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Abstract We revisit the calculation of the width for the
radiative decay of a 1+− heavy QQ̄ meson via the channel
1+− → 0−++γ in the covariant light-front quark model. We
carry out the reduction of the light-front amplitude in the non-
relativistic limit, explicitly computing the leading and next-
to-leading order relativistic corrections. This shows the con-
sistency of the light-front approach with the non-relativistic
formula for this electric dipole transition. Furthermore, the
theoretical uncertainty in the predicted width is studied as
a function of the inputs for the heavy-quark mass and wave
function structure parameter. We analyze the specific decays
hc(1P) → ηc(1S)+γ and hb(1P) → ηb(1S)+γ . We com-
pare our results with experimental data and with other theo-
retical predictions from calculations based on non-relativistic
models and their extensions to include relativistic effects,
finding reasonable agreement.

1 Introduction

Heavy-quark QQ̄ bound states play a valuable role in eluci-
dating the properties of quantum chromodynamics (QCD).
Since the discoveries of the J/ψ in 1974 [1,2] and other
cc̄ charmonium states, and the ϒ in 1977 [3,4] and other bb̄
states, we now have a very substantial set of data on the prop-
erties and decays of these quarkonium states. Some reviews
include [5–15]. The goal of understanding these data moti-
vates theoretical studies, in particular, studies of the decays
of QQ̄ states.

Among various decay channels, radiative decays are a very
good testing ground for models, since the emitted photon
is directly detected and the electromagnetic interaction is
well understood. An electric dipole (E1) transition is one
the simplest types of radiative decays. Here we consider E1
transitions of the form

a e-mail: yanliang.shi@stonybrook.edu

1P1 → 1S0 + γ, (1)

where a spin-singlet P-wave QQ̄ quarkonium state decays to
a spin-singlet S-wave QQ̄ state. In terms of the spin J and
the charge and parity quantum numbers P and C, indicated
as J PC , this has the form 1+− → 0−+ + γ .

Several theoretical analyses of these E1 transition rates
have been carried out, using various models [16–26]. A
number of these models utilize the non-relativistic quantum
mechanics formula for an E1 transition, involving the calcu-
lation of the overlap integral of the quarkonium wave func-
tions of the initial and final states. The quarkonium wave
function is obtained from the solution of the Schrödinger
equation with non-relativistic potentials, such as the Cornell
potential, V = −(4/3)αs(mQ)/r + σr . The first term in
this potential is a non-Abelian Coulomb potential represent-
ing one-gluon exchange at short distances, where αs(mQ) =
gs(μ)2/(4π) is the strong coupling evaluated at the scale of
the heavy-quark mass, mQ, and the second term is the linear
confining potential, where σ = 0.18 GeV2 is the string ten-
sion. Current data yield a fit to αs(μ) such that αs � 0.33 at
the scale μ = 1.5 GeV relevant for cc̄ states and αs � 0.21
at the scale μ = 4.7 GeV relevant for bb̄ states [27]. Rel-
ativistic corrections have also been calculated by replacing
the Schrödinger equation by the Dirac equation, and com-
puting corrections in powers of v/c, where v is the velocity
of the heavy (anti)quark in the rest frame of the QQ̄ bound
state.

It is of interest to study the radiative decays (1) with
a fully relativistic approach, namely the light-front quark
model (LFQM) [28–41]. This approach naturally includes
relativistic effects of quark spins and the internal motion of
the constituent quarks. Another advantage of the light-front
quark model is that it is manifestly covariant. Hence it is easy
to boost a hadron bound state from one inertial Lorentz frame
to another one when the bound state wave function is known
in a particular frame [32]. The light-front approach has been
used to study semileptonic and nonleptonic decays of heavy-
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flavor D and B mesons and also to evaluate radiative decay
rates of heavy mesons [42–46].

In this paper, we extend our previous work with Ke and
Li in Ref. [45] on the study of the radiative decays

hc(1P) → ηc(1S) + γ, (2)

and

hb(1P) → ηb(1S) + γ. (3)

We present several new results here. We carry out the reduc-
tion of the light-front amplitude to the non-relativistic limit,
explicitly computing the leading and next-to-leading order
relativistic corrections. This shows the consistency of the
light-front approach with the non-relativistic formula for this
electric dipole transition. Furthermore, we investigate the
theoretical uncertainties in the predicted widths as functions
of the inputs for the heavy-quark mass and wave function
structure parameters. As in Ref. [45], we compare our numer-
ical results for these widths with experimental data and with
other theoretical predictions from calculations based on non-
relativistic models and their extensions to include relativistic
effects, extending [45] with further study of the theoretical
uncertainties in our calculations. Specifically, we compare
our numerical results with results from [9,11,20–23,25,26]
as well as latest experimental data [27].

The paper is organized as follows: In Sect. 2, we review
the formulas for the radiative decay 1+− → 1−+ + γ .
In Sect. 3, we analyze the reduction of light-front formu-
las when applied to heavy-quarkonium systems to non-
relativistic limit and compare these with non-relativistic
quantum mechanical electric dipole transition formula. In
Sect. 4, we present our numerical results for the decay widths
of hc(1P) → ηc(1S)+γ and hb(1P) → ηb(1S)+γ includ-
ing an extended analysis of the theoretical uncertainties. Our
conclusions are given in Sect. 5.

2 Light-front formalism for the decays 1+− → 0−+ + γ

2.1 Notation

We first define some notation, retaining the conventions of
[39,41]. In light-front coordinates, the four-momentum p is

pμ = (p−, p+,p⊥). (4)

where p± = p0± p3 and p⊥ = (p1, p2). Hence, the Lorentz
scalar product p2 = pμ pμ is

p2 = (p0)2 − |p|2 = (p0)2 − (p3)2 − |p⊥|2
= p+ p− − |p⊥|2. (5)

Consider a decay of a QQ̄ meson consisting of two con-
stituent particles (quark and antiquark). The momentum of
the parent meson is denoted as P ′ = p′

1 + p2, where p′
1 and

p2 are the momenta of the constituent quark and antiquark,
with mass m′

1 and m2, respectively. The momentum of the
daughter QQ̄ meson is written as P ′′ = p′′

1 + p2, where p′′
1

is the momentum of the constituent quark, with mass m′′
1.

