
Eur. Phys. J. C (2017) 77:319
DOI 10.1140/epjc/s10052-017-4876-8

Regular Article - Theoretical Physics

Nucleon structure functions in noncommutative space-time

A. Rafiei, Z. Rezaeia, A. Mirjalili

Physics Department, Yazd university, 89195-741 Yazd, Iran

Received: 26 October 2016 / Accepted: 26 April 2017 / Published online: 18 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract In the context of noncommutative space-time we
investigate the nucleon structure functions which play an
important role in identifying the internal structure of nucle-
ons. We use the corrected vertices and employ new vertices
that appear in two approaches of noncommutativity and cal-
culate the proton structure functions in terms of the noncom-
mutative tensor θμν . To check our results we plot the nucleon
structure function (NSF), F2(x), and compare it with exper-
imental data and the results from the GRV, GJR and CT10
parametrization models. We show that with the new vertex
that arises the noncommutativity correction will lead to a bet-
ter consistency between theoretical results and experimental
data for the NSF. This consistency will be better for small
values of the Bjorken variable x . To indicate and confirm the
validity of our calculations we also act conversely. We obtain
a lower bound for the numerical values of �NC scale which
correspond to recent reports.

1 Introduction

Lepton–nucleon deep inelastic scattering (DIS) is an impor-
tant tool to investigate nucleons and their constituents.
Nucleon structure functions are the physical quantities for
this purpose. Many phenomenological models have been
established to investigate the structure functions of nucle-
ons [1–8] but there is, however, a small deviation between
the experimental data and the models’ predictions. On the
other hand it is possible to investigate new physics, such as
noncommutative (NC) space-time, in the DIS processes.

The motivation to consider noncommutative field theory
(NCFT) leads back to string theory, where it was shown that
in the presence of a constant background field the end points
of an open string have noncommutative space-time (NCST)
properties [9,10].
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The energy scale of NCST (�NC) has a wide range. This
range results from different models and includes similar ver-
tices. Different results for numerical values of �NC from
different models with similar vertices are due to the differ-
ent employed experiments in the related analyzing process.
These experiments include low energy as well as precise high
energy collider experiments and finally sidereal and astro-
physical events [11]. The description of them is as follows:

– At low energy experiments, for instance the Lamb shift in
hydrogen [12], the magnetic moment of muon [13–15],
atomic clock measurements [16] and Lorentz violation
by clock comparison test [17] have already been studied
in the presence of NCST. In three body bound states, the
experimental data for a helium atom put an upper bound
on the magnitude of the parameter of noncommutativity,
θNC [18].

– At high energy collider experiments we refer for example
to forbidden decays in the standard model (SM), such as
Z → γ γ [19], top quark decays [20–22] and Compton
scattering [23] which has been investigated in the NCST.
In the experiment that has been done by the OPAL col-
laboration, the NC bound from e−e+ scattering at 95%
CL is �NC > 141GeV [24].

– Astrophysics and cosmological bounds on the NCST
have also been explored in various processes, such as
energy loss via γ → ν̄ν in stellar clusters [25], effects
of γ → ν̄ν in primordial nucleosynthesis [26] and ultra
high energy astrophysical neutrinos [27].

As we have mentioned and according to articles that have
been cited, the bound on �NC is strongly model dependent.
For collider scattering experiments it is about a few T eV .

Some of the collider searches about the NCST can be qual-
ified, considering some significant references. In Ref. [28]
NC effects in several 2 → 2 processes in e−e+ colli-
sions such as Moller and Bhabha scattering, pair annihila-
tion and γ γ → γ γ scattering are investigated. As a result,
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an NC scale of about 1T eV is extracted at high energy
linear colliders. The pair production of the neutral elec-
troweak gauge boson is studied at the LHC [29] and it is
shown that under conservative assumptions, the NC bound is
�NC ≥ 1T eV . Also pair production of a charged gauge
boson at the LHC [30] exhibits a clear deviation for the
azimuthal distribution from the SM at �NC = 700 GeV. The
NC effect for the Drell–Yan process at the LHC has been
taken into account in [31], and consequently a related scale
is explored, such as �NC ≥ 0.4 TeV.

Two approaches have been suggested to construct a non-
commutative standard model (NCSM) [32,33]. Using these
approaches, the Feynman rules have been derived in [34–
37], which have been used to address the phenomenological
aspects of NCSM [38–50]. The significant features of the
NCSM are that there are not only NC corrections for the
existing vertices, that they are used to calculate the DIS pro-
cesses; but they also contain new gauge boson interactions,
which may cause some corrections in a leading order approx-
imation of perturbative QCD. Here we would like to employ
the NC corrections and the new raised interactions to address
some phenomenology of electron–proton scattering.

The organization of this paper is as follows: In Sect. 2 we
make a brief remarks about NCSM. In Sect. 3 the electron–
proton DIS is computed in two approaches of the NCSM.
In Sect. 4 we take into account the amended parton distribu-
tions, based on the NCSM approaches, to extract the nucleon
structure function, using GRV, GJR and CT10 parametriza-
tion models [51–53]. Finally we will summarize our results
and give our conclusion in Sect. 5.

