fitting one free parameter. The value of

Im{tl( i)} (open diamond) represents the result of Ref. [27]; the error
bar shows the total uncertainty. For all other points, the inner error
bars represent the statistical uncertainty, while the outer ones represent
statistical and systematic uncertainties added in quadrature. An addi-

The SDME:s in Figs. 3, 4 and 5 are reordered according
to the SDME classes proposed in Refs. [17,38]. In these fig-
ures also class-F SDMEs are shown. Although the double-
helicity-flip contribution was a priori not fitted, non-zero
values are obtained for this class of SDMEs because these
SDMEs also receive contributions from other helicity tran-
sitions.

Those SDME:s that can be extracted only from data taken
with a longitudinally polarized lepton beam are shown in
shaded areas. Figure 3 shows that for each SDME ui:;\,‘/
deter/mined from our present results, there exists an SDM}IIE
ui‘y/g published in Ref. [17]. However, Figs. 4 and 5 show
that for some of the SDMEs n;::,v and six,v determined
in this analysis no published resu?ts from Rey:f. [29] exist,

@ Springer

08
Amplitude ratios

tional scale uncertainty of 8% originating from the uncertainty on the
target polarization is present for the ratios t)(f/))hy s ufv) iy but not shown.
An extra scale uncertainty of 2% originating from the uncertainty on

the beam polarization is present for the ratios Im{ t)(hlv))hy }, Re{ t}(f/) Ay } and

Re{ uiz‘/) . }, but also not shown. The shaded area corresponds to results

that were also obtained in Ref. [27], while all other points are obtained
for the first time. The helicity-amplitude ratios are ordered according
to the SDME classes proposed in Refs. [17,38]

because the beam polarization was not exploited in the anal-
yses presented in Ref. [29]. While in Refs. [17] and [29] a
total of 53 SDMEs could be extracted, the amplitude method
presented here allows for the calculation of 71 SDMEs based
on the extraction of 25 parameters.

As seen from the figures, there is reasonable agreement
between SDMEs obtained with the SDME method and those
from the amplitude method. It is possible that the values
of the SDMEs obtained in these two methods do not coin-
cide, because the parameter space for SDMEs in the SDME
method is different from that in the amplitude method.
Indeed, the SDMEs should belong to a special region in the
71-dimensional real space to give a non-negative angular dis-
tribution. However, at present the equations determining the
boundaries of this region are unknown. The physical SDMEs
can be represented in terms of 17 helicity-amplitude ratios.
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Fig. 3 Comparison of the SDMEs uiri/" obtained from the amplitude
Y

method (red circles) and from the SDME method (blue triangles). The
SDME:s are extracted in the entire kinematic region. For the amplitude
method a 25-parameter fit is used, while the results of the SDME method
are taken from the HERMES data in Ref. [17]. The points in the shaded
area show SDMEs that can be obtained only if the beam is longitudi-

This restricts the region in the 71-dimensional space. This
requirement is not taken into account in the SDME method,
but it suppresses statistical fluctuations especially when a
SDME value is close to the boundary of the allowed region.
Note that the positivity requirement on the angular distribu-
tion is inherent to the amplitude method, while it is not to the
SDME method, where it is usually imposed artificially.

5.3 Comparison to amplitudes calculated in a GPD-based
handbag model

Within the handbag approach (see, e.g., Refs. [16,48]), the
amplitudes for y — V, and y; — Vr transitions are
given by convolutions of appropriate subprocess amplitudes,
H)»v)»ﬁ,)»y)\q’ with the GPDs H¢, E¢, [_}a’ Ea’

_% a
Fuiut = ) Z ean/dx

a=u,d,s

52
a a a _ a
<[ O gy ) (- T

02 03 04 05 06

nally polarized. An additional scale uncertainty of 2% originating from
the uncertainty on the beam polarization is present for these SDMEs, but
not shown. The inner (outer) error bars represent the statistical (total)
uncertainty. The SDMEs are ordered according to the SDME classes
proposed in Refs. [17,38]

for the case of proton helicity non-flip and

%0 Z euCZ/dx

a=u,d,s
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Fig. 4 Comparison of the SDMEs ﬂi: ;:,v
Y

method (red circles) and from the SDME method (blue squares). The
SDMEs are extracted in the entire kinematic region. For the ampli-
tude method a 25-parameter fit is used, while the results of the SDME
method are taken from the HERMES data in Ref. [29]. The points in
the shaded area show SDME:s that can be obtained only if the beam is
longitudinally polarized in addition to the transverse target polarization

X|:<Hg1 1+Hg 1 1>Eg
Has H—5U—75

+<Hi )géﬂ

for the case of proton helicity flip.