Here we have m′
1 = m2 = m′′ = mQ. The four-momentum

of the parent meson with mass M ′ can be expressed as P ′ =
(P ′−, P ′+,P′⊥), where P ′2 = P ′+P ′− − |P′⊥|2 = M ′2.
Similarly, for the daughter meson with mass M ′′, one has
P ′′2 = M ′′2, as shown in Fig. 1 below. (Vector signs on
transverse momentum components are henceforth taken to
be implicit.)

The momenta of the constituent quark and antiquark (p′
1,

p′′
1 and p2) can be described by internal variables (x2, p′⊥)

thus:

p′+
1 = x1P

′+, p+
2 = x2P

′+,

p′
1⊥ = x1P

′⊥ + p′⊥, p2⊥ = x2P
′⊥ − p′⊥,

x1 + x2 = 1. (6)

Explicitly,

x1 = e1 − p′
z

e′
1 + e2

, x2 = p′
z + e2

e′
1 + e2

, (7)

where e′
1, e′′

1 and e2 are the energy of the quark (antiquark)
with momenta p′

1, p′′
1 and p2:

e′
1 =

√
m′2

1 + p′2⊥ + p′2
z ,

e′′
1 =

√
m′′2

1 + p′′2⊥ + p′′2
z ,

e2 =
√
m2

2 + p′2⊥ + p′2
z . (8)

With the external momentum of the photon given as q =
P ′ − P ′′, p′′⊥ can be expressed as

p′′⊥ = p′⊥ − x2q⊥. (9)

Here p′
z and p′′

z can also be expressed as functions of internal
variables (x2, p′⊥), and explicit expressions can be found in
Appendix B.

2.2 Form factors

Define external momentum variables to be P = P ′+P ′′,q =
P ′ − P ′′, where q is the four-momentum of the photon that
is emitted in the radiative transition. The general amplitude
of the radiative decay (1) of the axial vector 1+− 1P1 meson,
denoted as A, to the pseudoscalar 0−+ 1S0 meson, denoted
as P , can be written as [41]:

iA
(
A(P ′) → P(P ′′)γ (q)

) = ε∗
μ(q)ε′

ν(P
′)i ˜A μν , (10)
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where

i ˜A μν = f1(q
2)gμν + Pμ

[
f+(q2)Pν + f−(q2)qν

]
. (11)

In the above expression, we have used the condition ε∗
μ(q)qμ

= 0 to eliminate terms that are proportional to qμ. This
expression can be simplified further by using the transver-
sality property of axial vector polarization vector:

ε′
ν(P

′)(P + q)ν = 0. (12)

Then the general amplitude can be written as

i ˜A μν → iA μν = f1(q
2)gμν + f2(q

2)Pμqν , (13)

where f2(q2) is linear combination of f+(q2) and f−(q2):

f2(q
2) = − f+(q2) + f−(q2) . (14)

Notice that in Eq. (13), f1(q2) and f2(q2) are not indepen-
dent. Because of electromagnetic gauge invariance, they are
related by the following equation:

qμA
μν = 0 → f1(q

2) + f2(q
2)(P · q) = 0 . (15)

So the amplitude can be parameterized by f1(q2), which is

iA μν = f1(q
2)

[
gμν − 1

(P · q)
Pμqν

]
. (16)

After an explicit calculation, we have

∑
polarization

|A |2 = 2| f1(q2)|2 . (17)

Taking the physical value q2 → 0 in the form factor f1(q2)

and averaging initial state polarizations, the radiative transi-
tion width of 1+− → 0−+ + γ is given by

� = 1

3
· |q|

8πM ′2
∑
polar.

|A |2 = |q|
12πM ′2 · | f1(0)|2 , (18)

where the energy of the emitted photon is related to the
masses of mesons as |q| = (M ′2 − M ′′2)/(2M ′).

2.3 Calculation of radiative decay amplitude

In the covariant light-front quark model, the vertex function
of the axial vector meson A (1+−, 1P1) is given by

−i H ′
A

[
1

W ′
A
(p′

1 − p2)
μ

]
γ 5 , (19)

Fig. 1 Feynman diagrams for radiative transition 1+− → 0−+ + γ in
the light-front approach

and the vertex function of the pseudoscalar meson P (0−+,
1S0) is given by

H ′′
Pγ 5 , (20)

where H ′
A and H ′′

P are functions of p′
1 and p2, and W ′

A can
be reduced to a constant, which we will discuss later in this
subsection.

In the light-front framework that we use [39,41], at leading
order there are two diagrams that contribute to the A →
P + γ transition amplitude. These give the corresponding
contributions to this amplitude

iA μν(A → P + γ ) = iA μν(a) + iA μν(b) (21)

where iA μν(a) and iA μν(b) correspond to the left and right
diagram in Fig. 1, respectively. The contribution to the ampli-
tude from the right diagram can be obtained by taking the
charge conjugation of left diagram (see also [46]). So we
discuss the left-hand diagram, where the corresponding tran-
sition amplitude is given by

iA μν(a) = i
eNe′

1
Nc

(2π)4

∫
d4 p′

1
H ′

AH
′′
P

N ′
1N

′′
1 N2

S μν
a , (22)

where

S
μν
a = Tr

[
γ 5(p/′′

1 + m′′
1 )γ μ(p/′

1 + m′
1)γ 5(−p/2 + m2)

]

× 1

W ′
A

(
2p′

1 − P + q

2

)ν

= 4

W ′
A

(
2p′

1 − P + q

2

)ν [
p′′μ

1 (p′
1 · p2) + p′μ

1 (p′′
1 · p2)

− pμ
2 (p′

1 · p′′
1 ) + m′

1m2 p
′′μ
1 + m′′

1m2 p
′μ
1 + m′

1m
′′
1 p

μ
2

]

= 1

W ′
A

(
2p′

1 − P + q

2

)ν {
2p′μ

1

[
M ′2 + M ′′2 − q2 − 2N2

− (m′
1 − m2)2 − (m′′

1 − m2)2 + (m′
1 − m′′

1)2
]

+ qμ
[
q2 − 2M ′2 + N ′

1 − N ′′
1 + 2N2 + 2(m′

1 − m2)2

− (m′
1 − m′′

1)2
]
+Pμ

[
q2 − N ′

1 − N ′′
1 − (m′

1 − m′′
1)2
]}

,

(23)
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N ′
1 = p′2

1 − m′2
1 + iε,

N ′′
1 = p′′2

1 − m′′2
1 + iε,

N2 = p2
2 − m2

2 + iε. (24)

