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Abstract The aim of this paper is to study the quantum
tunneling process for charged vector particles through the
horizons of more generalized black holes by using the Proca
equation. For this purpose, we consider a pair of charged
accelerating and rotating black holes with Newman–Unti–
Tamburino parameter and a black hole in 5D gauged super-
gravity theory, respectively. Further, we study the tunneling
probability and corresponding Hawking temperature for both
black holes by using the WKB approximation. We find that
our analysis is independent of the particles species whether
or not the background black hole geometries are more gen-
eralized.

1 Introduction

A black hole (BH) is considered as an object which absorbs
all the matter/energy from the environing area into it due to
its intense gravitational field. General relativity (GR) depicts
that a BH swallows all particles that collides the horizon of
the BH. In 1974, Hawking predicted that a BH behaves like
a black body having a specific temperature, known as the
Hawking temperature, which allows a BH to emit radiation
(called Hawking radiation) from its horizon by assuming
quantum field hypotheses in the background of the curved
spacetime.

A particle’s action of a quantum mechanical nature is used
in order to calculate the Hawking radiation spectrum from
different BHs [1,2]. The analysis of Hawking radiation as
a quantum tunneling phenomenon and accretion onto some
particular BHs has attracted the attention of many researchers
[3–8]. Various efforts have been made to examine this radia-
tion spectrum from BHs by considering the quantum mechan-
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ics of scalar, Dirac, fermion and photon particles etc. Many
researchers [9–12] have studied vector particle tunneling to
obtain more information as regards the Hawking temperature
and the radiation spectrum from different BHs. The charged
vector particle tunneling from Kerr–Newman BH [13] and
charged black string [14] are important contributions toward
BH physics.

The charged fermions tunneling from Reissner–Nord-
ström–de Sitter BH with a global monopole [15] is studied by
using the WKB approximation and Dirac equation to evalu-
ate the tunneling process for charged particles as well as the
Hawking temperature. In this paper the authors have evalu-
ated the tunneling probability and the Hawking temperature
for charged fermion tunneling from event horizon. The tun-
neling process for Plebanski–Demianski BHs is determined
by the graphical behavior of the Hawking temperature of an
ingoing and outgoing charged fermion from the event horizon
[16]. The Hawking temperature for charged NUT (Newman–
Unti–Tamburino) BH solutions to the field equations is con-
sidered with rotation and acceleration. A BH can be studied
by a small measurement through quantum field theory on
a curved background [17]. The tunneling probability for an
outgoing particle is ruled by the imaginary part of the parti-
cle’s action. A large number of attempts [18–26] have been
made to calculate the tunneling of charged and uncharged
scalar and Dirac particles with different BH configurations.
The tunneling of spin- 1

2 particles by the event horizon of the
Rindler spacetime was explained and the Unruh temperature
has been calculated [27]. Kraus and Wilczek [28,29] took
a semi-classical process to analyze Hawking radiation as a
tunneling event. This process contains the calculation for the
phenomenon of s-wave emission across the event horizon. In
[30], it has been shown that the Hawking radiation from a
rotating wormhole may emit all types of particles.

This paper deals with the study of the Hawking radiation
process of charged vector particles from the horizons of a
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pair of accelerating and rotating BHs and a BH in 5D gauged
super-gravity.

Vector particles (spin-1 bosons) such as Z (uncharged) and
W± (charged) bosons are of great importance in the Standard
Model. In the background of BH geometries, the behavior
of the bosons can be determined by using the Proca equa-
tion. First, we formulate the field equations of charged W±-
bosons by using the Lagrangian of the Glashow–Weinberg–
Salam model [31]. Then we shall investigate particle emis-
sion process by using the Hamilton–Jacobi definition and
WKB approximation to the derived equation for the charged
case in the considered BH geometries. By putting the deter-
minant (of the coefficient matrix) equal to zero, we can solve
for the radial function. Consequently, we compute the tunnel-
ing rate of the charged vector particles from the horizons of
BHs and find the corresponding Hawking temperature values
in both cases.

The paper is planned as follows: we discuss in Sect. 2 the
tunneling rate and Hawking temperature for charged accel-
erating and rotating BH solutions with NUT parameter. Sec-
tion 3 is devoted to an investigation of charged vector parti-
cle tunneling and the Hawking temperature for BH in 5D
gauged super-gravity spacetime, by investigating the W±
bosons observation. Section 4 provides a summary of the
results for both cases.

