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Abstract Extending the renormalizability proposal of the
physical sector of 4D Einstein gravity, we have recently pro-
posed renormalizability of the 3D physical sector of gravity-
matter systems. The main goal of the present work is to
conduct systematic one-loop renormalization of a gravity-
matter system by applying our foliation-based quantization
scheme. In this work we explicitly carry out renormalization
of a gravity-scalar system with a Higgs-type potential. With
the fluctuation part of the scalar field gauged away, the system
becomes renormalizable through a metric field redefinition.
We use dimensional regularization throughout. One of the
salient aspects of our analysis is how the graviton propaga-
tor acquires the “mass” term. One-loop calculations lead to
renormalization of the cosmological and Newton constants.
We discuss other implications of our results as well: time-
varying vacuum energy density and masses of the elemen-
tary particles as well as the potential relevance of Neumann
boundary condition for black hole information.

1 Introduction

The true degrees of freedom of quantum gravity [1–15] have
been evasive, at least to some extent, in spite of an extended
search. The search along the line of canonical quantization in
the past (e.g. [16–18]) was based on the usual 3 + 1 splitting
where the genuine time coordinate was separated out. A dif-
ferent 3 + 1 splitting in which one of the spatial directions is
separated out has been employed in the recent works of [19]
and its sequels in which explicit identification of the physical
degrees of freedom has been made based on foliation theory:
the physical degrees of freedom are the ones associated with
a certain hypersurface.

The relevance of a hypersurface for true degrees of free-
dom was noted long ago in [16] (see also the works of [20,21]
in the context of loop quantum gravity): a spacelike hyper-
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surface specified up to a conformal factor was identified as
the true degrees of freedom based on the fact that the hyper-
surface can serve as a transverse and traceless spin-two rep-
resentation of gravity. In [17,18] Hamiltonian reduction was
carried out on a class of 4D manifolds with certain topolog-
ical restrictions; the reduced Hamiltonian turned out to be
the volume of the hypersurface. The configuration reduction
approach (see e.g. [22] for a relatively recent work) makes
intensive and extensive use of differential geometry.

Gravity theories do not seem to share the nice property
of the non-gravitational gauge theories: only the latter are
renormalizable even when the external states in a Feynman
diagram are kept off-shell. Our recent proposal [19] hinges on
the possibility that non-renormalizability may be overcome
once the external states are restricted to a set of states con-
strained by several physical state conditions. The dynamics of
those physical states can be described through a 3D descrip-
tion.1 As reviewed below, the field equations associated with
the non-dynamical ADM variables [23] are imposed as con-
straints; the solution of the constraints implies reduction of
the physical states to 3D in the sense described, e.g., in [19,
24]. We stress that the renormalizability established is valid,
unlike that of Yang–Mills theories, only when the external
states satisfy certain physical state conditions (thus become
“three-dimensional” and of measure-zero as compared with
the off-shell states) and thus is not in conflict with the off-
shell non-renormalizability established in the past. In other
words, the renormalizability established in [19] and subse-
quent related works is renormalizability pertaining to the
physical states but not that of the off-shell Green functions.2

1 The reduction to 3D is needed to establish renormalizability at two-
and higher- loops. Strictly speaking, it is not needed for the one-loop
renormalizability that is the focus of Sects. 3 and 4. The presence of
the cosmological constant is important for the renormalizability of the
gravity-matter system as will be pointed out later.
2 The renormalizability is in this restricted sense and the covariance is
compromised from 4D to 3D at the end. Nevertheless, the formalism
does not impose any experimental limitation since it would be only
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For quantization one needs not only the identification of
the true perturbative degrees of freedom but also the equally
non-trivial task of explicitly implementing the actual steps
of quantization; for instance, the steps of how to integrate
various constraints and gauge-fixings into the quantization
procedure. In our scheme of quantization, the constraints
are Lagrangian analogues of the so-called spatial diffeomor-
phism and Hamiltonian constraints; they have been dubbed
the shift vector and lapse function constraints, respectively.
The strategy for reduction was clearly spelled out in the previ-
ous works [19,25]:3 removal of all of the unphysical degrees
of freedom from the external states of the Feynman diagrams.
The implication of the solution for the shift vector constraint
has been highlighted in [25,28] in the complementary mathe-
matical context of foliation and jet bundle theories: the geom-
etry admits a dual totally geodesic foliation whose associated
abelian Lie algebra leads, upon modding out in the jet bundle
setup, to the reduction.

As is well known, the presence of matter fields makes the
divergences worse (see e.g. [29]). Nevertheless, the quanti-
zation scheme of [19] is applicable to a system with a small
number of matter fields such as a gravity-scalar system or
an Einstein–Maxwell system considered in [30]: the matter
fields can be gauge-fixed to their background values by using
part of the diffeomorphism, thus made non-propagating. (For
example, if one considers a gravity-scalar system around a
flat background one may entirely gauge away the scalar field.)
In essence the scalar field materializes into an additional com-
ponent of the metric and this way the gravity-matter system
under consideration becomes “purely gravitational” (for cer-
tain purposes). Once one considers the original theory around
a more non-trivial background (such as a black hole [26]),4

things become technically more complicated, and explicit
demonstration of the renormalization procedure is well worth
it. It is the main goal of the present work to illustrate this pro-
cedure by taking the case of a gravity-scalar system with a
quartic scalar interaction; more specifically we take a real
scalar system with the Higgs-type potential for the matter
part with a goal to study the implications of a time-dependent
background of cosmological relevance.

In quantization of theories with local symmetries the back-
ground field (or external field) method (BFM) is an indis-

Footnote2 contiuned
the physical states that one could measure. The limitations listed are
the matter of sophistication of the formalism; eventually 4D covariant
formalism will of course be more desirable.
3 Slightly different procedures of quantization have been presented in
subsequent works [24,26,27].
4 A qualitative characterization of the kinds of the backgrounds to
which the present quantization scheme is applicable can be found in
[28]. It is not clear whether or not the present foliation-based quantiza-
tion scheme will be applicable to a general background (see [31] for a
related discussion).

pensable tool because it allows one to compute relatively
effortlessly the effective action in a covariant form. Although
several good reviews on its application to non-gravitational
theories are available (see e.g. [32]), we could not find any
review that explicitly addresses two subtle points – which
have turned out to be tied with the 4D covariance – that
arise in its application to gravity theories. (For the gravity
case, see e.g. [33].) Firstly, unlike a non-gravitational gauge
theory in which one can consider the field around a trivial
vacuum (meaning vev = 0), one cannot consider a grav-
ity theory expanded around a zero metric background. This
point seems implicitly understood in the literature, however,
we find it imperative to keep its implication at the forefront
of the background perturbative analysis.5 The second point
is the fact that the trace piece of the fluctuation metric makes
the path integral ill-defined. (Strictly speaking, it is a subtlety
associated with the path integral itself rather than with the
BFM.) Although this fact was observed long ago, we are not
aware of any work in which the trace piece was gauge-fixed
in the manner discussed in our recent works. We illustrate the
pathology with several examples including the non-minimal
coupling term [35] that has played an important role, e.g., in
the Higgs inflation proposal [36–39].

Although dimensional regularization is highly convenient
for many purposes it is not as convenient (see [40,41] for
related discussions) for analyzing vacuum diagrams – which
are necessary in the present case, e.g., to study renormal-
ization of the Newton constant – of a massless theory for
the reason to be explained. At least for the system consid-
ered here there exists a way to get around this inconvenience
(the method should apply to any system with a cosmological
constant-type of term) and this is one of the salient features
of our analysis: the constant piece of the potential is used as
a graviton “mass” term.6 In other words, the constant piece
of the potential provides, once expanded, a graviton “mass”
term, which can be included in the original massless form
of the graviton propagator. Another aspect of the present
gravity-matter analysis worth highlighting is the (indicative)
way de Sitter spacetime seems to arise from a flat spacetime
through the quantum effects.7 If one considers the case where

5 As a matter of fact, the fact that the conventional way of applying the
BFM leads to non-covariance was explicitly stated in [34] as we have
recently become aware of. (See footnote [29] for more details.)
6 See e.g. [42] for a discussion of the graviton “mass” term. Treating the
quadratic term arising from an expansion of the cosmological constant
term as the graviton “mass” term is motivated for a purely technically
reason just stated; we do not mean that it is the genuine graviton mass
term. It appears in the literature [43,44], however, that it is perhaps more
than a technicality. Viewing the quadratic term as the graviton “mass”
term has a further implication: mixing of physical states and unstable
state, as we will comment on in Sect. 3.
7 Perhaps this observation should not be taken as something entirely
new. However, with the present setup of quantization, it is now possible
to make this idea more explicit and precise.
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the minimum potential value is chosen to be zero the system
admits a flat spacetime with a constant scalar field as a solu-
tion. (The case with the nonzero minimum will be discussed
as well.) The loop effects generate vacuum energy as will be
explicitly shown.

There is potentially an issue of whether or not the gauge-
fixing of the scalar fluctuation makes sense, given that the
Higgs quanta have been discovered in nature. The proposed
gauge-fixing should not be a good gauge choice if one intends
to study various scattering amplitudes of Higgs particles, say,
in a curved background. However, it should be suitable for
macroscopic cosmological applications. As we will further
remark in the conclusion, the proposed gauge-fixing should
presumably be viewed as a novel “scalar-integrating-out”
procedure. It will also be noted later that renormalization
with a dynamical scalar will require only minor modifica-
tions.