2 Noncommutative standard model

Noncommutative theory leads to a commutation relation
between the space-time coordinates

[ x̂μ, x̂ν] = iθμν, (1)

where hatted quantities are hermitian operators and θμν is
a real, constant and asymmetrical tensor. A simple way to
construct the NCFT is the Weyl–Moyal star product [54,55]

( f ∗ g)(x) = exp

(
1

2
iθμν ∂

∂xμ

∂

∂ yν

)
f (x) g(y)

∣∣∣∣
y→x

. (2)

Substituting the star product with the usual multiplication
between conventional fields will lead to the NCFT. The star
product has no effect on the integral of the quadratic term,
i.e

∫
d4x f ∗ g = ∫

d4x f g. Thus the propagators are equal
in both the NCSM and the SM [54,55]. This mechanism
causes some difficulties such as charge quantization (which

restricts the charges of matter fields to 0, ±1 [56,57]) and the
definition of the gauge group tensor product [58].

There are suggested two approaches in order to resolve
these problems. The first one is built from an U(n) gauge
group, which is a larger group with respect to the symmetry
groups of the standard model. On this basis, two Higgs mech-
anisms lead to a reduction to the standard model group [32]
(we call this approach an unexpanded approach). The second
one is based on the Seiberg–Witten map [9,10]. This gauge
group is like the one of the standard model: non-commutative
fields are expanded in terms of commutative ones (we call it
an expanded approach) [33].

It is obvious that to assume a preferred direction leads to
a violation of Lorentz invariance. Also it has been shown
that the noncommutative field theories are not unitary for
θμ0 �= 0. Therefore, for observable measurements we should
take θμ0 = 0 [59].

As previously mentioned, Feynman rules have been
derived in both approaches [34–37]. All vertices contain NC
corrections. In addition, there are some new interactions. For
example, for the electromagnetic interaction between lepton
and proton, there are corrections in lγ l and qγ q as lepton and
quark vertices. In the SM, a photon does not interact with neu-
tral particles like neutrino, gluon etc., but these interactions
would exist in NCFT. Therefore one of the new and outstand-
ing vertices is the photon–gluon interaction. Photon–fermion
and photon–gluon vertices can be described briefly in differ-
ent approaches:

– In the expanded approach:

1. The photon–fermion vertex will be given by the
expression [34]

ieQ f

[
γμ − i

2
qν

(
(θμνγρ + θνργμ + θρμγν)p

ρ
in − θμνm f

)]

= i eQ f γμ + 1

2
eQ f

[
(pout .θ.pin)γμ

−(pout .θμ)( � pin − m f ) − ( � pout − m f )(θμ.pin)
]
. (3)

2. The photon–gluon vertex is given by [35]

−2 e Sin2θwKγ gg�3((μ, q), (ν, p), (ρ, p′))δab,
(4)

where Kγ gg is the coupling constant of the theory.
We assign to it three numerical values: -0.098, 0.197
and -0.396 [60,61]. In Eq. (4), �3 is given by

�3((μ, k1), (ν, k2), (ρ, k3)) = −(k1.θ.k2)

× [
(k1 − k2)

ρgμν + (k2 − k3)
μgνρ + (k3 − k1)

νgρμ
]

−θμν
[
kρ

1 (k2. k3) − kρ
2 (k1. k3)

] − θνρ
[
kμ

2 (k3. k1)

−kμ
3 (k2. k1)

] − θρμ
[
kν

3 (k1. k2) − kν
1 (k3. k2)

]
+(θμ. k2)

[
gνρk2

3 − kν
3k

ρ
3

] + (θμ. k3)
[
gνρk2

2 − kν
2k

ρ
2

]
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+(θν . k3)
[
gμρk2

1 − kμ
1 k

ρ
1

] + (θν . k1)
[
gμρk2

3 − kμ
3 k

ρ
3

]
+(θρ. k1)

[
gμνk2

2 − kμ
2 k

ν
2

] + (θρ. k2)
[
gμνk2

1 − kμ
1 k

ν
1

]
,

(5)

which is called the three-gauge boson vertex func-
tion [35].

– In the unexpanded approach [36]:

1. The photon–fermion vertex is represented as

−ie exp

(
i

2
k.θ.q

)
γ μ. (6)

2. The photon–gluon vertex has the following represen-
tation:

e δab (gμν(q − p)ρ + gνρ(p + p′)μ − gρμ(p′ + q)ν)�︸ ︷︷ ︸
Iμνρ

(7)

where

� = −2

3
sin(

1

2
q.θ.p).

Considering the condition θμ0 = 0 the following useful
identities will be obtained:

A.θ.B ≡ AμθμνBν = θ . (A × B), (8)

A. θ. θ. B = Aμθμνθβ
ν Bβ = |θ |2(A.B) − (A. θ)(B.θ). (9)

3 Electron–proton scattering in noncommutative
space-tame

Deep inelastic electron–proton scattering is a prevalent
method to probe the proton. The electron–proton cross sec-
tion in the laboratory system is given by [62,63]

dσ

dQ2 dν
= α2π

4E2 sin4(ϕ/2)

1

EE ′

×[2W1 sin2(ϕ/2) + W2 cos2(ϕ/2)], (10)

where ϕ, E and E ′ are the scattering angle and the energy
of the incident and scattered electrons, respectively. The W1

and W2 functions characterize the structure of the proton.
In the electron–parton elastic scattering, partons (quarks and
gluons) are assumed to be point-like particles. To determine
the structure functions, the usual method is to consider an
electron which is scattered by quarks. For this purpose one
can calculate the partonic cross section. The result would
be multiplied by parton distributions. Finally, we need to
integrate over the momentum fraction of each parton. In this
paper we use this method in our calculations. We will now
calculate the electron–parton scattering in two approaches
of the NCFT, where both the photon–quark and the photon–
gluon interactions are considered.