2 Accelerating and rotating black holes with NUT
parameter

In general, the NUT parameter is affiliated with the gravito-
magnetic monopole, related to the bending properties of the
environing spacetime due to the fundamental mass, its accu-
rate physical significance could not be determined. The gen-
eralization for multi dimensional Kerr–NUT–de Sitter space-
time [32,33] and its physical implication [34] are also inves-
tigated. As a BH, the dominance on the NUT parameter,
the revolution parameter sets the spacetime free of bend-
ing singularities and the result can be thought of as a NUT-
like result. If the revolution parameter commands the NUT
parameter, the result is Kerr-like and a closed chain of bend-
ing singularity forms. The behavior of this form of the sin-
gularity structure is independent of the existence on the cos-
mology constant.

There are lots of BHs which are associated with the NUT
parameter and lots of investigations have been made to exam-
ine their physical effects in the space of colliding waves. The
significance of the NUT parameter makes itself accurately
felt when a motionless Schwarzschild mass is absorbed in
a stationary source and allows for electromagnetism [35].
The NUT parameter refers to the bend of the electromag-
netism leaving out the fundamental Schwarzschild mass. In
the absence of an electromagnetic field, it reduces to the bend-

ing of the vacuum spacetime [36]. The bend of the surround-
ing space pair with the mass of reference yields the NUT
parameter.

The line element for accelerating and rotating BHs with
NUT parameter is defined as [37]

ds2 = − 1

�2

[ Q

ρ2

(
dt − (a sin2 θ + 4l sin2 θ

2
)dφ

)2

−ρ2

Q
dr2 P̃

ρ2

(
adt − (r2 + (a + l)2)dφ

)2

−ρ2

P̃
sin2 θdθ2

]
, (2.1)

where

� = 1 − α

ω
(l + a cos θ)r, ρ2 = r2 + (l + a cos θ)2,

Q =
[
(ω2k̃ + ẽ2 + g̃2)(1 + 2αl

r

ω
) − 2Mr + ω2k̃r2

a2 − l2

]

×
[

1 + α
a − l

ω
r

] [
1 − α

a + l

ω
r

]
,

P̃ = sin2 θ(1 − a3 cos θ − a4 cos2 θ) = P sin2 θ,

a3 = 2M
αa

ω
− 4

alα2

ω2 (ω2k̃ + ẽ2 + g̃2),

a4 = −α2a2

ω2 (ω2k̃ + ẽ2 + g̃2).

Here, M denotes the mass of pairs of BHs, e and g indicate
the electric and magnetic charges, respectively, while l is the
NUT parameter of BH, α and ω indicate acceleration and
rotation of the sources, respectively. Also, a is the Kerr-like
rotation parameter and k̃ is given by

(
ω2

a2 − l2
+ 3α2l2

)
k̃ = 1 + 2

αl

ω
M − 3

α2l2

ω2 (ẽ2 + g̃2).

Here, α, ω, M, ẽ, g̃ and k̃ are arbitrary real parameters. We
would like to mention that ω depends on the NUT parame-
ter l and the Kerr-like rotation parameter a. The α twisting
property of BHs is proportional to the rotation ω. Also, ω

depends on rotation parameters l and a. The parameters α,
ω, M, ẽ, g̃ and k̃ vary independently. If α is equal to zero,
then the metric in Eq. (2.1) leads to the Kerr–Newman–NUT
solution. If l = 0, then the metric in Eq. (2.1) gives the cou-
ple of charged and rotating BHs. In this case, if ẽ and g̃ are
equal to zero, we have a Schwarzschild BH and if l and a are
equal to zero it leads to a C-metric.

The metric (2.1) can be rewritten as

ds2 = − f (r, θ)dt2 + dr2

g(r, θ)
+ �(r, θ)dθ2 + k(r, θ)dφ2

−2H(r, θ)dtdφ, (2.2)
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where f (r, θ), g(r, θ), �(r, θ), K (r, θ) and H(r, θ) are given
by the following equations:

f (r, θ) = Q − Pa2 sin2 θ

ρ2�2 , g(r, θ) = Q�2

ρ2 ,

� = (r, θ) = ρ2

�2P
,

k(r, θ) = 1

�2ρ2

(
sin2 θ P(r2 + (a + l)2)2

− Q
(
a sin2 θ + 4l sin2 θ

2

)2)
,

H(r, θ) = 1

�2ρ2

(
sin2 θ Pa(r2 + (a + l)2)

− Q
(
a sin2 θ + 4l sin2 θ

2

))
.