Although the quantization and quantum corrections may
yet be of limited experimental significance, the quantiza-
tion procedure provides the rationale for gauge-fixing of the
scalar, thereby making it non-dynamical in the sense that it no
longer runs on the loops of the Feynman diagrams. The non-
dynamical scalar field substantially facilitates the renormal-
ization procedure that in turn is crucial for a more concrete
establishment of the time-varying vacuum energy. In the case
of a time-dependent background, we set the analysis of the
quantum correction terms aside for now (so that one will not
have to worry about the precise values of the coefficients of
the finite terms) but focus on its qualitative implications. Our
scheme seems to imply time-dependence (and running) of
Newton’s constant, and reinforce the idea of time-dependent
vacuum energy [45–48]. Although we do not explicitly con-
sider the standard model particles other than the Higgs-type
field in this work, our framework is likely to lead, at least as
a matter of principle, to time-dependence of various funda-
mental constants such as masses of standard model particles
that become massive through the Higgs mechanism.

The rest of the paper is organized as follows:
In Sect. 2 we start by reviewing our main analytical tool,

the background field method (BFM). We highlight several
potentially subtle points in applying the method in a gravi-
tational setup. Several diagrams are computed by employing
the traceless and traceful propagators, and the outcomes are
compared: only the traceless propagator leads to 4D covari-
ant results.8 Afterwards we review our recent proposal on
the physical states of gravity theories. The reduction of the
physical states to 3D has been established in several different
ways; here we give a hopefully more elucidating account of
the steps to the reduction with added comments. The reduc-
tion will be used, although rather implicitly, in Sects. 3 and 4.

8 The necessity of employing the traceless propagator was noted in [49]
(ch 3) as I have become recently aware of.

With the reviews of the BFM and physical state reduction, we
will be ready for the explicit implementation of the one-loop
renormalization of the gravity-scalar system; in Sect. 3 we
embark on a one-loop analysis of the scalar-gravity system.
Renormalizability is established with the flat propagator with
which the divergence analysis can easily be carried out. We
gauge away the fluctuation part of the scalar field and set the
scalar to its background value.9 With the gauge-fixing, the
background part of the scalar field provides the scalar back-
ground; the fluctuation part will materialize into an additional
metric degree of freedom. Although we use the 4D covariant
notation, the reduction to 3D will be implicitly conceived as
will be explained in more detail. Since the manifest scalar
part is served just as a background the prospect for renor-
malizability a priori looks better. As one of the examples of
illustrating the 4D covariance and importance of the quantum
effects, we note that the non-minimal coupling between the
metric and scalar, which played a crucial role in the Higgs
inflation proposal [36–39], is generated by a graviton loop.
We show in dimensional regularization that the loop effects
renormalize the cosmological and Newton constants. In Sect.
4 we discuss implications of our results for cosmology. In
addition to the time-varying vacuum energy, our framework
is likely to imply in a predictable manner time-variations of
the masses of elementary particles whose masses originate
from the Higgs mechanism, the effects that should be mea-
surable, at least in principle. Our results seem to indicate
the possibility that the Higgs field may play the role of the
quintessence field as well as the role of the inflaton field. In
conclusion we summarize and discuss several future direc-
tions. As one of the directions we ponder the possibility that
the physical state condition may be at odds with the Dirichlet
boundary condition and that the Neumann boundary condi-
tion may play a role in solving the black hole information
problem. Our conventions and useful identities are presented
in Appendix A. Several examples of the pathology associ-
ated with the traceful propagator can be found in Appendix
B. In Appendix C we give a coordinate-free version of the
analysis in Sect. 2.2 (originally given in section 3.1 of [25]),
the proof that the shift vector constraint leads to the condition
for Riemannian foliation.

2 Review of BFM and reduction

Before setting out to achieve the main goal of the present
work we set the stage by reviewing the background field
method (BFM) and reduction of the physical states. We
extend our recent background field calculations in [27] to

9 The word “background” is used here (and in some places) to refer
to the solution [e.g. g0μν in (4) below]. In other places it refers to the
off-shell background field [e.g. g̃Bμν or ϕBμν in (4)].
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the scalar sector. Also, because the reduction of the physical
states to 3D has been previously established in several dif-
ferent ways we present here a more coherent review of the
reduction with added comments.

Although the BFM was introduced long ago and has been
widely used, it appears that there still is room for refine-
ment, especially in applications to the gravitational cases.
One of the improvements made in [24] was with regards to
the manner in which the problem, noted in [50,51] some time
ago, of the ill-defined path integral associated with the trace
part of the fluctuation metric was dealt with. We first review
that the presence of the trace piece leads to pathology in
the perturbation theory: it interferes with the 4D covariance.
(As previously stated, the necessity for removal of the trace
piece was noted in [49] for a different reason.) This has been
demonstrated in [27] in the graviton and ghost sectors. In this
work we expand the analysis to the scalar sector; we show
that the same pathology is present there as well. In particular,
the non-minimal coupling comes out in the covariant form
only when the traceless propagator is employed.

The renormalizability proposal in [19] was based on the
observation that the physical states of the gravitational sys-
tem under consideration lend to a 3D description. In the
ADM Hamiltonian formulation one can easily observe the
non-dynamism of the shift vector and lapse function. In the
ADM Lagrangian formalism these fields can be gauge-fixed
and their field equations should be imposed as constraints –
the shift vector and lapse function constraints10 which are
the Lagrangian versions of the momentum and Hamiltonian
constraints of the Hamiltonian formalism. The shift vector
constraint can be solved as we will review and the solution
implies that the geometry should be of the so-called Rieman-
nian foliation [25,28].
Our system is the following gravity-scalar action

S = 1

κ2

∫
d4x

√−g (R − 2�)

−
∫

d4x
√−g

(
1

2
gμν∂μζ∂νζ + V

)
(1)

where κ2 = 16πG with G Newton’s constant; κ2 will be
suppressed in some places. The potential V is given by

V = λ

4

(
ζ 2 + 1

λ
μ2

)2

(2)

where λ is the scalar coupling and μ2 is the mass parameter.
Note that the cosmological constant � serves as the minimum
value of the potential. The presence of the cosmological con-
stant is important as we will see below. (This point has been
stressed in [52,53].) A shift of the scalar potential by a con-
stant is immaterial in a flat spacetime quantum field theory.

10 Eventually the quantum corrections to these constraints should be
considered; we will have more on this in the conclusion.

The same is not true, however, in a curved case; we have
introduced an arbitrary cosmological constant term to keep
things at a more general level.

2.1 BFM and 4D covariance

In Sect. 3 the renormalization of (1) will be carried out with
the BFM. As pointed out in [27], care is required to avoid the
pathology caused by the trace mode of the fluctuation metric.
In this subsection we start with several warm-up calculations.

We consider the conventional (except the removal of the
trace piece of the fluctuation metric) setup for illustrative
purposes: not just the internal momenta but also the external
momenta will be kept off-shell. In other words we do not
employ the reduction scheme in Sect. 2.1; this is to demon-
strate the pathology in a setup as conventional as possible.
By the same token we do not gauge-fix the scalar. That is,
the objects computed are the off-shell Green functions (other
than the removal of the metric-trace mode). We contrast the
amplitudes obtained by employing the traceful propagator
against those calculated by employing the traceless propa-
gator, and show that only the traceless propagator leads to
the anticipated covariant results. Let us start with the gravity
sector:

S = 1

κ2

∫
d4x

√−g R. (3)

By shifting the metric according to11

gμν ≡ hμν + g̃Bμν where g̃Bμν ≡ ϕBμν + g0μν, (4)

one obtains [27,54]12

L = √−g̃

(
− 1

2
∇̃γ h

αβ∇̃γ hαβ + 1

4
∇̃γ h

α
α∇̃γ hβ

β

+ hαβhγ δ R̃
αγβδ − hαβh

β
γ R̃

καγ
κ

+ hα
αhβγ R̃

βγ − 1

2
hαβhαβ R̃ + 1

4
hα

αh
β
β R̃ + · · ·

)
(5)

where (· · · ) stands for the terms irrelevant to the present
one-loop counter-term computation. The fields with a tilde
are the background quantities constructed out of g̃Bμν . In
[24,27] the counter-terms obtained with the shift specified in

11 This potentially peculiar-looking shift is to deal with the non-
covariance issue stated in [34]. In Sect. 3.6.1 of [34], the technique
how to compute the counter-terms is commented. It is the standard
method based on the usual shift gμν = ημν + hμν . At the end of that
section, it is written, “However, explicit general coordinate invariance
is not manifest in this case. It is necessary to do some work to write
counter-terms in general covariant form”. The present analysis with
the double-shift corresponds to “doing some work to write counter-
terms in general covariant form”. (Interestingly, it appears that the
shift—essentially the same—had been employed in [55] as I have come
to know very recently.)
12 The overall factor 1

κ ′2 where κ ′2 ≡ 2κ2 has been suppressed.
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(4) were explicitly demonstrated to cancel the divergences in
the one-loop Feynman diagrams. Similarly, the ghost action
can be expanded:

Lgh = −∇̃νC̄μ∇̃νCμ − R̃μνC̄
μCν + · · · (6)

Here and in (5) only the one-loop pertinent terms have been
kept. The divergence part can be computed by setting g0μν

to be a flat metric, g0μν = ημν . This is because the diver-
gence must come from a short distance. For the finite parts
(whose precise evaluation will not be pursued in this work)
one should use the propagator obtained by using the actual
background of the solution metric g0μν (or g̃Bμν , more pre-
cisely).