3.1 Parton model in expanded approach of NCSM

In the NCSM we follow the same method as in the usual
space-time, with the exception that the electron–quark scat-
tering is corrected in the NCST. Additionally we consider
electron–gluon scattering in our calculations. So we should
take into account the two individual contributions which we
referred to before.

Corrected vertex contribution: At first we calculate the
electron-quark scattering with respect to the given vertex in
Eq. (3). In the laboratory system the corrected vertex could
be written as:

iei geγμ + 1

2
ei ge

[−(p′. θμ)( � p − m)
]

︸ ︷︷ ︸
Cμ

(11)

where ei is the charge of the i th quark. After doing some
algebra (see Appendix A) the average of the squared invari-
ant amplitude for electron–quark scattering in the expanded
approach is obtained. We have
〈
|M|2

〉
= 1

4

(
ei g2

e

q2

)2

Tr [ γ μ ( � k + me) γ ν( � k′ + me)]
Tr [ γμ ( � p + mq) γν( � p′ + mq)]

− i

8

(
ei g2

e

q2

)2

Tr [ γ μ ( � k + me) γ ν( � k′ + me)]
Tr [ γμ ( � p + mq)Cν( � p′ + mq)]

− i

8

(
ei g2

e

q2

)2

Tr [ γ μ ( � k + me) γ ν( � k′ + me)]
Tr [Cμ ( � p + mq) γν( � p′ + mq)]

+ 1

16

(
ei g2

e

q2

)2

Tr [ γ μ ( � k + me) γ ν( � k′ + me)]
Tr [Cμ ( � p + mq)Cν( � p′ + mq)]. (12)

In this equation the first term corresponds to the result of the
calculation in the usual space-time with relic terms arising
from NCST. One can easily show by the trace theorem that
the terms containing the NC parameter, either of first order or
of second order with respect to θ would vanish. Therefore, in
this case the nucleon structure functions do not receive any
correction from the NCST up to order of θ2, and we have

MW1(Q
2, ν) = 1

2

∑
i

e2
i qi (x) ≡ F1(x), (13)

νW2(Q
2, ν) =

∑
i

e2
i x qi (x) ≡ F2(x). (14)

New vertex contribution: Now we consider electron–gluon
scattering in the expanded NCST. The photon–gluon vertex
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k k’

q

p p’
c1 c2

Fig. 1 A schematic graph for electron–gluon scattering

(see Eq. (4)), considering the N = −2 Sin2θwKγ gg is writ-
ten

geN �δab (15)

where for simplification we omit the index 3 in � while we
kept it before (see Eq. (3)). In the laboratory system and using
the identity given by Eq. (8) the � quantity can be written

�((μ, q), (ν, p), (ρ, p′))
= −θμν

[−qρ(p2 + q.p) + pρ(q2 + q.p)
]

−θνρ
[−pμq2 + qμ(q.p)

] + θρμ
[
pν(q.p) − qν p2]

−(θμ. q)
[
gνρ p2 − pν pρ

] + (θρ. q)
[
gμν p2 − pμ pν

]
+(θν . q)

[
gμρ(p2 + 2q.p) − (pμ pρ + pμqρ + qμ pρ)

]
.

(16)

Considering Fig. 1 the invariant amplitude for the
electron–gluon scattering can be calculated. By substituting
the gluon vertex (see Eq. (15)) in the expression for the invari-
ant amplitude, we find

−iM = [ ¯u(k′)(i geγ λ)u(k)]
[−i gλμ

q2

]

× [ε∗
2νc

∗
1 geN �μνρ δc1c2ε3ρc2] (17)

where εi is denoting the gluon polarization and ci is the color
factor of the gluon. The symbol δ implies that color changing
does not occur for the gluon. This is due to the fact that in the
photon–gluon interaction, the photon is a colorless identity.
Nevertheless we should take into account the contributions
of all gluons since the gluons can appear in eight color states.

The scattering amplitude in Eq. (17) is proportional to θ .
To calculate the structure functions we need the square of
this quantity, |M|2. Therefore the final result for the gluon–
photon interaction as a NCST effect would initially appear at

order θ2. Following the required calculations the corrected
parts of the structure function can be obtained (see Appendix
A):

MW1(Q
2, ν) = M2b(x)

Q2 x g(x) ≡ F1(x), (18)

νW2(Q
2, ν) = a(x) x g(x) ≡ F2(x), (19)

where

a(x) = N 2θ2

2

(
−12xME3 − 6x2M2E2 + 12E2Q2

−5x2M2Q2 + 40xME2E ′ + 16x2M2EE ′

−22EE ′Q2 − 40xMEE ′2 − 6x2M2E ′2

+12E ′2Q2 + 12xME ′3 + 6Q4
)

(20)

and

b(x) = N 2θ2

2

(
−8E4 − 8E ′4 + 4xME3 + 2x2M2E2

+24xMEE ′2 + 4x2M2Q2 − 24xME2E ′

−6x2M2EE ′ − 4EE ′Q2 + 2x2M2E ′2

− 4xME ′3 + 11Q4

4

)
.