The electromagnetic potential for these BHs is given by

A = 1

a(r2 + (l + a cos θ)2)

[
− ẽr

(
adt − dφ((l + a)

− (l2 + a2 cos2 θ + 2al cos θ))
)

− g̃
(
l + a cos θ

(
adt − dφ

(
r2 + (l + a)2)

)]
. (2.3)

The event horizons are obtained for g(r, θ) = Q�2

ρ2 = 0,
which implies that � �= 0, so Q = 0, which yields the
following real roots of r :

rα1 = ω

α(a + l)
, rα2 = −ω

α(a − l)
r± = a2 − l2

ω2k̃[
−

(
(ω2k̃ + ẽ2 + g̃2)

αl

ω
− M

)

±
√(

(ω2k̃ + ẽ2 + g̃2)
αl

ω
− M

)2 − (ω2k̃ + ẽ2 + g̃2)
ω2k̃

α2 − l2

]
,

(2.4)

where rα1 and rα2 are acceleration horizons and r± represent
the outer and inner horizons, respectively, such that
(
(ω2k̃ + ẽ2 + g̃2)

αl

ω
− M

)2

−(ω2k̃ + ẽ2 + g̃2)
ω2k̃

a2 − l2
> 0.

The angular velocity at BH outer (event) horizon is defined
by

�̌ = a

r2+ + (a + l)2
. (2.5)

In order to investigate the tunneling spectrum for charged
vector particles through the BH horizon, we will consider
Proca equation with electromagnetic effects. In a curved
spacetime with electromagnetic field, the motion of mas-
sive spin-1 charged vector fields is depicted by the given

Proca equation by using the Lagrangian of the W-bosons of
Glashow–Weinberg–Salam model [10]

1√−g
∂μ(

√−gψνμ)+m2

h2 ψν+ i

h
eAμψνμ+ i

h
eFνμψμ = 0,

(2.6)

where g is the determinant of the coefficient matrix, m is
particles mass and ψμν is an anti-symmetric tensor, i.e.,

ψνμ = ∂νψμ − ∂μψν + i

h
eAνψμ − i

h
eAμψν andFμν

= ∇μAν − ∇ν Aμ.

Here, Aμ is considered as the electromagnetic potential of
the BH, e denotes the charge of the W-bosons and ∇μ is
the geometrically covariant derivative. Since the equation of
motion for the W+ and W− bosons is similar, the tunneling
processes should be similar too. For simplification, here we
will consider the W+ boson case; the results of this case can
be extended to W− bosons due to the digitalization of the
line element. For W+ field, the values of the components of
ψμ and ψνμ are obtained as follows:

ψ0 = −kψ0 − Hψ3

f k + H2 , ψ1 = gψ1, ψ2 = �−1ψ2,

ψ3 = −Hψ0 + f ψ3

f k + H2 ,

ψ01 = −kgψ01 − Hgψ13

f k + H2 , ψ02 = −kψ02 − Hψ23

�( f k + −H2)
,

ψ03 = −ψ03

f k + H2 ,

ψ12 = g�−1ψ12, ψ13 = g( f ψ13 − Hψ01)

f k + H2 ,

ψ23 = gψ23 − Hψ02

�( f k + H2)
.

The electromagnetic vector potential for this BH is given by
[38]

A = 1

a[r2 + (l + a cos θ)2] [−ẽr [adt

−dφ(l + a)2 − (l2 + a2 cos2 θ + 2la cos θ)]
−g̃(l + a cos θ)[adt − dφr2 + (l + a)2]].

(2.7)

Applying the WKB approximation [39], i.e.,

ψν = cν exp

[
i

h̄
S0(t, r, θ, φ) + �h̄n Sn(t, r, θ, φ)

]
, (2.8)

to the Proca equation (2.6) and neglecting the terms for n =
1, 2, 3, 4, . . ., we obtain the following set of equations:

kg[c1(∂1S0)((∂1S0) + eA0)
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− c0(∂1S0)
2] − Hg

[
c3(∂1S0)

2

− c1(∂1S0)((∂3S0) + eA3)
]

+ k

�

[
c2(∂2S0)((∂0S0)

+ eA3) − c0(∂2S0)
2
]

− H

�

[
c3(∂2S0)

2 − c2(∂2S0)((∂3S0) + eA3)
]

+[c3(∂3S0)((∂0S0) + eA0)

− c0(∂3S0)((∂3S0) + eA3)] + eA3kg[c1((∂0S0) + eA0)

− c0(∂1S0)]
−m2kc0 − m2Hc3 − eA3Hg[c3(∂1S0)

− c1((∂3S0) + eA3)] = 0, (2.9)

kg[c1(∂0S0)((∂0S0) + eA0 − c0(∂1S0)(∂0S0)]
− Hg[c3(∂1S0)(∂0S0)

− c1(∂0S0)((∂3S0) + eA3)] + g( f k + H2)

�

×
[
c2(∂1S0)(∂2S0) − c1(∂2S0)

2
]

+ g f [c3(∂1S0)(∂3S0) − c1(∂3S0)((∂3S0) + eA3)]
+ gH [c1(∂3S0)((∂0S0)