Here Ne′
1(e2)

represents the electric charge of quark with four-
momentum p′

1 (p2). Here we have Ne′
1(e2)

= eQ. In Eq.(23),
we have already applied the following relations:

p′′
1 = p′

1 − q,

p2 = (P + q)/2 − p′
1,

2p′
1 · p2 = M ′2 − N ′

1 − m′2
1 − N2 − m2

2,

2p′′
1 · p2 = M ′′2 − N ′′

1 − m′′2
1 − N2 − m2

2,

2p′
1 · p′′

1 = −q2 + N ′
1 + m′2

1 + N ′′
1 + m′′2

1 . (25)

Then we integrate over p′−
1 by closing the contour in the

upper complex p′−
1 plane, which amounts to the following

replacement [39,41]:
∫

d4 p′
1

H ′
AH

′′
P

N ′
1N

′′
1 N2

S μν
a ε∗

με′
ν →

−iπ
∫

dx2d2 p′⊥
h′
Ah

′′
P

x2 N̂ ′
1 N̂

′′
1

Ŝ μν
a ε̂∗

με̂′
ν , (26)

where

N ′
1 → N̂ ′

1 = x1(M
′2 − M ′2

0 ),

N ′′
1 → N̂ ′′

1 = x1(M
′′2 − M ′′2

0 ),

H ′
A → h′

A = (M ′2 − M ′2
0 )

√
x1x2

Nc

1√
2M̃ ′

0

ϕp(p
′⊥, x2),

H ′′
P → h′′

P = (M ′′2 − M ′′2
0 )

√
x1x2

Nc

1√
2M̃ ′′

0

ϕ(p′′⊥, x2),

W ′
A → w′

A = 2 . (27)

In the above expressions, ϕp(p′⊥, x2) is the light-front
momentum space wave function for initial P-wave meson
(1P1), and ϕ(p′′⊥, x2) is the wave function for the final S-wave
meson, 1S0. Some details concerning the wave functions are
given in Appendix A. The explicit forms of M ′

0, M ′′
0 , M̃ ′

0 and
M̃ ′′

0 are listed in Appendix B. The definitions of ε̂∗, ε̂′ and
ε̂′′∗
ρ are given in [39,41].

After the integration over p′−
1 , we have the following

replacement for p′
1μ and N̂2 in Ŝ μν

a in the integral [39,41]:

p̂′
1μ → PμA

(1)
1 + qμA

(1)
2 ,

p̂′
1μ p̂

′
1ν → gμν A

(2)
1 + PμPν A

(2)
2

+ (Pμqν + qμPν)A
(2)
3 + qμqν A

(2)
4 ,

p̂′
1μ N̂2 → qμ

[
A(1)

2 Z2 + q · P
q2 A(2)

1

]
,

p̂′
1μ p̂

′
1ν N̂2 → gμν A

(2)
1 Z2

+ qμqν

[
A(2)

4 Z2 + 2
q · P
q2 A(1)

2 A(2)
1

]
, (28)

where the explicit expressions for A(i)
j (i, j = 1 ∼ 4) and Z2

are listed in Appendix B.
Combining Eqs. (26), (27) and (28), we getS μν

a → Ŝ μν
a ,

where the explicit form can be found in Ref. [45]. Finally, we
obtain iA μν(a) as a function of the external four-momenta
P and q with the following parameterization:

iA μν(a) = f a1 (q2)

[
gμν − 1

(P · q)
Pμqν

]
, (29)

where the form factor f a1 (q2) is given by

f a1 (q2) = eeQNc

16π3

∫
dx2d2 p′⊥
x2 N̂ ′

1 N̂
′′
1

h′
Ah

′′
P

4

w′
A

×
{
A(2)

1 [M ′2 + M ′′2 − q2 − (m′
1 − m2)

2

− (m′′
1 − m2)

2 + (m′
1 − m′′

1)
2] − 2A(2)

1 Z2

}

= eeQNc

16π3

∫
dx2d2 p′⊥
x2 N̂ ′

1 N̂
′′
1

h′
Ah

′′
P

4

w′
A

×
(

−p′2⊥ − (p′⊥ · q⊥)2

q2

)

×
{
[M ′2+M ′′2−q2−(m′

1−m2)
2−(m′′

1 − m2)
2

+ (m′
1 − m′′

1)
2] − 2N̂ ′

1 − 2m′2
1 + 2m2

2

− 2(1 − 2x1)M
′2 − 2(q2 + q · P)

p′⊥ · q⊥
q2

}

= eeQ

16π3

∫
dx2d2 p′⊥
x1M ′

0M
′′
0
ϕp(p

′⊥, x2)ϕ(p′′⊥, x2)

×
[
−p′2⊥ − (p′⊥ · q⊥)2

q2

] [
(2x1 − 1)M ′2 + M ′′2

+ 2x1M
′2
0 − q2 − 2(q2 + q · P)

p′⊥ · q⊥
q2

]
.

(30)

Similarly, for the right diagram in Fig. 1, we have the corre-
sponding amplitude:

iA μν(b) = f b
1 (q2)

[
gμν − 1

(P · q)
Pμqν

]
. (31)

This can be obtained from the result of the left-hand diagram
with the replacements m′

1 ↔ m′
2, m′′

1 ↔ m′′
2, m2 ↔ m1,

Ne′
1

↔ Ne2 . The total form factor f1(q2) is the sum of con-
tribution from two diagrams:

f1(q
2) = f a1 (q2) + f b

1 (q2) . (32)

Taking the physical value q2 → 0 in the form factor, we
can obtain | f1(0)|2 and compute the decay width using Eq.
(18). The numerical calculation of the decay width will be
discussed in Sect. 4.
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2.4 Comments on effects of zero modes

As discussed in Refs. [39,41], there are two classes of form
factors for the amplitude discussed in this section. One class
of form factors like f (q2) is associated with zero modes and
another class of form factors is free of zero-mode contri-
butions. In this paper, the form factor that contributes to the
radiative transition 1+− → 0−++γ , namely f1(q2), belongs
to the first class and contains zero-mode contributions. In
this case, the substitution in Eq. (28) is not exact and con-
tains residual spurious terms that are proportional to a light-
like four-vector ω = (2, 0, 0). These terms are not Lorentz
covariant. As discussed in Refs. [39,41], the zero-mode con-
tribution cancels away the residual spurious ω terms. Fur-
thermore, form factors like f (q2) receive additional residual
contributions, which can be expressed in terms of the B(m)

(n)

and C (m)
(n) functions defined in Appendix B of Ref. [41].