Ghost loop

To see the pathology caused by the trace piece of the fluctu-
ation metric let us first consider the ghost kinetic term

Lgh,kin = −√−g̃ ∇̃νC̄μ∇̃νCμ. (7)

If all is well this kinetic term is expected to yield covariant
forms of the counter-terms once the ghost field is integrated
out. As explicitly shown at one-loop in [27], use of the trace-
less propagator has confirmed this expectation whereas the
traceful propagator has contradicted it. Let us expand the
metric g̃μν around a flat spacetime:

g̃μν ≡ ϕBμν + ημν (8)

Below we will often omit the letter ‘B’ from ϕBμν . The ghost
kinetic action (7) takes

Lgh = −
[
∂μC̄ν∂μCν + 1

2
ϕ∂μC̄ν∂μCν

− �̃λ
μν(∂

μC̄νCλ − ∂μCνC̄λ)

− (ηνβϕμα + ημαϕνβ)∂βC̄α∂νCμ + R̃μνC̄
μCν

]
.

(9)

Briefly, the result of the computation is as follows. (More
details can be found in [27].) The following is the correlator
to be computed to obtain the counter-terms for the graviton
two-point amplitude with the ghost loop:

i2

2

〈[ ∫
1

2
ϕ∂μC̄ν∂μCν − �̃λ

μν(∂
μC̄νCλ − ∂μCνC̄λ)

− (ηνβϕμα + ημαϕνβ)∂βC̄α∂νCμ + R̃μνC̄
μCν

]2〉

(10)

This correlator leads to the following counter-terms:

�L = −1

2

�(ε)

(4π)2

[
17

60
∂2ϕμν∂

2ϕμν − 17

30
∂2ϕακ∂κ∂σ ϕσ

α

+ 19

30
(∂α∂βϕαβ)2

]

= − 1

30

�(ε)

(4π)2 [17R̃αβ R̃
αβ + R̃2] (11)

where the parameter ε is related to the total spacetime dimen-
sion D by

D = 4 − 2ε (12)

The relations in (A.17) – which of course are valid to the
second order of the fields – have been used to derive the
second equality in (11); the trace piece has also been set to
zero, ϕ ≡ ϕα

α = 0.13

Graviton loop

We now turn to the graviton sector with the graviton loop and
observe the same phenomenon: only the traceless propagator
leads to covariant results. By expanding (5) one gets

L = −1

2
∂γ h

αβ∂γ hαβ + 1

4
∂γ h

α
α∂γ hβ

β

+LVI + LVI I + LVI I I (13)

where

LVI =
(

2ηββ ′
�̃α′γα − ηαβ�̃α′γβ ′

)
∂γ hαβ hα′β ′ ,

LVI I =
[

1

2
(ηαα′

ηββ ′
ϕγγ ′ + ηββ ′

ηγγ ′
ϕαα′ + ηαα′

ηγγ ′
ϕββ ′

)

− 1

4
ϕ ηαα′

ηββ ′
ηγγ ′ − 1

2
ηγγ ′

ηα′β ′
ϕαβ

+ 1

4
(−ϕγγ ′ + 1

2
ϕηγγ ′

)ηαβηα′β ′
]
∂γ hαβ ∂γ ′hα′β ′ .

(14)

These two vertices come from the first line of (5). The distinc-
tion between LVI and LVI I has been made for convenience
in Mathematica coding. The vertex LVI I I is just the third line
of the same equation:

LVI I I = √−g̃

(
hαβhγ δ R̃

αγβδ − hαβh
β

γ R̃
καγ

κ

+ hα
αhβγ R̃

βγ − 1

2
hαβhαβ R̃ + 1

4
hα

αh
β
β R̃

)
. (15)

13 The constraint associated with the fixing of the trace piece of the
fluctuation can be identified with one of the components of the nonlinear
de Donder gauge (or the generalization thereof) [26].
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One should consider the following correlator for the counter-
terms against the complete one-loop two-point amplitude:

i2

2
〈[(LVI + LVI I + LVI I I )]2〉

= i2

2

∫ ∫
(〈(LVI + LVI I )

2〉
+2〈(LVI + LVI I )LVI I I 〉 + 〈L2

VI I I
〉). (16)

The third term is guaranteed to be covariant. (This would
of course be true even if the traceful propagator were used.)
For the other two correlators the computation employing the
traceful propagator is presented in Appendix B; it leads to
non-covariant results. With the traceless propagator the third
correlator can be written as

−1

2

∫ ∫ 〈(
hαβhγ δ R̃

αγβδ − hαβh
β

γ R̃
καγ

κ + hα
αhβγ R̃

βγ

−1

2
hαβhαβ R̃ + 1

4
hα

αh
β
β R̃

)2〉

= −1

2

∫ ∫ 〈(
hαβhγ δ R̃

αγβδ − hαβh
β

γ R̃
καγ

κ

−1

2
hαβhαβ R̃

)2〉
(17)

where the equality is due to the use of the traceless propa-
gator: the trace-piece containing terms have been removed.
After some algebra, one gets

−
〈[ ∫

LVI I I

]2〉
⇒ �L = �(ε)

(4π)2

[
− 5

4
R̃2

−3

4
R̃μνρσ R̃

μνρσ + 3

2
R̃μν R̃

μν

]

= −1

2

�(ε)

(4π)2

[
− 3R̃μν R̃

μν − R̃2
]

(18)

where in the third equality the identity (66) has been used.
With the traceless propagator the first correlator on the right-
hand side of (16) turns out to be

−1

2

〈[ ∫
(LVI + LVI I )

]2〉
⇒ �L =

[
7

20
(∂α∂βϕαβ)2

−37

40
∂α∂ρϕαβ∂2ϕβ

ρ + 37

80
∂2ϕαβ∂2ϕαβ

]

= −1

2

�(ε)

(4π)2

[
− 23

40
R̃2 + 37

20
R̃αβ R̃

αβ

]
. (19)

The result of the second correlator is

−
〈 ∫ ∫

(LVI + LVI I )LVI I I

〉
⇒ �L

= − �(ε)

(4π)2

[
1

2
(∂α∂βϕαβ)R̃

]
= −1

2

�(ε)

(4π)2 R̃
2. (20)

ζB

ζB

g̃B

Fig. 1 Non-minimal coupling (scalar loop)

Scalar loop

Our final example of illustrating the pathology is the diagram
given in Fig. 1. As a matter of fact there exists the second
diagram which will be considered in the next section that
generates the counter-term of the non-minimal coupling. We
have chosen the diagram above to demonstrate the pathol-
ogy with a minimum amount of computation. Since the form
of the non-minimal coupling was not present in the start-
ing Lagrangian, generation of such a counter-term is incom-
patible with renormalizability. In this subsection we set the
renormalizability issue aside and focus only on the covari-
ance issue to demonstrate the pathology of the trace piece
of the metric. In the next section we will employ the setup
suitable for establishing the renormalizability wherein only
the second diagram remains relevant. We show that use of
the traceless propagator yields the counter-term of the well-
known non-minimal coupling [35].

Let us shift the scalar field,

ζ → ζB + ζ. (21)

As in the previous examples the traceful propagator does not
lead to a covariant result. The vertex involving the graviton
comes from expansion of the scalar kinetic term which yields

−1

2

√−g gμν∂μζ∂νζ

→ −1

2

[
g̃μν
B − hμν + 1

2
hg̃μν

B + hμρhν
ρ

+1

8
g̃μν
B (h2 − 2hρσ h

ρσ ) − 1

2
hhμν + · · ·

]
∂μζ∂νζ. (22)

Among these terms the vertex relevant for the diagram is the
second term on the right-hand side of

−1

2
g̃μν
B ∂μζ∂νζ = −1

2
gμν

0 ∂μζ∂νζ + 1

2
ϕ

μν
B ∂μζ∂νζ (23)

The other vertex in the diagram is the quartic scalar self-
coupling. With these two vertices inserted the counter-term
turns out to be

i2

2

〈 ∫
ϕμν∂μζ∂νζ

∫
6λ

4
ζ 2ζ 2

B

〉
⇒ �L

= �(ε)

(4π)2

λ

4
∂μ∂νϕ

μνζ 2
B = �(ε)

(4π)2

λ

4
R ζ 2

B (24)

in the leading order of the metric field.
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2.2 Reduction of physical states

Another central element of the proposal in [19] is the reduc-
tion of the physical states. (The coordinate-free version of
the analysis of this subsection can be found in Appendix C.)
Consider a background that admits 3 + 1 foliation; split the
coordinates into

xμ ≡ (ym, x3). (25)

Introducing the lapse function n and shift vector Nm , the 3 + 1
form of the 4D metric and its inverse can be written [23,56]

gμν =
⎛
⎝ hmn Nm

Nn n2 + hmnNmNn

⎞
⎠ ,

(26)

gμν =
⎛
⎝
hmn + 1

n2 N
mNn − 1

n2 N
m

− 1
n2 N

n 1
n2

⎞
⎠

The action in terms of the ADM variables is

S =
∫

d4x n
√−γ (R(3) + K 2 − KmnK

mn). (27)

Here the second fundamental form Kmn and its trace K are
given by

Kmn = 1

2n
(L∂3hmn − DmNn − DnNm), K = hmnKmn

(28)

with L∂3 the Lie derivative along the vector field ∂x3 and
Dm the 3D covariant derivative constructed out of hmn . As
is well known the Hamiltonian of the system reveals that the
lapse function and shift vector are non-dynamical; their field
equations should be imposed as constraints. In the Hamil-
tonian formalism the constraints are called the Hamiltonian
and momentum constraints. In this work they will be called
the lapse function and shift vector constraints, respectively.
The shift vector field equation is

Dm(Kmn − hmnK ) = 0. (29)

The shift vector can be gauged away by using the 3D residual
gauge symmetry [24]

Nm = 0. (30)

