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Abstract We present a first numerical implementation of
the loop–tree duality (LTD) method for the direct numerical
computation of multi-leg one-loop Feynman integrals. We
discuss in detail the singular structure of the dual integrands
and define a suitable contour deformation in the loop three-
momentum space to carry out the numerical integration. Then
we apply the LTD method to the computation of ultraviolet
and infrared finite integrals, and we present explicit results
for scalar and tensor integrals with up to eight external legs
(octagons). The LTD method features an excellent perfor-
mance independently of the number of external legs.

1 Introduction

The recent discovery of the Higgs boson at the LHC repre-
sents a great success of the standard model (SM) of elemen-
tary particles. With the new run started in 2015 the primary
goal is to study its properties in detail and to detect possible
extensions to the SM. Precise theory predictions are needed
to achieve this goal, which calls for calculations at the next-
to-leading order (NLO) and beyond for multi-leg processes.

Computing higher-order corrections in quantum field the-
ory (QFT), in particular in QCD and in the EW sector of the
SM is highly challenging. The complexity increases as the
number of external particles gets bigger and the order of the
perturbative expansion. The task is far from trivial and each
step presents its own difficulties: one needs first to gener-
ate the virtual and real scattering amplitudes, then carry out
the integration over the loop momenta for the virtual con-
tribution and finally perform the phase-space integration for
both real and virtual corrections after taking proper care so
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that the infrared divergencies cancel. In particular, infrared
singularities of the virtual contribution can be subtracted by
using appropriate semi-analytical terms and combine them
with the ones stemming from the real corrections to produce
finite results [1]. Purely numerical approaches to the inte-
gration of loop momenta have been discussed extensively in
the literature [2–14]. The generation of amplitudes and cal-
culation of cross sections at one loop has seen great progress
in recent years and algorithmic calculations at NLO have
been automated are now considered standardized, based on
purely numerical [15–17] and a mix of analytical and numer-
ical approaches [18–20]. Substantial progress has also been
made at higher orders [21–23].

The loop–tree duality (LTD) method [24–37] establishes
that generic loop quantities (loop integrals and scattering
amplitudes) in any relativistic, local and unitary field theory
can be written as a sum of tree-level-like objects obtained
after making all possible cuts to the internal lines of the cor-
responding Feynman diagrams, with one single cut per loop
and integrated over a measure that closely resembles the
phase space of the corresponding real corrections [24,25].
This duality relation is realized by a modification of the
customary +i0 prescription of the Feynman propagators
and encodes the causal structure of the scattering ampli-
tudes in the expected way. The analysis of the singular
behaviour of one-loop integrals and scattering amplitudes in
this framework at the integrand level in the loop-momentum
space shows that there is a partial cancellation of singular-
ities among different dual contributions such that physical
infrared and threshold singularities remain restricted to a
compact region of the loop three-momentum [28–30]. This
feature opens up the possibility that virtual and real radiative
corrections can be brought together under a common integral
and be treated simultaneously with Monte Carlo techniques
though a convenient mapping of the momenta entering the
virtual and real scattering amplitudes [33–36].
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In this work, we present a first numerical implementation
of the LTD method and we apply it to the computation of
multi-leg one-loop scalar and tensor integrals. The outline of
the paper is as follows. In Sect. 2 we review the LTD method
at one loop and discuss the singular behaviour of the dual inte-
grand in the loop-momentum space. In Sect. 3 we introduce
the contour deformation in the loop three-momentum space
which is used for the numerical loop integration. We present
explicit numerical results for various external momenta con-
figurations, in Sect. 4 for scalar integrals up to pentagons and
in Sect. 5 for up to rank-three tensor integrals with five and
six external legs along with some non-trivial heptagon and
octagon examples. Finally, our conclusions and outlook are
presented in Sect. 6.

2 Loop–tree duality at one loop

We consider a general one-loop N -leg scalar integral (see
Fig. 1) in dimensional regularization, with d the number of
space-time dimensions,

L(1)(p1, p2, . . . , pN ) =
∫

�

∏
i∈α1

GF(qi ),

∫
�

• = −i μ4−d
∫

dd�

(2π)d
•, (1)

where

GF(qi ) = 1

q2
i − m2

i + i0
(2)

are Feynman propagators that depend on the loop momentum
�, which flows anti-clockwise, and the four-momenta of the
external legs pi , i ∈ α1 = {1, 2, . . . N }, which are taken
as outgoing and are clockwise ordered. The momenta of the
internal lines are denoted asqi,μ = (qi,0,qi ), whereqi,0 is the
energy (time component) and qi are the spatial components,
which are defined as qi = � + ki with ki = p1 + · · · + pi ,

p1

q1
p2

q2

qN

pN

p3

Fig. 1 Momentum configuration of the one-loop N -point integral

and kN = 0 by momentum conservation. We also define
k ji = q j − qi , which, in fact, is independent of the loop
momentum �.

The corresponding dual representation of the scalar inte-
gral in Eq. (1) is obtained from the loop–tree duality (LTD)
theorem [24]:

L(1)(p1, p2, . . . , pN ) = −
∑
i∈α1

∫
�

δ̃(qi )
∏
j∈α1
j �=i

GD(qi ; q j ),

(3)

where

GD(qi ; q j ) = 1

q2
j − m2

j − i0 ηk ji
, (4)

are dual propagators, η is an arbitrary future-like vector, i.e., a
d–dimensional vector that can be either light-like (η2 = 0)

or time-like (η2 > 0) with positive definite energy η0 ≥ 0,
and

δ̃(qi ) ≡ 2π i θ(qi,0) δ(q2
i − m2

i ), (5)

selects the internal loop on-shell modes, G−1
F (qi ) = 0, with

positive definite energy, qi,0 ≥ 0. Hence, the LTD theorem
expresses the usual loop Feynman integral, Eq. (1), as a sum
of single-cut phase-space integrals, Eq. (3), with

∫
�

δ̃(qi ) (6)

as the single-particle phase-space integration measure. The
LTD theorem is valid not only for scalar one-loop integrals,
but it can straightforwardly be extended to deal with scat-
tering amplitudes [24] and higher orders of the perturbative
expansion [26,27].

The integrand of the dual representation of one-loop inte-
grals or scattering amplitudes feature certain types of singu-
larities leading to ultraviolet (UV), infrared (IR) or threshold
singularities. This singular behaviour has already been thor-
oughly discussed in [29,33]. We briefly recapitulate here the
main points that are relevant in the present context.