(21)

Here Q2 = −q2 and q is the momentum transferred by the
photon, M is the mass of the proton and the other parameters
are defined by

ν = Q2

2Mx
, (22)

E = ν

y
= Q2

2Mxy
, (23)

E ′ = E − Q2

2Mx
. (24)

θ2 is the square of θ and the energy scale (�NC) for the NCST
is given by

|θ | = 1

�2
NC

. (25)

The final result for the nucleon structure function can be
obtained by adding the gluon effect to the rest of the contri-
butions. We get the following results:

MW1(Q
2, ν) = 1

2

∑
i

e2
i qi (x) + M2b(x)

Q2 x g(x) ≡ F1(x),

(26)

νW2(Q
2, ν) =

∑
i

e2
i x qi (x) + a(x) x g(x) ≡ F2(x), (27)
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where qi and gi are the distribution functions of the quarks
and gluon, respectively.

In the following section, we will use Eq. (27) to indicate
the effect of the gluon distribution to modify the proton struc-
ture function, resulting from the NC modification.

3.2 Parton model in unexpanded approach of NCST

In the unexpanded approach the calculations are like the ones
in the expanded approach, except that we should use the
vertex given by Eqs. (6) and (7).

Corrected vertex contribution: By replacing the photon–
electron corrected vertex into the leptonic tensor, Lμν , this
tensor will appear as

Lμν = 1

2

∑
Spins

[ū(k′)γ μe
i
2 k.θ.q u(k)][ū(k′)γ νe

i
2 k.θ.qu(k)]∗

= 1

2

∑
Spins

ū(k′)γ μe
i
2 k.θ.q u(k) ū(k)γ νe− i

2 k.θ.qu(k′)

= 1

2

∑
Spins

ū(k′)γ μ u(k)ū(k)γ νu(k′). (28)

It is obvious that no correction arises from the NCST in
the leptonic tensor. Consequently one can show that there is
no correction in the partonic sector.

New vertex contribution: Starting from Eq. (8), follow-
ing the calculation listed in Appendix A for electron–gluon
scattering in the expanded NC, using the definition H =
4
9 − 2

9
M2

Q2 , one obtains

MW1(Q
2, ν) = H g(x)sin2

(
1

2
q.θ.p

)
≡ F1(x), (29)

νW2(Q
2, ν) = 5

9
x g(x)sin2

(
1

2
q.θ.p

)
≡ F2(x). (30)

Since our calculations are in the laboratory system and
are according to Eq. (8), in this case we also do not have any
gluon contribution. Therefore, the unexpanded approach of
the NC does not have any effect on the nucleon structure func-
tions in the laboratory system and consequently the structure
functions would be as in the usual space-time, given by Eqs.
(13) and (14).

4 Results and discussions

In Sect. 3 the correction of the NCST has been calculated up
to leading order in terms of the NC parameter, θ . The NC cor-
rection to the structure function, in the expanded approach, is
just coming from electron–gluon scattering and, as we men-
tioned before, it contains the θ2 term at the leading order of
the approximation.

The modified structure functions of nucleon are given by
Eqs. (26) and (27). The two nucleon structure functions F1(x)
and F2(x) at the parton level for the spin 1/2 particles are not
independent from each other, considering the Callan–Gross
relation F2(x) = 2xF1(x). Therefore at the leading order
approximation and in the usual space-time, it is sufficient
to take into account one of these structure functions; prefer-
ably the F2(x) one. This is why most experimental data are
relating to the F2(x) rather than the F1(x) structure func-
tion. In the NC space-time, the Callan–Gross relation would
not exist, though in the NCST it is not unexpected, due to the
contribution of the photon–gluon interaction in calculations.

By writing Eq. (27) in terms of constituent quarks and
gluon distributions we will have the following result for the
proton structure function:

F2(x) =
(

2

3

)2

[xuv(x) + 2x ū(x)] +
(

−1

3

)2

[xdv(x)

+2x d̄(x)
] +

(
−1

3

)2

[2x s(x)] + a(x) x g(x),

(31)

where u(x), d(x), s(x) and g(x) denote the quark and gluon
distribution functions. The final term comes from our calcu-
lations in the NCST. The factor a(x) (see Eq. (20)) contains
the parameters of NCST like θ and Kγ gg and the usual param-
eters like the energies of the incident and scattered electron
(E and E ′), the transferred momentum(q as Q2 = −q2), the
proton mass (M) and the momentum fraction carried by each
parton (x).

