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Abstract Despite the finiteness of stress tensor for a scalar
field on the four-dimensional Schwarzschild black hole in the
Israel-Hartle-Hawking vacuum, the Tolman temperature in
thermal equilibrium is certainly divergent on the horizon due
to the infinite blue-shift of the Hawking temperature. The
origin of this conflict is due to the fact that the conventional
Tolman temperature was based on the assumption of a trace-
less stress tensor, which is, however, incompatible with the
presence of the trace anomaly responsible for the Hawking
radiation. Here, we present an effective Tolman temperature
which is compatible with the presence of the trace anomaly
by using the modified Stefan-Boltzmann law. Eventually,
the effective Tolman temperature turns out to be finite every-
where outside the horizon, and so an infinite blue-shift of the
Hawking temperature at the event horizon does not appear
any more. In particular, it is vanishing on the horizon, so that
the equivalence principle is exactly recovered at the horizon.

1 Introduction

A quantum black hole [1,2] in the Israel-Hartle-Hawking
vacuum [3,4] could be characterized by the Hawking tem-
perature 7Ty which is given by the surface gravity. The local
temperature in a proper frame as the Tolman temperature can
be defined in the form of the blue-shifted Hawking temper-
ature as [5,6]

Ty
V=800’
which is infinite at the horizon due to the infinite blue-shift of

the Hawking temperature, though it reduces to the Hawking
temperature at infinity.

Tioc = (0
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On the other hand, the renormalized stress tensor for a
conformal scalar field could be finite on the background
of the Schwarzschild black hole [7]. At infinity, the proper
energy density p is positive finite, which is consistent with
the Stefan—Boltzmann law as p = aTé, where o = 72/30.
If one considered a motion of an inertial observer [7-10],
the negative proper energy density could be found near the
horizon in various vacua and its role was also discussed in
connection with the information loss paradox [10]. However,
it might be interesting to note that the local temperature (1)
is infinite at the horizon, although the proper energy density
at the horizon ry is negative finite as p(rg) = —120 Tfl' as
seen in Ref. [7].

Now, it appears to be puzzling in that the Tolman tempera-
ture at the horizon is positively divergent despite the negative
finite energy density there. More worse, the energy density
happens to vanish at a certain point outside the horizon [7],
but the local temperature (1) is positive finite at that point. In
these regards, the Tolman temperature runs contrary to the
finite renormalized stress tensor, which certainly requires that
the Stefan—-Boltzmann law to relate the stress tensor to the
proper temperature should be appropriately modified in such
a way that they are compatible each other.

To resolve the above conflict between the finiteness of
the renormalized stress tensor and the divergent behavior of
the proper temperature, it is worth noting that the usual Tol-
man temperature rests upon the traceless stress tensor; how-
ever, the trace of the renormalized stress tensor is actually
not traceless because of the trace anomaly. So we should
find a modified Stefan-Boltzmann law in order to get the
proper temperature commensurate with the finite renormal-
ized stress tensor. In fact, this was successfully realized in
the two-dimensional case where the stress tensor was per-
fect fluid [11]. In this work, we would like to extend the
above issue to the case of the four-dimensional more realis-
tic Schwarzschild black hole, where the renormalized stress
tensor is no more isotropic.
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Using the exact thermal stress tensor calculated in Ref. [7],
we solve the covariant conservation law and the equation for
the trace anomaly, and then obtain the proper quantities such
as the proper energy density and pressures written explicitly
in terms of the trace anomaly in Sect. 2. In Sect. 3, we derive
the effective Tolman temperature from the modified Stefan—
Boltzmann law based on thermodynamic analysis. It shows
that the effective Tolman temperature exactly reproduces the
Hawking temperature at infinity, but it has a maximum at a
finite distance outside the horizon and eventually it is vanish-
ing rather than divergent on the horizon. Finally, a conclusion
and a discussion are given in Sect. 4.

2 Proper quantities in terms of trace anomaly

We start with a four-dimensional Schwarzschild black hole
governed by the static line element as

ds? = — F(dr? + ——dr? + r2(d6? +sin®0dg?).  (2)
fr)

where the metric function is f(r) = 1 — 2GM/r. The
renormalized stress tensor for a conformal scalar field on the
Schwarzschild black hole was obtained in the Isracl-Hartle—
Hawking vacuum [3,4] by using the Gaussian approxima-
tion [7]

2001 V1 - (4 6)? (21
T“M:g_o<8nM> [ ((1 r2131)2(r) (8f — 4503))
-

oM\
+24 (—) (38489 + 81'5) ] (3)
r

where it is finite everywhere.
On general grounds, the trace anomaly can be written in
the form of curvature invariants as

Th =« <]—'+ %DR) + BG, 4

where ' = R*° R,y — 2R*'R,, + R*/3 and G =
RMPPRvpe —4R™ R, + R? [12-16]. There have been a
lot of applications of trace anomalies to Hawking radiation
and black hole thermodynamics in wide variety of cases of
interest [17-28]. The coefficients « and S are related to the
number of conformal fields such as real scalar fields Ng,
Dirac (fermion) fields Ng, and vector fields Ny, such that
they are fixed as @ = (120(47)%) " (Ns 4+ 6Ng + 12Ny) and
B = —(360(47)%)~1(Ns + 11Ng + 62Ny). For the Ricci
flat spacetime with a single conformal scalar field, the trace

@ Springer

anomaly reduces to

M2
RHVPE R;wpcr = 1 5 ¢ (5)

TH = ,
607270

Ho 288072

and then the trace for the stress tensor (3) is exactly in accord
with the conformal anomaly (5).