For generic masses, the loop integrand in Eq. (1) becomes
singular at the on-shell hyperboloids defined by q(+)

i,0

=
√
q2
i + m2

i − i0 (forward-hyperboloids, positive energy

mode) and q(−)
i,0 = −

√
q2
i + m2

i − i0 (backward-hyper-
boloids, negative energy mode). This is illustrated in Fig. 2
for a given kinematical configuration with three internal loop
propagators. Solid lines in Fig. 2 represent the forward on-
shell hyperboloids, and dashed lines the backward on-shell
hyperboloids. The LTD method is equivalent to evaluating the
sum of the integrals along the forward on-shell hyperboloids
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Fig. 2 On-shell hyperboloids for three arbitrary propagators in Cartesian coordinates in the (�0, �z) space (left). Kinematical configuration with
massless propagators leading to infrared singularities (right). In the latter case, the on-shell hyperboloids degenerate to light-cones

with singularities appearing at the intersection of each for-
ward on-shell hyperboloid with the forward of backward on-
shell hyperboloid of the other propagators. A crucial point of
this discussion is the observation that dual propagators can
be rewritten as

δ̃(qi )GD(qi ; q j ) = i 2π
δ(qi,0 − q(+)

i,0 )

2q(+)
i,0

× 1

(q(+)
i,0 + k ji,0)2 − (q(+)

j,0 )2
, (7)

where q(+)
i,0 can be interpreted as the loop energy measured

along the forward on-shell hyperboloid with origin at −ki .
From Eq. (7) it is obvious that dual propagators become sin-
gular, G−1

D (qi ; q j ) = 0, if one of the following conditions is
fulfilled:

q(+)
i,0 + q(+)

j,0 + k ji,0 = 0, (8)

q(+)
i,0 − q(+)

j,0 + k ji,0 = 0. (9)

The first condition, Eq. (8), is satisfied if the forward on-shell
hyperboloid of GF(qi ) intersects with the backward on-shell
hyperboloid of GF(q j ). The second condition, Eq. (9), is true
when the two forward on-shell hyperboloids intersect each
other.

The solution to Eq. (8) is an ellipsoid in the loop three-
momentum space and requires k ji,0 < 0. Moreover, since it
is the result of the intersection of a forward with a backward
on-shell hyperboloid the distance between the two propaga-

tors has to be future-like, k2
j i ≥ 0. Actually, internal masses

restrict this condition to

k2
j i − (m j + mi )

2 ≥ 0,

k ji,0 < 0, forward with backward hyperboloids. (10)

The second equation, Eq. (9), leads to a hyperboloid in the
loop three-momentum space, and there are solutions for k ji,0
either positive or negative, namely when either of the two
momenta is set on-shell. Here, the distance between the
momenta of the propagators has to be space-like, although
also time-like configurations can fulfil Eq. (9) as far as the
time-like distance is small or close to light-like:

k2
j i − (m j − mi )

2 ≤ 0, two forward hyperboloids. (11)

As was demonstrated in [29], the integrand singularities
appearing from the intersection of forward with forward on-
shell hyperboloids cancel among dual contributions. One
needs to keep in mind that propagators are positive inside
the on-shell hyperboloids and negative outside. When inte-
grating along the forward on-shell hyperboloids, every sin-
gularity is crossed twice. Firstly when going from the inside
to the outside (or from the outside to the inside) and sec-
ondly from the outside to the inside (or from the inside to the
outside). The crucial point is that the contributions coming
from the two integrands have opposite sign and thus cancel
out. Note that the imaginary dual prescription η ·k ji changes
sign from the one dual contribution to the other to ensure the
cancellation of the singularities. On the contrary, the singu-
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Fig. 3 Singularity matrix of a sample three-point function and the corresponding singularity surfaces of the dual integrands in the loop three-
momentum space

Fig. 4 Singularity matrix of a sample four-point function and the corresponding singularity surfaces of the dual integrands in the loop three-
momentum space

larities from the intersection of a forward with a backward
on-shell hyperboloid survive because only a single dual con-
tribution leads to that singularity and there is no possibility of
cancellation. In the case of integrable singularities, a contour
deformation can be employed to integrate numerically these
singularities as explained in the next section.

The action of the LTD can be encoded symbolically by
the following matrix scheme:

GF · GF · · ·GF
LTD−−→

⎛
⎜⎜⎜⎜⎜⎝

δ GD GD · · · GD

GD δ GD · · · GD

GD GD δ · · · GD
...

...
...

. . .
...

GD GD GD · · · δ

⎞
⎟⎟⎟⎟⎟⎠

. (12)

Each line in the matrix to the right of the arrow in Eq. (12)
represents a dual contribution with one single propagator on-
shell, δ = δ̃(qi ). The column index points to the correspond-
ing dual propagators, GD = GD(qi ; q j ). This scheme can
now be used to graphically indicate the position of differ-
ent singularities in a given dual integral. In Figs. 3 and 4 we
apply it to a triangle and a box respectively. To be more
specific, in Fig. 3 each of the 3D plots in the r.h.s. rep-
resents the singularities of any one dual contribution. We
plot the ellipsoid (orange surfaces) and hyperboloid (blue
surfaces) singularities in the loop three-momentum space.
The blue dots are the foci of the on-shell hyperboloids,
i.e. −ki , i ∈ {1, 2, 3}. In the l.h.s, we see the singularity

scheme, where the first line of the matrix corresponds to the
first plot in the r.h.s., the second line corresponds to the sec-
ond 3D plot and so on. In the matrix, an H indicates that
the corresponding dual propagator from Eq. (12) generates
an hyperboloid singularity, E stands for ellipsoid singulari-
ties, and zero means no singularity. Similarly, for a four-point
function in Fig. 4.

In both cases, the hyperboloid singularities always appear
pairwise across the dual contributions. This is not by acci-
dent. Due to the symmetry of Eq. (9) under the exchange of i
(i counts dual contributions) and j ( j counts leg positions) the
hyperboloid singularities always appear in pairs and are dis-
tributed symmetrically around the main diagonal. Inspecting
Eq. (8), which is the defining equation for ellipsoid singu-
larities we see that this equation is not symmetric under the
exchange of indices. Thus for every ellipsoid singularity we
have a zero as its counterpart.

At this point, we have established that the hyperboloid
singularities do cancel among dual contributions and there-
fore we do not need to treat them in any special manner. Still,
though, they do have an impact on the way we need to deform
our contour. This is due to the fact that in order to preserve
the cancellation of hyperboloid singularities, dual contribu-
tions featuring the same hyperboloid singularity must receive
the same deformation. To further illustrate this point, let us
look at the pentagon example shown in Fig. 5. In Fig. 5, con-
tributions one, two and three are coupled via their common
hyperboloid singularities. Thus, they need to receive the very
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Fig. 5 Five-point function with
dual contributions coupled by
hyperboloid singularities

⎫
⎬

⎭

Contributions are coupled:
Every contribution receives all deformations
that occur within the group.