− eA0) − c0(∂1S0)(∂3S0)] + eA0kg[c1((∂0S0)

− eA0) − c0(∂1S0)]
−m2gc1( f k − H) − eA0Hg[c3(∂1S0)

−c1((∂3S0) − eA3)]
+ eA3g f [c3(∂1S0) − c1((∂3S0)

+ eA3)] + eA3H [c1((∂0S0) + eA0)

− c0(∂1S0)] = 0, (2.10)
k

�

[
c2(∂2S0)

2 − c0(∂2S0)(∂0S0) + eA0(∂0S0)c2

]

− H

�
[c3(∂1S0)(∂2S0)

− c2(∂1S0)(∂3S0)] − g

�
[c2(∂1S0)

2

− c1(∂1S0)(∂2S0)]( f k − H)

+ f

�
[c3(∂2S0)(∂3S0) − c2(∂3S0)

2 − eA3c2(∂3S0)]

+ H

�
[(∂3S0)(∂0S0)c2

− c0(∂2S0)(∂3S0) + c2eA0(∂2S0)(∂3S0)]
−m2c2�

−1( f k − H)

+ eA0
k

�
[c2(∂0S0) − c0(∂2S0)

+ eA0c2] − eA0
H

�
[c3(∂2S0) − c2(∂3S0)

− c2eA3] + eA3
f

�
[c3(∂2S0) − c2(∂3S0)

− eA3c2] + eA3
H

�
[c2(∂0S0)

− c0(∂2S0) + eA0c2] = 0, (2.11)

[c3(∂0S0)
2 − c0(∂3S0)(∂0S0) + eA0c3(∂0S0)

− eA3c0(∂0S0)]
+ g − H [c1(∂0S0)(∂1S0) − c0(∂1S0)

2 + eA0c1(∂1S0)]
− f g[c3(∂2S0)

2

− c1(∂1S0)(∂3S0) − eA3c1(∂0S0)] − H

�
[c2(∂0S0)(∂2S0)

− c0(∂2S0)
2

+ eA0c2(∂2S0)] − f g[c3(∂1S0)
2 − c1(∂1S0)(∂3S0)

− eA3c1(∂0S0)]
− H

�
[c2(∂0S0)(∂2S0) − c0(∂2S0)

2 + eA0c2(∂2S0)]

− f

�
[c3(∂2S0)

2

− c2(∂2S0)(∂3S0) − eA3c2(∂2S0)]
+ eA0[c3(∂0S0) − c0(∂3S0)

+ eA0c3 − eA3c0 + m2[Hc0 + c3 f ] = 0. (2.12)

Using the technique of separation of variables, we can choose

S0 = −(E − j�̌)t + W (r) + Nφ + �(θ), (2.13)

where E and j represent the particle’s energy and angular
momentum, respectively. From Eqs. (2.9)–(2.12), we can
obtain a matrix equation,

G(c0, c1, c2, c3)
T = 0,

which implies a 4×4 matrix labeled “G”, whose components
are given as follows:

G11 = −Ẇ 2kg − kN 2

�
− �̇2 − �̇eA3 − m2k − eA3kgẆ ,

G12 = −Ẇkg(E − j�̌) + kgẆeA0 + HgẆ �̇

+ HgẆeA3 − eA3kg(E − j�̌) + kge2A3A0

+ eA3Hg�̇ + Hge2A3,

G13 = − k

�
(E − j�̌)N + k

�
NeA3 + H

�
�̇N + H

�
NeA3,

G14 = −Ẇ 2Hg − H

�
N 2 − �̇2(E − j�̌) + �̇eA0

−m2H − eA3gHẆ ,

G21 = kg(E − j�̌)Ẇ − gHẆ �̇ − eA0kgẆ − eA3HẆ ,

G22 = −kg(E − j�̌)(−(E − j�̌) + eA0

−gH(E − j�̌)(�̇ + eA3)

+ g

�
N 2( f k − H) − g f �̇(�̇ + eA3))

+ gH�̇(−(E − j�̌) − eA0) + eA0kg(−(E − j�̌)

+eA0gH(�̇ − eA3) − eA3g f (�̇ + eA3),

eA3H(−(E − j�̌) − m2g( f k − H),

G23 = g

�
Ẇ N ( f k − H2),
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G24 = Hg(E − j�̌)Ẇ + g f Ẇ �̇ − eA0gHẆ + eA3g f Ẇ ,

G31 = k

�
(E − j�̌)N − H

�
N�̇ − eA3HN ,

G32 = g

�
Ẇ N (E − j�̌),

G33 = − k

�
[(E − j�̌)2 − eA0(E − j�̌)] + H

�
Ẇ �̇

− g

�
[Ẇ 2( f k + H2)] − f

�
[(�̇)2 + eA3(�̇)]