However, this problem has already been carefully ana-
lyzed in Ref. [41]. In fact, by comparing our expression for
f1(q2) in Eq.(30) with the expression for f (q2) in Eq. (B4) of
Ref. [41], we find that the integrand of f1(q2) is proportional
to the 1/w′′

V term of the integrand of f (q2) in Ref. [41]. Thus,
we follow the same analysis in Ref. [41] of f (q2) to address
the possible zero-mode problem of f1(q2). The B(m)

(n) and

C (m)
(n) functions do not appear in the expression for f1(q2), so

we can still use the substitution in Eq. (28) because, first, we
utilize the relationC (1)

1 → 0 in the integrand, and second, the
amplitude associated with f1(q2) in A μν is contracted with
the transverse polarization vector of the photon. Explicitly,
our numerical calculation shows that all of the functions B(m)

(n)

are numerically negligibly small, and hence we can neglect
all of the residual contributions to the form factors in the
present analysis.

3 Reduction to non-relativistic limit in application to
quarkonium systems

In this paper, we use the light-front formula discussed in
Sect. 2 to study the radiative decay (1). For this decay, the
non-relativistic electromagnetic dipole transition formulas
are widely adopted [9]. Thus it is interesting to investigate
the consistency between the LFQM and the non-relativistic
dipole transition formulas in the non-relativistic limit. In this
section we analyze the reduction of the light-front formula
for the decay width in the non-relativistic limit. This limit
is relevant here because (v/c)2 is substantially smaller than
unity for a heavy-quark QQ̄ state. For a Coulombic poten-
tial, αs ∼ v/c, and current data give αs = 0.21 at a scale of
mb = 4.5 GeV, yielding (v/c)2 ∼ 0.04 for the ϒ system.
There are several aspects of the non-relativistic limit for the
decay of a heavy-quarkonium system:

1. Masses of bound states. The masses of initial (M ′) and
final state (M ′′) are close to the sum their constituents,
and the deviation is O(m−2

Q ) corrections:

M ′2

4m2
Q

= 1 + O(m−2
Q ),

M ′′2

4m2
Q

= 1 + O(m−2
Q ). (33)

Here and below, by O(m−2
Q ) we mean O(|p|2/m2

Q),
wherep is a generic three-momentum in the parent meson
rest frame.

2. No-recoil limit. In non-relativistic quantum mechanics,
the final state after the E1 radiative transition is assumed
to carry approximately the same three-momentum as the
initial state [47]. So the matrix element of this E1 transi-
tion is

〈r〉 ∝ 〈 f (p′′)|r|i(p′)〉, p′′ = p′ . (34)

In our analysis, we will adopt this no-recoil approxima-
tion.

3. Normalization of wave function. In non-relativistic quan-
tum mechanics, the momentum-space wave function is
given by

〈p|n, lm〉 = Rnl(p)Ylm(θ, φ) , (35)

with the normalization of the radial wave function

∫ ∞

0
dp p2R∗

nl(p)Rnl(p) = 1, (36)

where here p = |p|, and the normalization of the angular
wave function

∫
d� Y ∗

lm(θ, φ)Yl ′m′(θ, φ) = δll ′δmm′ . (37)

In this paper we use harmonic oscillator wave functions
for the quarkonium 1P and 1S states. The general formula
for harmonic oscillator wave functions in momentum space
that satisfy the usual quantum mechanics normalization in
Eq. (36) is given by [22,48]

Rnl(p) = 1

β
3
2

√
2n

�
(
n + l + 1

2

)

×
(
p

β

)l

L
l+ 1

2
n−1

(
p2

β2

)
exp

(
− p2

2β2

)
, (38)

where L
l+ 1

2
n−1(p

2/β2) is an associated Laguerre polynomial.
Here, β is a parameter with dimensions of momentum that
enters in the light-front wave function (A.7) (and should not
be confused with the dimensionless ratio v/c, which serves
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as a measure of the non-relativistic property of a heavy-quark
QQ̄ bound state.) Specifically, for 1S and 1P states, we have

R1S(p) = 2

β
3
2 π

1
4

exp

(
− p2

2β2

)
, (39)

and

R1P (p) =
√

2

3

2

β
3
2 π

1
4

exp

(
− p2

2β2

)
p

β
. (40)

Notice that the normalization of these wave functions is dif-
ferent from the normalization of the light-front wave func-
tions discussed in Appendix A. For example,

ψ(p) = 1√
4π

R1S(p). (41)

In non-relativistic quantum mechanics, the width of an E1
decay of the initial quarkonium state 1P1 to the final quarko-
nium state 1S0 + γ is given by [9]:

�
(

1P1 → 1S0 + γ
)

= 4

9
αe2

QE3
γ |I3(1P → 1S)|2 (42)

where Eγ = |q| is the energy of the emitted photon, and
I3(1P → 1S) is the overlap integral in position space, which
represents the matrix element of the electric dipole operator:

I3(1P → 1S) =
∫ ∞

0
dr r3R1P (r)R∗

1S(r). (43)

Similarly, we can define I5(1P → 1S), which appears in
the relativistic correction to the electric dipole transition
width [9]:

I5(1P → 1S) =
∫ ∞

0
dr r5R1P (r)R∗

1S(r) (44)

For later use, we also list the analogous integrals in momen-
tum space:

I p3 (1P → 1S) =
∫ ∞

0
dp p3R1P (p)R∗

1S(p), (45)

I p5 (1P → 1S) =
∫ ∞

0
dp p5R1P (p)R∗

1S(p). (46)

We are now ready to reduce the light-front decay width in
Eq. (18) when applied to quarkonium systems to the standard
non-relativistic formula in Eq. (42). Using the explicit form
in Eq. (30) and taking the limit q2 → 0, the form factor in
Eq. (32), we can write

f1(q2) = 2eeQ

16π3

∫
dx2d2 p′⊥
x1M

′
0M

′′
0

ϕp(p
′⊥, x2)ϕ(p′′⊥, x2)