→ Deform with ellipsoids that itself contains.
→ No deformation needed here.

same deformation that accounts for all the ellipsoid singular-
ities occurring within those contributions. These are found
at position four of the second contribution and positions one
and four of the third contribution. The fourth dual contribu-
tion is not coupled to any other contribution and a standalone
deformation can be applied. The fifth contribution does not
require any treatment.

As a general strategy, one organizes the dual contributions
into groups. A group is a set of pairwise coupled contribu-
tions. To each of the groups a contour deformation is applied
independently from the others. Within a group every con-
tribution receives the same deformation, which accounts for
all the ellipsoids of the group. Turning back to the exam-
ple in Fig. 5, we have three groups: the first group involves
contributions one to three, the second group is contribution
four and the third group is contribution five. Finally, all the
dual contributions with the corresponding deformations are
summed up together and computed numerically simultane-
ously. This is necessary because dual propagators are linear
in the loop momentum such that individual dual integrals
are more singular in the UV than the original integral. The
spurious UV behaviour of the dual integrals, however, can-
cels in the sum and does not interfere with the deformations,
which are suppressed at large loop momentum. Actual UV
poles can be subtracted with suitable counter-terms [33] that
neither interfere with the other singularities. This makes it
unnecessary to provide UV information in the singularity
matrix, and motivates the fact of considering only UV-finite
integrals in this paper.

3 The deformation of the contour

As we saw in Sect. 2, the ellipsoid singularities (forward–
backward type) lead to integrable threshold singularities that
lie on the real axis. To deal with them, we need to deform
the integration path into the imaginary space. Every valid
deformation must satisfy a certain set of requirements [3]:

1. The deformation has to respect the i0-prescription of the
propagator. In general, a contour deformation in the loop
three-momentum space has the form

� → �′ = � + iκ, (13)

where κ is a function of the loop momentum � and the
external momenta. In our case, we want to perform the
integration over a product of dual propagators. Insert-
ing Eq. (13) into the on-shell energy relation, we obtain

q(+)
i,0 =

√
−κ2 + 2iκ · qi + q2

i + m2
i − i0. (14)

The i0-prescription tells us in which direction to deform
when coming close to a singularity. Hence, any valid
deformation must match this prescription. Consequently,
we need to have

κ · qi < 0. (15)

2. The deformation should vanish at infinity: We are looking
for a deformation that does not change the actual value
of the integral. We do not want |κ| to grow for |�| → ∞.
An easy way to satisfy this condition is to choose κ such
that |κ| → 0 as |�| → ∞.1

With these conditions in mind, we construct the deformation
in the following way: As explained in Sect. 2, we first orga-
nize the dual contributions into groups. For every ellipsoid
singularity of the group we include a factor:

λi j

⎛
⎝ qi√

q2
i

+ q j√
q2
j

⎞
⎠ exp

(
−G−2

D (qi ; q j )

Ai j

)
, (16)

with qi = �+ki and � the loop three-momentum. The defor-
mation factor in Eq. (16) consists of two main components.
The first component defines the direction of the deformation

and is given by the sum of the two unit vectors qi/
√
q2
i and

q j/
√
q2
j . As shown in Fig. 6 the vectors qi and q j have their

origin in −ki and −k j , respectively, and the deformation
is designed to point to the outside of the singularity ellip-
soid. For an efficient numerical implementation, however, we

1 Strictly speaking, there is a third condition. The deformation must
vanish at the position of soft or collinear singularities. This point is of
importance for the matching of soft and collinear singularities between
real and virtual corrections [33]. If the deformation shifts those singu-
larities together with everything else, the cancellation will be spoiled.
However, in the scope of this article, we are only dealing with infrared
finite diagrams.
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qj/ q2
j

qi/ q2
i

−ki −kj

Fig. 6 Two-dimensional slice of the ellipsoid singularity of dual con-
tribution i at position j . The resulting vector gives the direction of the
deformation

should also take into account in the selection of the defor-
mation parameters that for massive propagators the vectors
−ki and −k j might be slightly displaced from the true focal
points of the ellipsoid. Inside the ellipsoid, the sum of the two

unit vectors qi/
√
q2
i and q j/

√
q2
j helps to flatten the defor-

mation and indeed they cancel each other along the major
axis of the ellipsoid. By choosing all the scaling parameters
λi j < 0 for all possible combinations {i j} we satisfy the first
condition in Eq. (15).

The second component in Eq. (16) is the exponential factor
exp(−G−2

D (qi ; q j )/Ai j ), which suppresses the deformation
at infinity. At singular points, G−2

D (q j ; qi ) vanishes and thus
the deformation reaches its maximum. Far away from the
singularity, −G−2

D (q j ; qi ) reaches a large negative value and
thus the exponential tends rapidly to zero. Finally, the factor
λi j is a scaling factor, and Ai j determines the width of the
deformation. The indices i j in λi j and Ai j indicate that those
parameters can be selected individually for each deformation
contribution for optimization purposes. Although they can
all be chosen differently, selecting λi j = λ = −0.5 and
Ai j = A = 106 produces very good results for most of the
examples that we are presenting within this paper. As a rule
of thumb, the optimal choice is Ai j ≈ 102 Q4 where Q2 is
the physical scale of the process under consideration. Then
we sum over the entire group of coupled singularities and
arrive at

κ =
∑

i, j∈group

λi j

⎛
⎝ qi√

q2
i

+ q j√
q2
j

⎞
⎠ exp

(
−G−2

D (q j ; qi )
Ai j

)
.

(17)

There is no formal proof that Eq. (17) always satisfies the
condition in Eq. (15) at the intersection of several ellipsoid
singularities. The deformation parameters can, however, be
adjusted in that case to force the overall deformation to occur

in the right direction. This was necessary in a very few cases
of the tests studied for the preparation of this paper and will be
subject of improvement and optimization in the next version
of the program. The corresponding Jacobian can be calcu-
lated analytically or numerically; in our current implemen-
tation we have chosen the analytic way.