+ H

�
[�̇((E − j�̌) + eA0N )]

−m2�−1( f k + H2) − eA0
k

�
[(E − j�̌)

− eA0] + eA0
H

�
[�̇ + eA3]

− eA3
f

�
[�̇ + eA3],

G34 = −H

�
NẆ + f

�
N�̇ − eA0N

H

�
+ eA3 + N

f

�
,

G41 = (E − j�̌)�̇ + (E − j�̌)eA3 + gHẆ 2 + N 2 H

�

+m2H + (E − j�̌)eA0

− e2A0A3, G42 = gHẆ (E − j�̌) − gHeA0Ẇ

+ f gẆ �̇ − f geA3(E − j�̌),

G43 = H

�
(E − j�̌)N − H

�
NeA0 + f

�
N�̇ + NeA3,

G44 = (E − j�̌)2 − (E − j�̌)eA0 − f gẆ 2

− f

�
N − m2 f − eA0[(E − j�̌) − eA0],

where Ẇ = ∂r S0, �̇ = ∂θ S0 and N = ∂φS0. For the non-
trivial solution, the absolute value G equals zero, and we
solve the resultant equation for the radial part so that we get
the following integral:

ImW± = ±
∫ √

(E − eA0 − j�̌)2 + X

f (r)g(r)
dr (2.14)

where + and − represent the radial functions of outgoing
and incoming particles, respectively, while the function X

can be defined as X = −�−1 f N −m2 f − Hg(E − j�̌) −
g f �̇ + eA0gH − eA3g f ; �̌ is the angular velocity on the
event horizon.

Expanding the functions f (r) and g(r) in Taylor’s series
near the horizon, we get

f (r+) ≈ f ′(r+)(r − r+), g(r+) ≈ g′(r+)(r − r+). (2.15)

Using the above expressions in Eq. (2.14), one can see that
the resulting equation has poles at r = r+. For the calcu-
lation of the Hawking temperature by using the tunneling
method, it is required that we regularize the singularity by a
specific complex contour to bypass the pole. For our standard
co-ordinates of the BH metric, the tunneling of outgoing par-
ticles can be obtained by taking an infinitesimal half circle
below the pole r = r+, while for the ingoing particle such a
contour is taken above the pole. Further, in order to calculate
the semi-classical tunneling probability, it is required that the
resulting wave equation must be multiplied by its complex
conjugate. In this way, the part of the trajectory that starts
from outside of the BH and continues to the observer will
not contribute to the calculation of the final tunneling proba-
bility and can be ignored because it will be completely real.
Therefore, the only part of the trajectory that contributes to
the tunneling probability is the contour around the BH hori-
zon.

Hence using Eqs. (2.14) and (2.15), and integrating the
resulting equation around the pole, we get

ImW± = ±iπ
E − eA0 − j�̌

2κ(r+)
, (2.16)

and the surface gravity is [36]

κ(r+) =
⎡
⎣

[
αl
ω

(ω2k̃ + ẽ2 + g̃2) − M + ω2 k̃
a2−l2

r+
]

[
r2+ + (a + l)2

]

×
[

1 + α(a − l)

ω
r+

]
×

[
1 − α(a + l)

ω
r+

]⎤
⎦ .

The tunneling probability for charged vector particles is given
by

� = Prob[emission]
Prob[absorption] = exp[−2(ImW+ + Im�)]

exp[−2(ImW− − Im�)] = exp[−4ImW+]

= exp

⎡
⎢⎢⎢⎢⎣

−2π
E − eA0 − j�̌[[

αl
ω

(ω2 k̃+ẽ2+g̃2)−M+ ω2 k̃
a2−l2

r+
]

[
r2++(a+l)2

] ×
[
1 + α(a−l)

ω
r+

]
×

[
1 − α(a+l)

ω
r+

]]

⎤
⎥⎥⎥⎥⎦

.

Now, finally we can calculate the Hawking temperature by
comparing the above result with the Boltzmann formula

�B = e−(E−eA0− j�̌)/TH , to get
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TH =
⎡
⎣

[[
αl
ω

(ω2k̃ + ẽ2 + g̃2) − M + ω2 k̃
a2−l2

r+
]

×
[
1 + α(a−l)

ω
r+

] [
1 − α(a+l)

ω
r+

]]

2π [r2+ + (a + l)2]

⎤
⎦ . (2.17)

The Hawking temperature depends on A0, the vector poten-
tial, E , the energy, �̌, the angular momentum; M is the mass
of the pair of BHs, e and g are electric and magnetic charges,
respectively, a is the rotation of a BH, l is the NUT param-
eter, α represents the acceleration of the sources and ω the
rotation of the sources.