×
[
−p′2⊥ − (p′⊥ · q⊥)2

q2

]
·
[
(2x1 − 1)M ′2 + M ′′2

+2x1M
′2
0 − 2(q · P)

p′⊥ · q⊥
q2

]

= −eeQ

∫
dx2d2 p′⊥
x1M

′
0M

′′
0

√
dp′

z

dx2

√
dp′

z

dx2

×
√
e′′1M ′

0
e′1M ′′

0
ψp(p

′⊥, p′
z)ψ(p′′⊥, p′′

z )p′2⊥

×
[
(2x1−1)M ′2+M ′′2+2x1M

′2
0 −2(q · P)

p′⊥ · q⊥
q2

]
,

(47)

where we use the explicit form of light-front momentum
space wave function in 1. This expression can be further sim-
plified in the no-recoil limit, which is a valid approximation in
the study of an electric dipole transition in the non-relativistic

limit [47]. In this limit, we have

√
e′′

1 M
′
0

e′
1M

′′
0

→ 1, M ′′
0 → M ′

0 and

ψ(p′′2⊥ , p′′2
z ) → ψ(p′2⊥, p′2

z ). The corrections due to recoil
effect are suppressed by powers of (1/mQ):

√
e′′

1M
′
0

e′
1M

′′
0

=

√√√√√√
2
√
p′′2 + m2

Q√
p′2 + m2

Q +
√
p′′2 + m2

Q

= 1 − 1

8

(p′2 − p′′2)2

m4
Q

+ O(m−6
Q ), (48)

M ′′
0 = M ′

0 + 1

2

(p′′2 − p′2)
mQ

+ O(m−3
Q ). (49)

The last term in Eq. (47), −(q · P)
p′⊥·q⊥
q2 , requires a more

careful treatment. It seems that linear p′⊥ terms will not make
contributions after integrating over p′⊥, but the Taylor expan-
sion of the functions of p′′⊥ in the integrands will generate a
term that is proportional to (p′⊥ · q⊥), and this can combine

with −(q · P)
p′⊥·q⊥
q2 term to produce a q2 independent term,

which is non-zero in the physical q2 → 0 and no-recoil limit.
Firstly we should expand p′′⊥ in powers of inverse of mQ:

p′′⊥ = p′⊥ − x2q⊥ = p′⊥ − q⊥

⎛
⎝1

2
+ p′

z

2
√
m2

Q + p′2⊥ + p′2
z

⎞
⎠

= p′⊥ − 1

2
q⊥ − 1

2

p′
z

mQ
q⊥ + O(m−2

Q ). (50)

We find in the physical limit q2 → 0, the dominant con-
tribution to the (p′⊥ · q⊥) term comes from the expansion
of ψ(p′′⊥, p′′

z ). Since ψ(p′′⊥, p′′
z ) is the wave function of
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the 1S state, it is a function of p′′2. Hence, we can write
ψ(p′′⊥, p′′

z ) = ψ(p′′2⊥ , p′′2
z ) and expand it as follows:

ψ(p′′2⊥ , p′′2
z ) ≈ ψ(p′2⊥, p′2

z ) − p′⊥ · q⊥

[
dψ

dp′2⊥

]
+ O(m−2

Q )

= ψ(p′2⊥, p′2
z ) + p′⊥ · q⊥

1

2β2 ψ(p′2⊥, p′2
z ) + O(m−2

Q ),

(51)

where we use the explicit form of ψ(p′′⊥, p′′
z ) ∝ exp[−p′′2/

(2β2)] to calculate its derivative. Plugging the expansion of
ψ(p′′⊥, p′′

z ) into the integrands, we find the contribution of

the −(q · P)
p′⊥·q⊥
q2 terms is

∫
· · · ψ(p′′⊥, p′′

z )

[
−(q · P)

p′⊥ · q⊥
q2

]
|q2→0

= −(q · P)

∫
· · ·
[
dψ

dp′2⊥

][
(p′⊥ · q⊥)2

q2⊥

]

= 1

2β2 (q · P)

∫
· · · ψ(p′⊥, p′

z)
1

2
p′2⊥. (52)

After this calculation, in the physical q2 = 0 and no-recoil
limit, the form factor f1(q2 → 0) is given by

f1(0) ≈ −eeQ

∫
dp′

zd
2 p′⊥

x1M ′2
0

ψp(p
′⊥, p′

z)ψ(p′⊥, p′
z)p

′2⊥ ·

×
[
(2x1 − 1)M ′2 + M ′′2 + 2x1M

′2
0 + 2(q · P)

1

4β2 p
′2⊥
]

= −eeQ

∫
dp′

zd
2 p′⊥ψp(p

′⊥, p′
z)ψ(p′⊥, p′

z)p
′2⊥ ·

×
⎡
⎣2 + 2M ′2

4(m2
Q+ p′2⊥+ p′2

z )

+ M ′′2 − M ′2

2(m2
Q + p′2⊥ + p′2

z ) − 2p′
z

√
m2

Q + p′2⊥ + p′2
z

+ 2|q|M ′

(m2
Q + p′2⊥ + p′2

z ) − p′
z

√
m2

Q + p′2⊥ + p′2
z

1

4β2 p
′2⊥

⎤
⎦ ,

(53)

where we use the kinematic relation (q · P) = 2|q|M ′. In the
non-relativistic limit, it is more convenient to use notation of
wave functions in non-relativistic quantum mechanics. Using
Eq. (41), f1(q2 → 0) can be rewritten as

f1(q
2 → 0) ≈ − 1

4π
·
√

2

β
·

×eeQ

∫
d3p′ R1S(p′)R1S(p′)p′2⊥ ·

[
2 + 2M ′2

4(m2
Q + p′2)

+ M ′′2 − M ′2

2(m2
Q + p′2) − 2p′

z

√
m2

Q + p′2

+ 2|q|M ′

(m2
Q + p′2) − p′

z

√
m2

Q + p′2
1

4β2 p
′2⊥

⎤
⎦ . (54)