4 Results for multi-leg scalar one-loop integrals

We have implemented the LTD method in a C++ code and all
the results in this paper were obtained on a desktop machine
with an Intel i7 (3.4 GHz) processor with 8 cores and 16 GB of
RAM. The program uses the Cuba library [39] as a numerical
integrator. The user needs only to input the number of external
legs, the external momenta, the internal masses and has the
freedom to change the parameters λi j and Ai j of the contour
deformation, although standard values that work in most of
the cases are provided by default. The momenta and masses
can be read in from a text file. The user can choose between
Cuhre [40,41] and VEGAS [42], and give the desired number
of evaluations. At run time, the code performs the following
steps:

1. Reads in masses and external momenta.
2. Checks where ellipsoid singularities occur.
3. Checks where hyperboloid singularities occur, groups the

dual contributions accordingly and applies the contour
deformation.

4. Calls the integrator with the sum of all the deformed dual
contributions.

The grouping described in Sect. 2 and the implemen-
tation of the deformations are fully automated. We use
MATHEMATICA 10.0 [43] to generate random momenta
and masses to scan as much of the phase space as possible, to
ensure that the program works properly in all regions. For our
numerical results, the routine Cuhre was used unless other-
wise stated. The momenta and masses of all the sample phase-
space points used in the following sections are collected in
Appendix A. We mainly used LoopTools 2.10 [38] and
also SecDec 3.0 [44] to produce reference results to com-
pare with.

4.1 Scalar triangles

We consider first infrared finite scalar triangle integrals. The
sample point P1 in Table 1 has all internal masses equal
while P2 has three different internal masses. Momenta and
masses were chosen randomly between−100 and+100 GeV.
Similarly, P3 in Table 1 has all internal masses equal whereas
in P4 all three of them have different values.
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Table 1 Sample scalar triangles

Scalar triangle Real part Imaginary part

P1 LoopTools −5.85694 × 10−5

LTD −5.85685(24) × 10−5

P2 LoopTools −3.39656 × 10−7

LTD −3.39688(53) × 10−7

P3 LoopTools 5.37305 × 10−4 −6.68103 × 10−4

LTD 5.37307(9) × 10−4 −6.68103(9) × 10−4

P4 LoopTools −5.61370 × 10−7 −1.01665 × 10−6

LTD −5.61363(83) × 10−7 −1.01666(8) × 10−6

Points with momentum configurations that do not need
deformation (i.e. whose loop integral is purely real) are com-
puted in well below one second with a precision of at least 4
digits. For points with momentum configurations that require
deformation, the calculation time increases to typically 3–15
s.

An important check of our implementation is the mass
scan around threshold. In Fig. 7 all internal masses are equal,
i.e. mi = m, i ∈ {1, 2, 3}, and the centre-of-mass energy s
was kept constant while varying the mass m. The calculation
time remains constant for all mass values.

4.2 Scalar boxes

Next we consider infrared finite box scalar integrals. To get
good precision (4 digits), for boxes that need deformation we
use 4–5 × 106 Cuhre calls, whereas for phase-space points
with no deformation only 5×104 calls, the same as in the tri-
angle case. This is reflected in the running times. Points with
deformation require about 15 s whereas points with no defor-
mation well below one second. While it is practically guar-
anteed to get the no-deformation points with good precision,

Table 2 Sample scalar boxes

Scalar box Real part Imaginary part

P5 LoopTools 2.15339 × 10−13

LTD 2.15319(52) × 10−13

P6 LoopTools 1.39199 × 10−11

LTD 1.39199(6) × 10−11

P7 LoopTools −2.38766 × 10−10 −3.03080 × 10−10

LTD −2.38775(76) × 10−10 −3.03063(76) × 10−10

P8 LoopTools −4.27118 × 10−11 4.49304 × 10−11

LTD −4.27120(95) × 10−11 4.49307(95) × 10−11

P9 LoopTools −7.37897 × 10−11 −1.19657 × 10−10

LTD −7.37916(782) × 10−11 −1.19649(78) × 10−10

P10 LoopTools −1.85544 × 10−10 2.13553 × 10−10

LTD −1.85548(8) × 10−10 2.13554(8) × 10−10

for points with deformation the quality of results depends on
the proper choice of the deformation parameters. Therefore,
we mainly focus our attention to such points in the follow-
ing. The sample points P5 and P7 of Table 2 correspond to
a momentum configuration in which all four internal masses
are equal. In P6 and P8 all masses are different. In P9 two
adjacent internal lines have equal masses as well as the two
opposing ones. P10 represents a situation in which opposite
lines have equal masses.

We perform again a mass scan (see Fig. 8) with all internal
masses equal, i.e.mi = m, i ∈ 1, 2, 3, 4. The centre-of-mass
energy s was kept constant while the mass m was varied.
The program deals well with all kinds of boxes, even when
many different kinematical scales are involved. In Fig. 8, two
thresholds are crossed at 2m/

√
s = 0.65 and 1. From right

to left, the number of ellipsoid singularities grows by one
after each threshold is crossed, starting from one to end up
to three.
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Fig. 7 Mass scan of the region around threshold. The red curve is done with LoopTools and the blue points are obtained with the LTD method
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Fig. 8 Mass scan of a box integral. The red curve is done with LoopTools and the blue points are obtained with the LTD method

Table 3 Sample scalar
pentagons

Scalar pentagon Real part Imaginary part

P11 LoopTools −1.24025 × 10−13

LTD −1.24027(16) × 10−13

P12 LoopTools −1.48356 × 10−14

LTD −1.48345(116) × 10−14

P13 LoopTools 1.02350 × 10−11 1.40382 × 10−11

LTD 1.02353(1) × 10−11 1.40385(1) × 10−11

P14 LoopTools −1.52129 × 10−15 −1.17401 × 10−14

LTD −1.52657(602) × 10−15 −1.17483(60) × 10−14

P15 LoopTools −4.29464 × 10−15 −6.55440 × 10−14

LTD −4.29520(845) × 10−15 −6.55433(85) × 10−14

4.3 Scalar pentagons

Let us now turn to pentagon diagrams. No-deformation points
are computed with 105 evaluations which takes about 0.5
s. Points with deformation demand 5 × 106 evaluations to
maintain the level of precision of the triangles and boxes.
This results in an average calculation time of about 30 s.

In Table 3 we display a collection of pentagon example
results for different kinematical configurations. In P11 and
P13 all internal masses are equal; in P14 they are all distinct
from each other and in P15 we have m1 = m2 = m3 �=
m4 = m5. Our implementation of the LTD method shows
its robustness by producing accurate results regardless of the
kinematical situation. This statement is further supported by
an energy scan which we performed and which is shown in
Fig. 9. The centre-of-mass energy s is varied. This is realized
by varying p3 while keeping p2

3 constant. Of course, due to
momentum conservation, this involves p2

4 = (p1+ p2+ p3)
2

not being constant. In this scan, we cross three thresholds at
s ≈ −8.5 × 103,−13.5 × t103 and −21 × 103 GeV2, which
divide the scan into four zones. From right to left, we start
with zero ellipsoid singularities in the first zone, then we have

one in the second zone, two in the third zone and finally one
in the leftmost zone.