Substitution of Nm = 0 into (29) leads to

Dm
[

1

n
(L∂3hmn − hmnh

pqL∂3h pq)

]
= 0, (31)

which in turn implies [25]

∂mn = 0. (32)

This follows from the fact that the covariant derivative in (31)
yields zero when it acts on the terms other than 1

n . To see this,

consider for instance the first term inside the parentheses in
(31):

DaL∂3hbc = eα
a∇αL∂3hbc. (33)

Applying the component version of the commutator of the
Lie derivative and covariant derivatives, (C.1), to the present
case, one sees that the Lie derivative commutes with the
covariant derivative:

[L∂3 ,∇α] = ∇[∂3,∂α] = ∇0 = 0 (34)

where the last equality is due to the linearity of ∇ in its index.
With this the right-hand side of (33) can be written as

= eα
aL∂3∇αhbc (35)

As stated in e.g., [56] (which can easily be checked), one has
L∂3e

α
a = 0. With this the right-hand side becomes

= L∂3e
α
a∇αhbc = L∂3 Dahbc = 0 (36)

where the last equality follows from the 3D metric com-
patibility of the 3D covariant derivative. The reduction to
3D is induced by the lapse function constraint as follows.
Since all of the gauge freedom is used, the number of the
physical components is fixed, prior to considering the lapse
constraint, to be two. Any additional constraint that would
reduce independent components, therefore, should not arise
from the lapse constraint. The only way of ensuring this is
the reduction in the coordinate dependence, which will make
the KmnKmn term “identically” vanish. At this point one can
legitimately go to the Euclidean space by a Wick rotation; it
follows [19,26] that

Kmn = 0 (37)

As a matter of fact the reduction takes place rather gener-
ically even in the presence of matter [30] due to the fact
that the lapse function constraint – which is a constraint –
becomes identical to the “Hamiltonian” itself after the shift
vector constraint is solved and the gauge-fixing is explicitly
enforced.

3 Renormalization of a gravity-scalar system

In this section we carry out systematic one-loop renormaliza-
tion (see e.g. [57] for a review of renormalization in quantum
field theory). There are several ingredients in our quantiza-
tion proposal that make a difference with regards to renor-
malizability. In the case of pure gravity the reduction of the
physical states to 3D is the only condition needed to estab-
lish the renormalizability. Once matter fields are added, sev-
eral additional ingredients are required. Among other things
the reduction mechanism itself should be generalized [30].
Gauging-away of the fluctuation part of the matter field(s)
(the scalar for the present case) has been proposed in the
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cases where the number of matter components is small, as
in the present case. For a system with more matter fields
this method cannot be applied; one must directly deal with
the dynamical matter fields. For such cases renormalizability
remains speculative [30] and more work will be required for
a definite answer. (See, however, the comments on the recent
progress in the conclusion.)

Although gauge-fixing of the fluctuation part of the scalar
field, which will be reviewed below, is a relatively simple
step, it greatly facilitates the renormalization procedure in
the following sense. Only the metric remains dynamical:
all of the scalar-field factors can be viewed as backgrounds.
The gauge-fixing has the following implication for the non-
minimal coupling. The minimal coupling is not a term ini-
tially present in our starting action, (1), thus it is one of the
terms that would make the system non-renormalizable. In
the present setup, however, the non-minimal coupling can be
viewed as a “shift” in the Newton constant. In other words,
all the terms containing a single factor of R and differing
by their scalar-field containing coefficients can eventually be
grouped into the form R(· · · ) where (· · · ) represents various
constants and scalar-involving factors. Furthermore, none of
these terms is to be taken as additional new vertices: the
dynamical part of all those vertices is still just R with the
scalar field serving as the background but not as a propagat-
ing field.

As in Sect. 2 we employ the flat space propagator to
compute one-loop counter-terms. (The finite parts and sub-
leading divergences will be needed for renormalization con-
ditions; for those one should employ the propagator in the
actual background geometry.) Use of the flat space propaga-
tor has an additional meaning in the case of � = 0 for the
following reason. If the minimum potential value is chosen
to be zero then the system has a flat spacetime with a con-
stant scalar field as a solution14 since the potential term in the
metric field equation is evaluated at the constant scalar field
that minimizes it. Therefore the analysis can be viewed as
the perturbative renormalization around one of the genuine
backgrounds of the system.

Although dimensional regularization is highly convenient
in general, the following identity makes it less suited for
vacuum diagrams of a massless theory,
∫

dDk
1

(k2)ω
= 0 (38)

where ω is any number. The divergences that would oth-
erwise renormalize the cosmological and Newton constants
vanish due to this identity. One can avoid this15 by introduc-
ing a “mass” term to the graviton propagator in the following

14 In other words if the potential is shifted by an arbitrary constant
� 
= 0 in (1) the system will not admit a flat spacetime as a solution.
15 See e.g. [40,41] for related discussions.

manner. The constant piece of the scalar potential provides
the following cosmological constant-type term:

−
∫ √−g

(
μ4

4λ

)
. (39)

Once expanded this term yields a graviton “mass” term as
given in (43) below.16 (See e.g. [42] for a discussion of the
graviton mass terms.) As we will see shortly, the “mass”
term preserves the tensor structure of the original graviton
propagator; it only changes the propagator by adding the
mass square next to the momentum square. One can carry
out the divergence analysis with the “massive” propagator.
We will see that the cosmological constant term and Einstein–
Hilbert term become renormalized through the loop effects.

Although the use of the “massive” propagator is techni-
cally motivated, it may have deeper physical meanings. As
stated in footnote 6, one implication is the possibility pro-
posed in [43,44]. Another implication is for the renormal-
ization procedure. In the Standard Model Higgs physics, one
explicitly expands the action around the true vacuum in con-
ducting the loop analysis. However, in the refined application
of the BFM that we have been using, the expansion is more
implicit17 for the sake of maintaining the covariance, and
for this reason inclusion of the cosmological constant in the
graviton propagator implies “mixing” between the graviton
field and unstable Higgs field. Often the system under con-
sideration imposes such mixing for one reason or another.
As a matter of fact there have been recent studies [58,59]
on renormalization procedure of massive string modes that
display such mixing.

We quote the gravity-scalar action (1) here now in terms
of the renormalized quantities (indicated by the subscript r ):

1

κ2
r

∫
d4x

√−gr (Rr − 2�r )

−
∫

d4x
√−gr

(
1

2
gμν
r ∂μζr∂νζr + Vr

)
(40)

where

Vr = λr

4

(
ζ 2
r + 1

λr
μ2
r

)2

(41)

Below we consider graphs with up to two g- or four ζ -external
legs; they should be sufficient for illustrating the renormal-
ization procedure.

16 This “mass” term is not unique: the cosmological constant term �

in (40) could be added as well. The two choices should be just two
different (but equivalent) approaches. We choose (39) as the mass term
for an occasion where � = 0 may be considered.
17 See [60,61] for recent examples of the renormalization analysis with-
out explicit expansion around the true vacuum.
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3.1 Loop effects in gravity sector

The aforementioned inconvenient feature of dimensional reg-
ularization can be avoided for the present system by including
in the original massless propagator the “mass” term originat-
ing from the scalar potential. (Recall that the loop-induced
cosmological constant-type of terms were not generated in
the early works because the massless graviton propagator was
used with dimensional regularization.) With the new “mas-
sive” propagator the one-loop correction for the cosmological
term does not vanish. Similarly, there will be renormalization
of the Newton constant.

The analysis required to show the cosmological constant
renormalization is a curved space generalization of the stan-
dard calculation for which we refer, to be definite, to section
16.2 of [62]. When expanded the quadratic order of the con-
stant piece of the scalar potential yields

1

4
m2

∫
(h2 − 2hμνh

μν) (42)

where

m2 ≡ 1

8

κ ′2μ4

λ
(43)

with

κ ′2 ≡ 2κ2 (44)

The term (42) can be combined with the original massless
propagator of the graviton; the first line of (13) becomes,
after multiplying an overall factor two to be consistent with
the convention of (13),

L = −1

2
∂γ h

αβ∂γ hαβ + 1

4
∂γ h

α
α∂γ hβ

β

+m2
(

− 1

2
hμνh

μν + 1

4
h2

)
. (45)

The propagator then is given by

〈φμν(x1)φρσ (x2)〉 = Pμνρσ κ ′2
∫

d4k

(2π)4

eik·(x1−x2)

i(k2 + m2)
(46)

where Pμνρσ for the traceless propagator takes the same form
as before:

Pμνρσ ≡ 1

2

(
ημρηνσ + ημσ ηνρ − 1

2
ημνηρσ

)
(47)

The contribution leading to the cosmological constant renor-
malization comes from∫ ∏

x

dhκ1κ2 e
i
2

∫ √
g̃ hαβ(∂2−m2)hαβ (48)

Then by following the analysis given in [62] one obtains
a constant term therein denoted by “I .” Let us denote by
Idiv the divergent part of the analogous quantity in our case.
In the curved spacetime context the constant I must be,

due to the 4D covariance, nothing but the coefficient of the
cosmological constant-type term. The renormalization of the
Newton constant can be similarly established. Let us consider
the following graviton vertices:

LVI I I = √−g̃

(
hαβhγ δ R̃

αγβδ − hαβh
β

γ R̃
καγ

κ

−1

2
hαβhαβ R̃

)
. (49)

By self-contracting the hμν factors one gets

→ �L = 3
�(ε)

(4π)2 m
2
√−g̃ R̃. (50)

3.2 Loop effects in scalar-involving sector

As reviewed in Sect. 2, the pure gravity system reduces to
3D once the shift vector constraint is enforced. The reduc-
tion has been extended in [30] to certain gravity-matter sys-
tems including the present one. Once a matter field is added
one encounters various matter-containing vertices and pro-
liferation of the required counter-terms as the number of the
loops increases; for the gravity-scalar system it has been pro-
posed to gauge away the fluctuation part of the scalar field
by utilizing the residual diffeomorphism with 3D coordinate
dependence.18 With this gauge-fixing, the background part
of the scalar field provides the background and the fluctuation
part materializes into a metric degree of freedom. Since the
manifest scalar part (i.e., the remaining part) serves just as a
background, renormalizability can be established in the sense
to be discussed. We start by reviewing the gauge-fixing pro-
cedure of the scalar field, which is well known in the field of
scalar-driven inflation, followed by the loop analysis, which
will set the stage for establishing renormalizability in Sect.
3.3.