3.1 Leading-order non-relativistic approximation

In the leading-order non-relativistic approximation, we
neglect theO(m−2

Q ) contributions in Eq. (54), so f1(q2 → 0)

is given by

f1(q2 → 0) ≈ −4π ·
√

2

β
· eeQ

∫
d3p′ R1S(p

′)R1S(p
′)p′2⊥

×
[

2 + 2M ′2
4m2

Q

+ M ′′2 − M ′2
2m2

Q

+ 2|q|M ′
m2

Q

1

4β2 p′2⊥ + O(m−4
Q )

]

= − 1

4π
·
√

2

β
· eeQ

∫
d3p′ R1S(p

′)R1S(p
′)p′2⊥ · 4 + O(m−2

Q )

(55)

This integral can be simplified by using symmetric property
of functions in the integrands. For functions F(p2) that have
spherical symmetry, the following relation is satisfied:

∫
d3p F(p2)pi p j = 1

3
δi j

∫
d3p F(p2)p2. (56)

So Eq. (55) can be written as

f1(0) = − 4

4π
·
√

2

β
· eeQ

∫
d3p′ R1S(p′)R1S(p′)p′2⊥

= −2

3
· 4

4π
·
√

2

β
· eeQ

∫
d3p′ R1S(p′)R1S(p′)p′2

= −2

3
· 4 ·

√
2

β
· eeQ

∫ ∞

0
dp′ p′4R1S(p

′)R1S(p
′) ,

(57)

where p′ denotes the radial coordinate in the three dimen-
sional momentum space (and should not be confused with a
four-momentum). Using the definition of wave function in
Eq. (40),

R1P (p′) = 1

β

√
2

3
R1S(p

′)p′, (58)

we find that this integral is proportional to I p3 (1P → 1S):

f1(0)=−2

3
· 4 ·

√
2

β
· eeQ

∫ ∞

0
dp′ p′4R1S(p

′)R1S(p
′)

=−
√

3

2
· 2

3
· 4 · √

2 ·eeQ

∫ ∞

0
dp′ p′3R1P (p′)R1S(p

′)

=−
√

3

2
· 2

3
· 4 · √

2 · eeQ · I p3 (1P → 1S) . (59)
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Now I p3 (1P → 1S) is proportional to I3(1P → 1S), which
is evident in non-relativistic quantum mechanics, where we
have the operator relation:

p
m

= i[H, r], (60)

so that

|〈 f | p
m

|i〉| = |〈 f [H, r]|i〉| = (Ei − E f )|〈 f |r|i〉|. (61)

In the non-relativistic limit, the mass can be interpreted as the
reduced mass of the Q̄Q two-body system m = μ′ = mQ/2,
and in non-relativistic quantum mechanics the photon energy
is the difference of energy levels between initial and final
state, Ei − E f ≈ |q|, so we have

I p3 (1P → 1S) = |q|μ′ · I3(1P → 1S). (62)

Then f1(0) can be expressed as

f1(0) = −
√

3

2
· 2

3
· 4 · √

2 · eeQ · I3(1P → 1S) · |q|μ′.

(63)

Plugging this expression of f1(0) into the formula for the
decay width in Eq. (18), we get radiative decay width of
A(1P1) → P(1S0) + γ in the leading order non-relativistic
and no-recoil approximation:

�NR = |q|3μ′2

12πM ′2
3

2
· 4

9
· 16 · 2 · e2e2

Q|I3(1P → 1S)|2

=
[

16μ′2

M ′2

]
· 4

9
· αe2

Q|q|3 · |I3(1P → 1S)|2

= 4

9
· αe2

Q|q|3 · |I3(1P → 1S)|2 · (1 + O(m−2
Q ))

≈ 4

9
· αe2

Q|q|3 · |I3(1P → 1S)|2 , (64)

where we have made use of the approximate relations of
masses:

μ′ = mQ

2
, M ′ � 2mQ , →

[
16μ′2

M ′2

]
� 1. (65)

Equation (64) matches the non-relativistic electric dipole
transition formula for transition 1P1 → 1S0 in Eq. (42),
which proves the validity of light-front framework in the
non-relativistic limit in the application to heavy-quarkonium
systems.

3.2 Next-to-leading order correction

We next include the O(m−2
Q ) contributions in Eq. (54) with

the no-recoil approximation. In this case, f1(q2 → 0) is
given by

f1(0) ≈ − 1

4π
·
√

2

β
· eeQ

∫
d3p′ R1S(p′)R1S(p′)p′2⊥

×
[

2 + 2M ′2
4m2

Q

(
1 − p′2

m2
Q

)
+ M ′′2 − M ′2

2m2
Q

+ 2|q|M ′
m2

Q

1

4β2 p′2⊥

]

= − 1

4π
·
√

2

β
· eeQ

∫
d3p′ R1S(p′)R1S(p′)p′2⊥

×4

[
1 − 1

2

p′2
m2

Q

+ |q|
mQ

1

4β2 p′2⊥ + R1P,1S + O(m−4
Q )

]
,

= − 1

4π
·
√

2

β
· eeQ

∫
d3p′ R1S(p′)R1S(p′)

×4

[
2

3
· (1 + R1P,1S)p′2 − 1

3

p′4
m2

Q

+ 2

15

|q|
mQ

1

β2 p
′4 + O(m−4

Q )

]
,

= −√
3 · eeQ · 4 · 2

3
· I p3 (1P → 1S)

×
[

1+R1P,1S−
(

1

2

1

m2
Q

− 1

5

|q|
mQ

1

β2

)
I p5 (1P → 1S)

I p3 (1P → 1S)
+O(m−4

Q )

]
,

= −√
3 · eeQ · 4 · 2

3
· |q|μ′ · I3(1P → 1S)

×
[

1+R1P,1S − |q|2
(

1

2

μ′2
m2

Q

− 1

5

μ′
mQ

)
I5(1P → 1S)

I3(1P→1S)
+O(m−4

Q )

]
,

(66)

where we have made use of the symmetry property of the
integral for the function F(p2), which has spherical symme-
try:
∫

d3p F(p2)pi p j pk pl

= 1

15
(δi jδkl + δikδ jl + δilδ jk)

∫
d3p F(p2)p4, (67)

and R1P,1S is given by

R1P,1S = M ′′2 − M ′2

8m2
Q

+ M ′2 − 4m2
Q

8m2
Q

∼ O(m−2
Q ). (68)