5 Tensor loop integrals

The LTD relation for scalar loop integrals can easily be
extended to deal tensor integrals. As long as the quantum
field theory is local and unitary, these tensor factors do not
lead to additional singularities [24] and the LTD method can
then be applied in a straightforward manner. If the one-loop
integral features a non-trivial numerator N (�, {pi }),
L(1)(p1, . . . , pN ;N (�, {pi }))

=
∫

�

N (�, {pi })
∏
i∈α1

GF (qi ), (18)

then the LTD theorem takes the form

L(1)(p1, . . . , pN ;N (�, {pi }))
= −

∑
i∈α1

∫
�

δ̃(qi )N (�, {pi })
∏
j∈α1
j �=i

GD(qi ; q j ). (19)
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Fig. 9 Energy scan of a scalar pentagon. The red curve is done with LoopTools and the blue points are obtained with the LTD method

While the numerator is formally left unchanged, there is actu-
ally a potential implication. The presence of the dual delta

function demands q(+)
i,0 =

√
q2
i + m2

i − i0, which is equiva-
lent to

�0 = −ki,0 +
√
q2
i + m2

i − i0. (20)

In other words, whenever we perform a single cut of a Feyn-
man graph, the numerator has to be evaluated at the position
of the cut which is fixed by the dual delta function. As a
direct consequence, the numerator takes a different form in
each dual contribution.

Another important aspect to take into consideration is the
cancellation of singularities among dual contributions. Here,
we would like to make explicit that the numerators do not
spoil the cancellation of the hyperboloid singularities. A typ-
ical numerator is a polynomial of scalar products of the loop
momentum with external momenta: � · pk . Let us see what
happens to a single factor when it hits the singularity. Note,
first, that the hyperboloid singularity is given by Eq. (9) which
we rewrite in the more suitable form

q(+)
i,0 − ki,0 = q(+)

j,0 − k j,0. (21)

Using Eq. (20), the loop momentum � contracted with some
external momentum pk is

� · pk |ith cut = (q(+)
i,0 − ki )pk,0 − � · pk

= (q(+)
j,0 −k j )pk,0−� · pk =� · pk |jth cut,

(22)

where we have used Eq. (21). This means that the numera-
tors of two dual contributions i and j take the same value at
their common pole, thus leaving the cancellation of hyper-
boloid singularities intact. This is an important property to
take advantage of, because it allows us to straightforwardly
apply the LTD method to such diagrams without any addi-
tional effort.

5.1 Tensor pentagons

Next, we investigate tensor pentagon integrals at the one-
loop level with numerators up to rank three. The number of
evaluations is chosen to be the same as in the scalar case, i.e.
105 times for no-deformation points and 5 × 106 times for
phase-space points that require deformation. This results in
calculation times of about 1 and 30 s, respectively.

In Table 4 we show a selection of sample points. The
reference points P24 and P26 feature the rank-two numerator
(� · p3) × (� · p4) while P25 and P27 have the numerator
(� · p3) × (� · p4) × (� · p5). All the points have all internal
masses equal. P27 actually contains six ellipsoid singularities
whereas the other sample points have two to three. We include
this point to demonstrate that the program does well even
under such challenging circumstances.

For tensor pentagons and hexagons, we have used the
program SecDec [44] to cross-check our results. We have
run SecDec taking no care to optimize its runtime. This
means that in the following, whenever we present the running
times of SecDec we do it for completeness reasons and not
because we imply that our code compares better or worse
with SecDec. A proper comparison of our implementation
with available codes is beyond the scope of this paper.

We have performed several different scans; a sample is
presented in Fig. 10. In this energy scan, we varied p1 and
thus the centre-of-mass energy s = (p1 + p2)

2, similar to
what we have done with scalar pentagons. The corresponding
numerator function is (� · p1) × (� · p2) × (� · p3), which
means that both numerator and denominator change in the
scan. In Fig. 10, one can see that the LTD method is able to
successfully pass this test.

5.2 Tensor hexagons

In this subsection, we compute hexagon tensor integrals. The
number of evaluations for no-deformation points is 106 and
for deformation points 8 × 106. The typical corresponding
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Table 4 Tensor pentagons
involving numerators of rank
two and rank three

Tensor
pentagon

Rank Real part Imaginary part Time (s)

P16 2 LoopTools −1.86472 × 10−8

SecDec −1.86471(2) × 10−8 45

LTD −1.86462(26) × 10−8 1

P17 3 LoopTools 1.74828 × 10−3

SecDec 1.74828(17) × 10−3 550

LTD 1.74808(283) × 10−3 1

P18 2 LoopTools −1.68298 × 10−6 1.98303 × 10−6

SecDec −1.68307(56) × 10−6 1.98279(90) × 10−6 66

LTD −1.68298(74) × 10−6 1.98299(74) × 10−6 36

P19 3 LoopTools −8.34718 × 10−2 1.10217 × 10−2

SecDec −8.33284(829) × 10−2 1.10232(107) × 10−2 1501

LTD −8.34829(757) × 10−2 1.10119(757) × 10−2 38
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Fig. 10 Energy scan of a rank-three tensor pentagon around the threshold region. The red curve is done with LoopTools and the blue points are
obtained with the LTD method

computation times are about 10 and 75 s, respectively. Since
LoopTools can provide results only up to pentagons, we used
exclusively here the program SecDec to cross-check.

We present a selection of sample points in Table 5. P28 and
P30 feature the rank-one numerator � · p1, the former has all
internal masses different, in the latter they are all equal. P29
has six distinct internal masses and the numerator function
(� · p2) × (� · p4) × (� · p6), P31 possesses the numerator
(� · p2) × (� · p5) and six different masses, as well. Finally,
P32 has all momenta distinct form each other and exhibits
the numerator (� · p4) × (� · p5) × (� · p6).

5.3 Some non-trivial examples beyond six external legs

Finally, we will present examples of one-loop heptagons
and octagons. In particular, we will present a scalar and a
rank-two tensor heptagon with all propagator masses equal
and a scalar heptagon with all propagator masses differ-
ent and exactly the same configuration for an octagon, in

total six points (P25–P30, to be found in Appendix A.1). In
Tables 6 and 7, rank = 0 stands for scalar. The numerators
of both the tensor heptagon and octagon diagrams are equal
to (� · p2) × (� · p4). The external momenta for this subsec-
tion were generated by using the flat phase-space generator
RAMBO [45]. The results shown here were obtained by using
LDT only and they all require a contour deformation. The
number of evaluations and the running times are similar to
the ones in the previous subsection.