Here, A4 and )»; are the helicities of the emitted and reab-
sorbed quarks from the proton, respectively, with A, = A;
for quark helicity non-flip GPDs, u = Ay = A, e, are the
quark charges in units of the positron charge e, and x is an
internal integration variable. The skewness £ is related to xp
by & = xp/(2 — xp) up to corrections of order 1/Q2, where
xp is the Bjorken scaling variable defined as

obtained from the amplitude

8
11_H71 1

K7 H=3K—3

(68)

0’ 0*
=2p~q oMy

XB (69)

The coefficients Cj are appropriate flavor factors (Cz0

—Czo = 1/+/2). Because of parity invariance, the first of
the each two terms in square brackets in Egs. (67) and (68)
of both the quark and gluon parts behave like natural-parity-

@ Springer

required for all SDMEs here. An additional scale uncertainty of 2%
originating from the uncertainty on the beam polarization is present for
these SDMEs, but not shown. The inner (outer) error bars represent
the statistical (total) uncertainty. An additional scale uncertainty of 8%
originating from the uncertainty on the target polarization is present,
but not shown. The SDMEs are ordered according to the SDME classes
proposed in Refs. [17,38]

exchanges (see Eq. (13)), while the second terms are of the
unnatural-parity type (see Eq. (14)). For the y;* — V| transi-
tion, there is a rigorous proof of factorization in hard subpro-
cesses and GPD amplitudes [14] in the generalized Bjorken
regime of large Q2, large W but fixed x. Contributions to
longitudinal amplitudes come from GPDs H and E, only.
In contrast, the y; — Vr amplitudes are infrared singular
in collinear approximation. In order to regularize this singu-
larity, the so-called modified perturbative approach has been
used in Refs. [15,16] in which quark transverse momenta are
retained in the subprocess, while the emission and reabsorp-
tion of the partons from the proton are still treated collinear
to the incoming and outgoing proton momenta. The quark
transverse momenta in the subprocess imply a separation
of color charges, which results in gluon radiation, as it was
calculated in Ref. [49] in next-to-leading-log approximation
and resummed to all orders of perturbative QCD. This gluon
radiation is also taken into account in Refs. [15,16].
Measurements of the spin asymmetry with a transver-
sely polarized target in exclusive 7T leptoproduction [50]
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Fig. 5 Comparison of the SDMEs s::;\," obtained from the amplitude
14

method (red circles) and from the SDME method (blue squares). The
SDME:s are extracted in the entire kinematic region. For the ampli-
tude method a 25-parameter fit is used, while the results of the SDME
method are taken from the HERMES data in Ref. [29]. The points in
the shaded area show SDMEs that can be obtained only if the beam is
longitudinally polarized in addition to the transverse target polarization

revealed that the transversity or helicity-flip GPDs play an
important role in the y; — V|, transitions [48]. The corre-
sponding amplitudes read

FO_%lézeo Z eaCZ/dng_%l%H?,
a=u,d,s
—t/ —
FO%:I:I% Feo A Z eaC;’[dng_%l%E%,
a=u,d,s
Fof%flé =0. (70

According to the discussion presented in Sect. 2.3, the
amplitude F, 1l is of natural-parity type, while the proton
helicity-flip amplitude F,_ 1y has no specific parity. In the
subprocess amplitude H,,_ 1l quark and antiquark forming
the longitudinally polarized p° meson have the same helic-
ity. This fact necessitates the use of a twist-3 meson wave
function.

required for all SDMEs here. An additional scale uncertainty of 2%
originating from the uncertainty on the beam polarization is present for
these SDMEs, but not shown. The inner (outer) error bars represent
the statistical (total) uncertainty. An additional scale uncertainty of 8%
originating from the uncertainty on the target polarization is present,
but not shown. The SDMEs are ordered according to the SDME classes
proposed in Refs. [17,38]

An important role is played by the pion-pole contribu-
tion. As it was discussed in Ref. [51], the pion pole is to
be treated as a one-pion-exchange term, since its evaluation
through the GPD E underestimates the contribution grossly.
An important element of the pion-pole contribution is the
7 — p transition form factor gﬂp(Qz). It is estimated to be a
third of the m — w form factor [51] that was extracted from
the HERMES measurement of the w SDMEs [28]. The factor
1/3 arises from the different quark content of the w and p°
mesons. The pion pole represents an unnatural-parity contri-
bution and, as can be shown, it contributes dominantly to the
amplitudes for transversely polarized vector mesons:

2
Fpole N 8rnp(07) 71
with £ = 0, 1 and m, the mass of the pion. The explicit
expressions for FP°¢ are given in Ref. [51]. They are to
be added to the amplitudes from Egs. (67) and (68). The

@ Springer
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v/ — Vr amplitudes receive contributions from only the
pion pole. With regard to the large Q%-behavior of the 7 — V
transition form factor, these transition amplitudes are sup-
pressed by 1/Q and 1/Q?, respectively, as compared to the
asymptotically leading y; — V;, amplitudes. The pion-pole
contributions to the y; — V_7 and y; — V| transition
amplitudes are suppressed more strongly and are therefore
neglected. As already discussed in Sect. 2.3, there is no UPE
contribution for the y; — V. amplitudes.