We have depicted the modified nucleon structure function
(F2(x)) in Fig. 2 by substituting Eqs. (22), (23) and (24) in
Eq. (20). The values of Q2 and y have been chosen so as
to correspond to the available range of experimental data.
The results have been compared with available experimen-
tal data [64] and the prediction of the GRV parametrization
model at the LO approximation [51]. The reason for employ-
ing this approximation going back to the reality is that we
intend to indicate the effect of the gluon distribution more
dominantly in NC space-time, while we know that in nor-
mal space-time, the gluon distribution would not exist in the
LO approximation. To indicate the theoretical uncertainty
in the standard model prediction for the structure function
F2(x), we also use the GJR and CT10 parametrization mod-
els [52,53] and find the results for the modified nucleon struc-
ture function. We present here the results for these models
in the modified and normal cases. For instance in Fig. 3 the
results for the nucleon structure function, arising from the
normal cases and the modified models, are compared with
each other and also with the available experimental data. As
we would expect, the theoretical uncertainty, using different
parametrization models, is very low and we get a firm con-
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Fig. 2 Our results for the modified nucleon structure function (NSF),
F2(x), at Q2 = 3.5 GeV2, 4.5 GeV2 and 650 GeV2, which are com-
pared with the available experimental data [64] and the normal GRV
parametrization model [51]. Here “GRV-Im.” indicates our results for
the modified NSF, using the GRV model. “GRV-Uim.” denotes the nor-
mal NSF in the GRV model

clusion for the validity of the modified models, considering
the NC effect.

To plot the F2(x) we need two NC parameters, �NC and
Kγ gg . Good fits for F2 with experimental data are obtained
for the approved amounts of the energy scale �NC. Figures 2
and 3 indicate the good compatibility with the experimen-
tal data, especially for small values of the Bjorken x variable
where we expect the effect of new physics to be more relevant.
As has been mentioned above, in the literature there is no spe-
cific value for the NC scale. Collider scattering experiments

GJR Im.
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Data Q2 650 GeV2

0.01 0.02 0.05 0.10 0.20 0.50
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F
2

Fig. 3 Nucleon structure function (NSF), F2(x), at Q2 = 650 GeV 2,
compared with the available experimental data [64], using the GRV,
CT10 and GJR models. Here “Im.” indicates our results for the modified
NSF (up panel), and “Uim.” denotes the normal NSF (down panel),
using the three mentioned models

could be proper evidence to search NCST effects because
they are very sensitive to NC signals. The usual bound from
these experiments is �NC ∼ 1 TeV. The present work is also
implemented for collider scattering experiments to find the
modified structure functions of the nucleons in NCST. So we
have also employed this range, which is prevalent in such
processes.

Following the procedure which was described in the
expanded approach, one finds three numerical values for
the Kγ gg parameter, which are −0.098, 0.197 and −0.396,
respectively [60,61]. The results for all three values of Kγ gg

are similar. Therefore we have just presented the results com-
ing from the numerical values of the parameters and scales
which are tabulated in Table 1. As can be seen from Table 1,
the numerical value for the NC scale is changing by vari-
ation of Q2. For example for fixed Kγ gg , a goodness fit-
ting is provided at �NC = 830 GeV for Q2 = 3.5 GeV2,
while for the Q2 = 650 GeV2 case, the �NC scale is equal
to 2200 GeV. The �NC also depends on the measure of
the Kγ gg parameter. According to Table 2 for a fixed Q2,
the value of �NC increases when the magnitude of Kγ gg

increases. For instance, at fixed Q2 for Kγ gg = −0.098
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Table 1 �NC variations with squared transfer momentum for a fixed
Kγ gg = −0.098

Q2(GeV)2 Kγ gg �NC(GeV)

3.5 −0.098 830

4.5 −0.098 750

650 −0.098 2200

Table 2 �NC variations with parameter Kγ gg for a fixed Q2 =
650(GeV)2

Q2 (GeV)2 Kγ gg �NC(GeV)

650 −0.098 2200

650 +0.197 3200

650 −0.396 4400

we will get �NC = 2200 GeV and it is 4400 GeV for
Kγ gg = −0.396. The numerical values for the NC scale,
using the GJR and CT10 parametrization models, are of the
same order as the ones in Tables 1 and 2, with a similar
behavior when the squared transfer momentum is varying.

To see the stability of results with respect to different val-
ues of Kγ gg parameter, we depict in Fig. 4 the F2(x) structure
function at Q2 = 650 GeV2, using three numerical values
for the Kγ gg parameter with �NC = 4000 GeV. As can
be seen, there is sufficient stability for the nucleon structure
function with respect to variation of the Kγ gg parameter.

We also investigate the effect of Q2 variation on the struc-
ture function F2(x). In Fig. 5 we plot the modified F2(x) at
x = 0.000161, using three different values for Kγ gg values.
It shows again that the differentiation between SM prediction
and NCST modification would occur at large Q2 values.

To confirm the validity of our obtained results we can
act conversely and concentrate to extract the energy scale,
�NC. We then need to consider Eq. (31), while the energy
scale, �NC, is unknown. At fixed Kγ gg parameter, using the
available experimental data for the F2(x) structure function,
we are able to obtain the lower bound of �NC (for more
details, see Appendix B). We get

– For Kγ gg = −0.098: �NC ≥ 430 GeV,

– For Kγ gg = 0.197: �NC ≥ 610 GeV,

– For Kγ gg = −0.396: �NC ≥ 860 GeV .

However, in obtaining the above numerical values for �NC

scale we use the GRV model, but similar results will appear
when we employ the GJR and CT10 models. To have confir-
mation on the validity of our calculations, we once again go
back to the Drell–Yan process, which plays an important role
for investigating the structure function of the nucleon and in
testing the parton model. Analyzing these processes at the
NCST will yield �NC ≥ 0.4 TeV [31], which is compatible
with our result.