6 Conclusions and outlook

The loop–tree duality has many appealing theoretical proper-
ties for the calculation of processes with many external legs.
In this paper, we have investigated the practicability of a first
numerical implementation of the LTD method.

In our analysis of the singular behaviour of the loop inte-
grand, we found two distinct types of singularities: Ellip-
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Table 5 Tensor hexagons
involving numerators of
rank-one to three

Tensor
hexagon

Rank Real part Imaginary part Time (s)

P20 1 SecDec −1.21585(12) × 10−15 36

LTD −1.21552(354) × 10−15 6

P21 3 SecDec 4.46117(37) × 10−9 5498

LTD 4.461369(3) × 10−9 11

P22 1 SecDec 1.01359(23) × 10−15 2.68657(26) × 10−15 33

LTD 1.01345(130) × 10−15 2.68633(130) × 10−15 72

P23 2 SecDec 2.45315(24) × 10−12 −2.06087(20) × 10−12 337

LTD 2.45273(727) × 10−12 −2.06202(727) × 10−12 75

P24 3 SecDec −2.07531(19) × 10−6 6.97158(56) × 10−7 14280

LTD −2.07526(8) × 10−6 6.97192(8) × 10−7 85

Table 6 Scalar and rank-two tensor heptagons

Heptagon Rank Real part Imaginary part

P25 0 −3.45252(78) × 10−10 −1.50195(78) × 10−9

P26 0 −3.65854(79) × 10−9 −5.84357(79) × 10−9

P27 2 −2.59635(78) × 10−8 −1.14108(78) × 10−7

Table 7 Scalar and rank-two tensor octagons

Octagon Rank Real part Imaginary part

P28 0 −2.07946(63) × 10−11 9.43953(63) × 10−11

P29 0 6.826303(63) × 10−10 9.17379(63) × 10−10

P30 2 −3.77449(65) × 10−10 2.82760(65) × 10−9

soid singularities which require the application of contour
deformation and hyperboloid singularities that occur pair-
wise and cancel among different dual contributions. In order
to preserve their cancellation, dual contributions featuring
the same hyperboloid singularity pair must receive the same
contour deformation. This leads to the following algorithm:
Sets of pairwise coupled dual contributions are organized
into groups. Each group is deformed independently from the
others and each dual contribution of such a group receives
the exact same contour deformation, which accounts for all
the ellipsoid singularities of the entire group.

We applied a contour deformation that efficiently deals
with the ellipsoid singularities by meeting all the important
criteria [3]. This setup has been successful in the calcula-
tion of finite multi-leg scalar and tensor integrals. We found
the results to be in very good agreement with the reference
values produced by LoopTools and SecDec. An important
further check of our implementation presented here was var-
ious scans which show that the code handles equally well
broad slices of the phase space. The code excels in cases that
involve many external legs as it shows a modest increase in

running times in comparison to cases with fewer legs. From
this first study, we can be optimistic that our implementa-
tion of the LTD method offers a competitive alternative for
computing multi-scale, multi-leg scalar and tensor one-loop
integrals.

In this paper, we have considered IR- and UV-finite inte-
grals, specifically loop integrals that only feature integrable
threshold singularities. The final aim is to implement vir-
tual and real contributions simultaneously in such a way that
IR and UV singularities are cancelled locally at integrand
level. Therefore, there is no need to evaluate the poles of
loop scattering amplitudes and only threshold singularities
need a numerical treatment in order to obtain predictions for
physical observables. The UV singularities can be subtracted
with suitable unintegrated counter-terms, and the IR singu-
larities can be cancelled by establishing momentum map-
pings between the virtual and real kinematics, as explained
in Refs. [33,35–37]. With the results presented in this paper,
and the four-dimensional unsubtraction (FDU) method pre-
sented in Refs. [33,35–37], it is possible to afford multi-leg
calculations at NLO, with either massless or massive vir-
tual and external particles. The extension to NNLO has also
been anticipated in [35], and the LTD approach is also more
direct than other methods in asymptotic expansions [37]. The
implementation of the method in a multipurpose Monte Carlo
event generator and further applications are currently under
investigation.
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Appendix A: External momenta and internal masses of
the sample points

Here we give the external momenta and internal masses of
the different phase-space points and scans shown in Sects. 4
and 5. Due to momentum conservation pN = −∑N−1

i=1 pi , it
is sufficient to give only the momenta p1 to pN−1. Momenta
and masses are implicitly given in GeV.

To produce the energy scans (Figs. 9, 10), we varied the
external momentum p1 by multiplying with the square root
of some scaling parameter λ (not to be confused with the
scaling parameter λi j of the contour deformation). This is
indicated where we give the respective momenta.

A.1: Individual sample points

Figure 3 p1 = (44.38942, 17.84418, 12.70440,−23.67441)

p2 = (11.62982,−35.11756,−9.52573, 1.27635)

m1 = m2 = m3 = 7.89824

Figure 4 p1 = (95.95213, 65.25140, −40.62468, 30.93648)

p2 = (68.47023, −60.09584, 18.23998, 84.29507)

p3 = (12.99839, 12.08603, −99.08246, −34.58997)

m1 = m2 = m3 = m4 = 11.50163

P1 p1 = (5.23923,−4.18858, 0.74966,−3.05669)

p2 = (6.99881,−2.93659, 5.03338, 3.87619)

m1 = m2 = m3 = 7.73358

P2 p1 = (13.42254, 58.79478,−73.11858,−91.95015)

p2 = (81.65928,−68.52173, 8.75578,−95.05353)

m1 = 49.97454,m2 = 86.92490,m3 = 80.22567

P3 p1 = (10.51284, 6.89159,−7.40660,−2.85795)

p2 = (6.45709, 2.46635, 5.84093, 1.22257)

m1 = m2 = m3 = 0.52559

P4 p1 = (95.77004, 31.32025,−34.08106,−9.38565)

p2 = (94.54738,−53.84229, 67.11107, 45.56763)

m1 = 83.02643,m2 = 76.12873,m3 = 55.00359

P5 p1 = (31.54872,−322.40325, 300.53015,−385.58013)

p2 = (103.90430, 202.00974,−451.27794,−435.12848)

p3 = (294.76653, 252.88958, 447.09194, 311.71630)