Details of the calculations of the amplitudes as well as the
parametrization of the GPDs, the meson wave-function and
the m — p transition form factor can be found in the original
papers [16,51]. The evaluation of the amplitudes represent
an intermediate step of the calculation of the observables
discussed in these papers. These amplitudes are divided by
F, 1o} = To((;) in order to obtain the amplitude ratios that
can be compared to the ones discussed above. The phase
convention from Eq. (9) is taken into account.

Figure 6 shows the comparison of all amplitude ratios
determined by fitting the HERMES data to those calculated
using the GK model. The HERMES data are obtained as
explained in Sect. 5.1, while the values obtained in the GK
model are calculated at W = 4.73 GeV, Q2 = 1.93 GeV?,
and —t' = 0.132 GeV?. As shown by the following detailed
comparison, good overall agreement is found.

t{1): Contributions come from GPDs H — £2/(1 — £)E ~
H . Good agreement is observed for the real part, which
is by far the largest amplitude ratio. The calculated
imaginary part appears to be too small. Note that a part
of this difference is due to the known underestimation
of the relative phase between the y; — Vr and y;" —
V1, amplitudes in the GK model [17].

uill) : Contributions come from GPDs H and the pion pole.

The GK calculations underestimate the unnatural-

parity contribution to the y; — V7 amplitude, which

is related to the small unnatural-parity cross section
used in the GK model [51]. It may be traced back to

the neglect of the non-pole contribution of the GPD E

or to a too small value for the 7 — p transition form

factor in the GK model.

Contributions come from GPDs E. The calculated
imaginary part agrees with the measurement.

u<121) : In GK calculations only the pion pole contributes since

Eis neglected, so that the GK result is mirror symmet-

ric upon sign change of the  — p transition form factor.

Good agreement with the data is seen for the positive

sign.

Contributions come from GPDs E. Agreement is
observed with the measurement.

t(gi) : Contributions come from GPDs Er. Agreement is
observed with the measurement.

2).
o

(2.
oo -

@ Springer

t(()%): Contributions from GPDs Hr. There is no pion-pole
contribution to this ratio, hence data cannot decide on
the sign of the form factor. The measured imaginary
part seems to be lower than the GK calculation.

uézl): Contributions from GPDs Hr. Since these GPDs have

no specific parity, u(()zl) is equal to — (ﬁ) in the GK cal-

culation.

Contributions come from the pion pole only, so that

the GK result is mirror symmetric upon sign change of

the m — p transition form factor. The positive sign is
favored by the data.

().
ujy:

The y; — V_r amplitudes, corresponding to the ampli-
tude ratios tl(l_)l, tl(z_)l, and uiz_)l, are neglected in the GK
model. This is seen to be in reasonable agreement with the
data. Only gluon transversity GPDs could contribute and the
contribution from the pion pole is suppressed by 1/0Q3 as
compared to the longitudinal amplitudes. Both are neglected
in the GK model.

As discussed in Sect. 4.3, the ratios u(()ll), u%) and u(ll_)l
cannot be determined experimentally in the present analysis
and are hence put equal to zero. In the GK model, u(()ll) and
u(ll_)1 are also set equal to zero, while uﬁ)) is non-zero due to
a contribution from the pion pole, but small. Apart from the
y}‘ — V_r amplitudes, uéll) and ugl_) 1> also tl((l) and tfé) are
set equal to zero. This is consistent with what is extracted
from the data.

As the unnatural-parity amplitudes depend on the sign of
the m — p transition form factor, a conclusion on the sign of
the latter can be drawn when comparing the calculated GK

amplitude ratios to the data. Only the amplitude ratios uﬁ)
and u%) appear sensitive to the sign of the form factor and
are hence used to calculate the x2 per degree of freedom,
i.e., ndf = 4. For the positive sign x2/ndf = 1.8/4 is
obtained and for the negative sign x>/ndf = 30.3/4. Hence
the positive sign of this form factor is clearly favored.