Combining Eqs. (66) and (18), we obtain the next-to-leading
order (O(m−2

Q )) formula for the radiative decay width for

the heavy-quarkonium systems (1P1 → 1S0) in the non-
relativistic and no-recoil approximation:

�NLO = �NR[1 + R1P,1S − |q|2
(

1

2

μ′2

m2
Q

− 1

5

μ′

mQ

)

× I5(1P → 1S)

I3(1P → 1S)
+ O(m−4

Q )]2. (69)

4 Analysis of radiative transitions of hc(1P) and
hb(1P)

In this section we apply the radiative transition formulas for
the decay 1+−(1P1) → 0−+(1S0) + γ in the framework of
the light-front quark model, which we reviewed in Sect. 2, to
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Table 1 Decay width (in units of keV) of hc(1P) → ηc(1S) + γ in
the light-front quark model, denoted LFQM, as compared with experi-
mental data from [27], denoted exp.(PDG) and predictions from other
theoretical models, including non-relativistic potential model (NR)
[9,11,25], relativistic quark model (R) [20], the Godfrey–Isgur poten-

tial model (GI) [25], screened potential models with zeroth-order wave
functions (SNR0) and first-order relativistically corrected wave func-
tions (SNR1) [26]. For experimental data, we use the PDG value of
the total width �hc(1P) = 700 ± 280 (stat.) ± 220 (syst.) keV and
BR(hc(1P) → ηc(1S) + γ ) = 51 ± 6% [27]

Decay mode LFQM Exp. (PDG) [27] NR [9] R [20] NR/GI [25] [11] SNR0/1 [26]

hc(1P) → ηc(1S) + γ 398 ± 99 357 ± 280 482 560 498/352 650 764/323

Fig. 2 Decay width for hc(1P) → ηc(1S) + γ (keV) as a function of
βhc(1P)(ηc)(1S) in LFQM, with mc = 1.5 GeV

Fig. 3 Decay width for hc(1P) → ηc(1S) + γ (keV) as a function of
mc in the LFQM, with βhc(1P)(ηc(1S)) = 0.63 GeV

study the radiative decay of the cc̄ state hc1(1P) via the chan-
nel hc(1P) → ηc(1S) + γ and the bb̄ state hb(1P) via the
channel hb(1P) → ηb(1S)+γ . We present the results of our
numerical calculations of decay widths. Our results extend
those which we previously presented with Ke and Li in [45].
For the charmonium hc(1P) radiative decay, we compare our
result with experimental data on the width, as listed in the
Particle data group review of particle properties (RPP) [27].
We also list the theoretical calculations from other models,
including non-relativistic potential model (NR) [9,11,25],
relativistic quark model (R) [20], the Godfrey–Isgur poten-
tial model (GI) [25], screened potential models with zeroth-

order wave functions (SNR0) and first-order relativistically
corrected wave functions (SNR1) [26].

Although the PDG lists the width for the decay hc(1P) →
ηc(1S) + γ , it does not list the width for the hb(1P) →
ηb(1S)+γ decay, only the branching ratio. Since our calcula-
tion yields the width itself, and a calculation of the branching
ratio requires division by the total width, we therefore com-
pare our results on the widths for these decays with predic-
tions from other models, including the non-relativistic poten-
tial model (NR) [9], the relativistic quark model (R) [20], the
Godfrey–Isgur potential model (GI) [22], screened poten-
tial models with zeroth-order wave functions (SNR0) and
first-order relativistically corrected wave functions(SNR1)
[21], as well as the non-relativistic constituent quark model
(CQM) [23].

First, we study the radiative decay hc(1P) → ηc(1S)+γ

in the LFQM, which depends on the corresponding harmonic
oscillator wave function (βhc(ηc)) and the effective charm
quark mass, mc. For the central values of mc and the wave
function parameters β, we use the central values of these
parameters suggested by previous study of LFQM [46]:

mc = 1.5 ± 0.1 GeV. (70)

βhc(ηc) = 0.63 ± 0.1 GeV. (71)

While Ref. [45] allowed a 10% variation in input parame-
ters, we investigate a somewhat larger variation, as indicated
in Eqs. (70) and (71). We present our numerical results in
Table 1, with the uncertainties arising from the uncertain-
ties in the β parameters and the value of mc. We also plot
the predicted width as a function of the input values for the
charm quark mass mc and wave function structure parameter
βhc(ηc) in Figs. 2 and 3. From these results, we find that the
main theoretical uncertainties come from variation of βhc(ηc).
With the same central value for βhc(ηc) as was used in [45],
we obtain a somewhat smaller central value for the width,
namely 398 keV as contrasted with 685 keV in [45]. As is
evident from Table 1, our current result for this width agrees
well with experimental data within the range of experimen-
tal and theoretical uncertainties. The experimental data have
substantial uncertainties, and our result is relatively close
to the central experimental value, compared to other non-
relativistic models. The reason that our current calculation of
the width �(hc(1P) → ηc(1S) + γ ) yields a smaller result
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Table 2 Decay width (in units of keV) of hb(1P) → ηb(1S) + γ in
the light-front quark model, denoted LFQM, as compared with predic-
tions from other theoretical models, including non-relativistic potential
model (NR) [9], relativistic quark model (R) [20], the Godfrey–Isgur

potential model (GI) [22], screened potential models with zeroth-order
wave functions (SNR0) and first-order relativistically corrected wave
functions (SNR1) [21] and the non-relativistic constituent quark model
(CQM) [23]

Decay mode LFQM NR [9] R [20] SNR0/1 [21] GI [22] CQM [23]

hb(1P) → ηb(1S) + γ 37.5 ± 7.5 27.8 52.6 55.8/36.3 35.7 43.7

than that obtained in Ref. [46] may be due to the fact that
the numerical integration that is necessary in the calculation
of the amplitude involves significant cancellations between
different terms, and our current numerical integration routine
uses higher precision than was used in parts of the previous
calculation in Ref. [46].