m1 = m2 = m3 = m4 = 4.68481

P6 p1 = (50.85428,−55.74613, 11.69987, 94.92591)

p2 = (0.69914, 67.19262,−5.78627, 91.52776)

p3 = (52.35768, 76.32258, 43.82222, 13.05874)

m1 = 54.29650,m2 = 53.54058,m3 = 55.96814,

m4 = 51.74438

P7 p1 = (62.80274,−49.71968,−5.53340,−79.44048)

p2 = (48.59375,−1.65847, 34.91140, 71.89564)

p3 = (76.75934,−19.14334,−17.10279, 30.22959)

m1 = m2 = m3 = m4 = 9.82998

P8 p1 = (98.04093, 77.37405, 30.53434,−81.88155)

p2 = (73.67657,−53.78754, 13.69987, 14.20439)

p3 = (68.14197,−36.48119, 59.89499,−81.79030)

m1 = 81.44869,m2 = 94.39003,m3 = 57.53145,

m4 = 0.40190

P9 p1 = (76.50219,−72.36197, 10.95225,−99.79612)

p2 = (99.02723, 27.27133,−25.11907, 86.10825)

p3 = (64.19420, 13.10011, 18.37737,−29.16095)

m1 = m2 = 37.77809,m3 = m4 = 36.84323

P10 p1 = (13.62303,−64.20757,−17.59085,−8.81785)

p2 = (96.67650, 89.65623,−18.47276, 40.73203)

p3 = (66.21913,−39.49917, 3.640139,−82.31669)

m1 = m3 = 64.67282,m2 = m4 = 51.13181

P11 p1 = (33.74515, 45.72730, 31.15254,−7.47943)

p2 = (31.36435,−41.50734, 46.47897, 2.04203)

p3 = (4.59005, 17.07010, 32.65403, 41.93628)

p4 = (29.51054,−28.25963, 46.17333,−35.08918)

m1 = m2 = m3 = m4 = m5 = 5.01213

P12 p1 = (33.76482, 45.44063,−10.68084, 16.41925)

p2 = (72.93498, 67.49170,−11.81485,−36.28455)

p3 = (8.01673,−49.40112,−66.09200,−0.11414)

p4 = (−86.54188,−97.01228, 68.12494, 32.94875)

m1 = 98.42704,m2 = 28.89059,m3 = 40.51436,

m4 = 75.45643,m5 = 11.08327

P13 p1 = (1.58374, 6.86200, −15.06805, −10.63574)

p2 = (7.54800, −3.36539, 34.57385, 27.52676)

p3 = (43.36396, −49.27646, −25.35062, −17.68709)

p4 = (22.58103, 38.31530, −14.67581, −3.08209)

m1 = m2 = m3 = m4 = m5 = 2.76340
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P14 p1 = (−89.85270, 69.44839,−96.30496, 14.47549)

p2 = (−81.61779, 6.89065, 1.76775, 18.39834)

p3 = (−89.80789, 24.32486, 48.73341, 0.74094)

p4 = (−43.20198,−85.34635, 92.38148, 93.84802)

m1 = 22.21430,m2 = 15.84324,m3 = 34.80431,

m4 = 27.53390,m5 = 29.19823

P15 p1 = (94.79774, −70.04005, −84.77221, 36.09812)

p2 = (−42.15872, −36.33754, −14.72331, −41.24018)

p3 = (73.77293, 88.37064, 33.47296, −24.17542)

p4 = (81.85638, 77.17370, −62.39774, −6.89737)

m1 = m2 = m3 = 1.30619,m4 = m5 = 1.26692

P16 p1 = (69.70234, 62.68042, 25.44429, −97.78603)

p2 = (−65.98494, −85.19920, 98.05702, −70.89141)

p3 = (−26.75642, −30.42288, −26.84633, 14.81944)

p4 = (−69.44800, 56.74842, −32.23649, 96.45829)

m1 = m2 = m3 = m4 = m5 = 87.00572

P17 p1 = (−45.80756, 95.63842,−55.04954, 44.01174)

p2 = (36.09562, 52.66752,−11.22354,−87.48918)

p3 = (−4.90798, 41.11273, 14.29379, 2.15944)

p4 = (49.48233, 40.26756,−23.16581,−96.89362)

m1 = m2 = m3 = m4 = m5 = 56.97318

P18 p1 = (−18.90057, −97.14671, 44.69176, −16.67528)

p2 = (−70.86315, −81.27489, −3.71628, 18.79403)

p3 = (−89.53092, 50.02356, 33.39784, −51.66031)

p4 = (−96.59097, −34.80215, −83.24353, 44.73888)

m1 = m2 = m3 = m4 = m5 = 43.87459

P19 p1 = (−88.70322, 37.98826, 62.19352, −35.86433)

p2 = (−58.60617, −58.60074, −83.75298, 61.78210)

p3 = (−83.73607, 46.98912, 67.44602, 78.40612)

p4 = (−96.41508, 71.69925, −14.47818, −61.82390)

m1 = m2 = m3 = m4 = m5 = 16.73899

P20 p1 = (−3.43584, 4.73492, 17.31242, 61.53467)

p2 = (12.12233, 32.23256, 87.57836,−58.25073)

p3 = (−38.67209,−54.27020, 21.15570, 79.15640)

p4 = (−90.90573,−79.70266,−88.26463,−66.00973)

p5 = (−34.40043,−88.73043, 84.41781,−4.21221)

m1 = 54.36459,m2 = 30.96600,m3 = 51.03652,

m4 = 16.03115,m5 = 2.25657,m6 = 59.45020

P21 p1 = (−9.85384, 15.70678, 80.94234,−84.96387)

p2 = (90.11707,−74.59469,−70.73997, 54.32748)

p3 = (−55.84212,−34.47531,−87.20597,−27.73882)

p4 = (16.72808, 64.83574,−31.16733, 63.94189)

p5 = (−42.62943, 49.91058,−46.12974, 59.76096)

m1 = 42.61768,m2 = 22.13590,m3 = 34.87263,

m4 = 54.00634,m5 = 79.54844,m6 = 87.50131

P22 p1 = (35.27512, 36.08798, −89.66662, 18.22907)

p2 = (−32.58939, 14.45447, 86.93898, −47.20827)

p3 = (−76.40210, −62.22587, −63.59955, 41.03465)

p4 = (−2.30248, 0.45058, −76.74256, −64.19292)

p5 = (−88.80252, 18.06504, −6.53891, 49.34535)