We would like to mention that the Hawking temperature
of charged vector particles given in Eq. (2.17) is the same as
the Hawking temperature of fermion particles in Eq. (4.20)
of [36]. Thus the Hawking temperature is independent of the
particle species.

3 Black holes in 5D gauged super-gravity

The gauged theory is stated as a super-gravity theory in
which the gravitino, the superpartner of the graviton is
charged under some internal gauge group. However, the
gauged super-gravity is more significant as compared to the
ungauged case, because this theory has a negative cosmo-
logical constant, so it is defined on an anti-de Sitter space.
Here, for the discussion of charged vector particles tunneling
spectrum from a BH in 5D gauged super-gravity, we evaluate
the tunneling probability of particles and the corresponding
Hawking temperature at the BH horizon. Such BH solutions
occur in D = 5 N = 8 gauged super-gravity (symmetry)
[40]. Firstly, this solution was formulated in [41] as a par-
ticular case (STU model) of solutions of the D = 5N = 2
gauged super-gravity equations of motion. The metric for the
BH in 5D gauged super-gravity is [40]

ds2 = − (H1H2H3)
− 2

3 f dt2

+ (H1H2H3)
1
3

(
f −1dr2 + r2d�2

3,k

)
, (3.1)

where

f = k− μ

r2 +g2r2H1H2H3, Hi = 1+ qi
r2 (for i = 1, 2, 3),

and d�2
3,k is the metric on S3 with unit radius if k = 1, or the

metric on R3 if k = 0; here μ is the non-extremality param-
eter [41], which is related to the ADM mass, g = 1/L is the
inverse radius of AdS5 related to the cosmological constant
� = −6g2 = −6/L2, and qi are charges entering the met-
ric. The three gauge field potentials Ai

μ from the solution of
equation of motion are of the form

Ai
0 = q̃i

r2 + qi
(for i = 1, 2, 3),

where the q̃i are the physical charges, which are conserved
and the Gauss law is applicable to such charges.

The line element can be rewritten as

ds2 = − Ã(r)dt2 + B̃−1(r)dr2 + C̃(r)dθ2

+D̃(r)dφ2 + Ẽ(r)dζ 2, (3.2)

where

Ã(r) = f (H1H2H3)
− 2

3 B̃−1(r) = f −1(H1H2H3)
1
3

C̃(r) = r2(H1H2H3)
1
3 D̃(r) = r2 sin2 θ(H1H2H3)

1
3

Ẽ(r) = r2 sin2 θ sin2 φ(H1H2H3)
1
3 .

The horizons of the metric (3.2) can be determined when
f (r) = 0. For this purpose we follow [40] and assume that
g2 = 1 (by the choice of units as in [40]). Hence, in this case
the outer horizon is located at

r+ =
√√

(1 + qi )2 + 4μ − (1 + qi )

2
,

for
√

(1 + qi )2 + 4μ > (1 + qi ) and i = 1, 2, 3.

In the Proca equation (2.6) the components of ψν and ψμν

are given by

ψ0 = − Ã−1ψ0, ψ1 = B̃ψ1, ψ2 = C̃−1ψ2,

ψ3 = D̃−1ψ3, ψ4 = Ẽ−1ψ4,

ψo1 = −B̃ Ã−1ψ01, ψ02 = −( ÃC̃)−1ψ02,

ψ03 = −( ÃD̃)−1ψ03

ψ04 = −( ÃẼ)−1ψ04, ψ12 = B̃C̃−1ψ12,

ψ13 = B̃ D̃−1ψ13, ψ14 = B̃ Ẽ−1ψ14,

ψ23 = (C̃ D̃)−1ψ23, ψ24 = (C̃ Ẽ)−1ψ24,

ψ34 = (D̃ Ẽ)−1ψ34.

By using Eq. (2.6), we obtain the following set of equations
(for simplicity, we assume A0 ≡ Ai

0 for all i):

B̃[c0(∂1S0)
2 − c1(∂0S0)(∂1S0) − eA0c1(∂1S0)]

+ C̃−1[c0(∂2S0)
2 − c2(∂0S0)c0(∂2S0) − eA0c2(∂2S0)]

+ D̃−1[C0(∂3S0)
2 − c3(∂3S0)(∂0S0)

− eA0c3(∂3S0)] + Ẽ−1[c0(∂4S0)
2 − c4(∂4S0)(∂0S0)

− eA0c4(∂4S0)] + m2c0 = 0, (3.3)

Ã−1[c0(∂1S0)(∂0S0) − c1(∂0S0)
2 − eA0c1(∂0S0)]