18 The number of the gauge parameters and the corresponding fix-
ings go as follows [30]: there are four bulk gauge parameters and cor-
responding four measure-zero 3D residual paramters. The three bulk
gauge parameters can be used for the μ = 0, 1, 2 components of the
de Donder gauge. The three measure-zero residual 3D gauge param-
eters (see the analysis of the residual symmetry in [24]) can be used
for the shift vector fixing. Lastly one remaining parameter with the 3D
coordinate dependence can be used for gauge-fixing of the scalar since
the scalar field at this point becomes reduced to 3D. (The metric-trace
fixing can be effectively executed by employing the traceless propaga-
tor and the lapse function is fixed automatically from these fixings.) As
commented in our previous works (see e.g. [30]), it is possible to adopt
a slightly different gauge-fixing procedure. For instance, one may use
the 4D diffeomorphism to gauge-fix the scalar and shift vector prior to
imposing the de Donder gauge. In either of these cases, one should rely
on the reduction at the end for complete gauge-fixing.
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3.2.1 Gauge-fixing of scalar

Consider a generic scalar field σ(x) coupled with gravity:

σ(x) : a generic scalar field (51)

Its infinitesimal and finite diffeomorphism transformations,
respectively, are

σ ′(x) = σ(x) + ξμ∂μσ(x) (52)

and (see, e.g., [63])

σ ′(x) = eLξ σ (x) (53)

where Lξ denotes the Lie derivative along the vector field
ξ . Let us first consider the gauge-fixing of the scalar in a
generic metric background. In the background field method
one shifts the original field to

σ ≡ σ0 + σ̂ (54)

where σ0 denotes the classical solution and σ̂ the fluctuation.
For the reason explained in the earlier works [24,27] let us
introduce another shift σ̂ ≡ σ̄ + σ f and consider

σ ≡ σB + σ f , σB ≡ σ0 + σ̄ (55)

where σ f is taken as the fluctuation field and σ̄ is analogous
to ϕBμν in (4). When computing Feynman diagrams the σB

fields are placed in the external lines. Coming back to the
present case, let us define

ζ ≡ ζB + ζ f , ζB ≡ ζ0 + ζ̄ (56)

According to the general rule (52):

ζ ′ = ζB + ζ f + ξμ∂μ(ζB + ζ f ). (57)

The transformed field ζ ′ can also be written

ζ ′ ≡ ζB + ζ f
′. (58)

From (57) and (58) it follows

ζ f
′ = ζ f + ξμ∂μ(ζB + ζ f ) (59)

Therefore the parameter ξ satisfying ξμ∂μζB + ζ f +
ξμ∂μζ f = 0 will lead to the gauge-fixing19

ζ f
′ = 0 (61)

With ζ f gauged away, the Feynman rules should be adopted
accordingly: the Feynman diagrams with internal scalar
loops become irrelevant. The discussion so far was for an
arbitrary coordinate-dependent background. For a flat case

19 More carefully one should consider

ζ ≡ ζB(x) + ζ f (y) (60)

and gauge away ζ f (y). The argument y of ζ f (y) has been explicitly
recorded to emphasize the 3D nature of the fluctuation ζ f .

ζB

ζB

g̃B

Fig. 2 Non-minimal coupling (graviton loop)

we use the “analytic continuation,” namely, set ζ0 = const,
at the end [30].

3.2.2 Scalar-involving one-loop analysis

Let us examine how the non-minimal coupling in Fig. 2
arises. As stated in Sect. 2 there exist two diagrams in the
conventional setup (i.e., the setup with the dynamical scalar)
that produce the non-minimal coupling. The first diagram
considered in the previous section becomes irrelevant with
the gauge-fixing of the scalar. However, the second diagram,
Fig. 2, remains relevant.

For the scalar-graviton four-point vertex the relevant terms
come from the potential, i.e., the term quadratic in the scalar;
the two graviton legs come from expanding the factor

√−g.
For the graviton three-point vertex the relevant terms are
those in LVI ,LVI I , and LVI I I , given in (14) and (15). As
stated in Sect. 2 the divergence part can be computed by
using a flat metric. The counter-term for the diagram in Fig.
2 can be obtained by evaluating

i2

2

〈
2

∫
(LVI + LVI I + LVI I I )

∫ (
− μ2

r

2

)√−g ζ 2
B

〉

→ μ2
r

16
ζ 2
B

〈
(LVI + LVI I + LVI I I )(h

2 − 2hμνh
μν)

〉

(62)

The various numerical factors are the combinatoric factors.
The result turns out to be

�L = κ ′2 μ2
r

16

�(ε)

(4π)2 (−9R̃)ζ 2
B = −κ ′2 �(ε)

(4π)2

9μ2
r

16
ζ 2
B R̃

(63)

In addition to the vacuum bubble diagram discussed in Sect.
3.1 the diagram in Fig. 3 also contributes to renormalization
of the cosmological constant. (In Sect. 4 we will also see

∂ζB

∂ζB

∂ζB

∂ζB

Fig. 3 One-loop diagram with external scalar fields
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that this is one of the diagrams that make the cosmological
constant time-dependent.)

The correlator to compute is

i2

2

〈[
− 1

2

∫ (
hμρhν

ρ + 1

8
ημν(h2 − 2hρσ h

ρσ )

×1

2
hhμν

)
∂μζB∂νζB

]2〉

= −1

8
∂μζB∂νζB ∂μ′ζB∂ν′ζB

〈 ∫ ∫ [
hμρhν

ρ

× 1

8
ημν(h2 − 2hρσ h

ρσ ) − 1

2
hhμν

]

×
[
hμ′ρ′

hν′
ρ′ + 1

8
ημ′ν′

(h2 − 2hρ′σ ′hρ′σ ′
) − 1

2
hhμ′ν′

]〉

(64)

After some algebra one can show that

�L = 3

16
(κ ′)4 �(ε)

(4π)2 (∂μζB ∂μζB)2. (65)

The diagram in Fig. 4 yields a vanishing result and thus need
not be further considered.20

We are now ready to pursue the main goal of the present
work: the explicit implementation of one-loop renormaliza-
tion of the gravity-scalar system.

3.3 One-loop renormalization

The one-loop renormaization of pure gravity without a cos-
mological constant was established long ago [2]. In the case
of pure gravity it was crucial to use the following well-known
topological identity:

Rμνρσ R
μνρσ − 4RμνR

μν + R2 = total derivative. (66)

When matter is present some of the counter-terms cannot
be absorbed even after using this identity (and field redefini-
tions).21 Below we will collect all the counter-terms obtained
in the previous subsections and absorb them into a redefined
metric. The gauging-away of the scalar fluctuation – which
we view as a novel integrating-out procedure – makes the
whole divergence removal procedure similar to that of pure
gravity. It is only the cosmological constant-type terms that
require extra care.

20 There are diagrams that belong solely to the renormalization of the
scalar sector parameters. For example, the scalar coupling constant gets
renormalized by the diagram in Fig. 4; we will not work out such dia-
grams here.
21 This was the case for the pure gravity without the cosmological con-
stant. Once the cosmological constant is included, the system becomes
renormalizable with an appropriate metric field redefinition (originally
due to ’t Hooft [64]) discussed below. The implication of such a field
redeinition for the boundary condition has been recently investigated in
[52,53].

∂ζB

∂ζB

g̃B

Fig. 4 Diagram yielding a vanishing result

The scalar gauge-fixing has the following implications at a
technical level that remain valid in the time-dependent back-
ground considered in the next subsection. As we saw in Sect.
3.2, the diagrams with internal scalar lines become irrelevant.
Further, the gauge-fixing implies that what would be viewed
as different counter-terms due to different structures in the
scalar-field factors can now be grouped as one counter-term.
The condition that the scalar is a constant can be used toward
the final stage of the analysis after the effective action and
the quantum-corrected field equations including that of the
scalar are obtained. (The scalar-field equation should be kept
as a constraint.)22

Let us collect all of the one-loop counter-terms computed
so far. The analyses here and in Sect. 4 are valid up to renor-
malization conditions. The gravity sector result including the
ghost contribution was reviewed in Sect. 2:

�L = 1

2

�(ε)

(4π)2

[
41

60
RμνR

μν+27

40
R2

]
. (67)

Here and below the tildes and subscripts ‘B’s are omitted. A
word of caution is in order. Although we are using the 4D
covariant notation, the reduction to 3D is to be understood
for the external states. Therefore, (67), for example, can be
explicitly further reduced in terms of Rmn Rmn, Rm3Rm3 and
R33R33, which can be expressed in the 3D quantities (see,
e.g., [66] or [26]).23

The counter-term associated with Fig. 2 takes the form of
the non-minimal coupling and was shown to be

�L = −κ ′2 �(ε)

(4π)2

9μ2

16
ζ 2 R. (68)