GRV Im. kγ gg 0.396
GRV Im. kγ gg 0.197
GRV Im. kγ gg 0.098

GRV Uim.
Data Q2 650 GeV2

0.01 0.02 0.05 0.10 0.20 0.50

0.10

1.00

0.50

0.20

0.30

0.15

1.50

0.70

x

F
2

Fig. 4 Our results for the modified nucleon structure function (NSF),
F2(x), versus Bjorken x variable at Q2 = 650 GeV 2, using three differ-
ent numerical values for the Kγ gg parameter which are compared with
the available experimental data [64] and the normal GRV parametriza-
tion model [51]. The plots relate to �NC = 4000 GeV . Here “GRV-
Im.” indicates our results for the modified NSF, using the GRV model.
“GRV-Uim.” denotes the normal NSF in the GRV model

GRV Im. kγ gg 0.396

GRV Im. kγ gg 0.197

GRV Im. kγ gg 0.098

GRV Uim.

Data x 0.000161

10.05.02.0 3.0 15.07.0

1.0

2.0

3.0

1.5

Q2

F
2

Fig. 5 Our results for the modified nucleon structure function (NSF) ,
F2(x), at x = 0.000161, versus Q2 variable, using three different values
of theKγ gg parameter, which are compared with the available experi-
mental data [64] and the normal GRV parametrization model [51]. The
plots relate to �NC = 1300 GeV. Here “GRV-Im.” indicates our results
for the modified NSF, using GRV model. The “GRV-Uim.” denotes the
normal NSF in the GRV model

5 Conclusion

We have considered the effect of NCST on the proton struc-
ture functions. There are two approaches to construct the
usable NC theory. In both approaches, all present vertices are
modified by the NC parameter θμν . In this case, in addition
to the usual interactions, some new interactions would also
appear. We have applied two new corrections and two new
interactions, one for each approach, to calculate the struc-
ture functions of proton. Three of the four corrections do
not have any effect but a new interaction from an expanded
approach contributes to the nucleon structure function. As
can be seen, the obtained results for the improved proton
structure function, F2(x), are in better compatibility with the
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available experimental data rather than the results coming
from the normal GRV, CT10 and GJR parametrization mod-
els, specially at small values of the Bjorken x variable, which
is related to the high energy region. Also the order of magni-
tude of the NC energy scale that we have, using the NCSM
approach, corresponds with the expected range of the other
predictions.

Here we consider the special case when the tensor compo-
nent θμ0 is zero. Therefore laboratory rotation does not have
any effect on the result. To investigate the effect of the Earth
rotation one can calculate the case for θμ0 �= 0, which we
hope to address in the future.

On the other hand, the current results can be extended to
the higher order approximation, but these effects are expected
to be very small and might be ignorable with respect to a
lower approximation order.

The results which we got in NC space-time include auto-
matically the Lorentz violation. The calculations in which
we impose by hand the Lorentz invariance, can be done [65]
and we will do so in our further research activity.

In non-minimal NCSM, the Z boson is also coupled to glu-
ons and it could modify the F2(x) structure function. How-
ever, the main contribution for the F2(x) is arising out of
the electromagnetic interaction. In this case the portion of
weak interaction is negligible. Weak interactions have spe-
cially been used to compute the xF3(x) structure function
where the parity violation occurs. We will report about this
issue in the near future as a separated research project.
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Appendix A

Here we perform in detail the required calculations for
the electron–quark and electron–gluon scattering in the
expanded NC. Similar calculations can be done for unex-
panded NC.
Electron–quark scattering: Employing the Feynman rules
like the ones for Fig. 1 we will be able to obtain the required
results up to leading order, considering the NC parameter.
Since propagators are not affected by NC corrections, just
vertices should be written in NC space-time. According to

the photon–fermion vertex in the laboratory system (see Eq.
(11)) the invariant amplitude reads

−iM = [ū(k′)(i geγ μ)u(k)][−i gμν

q2 ][ū(p′)(iei geγ ν)u(p)]

+ [ū(k′)(i geγ μ)u(k)][−i gμν

q2 ]

× [ū(p′)(1

2
ei geC

ν)u(p)]. (32)

After some simplification we have

−M = ei g2
e

q2 [ū(k′)γ μu(k)][ū(p′)γμu(p)]

−i
ei g2

e

2q2 [ū(k′)γ μu(k)][ū(p′)Cμu(p)]. (33)

Then, for the squared invariant amplitude, we get

|M|2 = (
ei g2

e
q2 )2[ū(k′)γ μu(k)][ū(p′)γμu(p)][ū(k′)γ νu(k)]†

[ū(p′)γνu(p)]† + i
2 (

ei g2
e

q2 )2[ū(k′)γ μu(k)][ū(p′)γμu(p)]
[ū(k′)γ νu(k)]†[ū(p′)Cνu(p)]† − i

2 (
ei g2

e
q2 )2[ū(k′)γ μu(k)]

[ū(p′)Cμu(p)][ū(k′)γ νu(k)]†[ū(p′)γνu(p)]† + 1
4 (

ei g2
e

q2 )2

[ū(k′)γ μu(k)][ū(p′)Cμu(p)][ū(k′)γ νu(k)]†[ū(p′)Cνu(p)]†.