Next we study radiative decay of hb(1P) → ηb(1S)+γ in
LFQM. For the central value of the effective bottom/beauty
quark mass mb, we use the value suggested by the previ-
ous LFQM study [45] (see also [46]). For the wave function
parameter βhb(1P)(ηb(1S)), we estimate this to be in the range
β ∼ 0.9–1.3 GeV, which is suggested in [22], where β is
fitted by equating the rms radius of the harmonic oscillator
wave function for the specified states with the rms radius
of the wave functions calculated using the relativized quark
model. Our values for these input parameters are

mb = 4.8 ± 0.1 GeV. (72)

βhb(1P)(ηb(1S)) = 1.0 ± 0.1 GeV. (73)

We list the numerical results in the LFQM in Table 2. For
comparison, we also list other theoretical calculations from
various types of models, including the non-relativistic poten-
tial model (NR) [9], the relativistic quark model (R) [20], the
Godfrey–Isgur potential model (GI) [22], screened poten-
tial models with zeroth-order wave functions (SNR0) and
first-order relativistically corrected wave functions (SNR1)
[21] and the non-relativistic constituent quark model (CQM)
[23]. As can be seen from Table 2, with the given range
of uncertainties, our value agrees with predictions from the
non-relativistic potential model (NR) [9], the Godfrey–Isgur
potential model (GI) [22] and screened potential models
with relativistically corrected wave functions (SNR1) [21].
To show the theoretical uncertainties arising from uncertain-
ties in the βhb(1P)(ηb(1S)) parameter and the value of mb, we
also plot the decay width for hb(1P) → ηb(1S) + γ as a
function of these parameters in Figs. 4 and 5. We find that
the width is not very sensitive to the variation of mb and
the main uncertainties arise from the uncertainty in the wave
function parameter βhb(1P)(ηb(1S)).

These results show that the light-front quark model with
phenomenological meson wave functions (specifically, har-
monic oscillator wave functions) is suitable for the cal-
culation of quarkonium 1P1 → 1S0 + γ radiative decay
widths, since this model gives reasonable predictions for

Fig. 4 Decay width for hb(1P) → ηb(1S) + γ (keV) as a function of
βhb(1P)(ηb(1S)) in the LFQM, with mb = 4.8 GeV

Fig. 5 Decay width for hb(1P) → ηb(1S) + γ (keV) as a function of
mb in the LFQM, with βhb(1P)(ηb(1S)) = 1.0 GeV

these widths, as compared with experimental data and other
theoretical models.

5 Conclusion

In this paper we have revisited the calculation of the radia-
tive decay width of a 1+− axial vector meson A to a 0−+
pseudoscalar meson P via the channel 1+− → 0−+ + γ in
the LFQM approach, extending our previous work in Ref.
[45]. As part of our analysis, we have presented the reduc-
tion of the LFQM results in the non-relativistic limit and
have shown the connection with the non-relativistic electric
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dipole transition formula for heavy-quarkonium systems. We
have then applied the LFQM formula to the radiative decays
hc(1P) → ηc(1S)+γ and hb(1P) → ηb(1S)+γ . We have
performed numerical calculations and have compared our
results with experimental data and other model predictions.
We have shown that our results are in reasonable agreement
with data and other model calculations.
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Appendix A: The wave functions

The normalization of the S-wave meson wave function in the
light-front framework is

1

2(2π)3

∫
dx2dp2⊥ |ϕ(x2, p⊥)|2 = 1. (A.1)

Here ϕ(x2, p⊥) is related to the wave function in normal
coordinates ψ(p) by

ϕ(x2, p⊥) = 4π
3
2

√
dpz
dx2

ψ(p),
dpz
dx2

= e′
1e2

x1x2M ′
0
. (A.2)

The normalization of ψ(p) is given by

∫
dp3 |ψ(p)|2 = 4π

∫
p2dp |ψ(p)|2 = 1 . (A.3)

The normalization for the P-wave meson wave function in
the light-front framework is [41]

1

2(2π)3

∫
dx2dp2⊥ |ϕp(x2, p⊥)|2 pi p j = δi j , (A.4)

where pi = (px , py, pz). In terms of the P-wave wave func-
tion in normal coordinates,

ϕp(x2, p⊥) = 4π
3
2

√
dpz
dx2

ψp(p),
dpz
dx2

= e′
1e2

x1x2M ′
0
, (A.5)

we have the following normalization condition:

1

3
· 4π

∫ ∞

0
|ψp(p)|2 p4dp = 1. (A.6)

For the gaussian type 1P and 1S wave functions, we have the
relation

ψp(p) =
√

2

β2 ψ(p). (A.7)

The explicit form of 1-S harmonic oscillator wave function
in the light-front approach is given by [41]

ψ(p) =
(

1

β2π

) 3
4

exp

(
−1

2

p2

β2

)
. (A.8)

Appendix B: Some expressions in the light-front formal-
ism

In the covariant light-front formalism we have

M ′2
0 = (e′

1 + e2)
2 = p′2⊥ + m′2

1

x1
+ p′2⊥ + m2

2

x2
,

M ′′2
0 = (e′′

1 + e2)
2 = p′′2⊥ + m′′2

1

x1
+ p′′2⊥ + m2

2

x2
,

M̃ ′
0 =

√
M ′2

0 − (m′
1 − m2)2,

M̃ ′′
0 =

√
M ′′2

0 − (m′′
1 − m2)2,

p′
z = x2M ′

0

2
− m2

2 + p′2⊥
2x2M ′

0
,

p′′
z = x2M ′′

0

2
− m2

2 + p′′2⊥
2x2M ′′

0
. (B.1)

The explicit expressions for A(i)
j (i, j = 1 ∼ 4) and Z2 are

A(1)
1 = x1

2
, A(1)

2 = A(1)
1 − p′⊥ · q⊥

q2 ,

A(2)
1 = −p′2⊥ − (p′⊥ · q⊥)2

q2 , A(2)
2 = (A(1)

1 )2,

A(2)
3 = A(1)

1 A(1)
2 , A(2)

4 = (A(1)
2 )2 − 1

q2 A
(2)
1 ,

A(3)
1 = A(1)

1 A(2)
1 , A(3)

2 = A(1)
2 A(2)

1 ,

A(3)
3 = A(1)

1 A(2)
2 , A(3)

4 = A(1)
2 A(2)

2 , (B.2)

Z2 = N̂ ′
1 + m′2

1 − m2
2

+(1 − 2x1)M
′2 + (q2 + q · P)

p′⊥ · q⊥
q2 . (B.3)
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