As for the renormalization of the cosmological constant there
are two contributions: the bubble diagram contribution dis-
cussed in Sect. 3.1 and the contribution from Fig. 3. The
counter-term for the scalar 4-point amplitude was obtained
in (65):

22 The gauge-fixing of the fluctuating part of the scalar field means
non-dynamism of the scalar in the context of obtaining the 1PI action.
Once the 1PI action is obtained, one will have to go through the standard
procedure (see e.g. [65]) of gauge-fixing appropriate for the purpose at
hand. At that point, the scalar should be taken dynamical just as it is in
the classical level analysis.
23 Strictly speaking, the renormalizability at one loop is established
with the help of the identify (66) and it is not necessary to invoke the
reduction scheme. It will be necessary do so in higher order loops.
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�L = 3

16
κ ′4 �(ε)

(4π)2 (∂μζ ∂μζ )2. (69)

The counter-term (68) implies that the Newton constant
becomes renormalized. (Once the scalar field is put on-shell,

it is just a constant, ζ =
√

−μ2

λ
.) The counter-term (69)

vanishes once the scalar field is put on-shell. Except for the
generation of the corrections in the cosmological and Newton
constants, the one-loop renormalization of the system with a
constant scalar background is not very different from that of
the pure gravity system. Let us explicitly see how to absorb
the divergences. Consider the Einstein–Hilbert with the fol-
lowing metric redefinition (the subscripts r are omitted) [64]:

gμν → gμν + c1κ
2gμνR + c2κ

2Rμν; (70)

the action becomes

1

κ2

∫
d4x

√−g R → 1

(κ + δκ)2

∫
d4x

√−g R

+ 1

κ2

∫
d4x

√−g

[(
c1 + 1

2
c2

)
R2 − c2RμνR

μν

]
(71)

We should also consider the effect of (70) on cosmological
constant-type term of the classical potential:

−
(

2

κ2 � + V

) ∫ √−g (72)

→ −
[

2

(κ + δκ)2 (� + δ�) + V + δV

]

×
∫ √−g

[
1 + 1

2
s0

]

→ −
[

2

κ2

(
δ� − 2δκ�

κ

)
+ δV

] ∫ √−g

−
[

2

κ2 � + V

] ∫ √−g

(
1

2
s0

)

where

s0 ≡ κ2(4c1 + c2)R (73)

δV has been introduced to match with the counter-terms asso-
ciated withλ-renormalization (Fig. 5) andμ2-renormalization
(a diagram similar to Fig. 5 but with two ζB legs). These dia-
grams will not be explicitly worked out. Now the counter-
terms for the vacuum bubble discussed in Sect. 3.1 and non-
minimal term can be absorbed by setting

2

κ2

(
δ� − 2δκ�

κ

)
+ δV = Idiv (74)

and

− 2

κ3 δκ −
(

2

κ2 � + V

)
1

2
κ2(4c1 + c2)

= �(ε)

(4π)2

(
3m2 − κ ′2 9μ2

16
ζ 2

)
, (75)

Fig. 5 Scalar coupling
renormalization

ζB

ζB

ζB

ζB

respectively. Idiv is the parameter introduced in Sect. 3.1.
Equation (75) determines δκ; δ� is determined once that
result is substituted into (74). The counter-terms in (67) can
be absorbed by choosing c1, c2 as follows:

c1 + 1

2
c2 = 27

80

�(ε)

(4π)2 , −c2 = 41

120

�(ε)

(4π)2 (76)

which yields

c1 = 61

120

�(ε)

(4π)2 , c2 = − 41

120

�(ε)

(4π)2 (77)

With these δκ is given by

δκ = − �(ε)

(4π)2 κ3
[

203

240
� + O(κ2)

]
(78)

where we have substitutedm2 = κ2μ4

4λ
, ζ 2 = −μ2

λ
. Similarly,

one gets

δ� = κ2

2
(Idiv + δV ) − �(ε)

(4π)2 κ2�

(
203

120
� + O(κ2)

)

(79)

The procedure in this subsection will be generalized to the
time-dependent background.

4 Time-dependent background

Let us pause and summarize what has been done. We have
started with (40) and made the shift

grμν ≡ hμν + g̃Bμν where g̃Bμν ≡ ϕBμν + g0μν (80)

where the subscript r on grμν indicates that it is a renormal-
ized field. For the divergence analysis, we took g0μν = ημν

even if a curved solution is being considered. The renor-
malizability has been established by considering a constant
scalar background. Things become technically more com-
plicated once a time-dependent background and/or the finite
parts are considered as we now turn. We do not quantita-
tively pursue the task of working out the finite parts. Instead,
the renormalization procedure will be outlined by focusing
on how to absorb the counter-terms into the parameter/field
redefinitions. After this task is completed the cosmological
implications will be discussed.
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4.1 Outline of renormalization procedure

Considering a constant background is sufficient for estab-
lishing renormalizability itself. However, one must consider
the actual background of interest to study various physics
associated with that background. In the de Sitter case the
reduction was carried out in the static coordinates [30].24

For a more general Friedmann–Robertson–Walker (FRW)
spacetime one may reduce along the genuine time coordi-
nate t [19]. It will be possible, although technically involved
(mainly because of the complicated propagator of the back-
ground of interest), to obtain the 1PI action in the first few
loop orders. The renormalization procedure of the previous
subsection will go through only with relatively minor modifi-
cations. Renormalizability should be guaranteed by the con-
stant background analysis although the details will go differ-
ently. One can renormalize the action, introduce bare quanti-
ties and obtain the 1PI action after path-integrating over hμν .
The path integral over the scalar field will be unnecessary
since its fluctuation part can be gauged away. Here again,
the scalar gauge-fixing implies that what would be viewed as
different counter-terms due to the different scalar structures
can be grouped as a single counter-term. One of the impli-
cations of this is that the diagram in Fig. 3 will contribute to
the time-dependence of the vacuum energy.

The 1PI action will be a functional of g̃Bμν and ζB . One
may take the functional derivatives of the 1PI action with
respect to g̃Bμν and ζB in order to obtain the loop-corrected
field equations. (All the divergences will be canceled auto-
matically since the 1PI action contains the counter-terms.) At
this point the scalar field ζB can be set to a time-dependent
function ζ0q(t): ζB = ζ0q(t), and with this the loop-corrected
scalar-field equation can be viewed as the loop-corrected con-
straint. (The subscript q stands for “quantum.”) The meaning
of ζ0q(t) is as follows. Suppose the loop-corrected metric and
scalar-field equations are solved. ζ0q(t) denotes the scalar
solution.

The metric redefinition in (70) can be generalized to (again
the index r has been suppressed),

gμν → [gμν + κ2(c0gμν + c1gμνR + c2Rμν

+ c3∂μζ∂νζ + c4gμν(∂ζ )2)]; (81)

With this shift and the shift in the Newton constant the
Einstein–Hilbert part becomes

1

κ2

∫
d4x

√−g R → 1

(κ + δκ)2

∫
d4x

√−g R (82)

+ 1

(κ + δκ)2

∫
d4x

√−g κ2

24 In the de Sitter case the 3D formalism of [24] was used in [30]
because of the infrared divergence issue.

×
[
c0R +

(
c1 + 1

2
c2

)
R2 − c2RμνR

μν

+
(
c3

2
− c4

)
R(∂ζ )2 − c3R

μν∂μζ∂νζ

]

Including the shift in the cosmological constant term one
gets25

1

κ2

∫
d4x

√−g (R − 2�)

→
∫

d4x
√−g

[
1

κ2 (R − 2�) − 2

(
c3

2
+ 2c4

)
� (∂ζ )2

− 2

(
δ�

κ2 + 2c0� − 2δκ

κ3 �

)

−
(

2δκ

κ3 −c0 + (4c1 + c2)�

)
R

+
(

1 − 2δκ

κ

)(
c1 + 1

2
c2

)
R2

−
(

1 − 2δκ

κ

)
c2 R2

μν +
(

1 − 2δκ

κ

)(
c3

2
+c4

)
R(∂ζ )2

−
(

1 − 2δκ

κ

)
c3 Rμν∂μζ∂νζ

]
(83)

The first term on the right-hand side is the classical renormal-
ized action. The second term should be absorbed by the field
renormalization of the scalar field and will not be considered
further by the same token by which the diagram in Fig. 5 was
not considered. The rest of the terms can be matched with
the counter-terms computed in the previous section, and in
this way the parameters δκ, δ� and the c can be determined.
The counter-term of the cosmological constant form can be
absorbed by26

2

(
δ�

κ2 − 2δκ�

κ3 + 2c0�

)
= I . (84)

The contribution in Fig. 3 is of higher order in κ ′ and has
not been included here; once included it is one of the terms
leading to the time-dependence of the vacuum energy. The
shift in the Newton constant can be determined by requiring

2

κ
δκr + κ2(4c1 + c2)� = κ ′2 �(ε)

(4π)2

9μ2

16
ζ 2
B . (85)

The counter-terms in (67) can be absorbed by choosing the
c as follows:

c1 + 1

2
c2 = 27

80

�(ε)

(4π)2 , −c2 = 41

120

�(ε)

(4π)2 (86)

25 We are considering things in the leading order of κ . At the sub-
leading order one should consider the field redefinition of the metric
contained in the matter part.
26 If the cosmological constant � was absent, the divergence of the
cosmological constant form can be viewed as the corresponding bare
term.
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The vanishing result associated with Fig. 4 implies(
1 − 2δκ

κ

)(c3

2
− c4

)
= 0, −

(
1 − 2δκ

κ

)
c3 = 0 (87)

These relationships yield

c1 = 61

120

�(ε)

(4π)2 , c2 = − 41

120

�(ε)

(4π)2 , c3 = 0, c4 = 0

(88)

Upon substituting these into (85) and (84) one gets (the con-
stant c0 remains unfixed; it may be set to zero if it remains
unnecessary in the higher loops)

δκr = �(ε)

(4π)2

κ3

2

[
9

8
μ2ζ 2(t) − 203

120
�

]

δ� = κ2
(
Idiv

2
− 2c0�

)

+ �(ε)

(4π)2 κ2�

[
9

8
μ2ζ 2(t) − 203

120
�

]
(89)

4.2 Cosmological implications

Let us consider a time-dependent vev of the scalar and study
its implications for cosmology. Our scheme of quantization
leads to several interesting outcomes. For example, we show
that the vacuum energy should be time-dependent. There has
been a proposal in the literature that the Higgs field may
play a role of the inflaton field [36–39]. Our results seem to
indicate the possibility for the Higgs field to play the role of
the quintessence field as well. At least, it is not inconsistent
with the quintessence idea at the most basic level; the Higgs
field may be one of the contributors to the time-dependent
vacuum energy. The discussion here does not exclude the
possibility of the existence of a separate Quintessence field.
What remains true regardless is the fact that the Higgs field
will contribute to the time dependence of the vacuum energy
no matter how small the dependence may currently be.