6 Summary and conclusions

Exclusive electroproduction of p° mesons is studied in the
HERMES experiment, using data collected with a 27.6 GeV
longitudinally polarized electron/positron beam and a trans-
versely polarized hydrogen target in the kinematic region
1.0 GeV2 < 0% < 7.0 GeVZ2,3.0GeV < W < 6.3 GeV,
and —t' < 0.4 GeV?2. The fit to these data using an unbinned
maximum-likelihood method with 25 free parameters per-
mits the extraction of ratios of natural-parity-exchange
amplitudes 7; ;1 ; 5, Without nucleon-helicity flip Wy =
An) and, for the first time, both the natural-parity-exchange
and unnatural-parity-exchange amplitudes (7}, MAy AN and
Uiyiya,iy) With nucleon-helicity flip Ay # An), all
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Fig. 6 Comparison of amplitude ratios determined in this paper to
those calculated in the GK model, where the phase convention from
Eq. (9) is taken into account. The amplitude ratios that are set to zero
in the GK model are not shown. The inner (outer) error bars represent
the statistical (total) uncertainty. An additional scale uncertainty of 8%
originating from the uncertainty on the target polarization is present for

2 and ufv) Ayt but not shown. An extra scale uncertainty of

the ratios Z;MV

obtained relative to the amplitude 7j,1,1, which is the largest
272

amplitude in the kinematic region of Q> > 1 GeV here
considered. In particular, the modulus of the amplitude ratio
Ul%1%/TO%O%,therealpartole%l%/TO%O% as well as the real
and imaginary parts of the amplitude ratios T 1o} /T, 1ok
Tl%_l%/TO%O% and To%l%/To%o% are extracted. They were
also obtained in the previous HERMES analysis [27] and
the amplitude ratios are in a good agreement with one
another. The values of Im{T} 1y /T, 1o } and the phase of
the ratio U, 11l /Ty 1o} are taken from the HERMES results
[17,27,45,46]. By performing the fit, the ratios of small
nucleon-helicity-flip natural-parity-exchange amplitudes

T T

1 1 1 1
1lo-1> f1l-1-1-

T,

1, 1,
0i1-1

2% originating from the uncertainty on the beam polarization is present
for the ratios Im{ti :/)M I Re{tizv)ky }, and Re{ufv) hy }, but also not shown.
The amplitude ratios are ordered according to the classes proposed in
Refs. [17,38]. The red, filled circles correspond to the extracted ampli-
tude ratios and the blue, open triangles (squares) represent the result
of the GK model calculation using the positive (negative) sign of the
7 — p transition form factor

and unnatural-parity-exchange amplitudes

Ui, 1, U1, 1, U 1, Uy, 1
1hi-1> Yilo-1» Yyl -1, Yply_1

to To%o% as well as

m{Togo-/ Togor | 1m | Tag1 g/ iy
Re {Toy0-4/Togoy = Tupa-y/Tipuy |

are obtained for the first time, as the data presented here
were taken using a transversely polarized hydrogen target
and a longitudinally polarized lepton beam.

Within the total experimental uncertainty, all determined
amplitude ratios with nucleon-helicity flip are consistent with
zero. The extracted values of the amplitude ratios show that
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the main contribution to the quantity T
0707

obtained in Ref. [27] originates from the unnatural-parity-
exchange amplitude Ul%l% and that |U1%1% |2 > |U1%1_% |2.
Furthermore, it is shown that the 53 SDMEs extracted in
Refs. [17,29] can be described with good accuracy using the
25 amplitude ratios obtained in the present analysis. By also
exploiting the longitudinal beam polarization, 18 additional
0" SDMEs are determined from the extracted 25 parameters
for the first time.

The unnatural-parity amplitudes depend on the sign of
the m — p transition form factor, so that the comparison of
certain amplitude ratios to calculations within a GPD-based
handbag model taking into account the contribution from
pion exchange allows the conclusion that the positive sign of
this form factor is favored.

Together with precise data on the unpolarized differen-
tial cross section do /dr of exclusive p° production in deep-
inelastic scattering, the extracted amplitude ratios could be
used to obtain the amplitude 7} 1ol for which the factoriza-
tion property is proven.
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Appendix A: The longitudinal double-spin asymmetry

The phase §,, can be determined using the HERMES data [45,
46] taken with a longitudinally polarized hydrogen target
with better accuracy than using measurements with a trans-
versely polarized hydrogen target. The longitudinal double-
spin asymmetry in exclusive p®-meson electroproduction is
defined as [45]

@ Springer

do /dt — dos /dt
A’O — 2 2
! doy /dt +doy /dt
2
N |F1%1%| |F1_l1 L . ZRC{Z‘S)M[(U}