m1 = m2 = m3 = m4 = m5 = m6 = 82.87370

P23 p1 = (−99.20747, −68.16217, 95.24772, 68.87644)

p2 = (−95.09224, 78.51258, −82.38270, 20.36899)

p3 = (−56.04092, 22.93681, −72.82681, 96.81954)

p4 = (78.53840, −86.40143, −82.49674, −57.42855)

p5 = (13.70265, 77.87278, 99.79126, 8.31677)

m1 = 63.23680,m2 = 86.48449,m3 = 44.51361,

m4 = 79.73599,m5 = 74.43246,m6 = 70.11421

P24 p1 = (−70.26380, 96.72681, 21.66556,−37.40054)

p2 = (−13.45985, 2.12040, 3.20198, 91.44246)

p3 = (−62.59164,−29.93690,−22.16595,−58.38466)

p4 = (−67.60797,−83.23480, 18.49429, 8.94427)

p5 = (−34.70936,−62.59326,−60.71318, 2.77450)

m1 = 94.53242,m2 = 64.45092,m3 = 74.74299,

m4 = 10.63129,m5 = 31.77881,m6 = 23.93819

P25 p1 = (−2.50000, 0, 0,−2.50000)

p2 = (−2.50000, 0, 0, 2.50000)

p3 = (−0.43177, 0.07607,−0.18817, 0.38109)

p4 = (−1.40059, 0.41563, 1.31602,−0.23875)

p5 = (−0.63761, 0.45225, 0.41589,−0.17047)

p6 = (−2.07065,−1.16073,−1.66377, 0.41493)

m1 = 4.50676,m2 = 4.50676,m3 = 4.50676,

m4 = 4.50676,m5 = 4.50676,m6 = 4.50676,

m7 = 4.50676

P26 p1 = (−2.50000, 0, 0,−2.50000)

p2 = (−2.50000, 0, 0, 2.50000)

p3 = (−0.43177, 0.07607,−0.18817, 0.38109)

p4 = (−1.40059, 0.41563, 1.31602,−0.23875)

p5 = (−0.63761, 0.45225, 0.41589,−0.17047)

p6 = (−2.07065,−1.16073,−1.66377, 0.41493)

m1 = 4.50676,m2 = 2.81491,m3 = 1.42763,

m4 = 7.62154,m5 = 5.26917,m6 = 3.52104,

m7 = 5.88815
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P27 p1 = (−2.50000, 0, 0,−2.50000)

p2 = (−2.50000, 0, 0, 2.50000)

p3 = (−0.43177, 0.07607,−0.18817, 0.38109)

p4 = (−1.40059, 0.41563, 1.31602,−0.23875)

p5 = (−0.63761, 0.45225, 0.41589,−0.17047)

p6 = (−2.07065,−1.16073,−1.66377, 0.41493)

m1 = 4.50676,m2 = 4.50676,m3 = 4.50676,

m4 = 4.50676,m5 = 4.50676,m6 = 4.50676,

m7 = 4.50676

P28 p1 = (−2.50000, 0, 0,−2.50000)

p2 = (−2.50000, 0, 0, 2.50000)

p3 = (−0.42766, 0.04111,−0.18082, 0.38536)

p4 = (−0.90714, 0.28930, 0.85932, 2.80593)

p5 = (−0.41425, 0.32955, 0.24948,−0.02757)

p6 = (−1.90735,−0.95093,−1.46021, 0.77557)

p7 = (−0.27116, 0.15567, 0.03964,−0.21846)

m1 = 4.50676,m2 = 4.50676,m3 = 4.50676,

m4 = 4.50676,

m5 = 4.50676,m6 = 4.50676,m7 = 4.50676,

m8 = 4.50676

P29 p1 = (−2.50000, 0, 0,−2.50000)

p2 = (−2.50000, 0, 0, 2.50000)

p3 = (−0.42766, 0.04111,−0.18082, 0.38536)

p4 = (−0.90714, 0.28930, 0.85932, 2.80593)

p5 = (−0.41425, 0.32955, 0.24948,−0.02757)

p6 = (−1.90735,−0.95093,−1.46021, 0.77557)

p7 = (−0.27116, 0.15567, 0.03964,−0.21846)

m1 = 4.50676,m2 = 2.81491,m3 = 1.42763,

m4 = 7.62154,

m5 = 5.26917,m6 = 3.52104,m7 = 5.88815,

m8 = 4.42252

P30 p1 = (−2.50000, 0, 0,−2.50000)

p2 = (−2.50000, 0, 0, 2.50000)

p3 = (−0.42766, 0.04111,−0.18082, 0.38536)

p4 = (−0.90714, 0.28930, 0.85932, 2.80593)

p5 = (−0.41425, 0.32955, 0.24948,−0.02757)

p6 = (−1.90735,−0.95093,−1.46021, 0.77557)

p7 = (−0.27116, 0.15567, 0.03964,−0.21846)

m1 = 4.50676,m2 = 4.50676,m3 = 4.50676,

m4 = 4.50676,

m5 = 4.50676,m6 = 4.50676,m7 = 4.50676,

m8 = 4.50676

6.1 Energy and mass scans

Figure 7 p1 = (27.95884, 25.55639,−29.88288,−2.17433)

p2 = (27.45521,−7.81292, 3.19651, 6.05088)

6.05088 ≤ m1 = m2 = m3 ≤ 31.53414

Figure 8 p1 = (67.40483, 49.44993, −20.67085, 48.63654)

p2 = (54.64295, −58.23071, 9.55042, −16.59411)

p3 = (41.37620, 11.75178, −40.77655, −8.25014)

2.33822 ≤ m1 = m2 = m3 = m4

≤ 70.14658

Figure 9 p1 = √
λ (−15.22437, −26.74156, 6.65483,

29.13661) , λ ∈ [1, 30] ,

p2 = (−91.22611, −63.97875, 55.07507, −52.90153)

p3 = (0.95105, 75.90791, −10.13814, −88.40860)

p4 = (43.04908, 77.11321, −50.69469, −7.60198)

m1 = 49.12560,m2 = 57.87487,m3 = 26.47098

m4 = 0.42094,m5 = 62.31320

Figure 10 p1 = √
λ (−51.76504,−81.75539,−46.42422,

−40.15540) , λ ∈ [1, 30] ,

p2 = (−63.76533,−2.53015, 16.27485, 69.16770)

p3 = (−78.50262, 46.32052, 13.19246,−54.00166)

p4 = (25.40582, 81.48058, 39.11105, 93.24648)

m1 = 78.45208,m2 = 42.71315,m3 = 91.94256,

m4 = 61.59730,m5 = 16.75672
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