Suppose one has obtained the 1PI action of the gravity-
scalar system and the quantum-corrected field equations.
Based on isotropy and homogeneity one would set the metric
ansatz to

ds2 = −dt2 + a2(t)dx2, (90)

namely, the same form of the ansatz used for the classical
field equations. If the solution for the scalar has certain char-
acteristics (to which we will shortly turn), its potential will
behave as a time-varying cosmological constant, which is
nothing but the basic idea of Quintessence.

Although the full quantum analysis is desirable and could
be carried out in spite of the high-level technicalities, it would
be of limited experimental significance for the time being.
As stated previously, however, it provides a rationale for the
setup in which some of the unsolved cosmological problems

can be tackled and more precise formulations of relatively
recent new ideas such as the time-dependent fundamental
constants can be made. With this said one can for now focus
on the classical field equations. With a slowly varying solu-
tion the scalar kinetic term can be neglected. Again the small-
ness of the cosmological constant may be explained by exam-
ining the potential once the scalar solution is substituted.

The time-dependence of the scalar field will be such that
it will settle down, as time goes on, to the value that yields
the minimum of the potential. The fact that the scalar field
contributes to the time-varying vacuum energy can easily be
seen by examining the metric field equation,

Rrμν − 1

2
grμνR

= 8πG

[
1

2
∂μζr∂νζr − 1

4
grμν(∂ζr )

2 − 1

2
grμνV

]
: (91)

the scalar kinetic terms may be neglected if they are much
smaller than the potential term, which is time-varying once
the time-dependent solution for the scalar field is substituted.

The differential equation satisfied by the scalar field can be
solved numerically as we will now discuss. We have restored
c and h̄ in the equations below for the numerical analysis.
The Friedmann equation (for the zero curvature case) is

H2 = 8πG

3c2

(
1

2
ζ̇ 2 + V (ζ )

)
(92)

where

V = λ

4

(
ζ 2 + 1

λ
μ2

)2

(93)

The scalar-field equation reads

ζ̈ + 3H ζ̇ + V ′(ζ ) = 0 (94)

where

H =
√

8πG

3c2

(
1

2
ζ̇ 2 + V

)
(95)

The Higgs particle in the Standard Model has the values of
λ � 0.13 and

mH � 126 GeV, v � 246 GeV (96)

where mH denotes the mass of a Higgs particle. In the CGS
units the order of magnitude of v is

v =
√

−μ2

λ
∼ mHc

h̄
√

λ
∼ 1016 erg (97)

Because of limitations in our computing power we could not
quite use the numbers of this order. Instead we set

v ∼ 105 (98)
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For the same reason we set

8πG

3c2 ∼ 10−7 (99)

Numerical solutions with various initial conditions have been
examined: they all display highly oscillating behaviors for
early times. For a sufficiently large time, however, the scalar
field quickly approaches the value used for

ζ =
√

−μ2

λ
(100)

5 Conclusion

In this work we have carried out the one-loop renormalization
of a gravity-scalar system with the Higgs-type potential. We
have reviewed that the 4D covariance is maintained only with
the traceless propagator but not with the traceful propagator;
the pathology of the traceful propagator was demonstrated
with several examples including the non-minimal coupling
that played an important role in the Higgs inflation pro-
posal. Gauging-away of the fluctuation of the scalar field
brought simplification in the counter-vertex structures, which
in turn has substantially simplified the renormalization pro-
cedure. Once a time-dependent solution was considered the
time-dependence of the vacuum energy followed. The novel
gauge-fixing of the scalar facilitates the view of the potential
as the time-varying vacuum energy. (The gauge-fixing of the
scalar provides a rationale for viewing the scalar field as the
on-shell background while keeping the metric off-shell.) Our
result is in line with the view that the current small value of
the cosmological constant may be due to the old age of the
universe [45,48].

The present renormalization program offers several
insights. Instead of asking why the cosmological constant
is so small one should perhaps ask why the minimum of the
potential should be taken to be zero. It might not be entirely
possible to “explain” why the minimum should be zero but
it may be possible to attribute it to an initial or boundary
condition which may be posed as a postulate. One possi-
ble motivation for the zero-minimum potential is that only in
such a case would a flat spacetime remain as a solution. (With
the classical scalar solution ζ = 0 one has a false vacuum
of dS whereas the true vacuum is a Minkowski spacetime,
at least classically.) This will be the case even at the quan-
tum level with an appropriate renormalization condition. The
renormalization condition should be such that the solution
approaches a flat spacetime; this will mean that all of the
finite parts are taken zero by the renormalization condition.
(See more comments below.)

Another insight is on the possible time-dependence of
fundamental constants. The time-dependence of the vacuum

energy (and other fundamental constants such as the masses
of elementary particles) comes from the fact that the back-
ground (i.e., the FRW metric) is time-dependent. Presumably
the smallness of the cosmological constant means that the
current universe is such that the scalar value is very close to
the true minimum.

There are several future directions, some of which must
be completed to (dis)prove the statements and speculations
above.

Firstly, one may tackle the finite parts of the correlators. To
that end one must employ the full curved space propagator.
The full propagator is the inverse of the Laplacian operator
constructed out of g̃Bμν . The metric g̃Bμν and its inverse
should be expanded around g̃0μν in the first order in ϕBμν

for the leading order computation of the effective action.
For a fuller analysis of renormalization, the renormalization
conditions will have to be explicitly spelled out as well; the
procedures introduced in [58–61] will be useful.

Secondly, one should consider the quantum corrections
to the constraints. It will be crucial to check whether or not
the reduction picture will remain valid with the quantum cor-
rections. The best approach for this may be for one to first
complete the renormalization procedure and cast the effec-
tive action into a simpler form in terms of the redefined fields.
It is conceivable that many terms in the effective action may
be absorbed into the field redefinition. Although the steps
are expected to be involved, the complementary mathemati-
cal picture offers one positive sign: the condition (32) should
remain valid (by gauge-fixing if necessary) even after the
quantum corrections are taken into account.

For pure gravity at one loop it was possible to stay within
the 4D covariant setup [2] due to the topological identity
given in (66). At two and higher loops one must employ the
“hybrid” setup in which the external states are taken on-shell
3D and the off-shell momenta in the loop are 4D since the
identity (66) is not applicable [26,27]. As we saw in this
work, essentially the same strategy can be employed for the
gravity-matter system if the number of the matter compo-
nents is small. It would be necessary, however, to use a dif-
ferent method for a more general gravity-matter system. (See
[52,53] for the recent progress along this line.) But before we
get to this, let us muse on one curious aspect of our foliation-
based quantization scheme.

One of the greatly appreciated lessons of the holographic
dualities in general is the importance of the boundary degrees
of freedom and their dynamics. The “dual” boundary degrees
of freedom relevant for our case are directly visible as part of
the bulk system [26,30]. (They are directly visible in the sense
that they do not require any transformation to become visible.
In contrast the gauge degrees of freedom in AdS/CFT may
become visible after a certain “dualization process” [67].)
Because of this one faces potential tension with the Dirichlet
boundary condition: there is a possibility that the Dirich-
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let boundary condition might not be adequate once quantum
gravitational effects set in. (This issue has been recently ana-
lyzed [52,53].) In black hole physics, for example, the infor-
mation may escape from the black hole to the asymptotic
region [68] where it may get stored. The Dirichlet bound-
ary condition makes the boundary degrees of freedom non-
dynamical since it constrains the fields to die out at the bound-
ary. This does not pose a problem for a non-gravitational
system since the system has genuine on-shell bulk physics.
Not all seems well in the gravitational physics, however, in
light of our proposal on the manner in which the boundary
degrees of freedom become relevant: the potential incompat-
ibility between the Dirichlet boundary condition and the non-
trivial boundary dynamics calls for investigation. In contrast,
the Neumann boundary condition should be fully compati-
ble with the quantum effects. It also seems plausible that the
Neumann boundary condition may shed some light in the
black hole information paradox. (The present quantization
scheme may be applied to study the Firewall [69–71], the
original motivation for our recent works.) Since the Dirich-
let boundary condtion will wipe out the boundary dynamics
the information might be lost if it (or at least part of it) is to
be stored at the boundary. The Neumann boundary condtion
should be safer in this respect.