In contrast to the two-dimensional case [11], the stress
tensor appears anisotropic in the spherically symmetric black
hole in four dimensions, and so the form of the stress ten-
sor (3) should be generically written as [29,30]

T = (p+ pouu” + pig"” + (py — poniyni,y.  (6)

The proper velocity u* is a timelike unit vector satisfying
whu, = —1, né‘r) is the unit spacelike vector in the radial

direction, and néLg) and n’(‘ ) are the unit normal vectors,
which are orthogonal to n(, satisfying g.vn(;n(; = 8
and n’(‘l.)uu = 0 wherei, j =r, 0, ¢. Thus the spacelike unit
normal vectors are determined as

1
l’ll(l;)z (0,\/f(r),0,0>, HI(LQ)Z (0,0, ;7())’

nt . = 000; (7)
@\ 7 rsing )’

with the proper velocity

1
wo_
! _< f(r>’0’0’0> ®

for the frame dropped from rest. Then, from Eqgs. (3), (6),
(7), and (8), the proper energy density and pressures can be
explicitly calculated by using the following relations:

p = Tunutu’, p,= uv”l(ir)”‘()r)’
n n
Pr = Tuwngyngy = Tuonigy (). )

where the proper flux along x’-direction can also be obtained
by using the relation F; = —Tﬂvu“n‘(’i) but it trivially van-
ishes in thermal equilibrium [3,4].

Note that the energy density and pressures are not inde-
pendent, as seen from the trace relation,

T = —p+p+2pi. (10)

From Egs. (3), (5), and (9), we find the additional relation

Lo
Pr—PtZZT,L, (11

which characterizes the anisotropy between the tangential
pressure and radial pressure.
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Let us now express the proper energy density and pres-
sures formally in terms of the trace anomaly for our purpose.
From Eq. (6), the covariant conservation law for the energy-
momentum tensor is rewritten as

1
570 f(pr+p)=0. 12)

pr) + 27

2
arpr + ;(pr

Plugging Eqs. (10) and (11) into Eq. (12), one can obtain the
simplified form of

of (1 30f

which can be solved as

1 " f n
b=t (c0+/ Lafvam g dr), (14)

where Cp is an integration constant. Additionally, from
Egs. (10) and (11), the tangential pressure and energy density
can also be obtained:

p,:%( T”+/ —( 2f 4+ 3ro, f)T“dr)
(15)
p:%( T“+f —( 2f+3r8rf)T“dr>.

(16)

The above proper quantities defined in freely falling frames
were related to the trace anomaly conveniently, which will
be used in the next section.

3 Effective Tolman temperature

In this section, we derive the proper temperature for the back-
ground of the four-dimensional Schwarzschild black hole
based on the modified Stefan—Boltzmann law. First of all,
we note that the volume of the system in the radial proper
frame can be changed only along the radial direction on the
spherically symmetric black hole, and thus obtain the ther-
modynamic first law written as

dU = TdS — p,dV (17)

without recourse to the tangential work. From Eq. (17), one
can immediately get

U N
(5v),=7(5v), - o

and then, from the Maxwell relations such as (95/dV)r =
(dp,/dT)y, we obtain

opr
p=T( ”) — pr. (19)
\%4

aT

Using the fact that the trace anomaly is independent of tem-
perature as dr T,i‘ = 0[31], from Egs. (10) and (11), we also

obtain
9
2 (ﬂ) (20)
T/,

(57), = (),

and

(7).~ (5)
aT )y \aT /)’

Plugging Eqgs. (20) and (21) into Eq. (19), we get

ap 3
T (ﬁ>v —4p = 3T} (22)

which is solved as

3
_ 4
p=3yT —gT,f (23)

From Egs. (10) and (11), the radial and tangential pressure
are also derived as

3
pr:yr4+8Tlf, (24)
_ oty Ly 25
Pt =Y +8 no ( )

respectively. The integration constant y is related to the
Stefan—Boltzmann constant ¢ as y = ¢/3 = 72/90 for
a conformal scalar field [32]. For the traceless case, the mod-
ified Stefan—Boltzmann law (23) simply reduces to the usual
one. The proper energy density in Eq. (23) is not necessarily
positive definite thanks to the trace anomaly, so that the neg-
ative energy states are naturally permitted in this extended
setting.