+ C̃−1[c1(∂2S0)
2 − c2(∂1S0)(∂2S0)] + D̃−1[c1(∂3S0)

2

123
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− c3(∂3S0)(∂1S0)] + Ẽ−1[c1(∂4S0)
2

− c4(∂1S0)c0(∂4S0)] + eA0 Ã
−1[c0(∂1S0)

− c1(∂0S0)] + m2c1 = 0, (3.4)

Ã−1[c2(∂0S0)
2 − c0(∂0S0)(∂2S0) + eA0c2(∂0S0)]

−B̃[c2(∂1S0)
2 − c1(∂1S0)(∂2S0)]

+D̃−1[c3(∂2S0)(∂3S0)

−c2(∂3S0)
2] + Ẽ−1[c4(∂2S0)(∂4S0)

− c2(∂4S0)
2] + eA0 Ã

−1[c2(∂0S0) − c0(∂2S0)

+ eA0c2] − m2c2 = 0, (3.5)

Ã−1[c3(∂0S0)
2 − c0(∂0S0)(∂3S0) + eA0c3(∂0S0)]

− B̃[c3(∂1S0)
2 − c1(∂1S0)(∂3S0)] − C̃−1[c3(∂2S0)

2

− c2(∂2S0)(∂3S0)] + Ẽ−1[c4(∂4S0)(∂3S0)

−c3(∂4S0)
2] + eA0 Ã

−1[c3(∂0S0) − c0(∂3S0)

+eA0c3] − m2c3 = 0, (3.6)

Ã−1[c4(∂0S0)
2 − c0(∂0S0)(∂4S0) + eA0c4(∂0S0)]

−B̃[c4(∂1S0)
2 − c1(∂1S0)(∂4S0)] − C̃−1[c4(∂2S0)

2

−c2(∂2S0)(∂4S0)]
− D̃−1[c4(∂3S0)

2 − c3(∂3S0)(∂4S0)]
+eA0 Ã

−1[c4(∂0S0) − c0(∂4S0) + eA0c4] − m2c4 = 0.

(3.7)

We carry out the separation of variables:

S0 = −(E − j�̌1)t + W (r) + �(ζ, ϑ) + Nφ, (3.8)

where �̌1 is the angular velocity for BH given by Eq. (3.2).
For the above S0 the preceding set of equations (3.3)–(3.7)

can be written in terms of a matrix equation, �(c0, c1, c2, c3,

c4)
T = 0, and the elements of the required matrix have the

following form:

�00 = B̃Ẇ 2 + C̃−1(∂2�)2 + D̃−1(∂3�)2 + Ẽ−1N + m
2

�01 = B̃[(E − j�̌1)Ẇ − eA0Ẇ ],
�02 = C̃−1(E − j�̌1)(∂2�)

�03 = D̃−1(E − j�̌1)(∂3�) − D̃−1eA0(∂3�),

�04 = Ẽ−1(E − j�̌1)N − Ẽ−1 jeA0,

�10 = − Ã−1(E − j�̌1)Ẇ + eA0 Ã
−1Ẇ ,

�11 = − Ã−1(E − j�̌1)
2 + eA0(E − j�̌1) Ã

−1

+C̃−1(∂2�)2 + D̃−1(∂3�)2 + Ẽ−1N 2

+eA0 Ã
−1(E − j�̌1) + m2,

�12 = −C̃−1Ẇ (∂2�), �13 = −D̃−1Ẇ (∂3�),

�14 = −Ẽ−1Ẇ N , �20 = Ã−1(E − j�̌1)(∂2�)

− Ã−1eA0(∂2�),

�21 = B̃Ẇ (∂2�),

�22 = Ã−1(E − j�̌1)
2 − eA0(E − j�̌1) Ã

−1 − B̃Ẇ 2

− D̃−1(∂3�)2 − Ẽ−1N 2

+ eA0 Ã
−1[eA0 − (E − j�̌1)] − m2,

�23 = D̃−1(∂2�)(∂3�), �24 = Ẽ−1(∂2�)N ,

�30 = Ã−1(E − j�̌1)(∂3�) − eA0 Ã
−1(∂3�),

�31 = B̃Ẇ (∂3�), �32 = C̃−1(∂2�)(∂3�),

�33 = Ã−1(E − j�̌1)
2 − eA0 Ã

−1(E − j�̌1) − B̃Ẇ 2

−Ẽ−1N 2 − C̃−1(∂2�)2 − m2

−eA0 Ã
−1[(E − j�̌1) − eA0],

�34 = Ẽ−1 j (∂3�), �40 = Ã−1((E − j�̌1)N

−eA0 Ã
−1 j, �41 = B̃Ẇ N ,

�42 = C̃−1(∂2�)N , �43 = D̃−1(∂3�)N ,

�44 = Ã−1(E − j�̌1)
2 − eA0 Ã

−1(E − j�̌1)

−B̃Ẇ 2 − C̃−1(∂2�)2

− D̃−1(∂3�)2 − m2 − eA0 Ã
−1[(E − j�̌1) − eA0].