Coming back to the renormalization of a more general
gravity-matter system, we can somewhat articulate the pos-
sibility put forth in [30]. First of all, one should investigate the
possibility that the presence of matter fields might not actu-
ally lead to non-renormalizability. In other words it could
be that the renormalizability may be determined largely by
the gravity sector since, with a theory in which the matter
fields are minimally coupled with gravity, it is the graviton
vertices that contain multiple derivatives, therefore tend to
lead to more divergent results.27 More work will be required
to thoroughly check this speculation. One encouraging sign
is that renormalizability does not seem lost even if one keeps
the scalar dynamical in the present system. (See [52,53] for
recent confirmation of this anticipation.) One would intro-
duce an additional term

∼ gμνζ
2 (101)

in the metric shift (81) in order to separately take care of the
right-hand side of (85): instead of (85), one will now have
two conditions, one for the Newton constant and the other
for absorbing the divergence of the form Rζ 2. It seems to

27 Also, as speculated in [30] the virual boundary terms could be of
some help in absorbing some of the counter-terms. This is in addition to
the flexibility, in a slightly more general renormalizability requirement,
of having several terms not present in the original action as counter-
terms. The flexibility of virtual boundary terms includes the freedom
analogous to the renormalization conditions. In other words, different
finite virtual boundary terms will be analogous to different renormal-
ization conditions.

be a reasonable possibility that a similar analysis will work
for a system with many matter fields, such as the Standard
Model.28

These anticipations and speculations will be worth more
careful study in the future.
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Appendix A: Conventions and identities

The signature is mostly plus:

ημν = (−,+,+,+) (A.1)

All the Greek indices are four-dimensional

α, β, γ, ..., μ, ν, ρ... = 0, 1, 2, 3 (A.2)

and all the Latin indices are three-dimensional

a, b, c, ...,m, n, r... = 0, 1, 2 (A.3)

Our definitions of the Riemann tensor, Ricci tensor and Ricci
scalar are

Rρ
σμν ≡ ∂μ�ρ

νσ − ∂ν�
ρ
μσ + �

ρ
μλ�

λ
νσ − �

ρ
νλ�

λ
μσ

Rμν ≡ Rκ
μκν, R ≡ Rν

ν (A.4)

The fluctuation metric φμν is defined through

gμν ≡ g0μν + φμν (A.5)

The indices of φμν are raised and lowered by g0μν, g0μν . For
the refined application of the background field method, an
additional shift φμν ≡ φBμν + hμν was made:

gμν = g0μν + φBμν + hμν (A.6)

The following shorthand notations were used in some places:

φ ≡ g0μνφμν, h ≡ g0μνhμν (A.7)

The graviton propagator is given by

〈φμν(x1)φρσ (x2)〉 = Pμνρσ �(x1 − x2) (A.8)

28 When the external states are taken as the 3D physical states the effec-
tive action can eventually be written as a 3D form. Initially the effective
action will be written as a position space 4D integral expression but then
subsequently it should be possible to reduce it to the corresponding 3D
form. The coefficients will reflect the 4D divergent integral.
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where, for the traceless propagator,29

Pμνρσ ≡ 1

2

(
g0μρg0νσ + g0μσ g0νρ − 1

2
g0μνg0ρσ

)
; (A.10)

it satisfies

Pμνκ1κ2 P
κ1κ2

ρσ = Pμνρσ (A.11)

The ghost propagator is given by

〈Cμ(x1)C̄ν(x2)〉 = g0μν �(x1 − x2) (A.12)

For a flat background,

�(x1 − x2) =
∫

d4k

(2π)4

eik·(x1−x2)

ik2 (A.13)

For the scalar kinetic term the propagator is

〈ζ(x1)ζ(x2)〉 =
∫

d4k

(2π)4

eik·(x1−x2)

ik2 (A.14)

In the leading order in a flat background

�α
βγ = 1

2
(∂βh

α
γ + ∂γ h

α
β − ∂αhβγ ) (A.15)

The traceful case is

Rμν � 1

2

(
∂ρ∂νϕμρ + ∂ρ∂μϕνρ − ∂2ϕμν − ∂μ∂νϕ

)

R � ∂μ∂νϕ
μν − ∂2ϕ,

R2 � ∂μ∂νϕ
μν ∂ρ∂σ ϕρσ − 2∂2ϕ∂α∂βϕαβ + ∂2ϕ∂2ϕ,

Rαβ R
αβ � 1

4

[
∂2ϕμν ∂2ϕμν − 2∂2ϕακ∂κ∂σ ϕσ

α

+2(∂μ∂νϕ
μν)2 + (∂2ϕ)2 − 2∂2ϕ ∂μ∂νϕ

μν

]
. (A.16)

The traceless case is (one can simply remove all the terms
containing ϕ)

Rμν � 1

2

(
∂ρ∂νϕμρ + ∂ρ∂μϕνρ − ∂2ϕμν

)
,

R � ∂μ∂νϕ
μν,

R2 � ∂μ∂νϕ
μν ∂ρ∂σ ϕρσ

Rαβ R
αβ � 1

4

[
∂2ϕμν ∂2ϕμν − 2∂2ϕακ∂κ∂σ ϕσ

α

+ 2(∂μ∂νϕ
μν)2

]
. (A.17)

29 The traceful propagator is

Pμνρσ ≡ 1

2
(g0μρg0νσ + g0μσ g0νρ − g0μνg0ρσ ) (A.9)

Appendix B: Pathology of traceful propagator

In the main body it was shown that the counter-terms turn
out to be covariant once the traceless propagator is used. In
contrast, use of the traceful propagator yields the results that
cannot be re-written in covariant forms. Instead of (19) and
(20) one gets

�L = −1

2
〈(LVI + LVI I )

2〉 = −1

2

�(ε)

(4π)2

×
[

− 7

12
R2 + 11

6
Rαβ R

αβ − 7

12
(2R2∂2ϕ + (∂2ϕ)2)

]

�L = −〈(LVI + LVI I )LVI I I 〉 = −1

2

�(ε)

(4π)2

×
[(

4Rαβ∂2ϕαβ + 5

3
R ∂α∂βϕαβ − 8

3
R ∂2ϕ

)]
(B.1)

Neither of these can be reexpressed in a covaraint form. For
the non-minimal coupling diagram in Fig. 1 the counter-
terms are given by

λ

24

�(ε)

(4π)2

(
∂μ∂νϕ

μν + 1

2
∂2ϕ

)
ζ 2
B (B.2)

This cannot be expressed in terms of covariant quantities.

Appendix C: Coordinate-free analysis

The analysis in Sect. 2.2 crucially depends on the iden-
tity (C.1) derived in [72] in the coordinate-free framework.
Whereas the component analysis requires less formalism and
technicality, the coordinate-free analysis provides a comple-
mentary understanding of the subtle relationship between the
3D and 4D tensors. For example, the 3D and 4D covariant
derivatives are related by a pullback operation and the use of
the coordinate-free setup makes evident the generality of the
techniques employed. In addition, the coordinate-free setup
makes it easier to connect with the more mathematically ori-
ented literature.

The commutator of the component forms of the Lie and
covariant derivatives used in Sect. 2.2 is a special case of the
more general relationship [72]:

[LX,∇Y]T = ∇[X,Y]T (C.1)

where X,Y are coordinate-free notations for vector fields
and T a tensor field. For the present case, the vector fields
X,Y take

X = ∂

∂x3 , Y = ∂

∂xα
(C.2)

in the coordinate base, and

T = h, (C.3)
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where the boldfaced symbol h is the coordinate-free nota-
tion for the 3D metric. Let us introduce the coordinate-free
version of eα

a (see Appendix A for its definition) and denote
it by e [73]:

eα
a ⇔ e (C.4)

The 3D covariant derivative D is related to the 4D covari-
ant derivative ∇ by

D = e∗ ∇ (C.5)

where ∗ on e∗ denotes a pullback operation and is the standard
mathematical notation. It is also common in the mathemat-
ical literature to use the same symbol to denote a pullback
quantity:

h ≡ e∗ h. (C.6)

The 3D metric compatibility condition takes

Dh = 0 (C.7)

Let us also denote the extension of the 3D second fundamen-
tal form K to 4D by the same letter ((3.59) of [73]):

K ≡ e∗ K (C.8)

The component form of the second fundamental form, Ki j ,
is related to the 3D metric hi j by
(

∂

∂x3 − LN

)
hi j = 2nKi j (C.9)

where N denotes the coordinate-free form of the shift vector,
and

LNhi j = Di N j + Dj Ni (C.10)

The component expression KmnKmn should translate into
the following coordinate-free expression:

(C13C24)(K ⊗ #K) = (K ⊗ #K)

(
∂

∂xμ
,

∂

∂xν
; dxρ, dxσ

)

(C.11)

where the C denote appropriate contractions. For example,
C13 denotes the contraction of ∂

∂xμ in the first slot and dxρ in
the third slot. The subscripts such as 1, 3 are often suppressed.
#K is defined as (see e.g. [74])

#K ∼ C(h−1 ⊗ (C(h−1 ⊗ K)) (C.12)

where C denotes the obvious contractions, i.e., the contrac-
tions dictated by the component expression, KmnKmn ; the
symbol ∼ means that the relationship is valid up to a possi-
ble numerical factor that depends on one’s convention. Let us
consider the coordinate-free expression of KmnKmn , (C.11).

Partially integrating, the covariant derivative in #K comes to
act on the other K; focusing on the factor DK one gets

⇒ DL∂3h = e∗∇ L∂3h = e∗L∂3∇h

= L∂3e
∗∇ h = L∂3Dh = 0 (C.13)
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