From Egs. (23), (24), and (25), the proper temperature is
obtained as

1 3 1/4 1 1 1/4
=l (o=5m)] =[5 (5]
1 3 174
=[5 ()]

and it can be compactly written in terms of the trace anomaly
as

@ Springer
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1

T=——|(cC —§f2T“+fri(—2f+3 3 )T v
_)/1/4\/7 0 3 " ar rop n r S

27)

where we used Egs. (14), (15), and (16). In the absence of
the trace anomaly, the proper temperature (27) reduces to the
usual Tolman temperature [5,6]. Requiring that the proper
temperature (27) be coincident with the Hawking tempera-
ture Ty at infinity, we can fix the constant as Cp = yl/ 4TH.

Finally, plugging the trace anomaly (5) into Eq. (27), we
obtain

T___L__lam@ﬂf+%<%g7
8T MJT() r r

M 8 1/4
_ 21(7” , (28)

which can be neatly factorized as

A (1_“4)2 1+2(W)+3(2M)2
8T M) r r r
oM\? 2M\* oM\
+4(7) +5(7) +6(7)
6\ 174
Y (LM) )} . (29)

It seems to be interesting to note that the blue-shift factor
in the denominator related to the origin of the divergence at
the horizon can be canceled out, so that the effective Tolman
temperature is written as

1 IMN\ A nn+1) [2M\"! v
T=m[<1‘T>ZT<T) }

n=1
(30)

Thus the red-shift factor responsible for the infinite blue-shift
of the Hawking temperature on the horizon does not appear
any more in the effective Tolman temperature. As seen from
Fig. 1, the behavior of the temperature (30) shows that it is
finite everywhere and approaches the Hawking temperature
at infinity. In particular, it is vanishing on the horizon, so that
the freely falling observer from rest does not see any excited
particles. On the contrary to the naively expected divergence
from the usual Tolman temperature at the horizon, the high
frequency quanta could not be found on the horizon, which
would be compatible with the result that the equivalence prin-
ciple could be recovered at the horizon [33].

The divergent dashed curve near the horizon in Fig. 1 could
be made finite by taking into account the quantum effect
via the trace anomaly, which is reminiscent of the vanishing

@ Springer
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Tn

! r
4%} Fe

Fig. 1 The dashed curve shows the behavior of the usual Tolman
temperature of being divergent on the horizon. The solid curve is the
effective Tolman temperature, which is finite everywhere. In particu-
lar, it vanishes at the horizon and has a maximum 7. ~ 1.517y
atr. ~ 1.31rg. All the curves approach the Hawking temperature at
infinity, whereas they are very different from each other near the horizon
where quantum effects are significant

Hawking temperature in the noncommutative Schwarzschild
black hole based on the different assumptions of quantization
rules [34]. The proper temperature based on the effective tem-
perature method is also compatible with the present result in
the sense that the proper temperature vanishes at the horizon
[35].

4 Conclusion and discussion

It has been widely believed that the Tolman temperature is
divergent at the horizon due to the infinite blue-shift of the
Hawking radiation. However, the usual Stefan—Boltzmann
law assuming the traceless stress tensor should be consis-
tently modified in order to discuss the case where the stress
tensor is no longer traceless in the process of the Hawk-
ing radiation. From the modified Stefan—Boltzmann law, we
obtained the effective Tolman temperature without the red-
shift factor related to the origin of the divergence at the hori-
zon, so that it is finite everywhere outside the black hole
horizon.

The intriguing behavior of the effective Tolman tem-
perature on the horizon may be understood by the Unruh
effect [36]. The static metric (2) near the horizon can be writ-
ten by the Rindler metric for a large black hole whose curva-
ture scale is negligible. The Unruh temperature is divergent
due to the infinite acceleration of the frame where the fixed
detector is very close to the horizon. So the Unruh temper-
ature is equivalent to the locally fiducial temperature for the
Schwarzschild black hole [33]. Conversely speaking, based
on the equivalence principle, the Unruh temperature mea-
sured by the geodesic detector should vanish on the horizon
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since the proper acceleration of the geodesic detector van-
ishes. In this regard, it appears natural to conclude that the
freely falling observer from rest does not see any excited
particles on the horizon in thermal equilibrium and thus the
effective Tolman temperature vanishes at the horizon.

On the other hand, AMPS argument is that the firewall on
the horizon should be defined in an evaporating black hole
rather than the black hole in thermal equilibrium [37]. The
firewall is certainly characterized by the divergent proper
temperature in that the average frequency w of an excited
particle with a thermal bath can be identified with the proper
temperature as w ~ T. Using the advantage of the effec-
tive Tolman temperature, we find the reason why the firewall
could not exist in thermal equilibrium: the fact that the red-
shift factor responsible for the divergence at the horizon could
be canceled out.
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