(34)

We remember that for two 4×4 �1 and �2 matrices Casimir’s
trick will lead to

∑
all spins

[ū(a)�1u(b)][ū(a)�2u(b)]†

= Tr [ �1 ( � pb + mb) �̄2( � pa + ma)] . (35)

According to the definition of �̄2 = γ 0�
†
2 γ 0 , we have

γ 0Cν† γ 0 = −Cν , γ 0γ ν† γ 0 = γ ν . Now by taking aver-
age over the initial spin states and a sum over the final spin
states and using the Casimir trick we arrive at Eq. (12).

Electron–gluon scattering: To do the required calculations,
we consider Fig. 1 and proceed to address the square of invari-
ant amplitude in Eq. (17). Then doing the average over initial
spins states and summing over the final spin states and then
the gluon polarization states

∑
εμε∗

ν → −gμν, (36)

and we have color algebra

∑
c1c2

δc1c2δc1c2 =
8∑

c1=1

δc1c1 = 8; (37)
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we will get the following result:
〈|M|2〉 = 16N2g4

e
q4

[
θ2

(
k.k′ (p2 + q2)(−p2q2 + (q.p)2)

−q2q.p (k.pk′.q + k.qk′.p) + q4k.p k′.p + k.q k′.q (q.p)2

−k.k′ q.p (p2q2 − (q.p)2)
) − p4k.θ.q k′.θ.q + k.θ.θ.q

×(q2 p2 k′.(q + p)) + k.θ.θ.k′(p2 + (p + q)2)(p2q2

−(p.q)2) − q.θθ.q
(
p2 k.k′( p2

2 + 2q2 + 3q.p) + k.pk′.p
(2p2 + q2 + 2p.q) + (k.qk′.p + k.p k′.q)(p2 + 2p.q)

)
−p2k.qk′.q + k′.θ.θ.q

(
(q2 p2 − 2(q.p)2)k.(p + q)

)
+(p2 k.q + q2 k.p) q.p

)]
.

(38)

In Eq. (38) we neglected the electron mass. We note that
since there are not more than two gluon legs, the incident
gluon is like the outgoing gluon. Mathematically, the Kro-
necker delta function confirms this reality. On the other hand
since gluons are appearing in eight color states, we should
consider the color factor in our calculation, which can be
done using Eq. (37). Now to simplify the above equation, by
taking α, β, γ as the angles between the k, k′, k × k′ and θ

directions, respectively, in the laboratory system and using
Eqs. (8) and (9) we get

k. θ. θ. k = E2|θ |2sin2α, (39)

k′. θ. θ. k′ = E ′2|θ |2sin2β, (40)

k. θ. θ. k′ = E E ′|θ |2(cos ϕ − cos β cos α), (41)

k. θ. k′ = E E ′|θ | sin ϕ cos γ. (42)

Then by taking the average over α, β and γ , Eq. (38) will
lead to

〈
|M|2

〉
= 8N 2g4

e

q4 θ2EE ′m2
e f f

[
a′cos2(

ϕ

2
) + b′sin2(

ϕ

2
)
]
,

(43)

where

a′ = −12mef f E
3 − 6m2

e f f E
2 + 12E2Q2 − 5m2

e f f Q
2

+6Q4 + 40mef f E
2E ′ + 16m2

e f f E E ′ − 40mef f EE ′2

−22EE ′Q2 − 6m2
e f f E

′2 + 12E ′2Q2 + 12mef f E
′3,(44)

b′ = −8E4 − 8E ′4 + 4mef f E
3 + 2m2

e f f E
2

+4m2
e f f Q

2 − 24mef f E
2E ′ − 6m2

e f f E E ′

−4EE ′Q2 + 24mef f EE ′2 + 2m2
e f f E

′2

+11Q4

4
− 4mef f E

′3. (45)

Here mef f is the zeroth component of the four-momentum
for the gluon. By substituting Eq. (43) into

dσ = 1
(2E)(2m)

〈
|M|2

〉
4π2

d3k′
2E ′

d3 p′
2p′

0
δ(4)(p + k − p′ − k′)

= 1
4mE

〈
|M|2

〉
4π2

1
2 E

′dE ′d�
d3 p′
2p′

0
δ(4)(p + k − p′ − k′).

(46)

Now we use∫
d3 p′

2p′
0
δ(4)(p + q − p′) = 1

2m
δ(ν + q2

2m
), (47)

where in laboratory system we have

d(cos ϕ)dE ′ = 1

2EE ′ dQ2dν. (48)

Thus, we obtain
dσ

dQ2dν
= πα2

4E2sin4(
ϕ
2 )

1

EE ′

×
[
a cos2(

ϕ

2
) + bsin2(

ϕ

2
)
]
δ

(
ν − Q2

2mef f

)
.