(72)

2
~ 2 1 1
|F1%1%| +|F17%17%| |l()|2-i-|bt()|2

Here, do 1 /dt and dG% /dt denote the differential cross sec-

tion for p’-meson production with a transverse virtual pho-
ton, where 1/2 and 3/2 are the total projections of the spins of
y* and p onto the photon momentum in the y* p CM system,
respectively. For the transformations in Eq. (72), Egs. (12),
(15), (16), (25) and (26) are used. Equation (72) can be rewrit-
ten in terms of the phase §,, and the phase § of the amplitude
ratio #, 1) (which is nothing else than the phase difference

between the amplitudes T(]) and To((;)) as

2|t1(1)||u1 | cos(8, — &)

A

1=

(73)

Since the moduli of the amplitude ratios |z, 1)| and |u1 | and
the phase 6 were extracted from HERMES data [17,27], the
measured value of the asymmetry Af = (.24 [45,46] gives
avalue of §, — & =~ £69.8°. The sign of the latter is obtained
from

U 1( i) U( )]

— = |— | exp{i (6, — §)}. (74)
Tl(ll) T(l)

The UPE amplitude U 1(}) is mainly the amplitude of pion
exchange, which is a real positive function at small —z". At
high energies, the imaginary part of the NPE amplitude Tl(l1 )
is positive and much larger than its real part, so that the ratio
U l(i ) / Tl(ll  has to have a negative imaginary part leading to
sin(§, — 8) < 0. This gives §, — § ~ —69.8° and hence
8, = —39.2° if the value § = 30.6° is taken from Ref. [17].
The range of §, considering the values 0.38 and 0.1 for the
asymmetry Af (corresponding to +1 standard deviation) is
8, = —26.2° and §, = —51.1°.

Appendix B: Linear contribution of amplitudes T(Z) and
T 1(12 ) to the angular distribution

Let us use the following parameterization for the ratios of the
small amplitudes T(Z) and Tl(]z) to the big amplitudes T(l) and

M.
T,

e
— = Poo +icoo, (75)
T,
00
T(2)
—m = P tian. (76)
T

11
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Hence the terms in the angular distribution that contain linear
contributions from the small amplitudes TO%) and T1(12 ) can
be written as [6]

AW(®P, ¢5,0, ¢)
_ 3Prsin(@ + ¢y)
N 82N
+api [T, P sin? 0 [1 4 € cos Q@ — 2¢)]

—+/2sin6 cos O cos(® — p)y/e(1 + €)

x [(B11 = Boo)Im{ Ty (7))

— (@1 + ag0)Re{ Ty (T1{)*)]

+ Ppsin(®@ — ¢)+/e(l —€)

x [(B11 = Boo)Re{ Ty (T3,)7)

+ (a1 =+ ao0)Im{ T (1) 1]}, (77)
where the normalization factor V' is defined by Eqgs. (39—41).
Here, the azimuthal angle ¢ between the transverse compo-
nent of the target polarization with respect to the virtual-
photon momentum and the lepton scattering plane is defined

asinRef. [6]. Itisrelated to the angle ¥ through the following
equations:

{2a00¢| To((}) | cos® 6

cos 6y, cos¥
cos ¢y = , (78)
\/1 — sin® 6, cos? ¥
. sin ¥
sin ¢y = (79)

\/1 — sin @, cos? ¥

where the angle 6, is defined by Egs. (32) and (33). Note
that the angle @ used in Eq. (77) is related to ¢(e) used in
Ref. [6] by the equation @ = 27 — ¢6). Also, the angle ¢
of the present paper is denoted in Ref. [6] by ¢.

As seen from Eq. (77) there is a contribution from the
combination (811 — Boo) of the parameters 811 and By, but
there is no contribution from (811 + Boo) to the angular
distribution. Therefore, the three parameters o1, ooo, and
(B11 — Boo)/2 can be extracted from the angular distribution,
while

1 1 (2 7@

_ 1 _ ! 11 00
k= 5(Bun + Boo) = Re { L 4 UL (80)

2 2 Ty Too

L e
ERe t(_l) + Ioo 81)
11

cannot be reliably obtained from data on a transversely polar-
ized target. Note that the second-order contributions propor-
tional to |B11]? and |Boo|? exist, since at least the normal-
ization factor A in formula (38) defined by Egs. (39—41)
contains squared moduli of all amplitudes. However, these
second-order contributions are negligibly small.

Appendix C: Correlation matrix for fit parameters

Table 3 lists the correlations between the 25 parameters of
the fit of helicity-amplitude ratios defined in Table 2.
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