For the non-trivial solution, the determinant � is equal to zero
and using the same technique as discussed in the previous
section, we get

ImW± = ±
∫ √

(E − eA0 − j�̌1)2 + X̃

Ã B̃

= ±ιπ
(E − eA0 − j�̌1)

2κ(r+)
(3.9)

where

X̃ = − ÃC̃−1(∂2�)2 − ÃD̃−1(∂3�)2 − Ãm2

−Ẽ−1(∂2�)N .

(3.10)

Since the BH given by Eq. (3.2) is non-rotating, �̌1 = 0. The
surface gravity for this BH is given by [40]

κ(r+) = 2r6+ + r4+(1 + ∑3
i=1 qi ) − ∏3

i=1 qi

r2+
√∏3

i=1(r
2+ + qi )

. (3.11)

The required tunneling probability as discussed in the previ-
ous section is

�̃ = �̃emission

�̃absorption
= e−4ImW+ = e

−2π
(E−eA0)[r2+

√∏3
i=1(r2++qi )]

2r6++r4+(1+∑3
i=1 qi )−

∏3
i=1 qi .

The Hawking temperature in this case is given by

T̃H = [2r6+ + r4+(1 + ∑3
i=1 qi ) − ∏3

i=1 qi ]
2πr2+

√∏3
i=1(r

2+ + qi )
. (3.12)

The Hawking temperature is related to the energy E , the
potential A0, the angular momentum j , the radial coordinate
at the outer horizon r+ and the charge qi . We would like
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to mention that the Hawking temperature of charged vector
particles given by Eq. (3.12) is the same as the Hawking
temperature of 5D gauged super-gravity BH in Eq. (9) in
Ref. [40].

4 Outlook

During the tunneling process when a particle with electropos-
itive energy crosses the horizon, it appears as Hawking radia-
tion. Likewise, a particle with electronegative energy burrows
in weave, it is assimilated by the BH, so its mass falls and
finally disappears. Thus, the movement of the particles may
be in the configuration of outgoing and incoming, perform-
ing the particle’s action turns out to be complex and real,
respectively. The emission rate of a tunneling particles from
the BH is associated with the imaginary component of the
particles’ action, which in fact is related to the Boltzmann
factor based on the Hawking temperature.

In this paper, we have extended the work of vector parti-
cle tunneling for more generalized BHs in 4D and 5D spaces
and recovered their corresponding Hawking temperatures at
which particles tunnel through horizons. For this purpose, we
have used the Proca equation with the background of electro-
magnetism to investigate the tunneling of charged vector par-
ticles from accelerating and rotating BHs in 4D and 5D BHs
having electric and magnetic charges with a NUT param-
eter. We have implemented the WKB approximation to the
Proca equation, which leads to the set of field equations; then
we use separation of variables to solve these equations. We
solve for the radial part by using the determinant of the coef-
ficient matrix being equal to zero. Using the surface gravity,
we have formulated the tunneling probability and the Hawk-
ing temperature for both BHs at the outer horizon. All these
quantities depend on the defining parameters of the BHs. It is
worthwhile to mention here that the back-reaction effects of
the emitted particle on the BH geometry and self-gravitating
effects have been neglected, the derived Hawking tempera-
ture is only a leading term. Thus one does not need to cal-
culate the appropriate solution of the semi-classical Einstein
field equations for the geometry of the background BH in
equilibrium with its Hawking radiation [42].

From our analysis we have concluded that the Hawking
temperature at which particles tunnel through the horizon
is independent of the species of particles. In particular the
nature of the background BH geometries, for the particles
having different spins (either spin up or down) or zero spin,
the tunneling probabilities will be seen to be the same by
considering semi-classical effects. Thus, their correspond-
ing Hawking temperatures must be the same for all kinds of
particles. For both cases, we have carried out the calculations
for more general BHs, i.e., a pair of charged accelerating and
rotating BHs with NUT parameter (which is a more general

case of BHs as compared to the BH taken in [43]) and a BH
in 5D gauged super-gravity. Our findings are similar to the
statement that the temperature of tunneling particles is inde-
pendent of the species of the particles, and this result is also
valid for different coordinate frames by using specific coor-
dinate transformations. The authors of Ref. [43] have proved
it for the Kerr BH (which only is rotating), while we have
proved it for more generalized BHs. Hence, the conclusion
still holds if background BH geometries are more general.
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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