(49)

Here a = N2θ2

2 a′ and b = N2θ2

2 b′. Now, by comparing Eqs.
(49) and (10) we determine the gluon contributions to the
nucleon structure function, which are denoted by w

gluon
1 and

w
gluon
2 , respectively:

w
gluon
1 = b

2
δ

(
ν − Q2

2M xg

)
, (50)

w
gluon
2 = a δ

(
ν − Q2

2M xg

)
, (51)

in which we use mef f = xgM . Here xg is the fraction of the
momentum of the nucleon which is carried by the gluon. To
obtain the nucleon structure function which results from the
electron–gluon scattering it is necessary to multiply w

gluon
1

and w
gluon
2 by g(xg), as the probability function, to find the

gluon which is carrying the fraction of the nucleon’s momen-
tum. Then integrating with respect to xg the result will be

W1(Q
2, ν) =

1∫
0

dxgg(xg)w
gluon
1

=
1∫

0

dxgg(xg)
b(xg)

2
δ

(
ν − Q2

2Mxg

)

=
1∫

0

dxgg(xg)
b(xg)

2

xg
ν

δ(xg − x)
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Table 3 Sample numerical values for the �NC scale in the 2.7 < Q2 < 20000 GeV2 range at different values of the parameter Kγ gg

Q2 x y F2 �NC(GeV ) �NC(GeV ) �NC(GeV )

(GeV )2 (Kγ gg = −0.396) (Kγ gg = 0.197) (Kγ gg = −0.098)

2.7 0.0000632 0.474 0.869 1469.790878 1036.671282 731.1744254

2.7 0.000161 0.186 0.744 1109.23072 782.3613887 551.8071629

2.7 0.0004 0.075 0.65 968.4777393 683.0856515 481.7870115

2.7 0.000632 0.047 0.607 931.3936346 656.9295317 463.3388436

2.7 0.002 0.015 0.477 978.0422135 689.831656 486.5450346

3.5 0.0000632 0.614 1.177 1092.475209 770.5434101 543.4718266

3.5 0.000102 0.38 0.979 1173.494369 827.6877545 583.7762934

3.5 0.000161 0.241 0.891 1107.991591 781.4874074 551.1907353

3.5 0.000253 0.153 0.833 1024.73426 722.7644388 509.7728494

3.5 0.0004 0.097 0.788 948.2066447 668.7880654 471.7027838

3.5 0.000632 0.061 0.701 960.7592906 677.6416838 477.9473277

3.5 0.002 0.019 0.554 953.716109 672.6739947 474.4435678

3.5 0.008 0.005 0.472 863.8536749 609.2923217 429.739852

4.5 0.000102 0.489 1.189 1134.173413 799.9539415 564.215363

4.5 0.000161 0.31 1.013 1187.857645 837.8184447 590.9215686

4.5 0.000253 0.197 0.929 1112.109125 784.3915819 553.2390781

. . . . . . .

. . . . . . . .

. . . . . . . .

70 0.0013 0.597 1.531 1627.876511 1148.172066 809.8170224

70 0.0021 0.37 1.262 1581.367623 1115.368468 786.6803232

. . . . . . .

. . . . . . . .

. . . . . . . .

650 0.008 0.901 1.023 2743.007312 1934.694894 1364.559289

650 0.013 0.554 0.85 2446.757401 1725.744233 1217.184338

650 0.021 0.343 0.728 2301.833477 1623.526651 1145.089275

650 0.032 0.225 0.604 2387.182749 1683.725105 1187.547835

650 0.05 0.144 0.475 2980.538375 2102.230042 1482.723472

650 0.08 0.09 0.455 2272.86274 1603.093042 1130.67725

650 0.13 0.055 0.356 2952.511056 2082.461844 1468.780768

650 0.25 0.029 0.249 3920.945563 2765.517002 1950.546273

650 0.4 0.018 0.151 1441.52413 1016.734211 717.1126135

. . . . . . .

. . . . . . . .

. . . . . . . .

20000 0.25 0.887 0.293 3138.948924 2213.959995 1561.527705

= b(x)

2

x

ν
g(x) = b(x)

M

M2x

Q2 g(x), (52)

W2(Q
2, ν) =

1∫
0

dxgg(xg)w
gluon
2

=
1∫

0

dxgg(xg) a(xg) δ

(
ν − Q2

2Mxg

)

=
1∫

0

dxgg(xg) a(xg)
xg
ν

δ(xg − x)

= 1

ν
a(x) x g(x), (53)

where Eqs. (18) and (19), as the corrected portion of the
structure function, come from the gluon–photon interaction.
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Appendix B

We use Eq. (31) to find the lower bound for �NC where the
a(x) term in this equation is given by Eq. (20). By substituting
numerical values for E and E′ which can be obtained in terms
of the variables x and y (see Eqs. (22), (23) and (24)), and
finally using the Q2 value in Eq. (20), the a term in Eq. (31)
is calculable. Now, we replace the numerical value for the
F2(x) experimental data together with the numerical values
for parton densities at the specified x-variable. These are
quoted from the GRV parametrization model [51]. Thus, we
are able to extract the value of the �NC scale.

Consequently, using different numerical values for the
Kγ gg parameter, three values are obtained for �NC. Some
sample results are listed by Table 3 in the 2.7 < Q2 <

20000 GeV2 range. As can be seen from this table, the value
of �NC changes by the variation of Q2. Our purpose is to
determine the lowest bound of �NC. Looking carefully at
this table we see this value occurs at Q2 = 3.5 GeV2 for
x = 0.008, which is not identical for the different values
of the Kγ gg parameter. We determine the lowest bounds for
the �NC scale in Table 3 at different amounts of the Kγ gg

parameter, using the underlined representation.
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