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Abstract This is a second study of chiral anomaly-induced
transport within a holographic model consisting of anoma-
lous U (1)V × U (1)A Maxwell theory in Schwarzschild–
AdS5 spacetime. In the first part, chiral magnetic/separation
effects (CME/CSE) are considered in the presence of a static
spatially inhomogeneous external magnetic field. Gradient
corrections to CME/CSE are analytically evaluated up to
third order in the derivative expansion. Some of the third
order gradient corrections lead to an anomaly-induced neg-
ative B2-correction to the diffusion constant. We also find
modifications to the chiral magnetic wave nonlinear in B. In
the second part, we focus on the experimentally interesting
case of the axial chemical potential being induced dynam-
ically by a constant magnetic and time-dependent electric
fields. Constitutive relations for the vector/axial currents
are computed employing two different approximations: (a)
derivative expansion (up to third order) but fully nonlinear in
the external fields, and (b) weak electric field limit but resum-
ing all orders in the derivative expansion. A non-vanishing
nonlinear axial current (CSE) is found in the first case. The
dependence on magnetic field and frequency of linear trans-
port coefficient functions is explored in the second.

1 Introduction and summary

Fluid dynamics [1,2] is an effective long-wavelength descrip-
tion of most classical or quantum many-body systems at
nonzero temperature. It is defined in terms of constitutive
relations, which relate thermal expectation values of con-
served currents to thermodynamical variables and external
fields. The derivative expansion in fluid-dynamic variables
such as the velocity or charge densities accounts for devi-
ations from thermal equilibrium. At each order, the deriva-
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tive expansion is fixed by thermodynamic considerations and
symmetries, up to a finite number of transport coefficients,
such as the viscosity, diffusion constant and conductivity.
The latter are not calculable from hydrodynamics itself, but
have to be determined from underlying microscopic theory
or experimentally.

Although fluid dynamics has a long history, the theoret-
ical foundations of relativistic viscous hydrodynamics are
not yet fully established. The Navier–Stokes hydrodynam-
ics leads to violation of causality: the set of fluid dynamical
equations makes it possible to propagate signals faster than
light. To overcome this problem, simulations of relativistic
hydrodynamics are usually based on phenomenological pre-
scriptions of [3–6], which admix viscous effects from second
order derivatives, so as to make the fluid dynamical equa-
tions causal. References [3–6] introduced retardation effects
for irreversible currents, which, via the equations of motion,
become additional degrees of freedom. In other words, one
needs to include higher order gradient terms in the deriva-
tive expansion in order to obtain a causal formulation. In
general, causality is violated if the derivative expansion is
truncated at any fixed order. It is supposed to be restored
when all-order gradient terms are included, which we refer
to as all-order resummed hydrodynamics. Resummed hydro-
dynamics is UV complete in a sense that it has a well-defined
large frequency/momenta limit. Yet it is an effective theory of
hydrodynamic variables only,1 which emerges after most of
the degrees of freedom of the underlying microscopic theory
are integrated out.

The most general parity-even linear in external fields and
charge density off-shell constitutive relation for a vector cur-
rent has the following form:

J t = ρ, �J = −D �∇ρ + σe �E + σm �∇ × �B, (1)

1 In fact there are infinitely many such variables (see Ref. [7] for a
discussion).
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where ρ is a vector charge density and the diffusion D, elec-
tric/magnetic conductivities σe/m are functionals of space-
time derivatives. In terms of hydrodynamic expansion, the
constitutive relation (1) provides all-order resummation of
gradients of the fluid-dynamic variables (the charge density
ρ) and external fields ( �E and �B). In momentum space D and
σe/m are functions of frequency ω and momentum squared q2

(assuming isotropic medium), which we refer to as transport
coefficient functions (TCFs). Via the inverse Fourier trans-
form, TCFs appear as memory functions in the constitutive
relation [8].

For a holographic charged plasma dual to U (1) Maxwell
theory in Schwarzschild–AdS5 TCFs were studied in depth
in [9]. The derivative resummation in the constitutive rela-
tion was implemented via the technique of [7,10–12], which
was originally invented to resum all-order velocity gradients
(linear in the velocity amplitude) in the energy-momentum
tensor of a holographic conformal fluid.2 It is important to
stress that this linearisation procedure is a mathematically
well-controlled approximation: the perturbative expansion
corresponds to a formal expansion in the amplitudes of fluid-
dynamic variables and external fields, without any additional
assumptions. In this respect, the implemented approximation
is identical to that of the linear response theory based on two-
point correlators.

Our technique follows closely the original idea of [14],
which relates fluid’s constitutive relations for the boundary
theory to solving equations of motion in the bulk. How-
ever, an important new element of our formalism is that it
is not based on current conservation (i.e., “off-shell” for-
malism), which makes it essentially different from the “on-
shell” formalism of [14]. Constitutive relations and TCFs can
be uniquely determined from dynamical components of the
bulk equations only, while the constraint component in the
bulk is equivalent to continuity equation on the boundary.

Chiral anomalies emerge and play an important role in
relativistic QFTs with massless fermions. The anomaly is
reflected in three-point functions of currents associated with
global symmetries. When the global U (1) currents are cou-
pled to external electromagnetic fields, the triangle anomaly
renders the axial current non-conserved,

∂μ J
μ = 0, ∂μ J

μ
5 = 12κ �E · �B, (2)

where Jμ/Jμ
5 are vector/axial currents, and κ is an anomaly

coefficient. For SU (Nc) gauge theory with a massless Dirac

2 One might be concerned that the hydrodynamic derivative expan-
sion forms an asymptotic series with zero radius of convergence [13].
However, contrary to our linearised study, this conclusion applies to
nonlinear hydrodynamics in which the number of terms grows factori-
ally with the number of gradients. What is more important is that our
approach does not rely on explicit resummation of the gradient series
and thus is safe from any convergence related uncertainties.

fermion in fundamental representation, κ = eNc/(24π2),
and e is an electric charge which below will be set to unit.

The presence of triangle anomalies requires a modification
of the usual constitutive relations for the currents. An exam-
ple of such a modification is the chiral magnetic effect (CME)
[15–19],3 that is, the induction of an electric current along
the applied magnetic field. CME relies on chiral imbalance,
which is usually parameterised by an axial chemical poten-
tial. Studies of CME can be found in e.g. [23–29] based on
perturbation theory, in e.g. [30–35] within lattice simulations,
and in e.g. [36–50] for the strongly coupled regime based on
the AdS/CFT correspondence [51–53].

The chiral separation effect (CSE) [54,55] is another inter-
esting phenomenon induced by the anomalies. It is reflected
in a separation of the chiral charges along an external mag-
netic field at finite density of vector charges. Chiral charges
can also be separated along external electric field, when both
vector and axial charge densities are nonzero, the so-called
chiral electric separation effect (CESE) [56,57].

In heavy ion collisions, experimentally observable effects
induced by the anomalies were discussed in [58–62]. We refer
the reader to [63–67] and the references therein for compre-
hensive reviews of the subject of anomalous transports.

In [68] we went beyond [9] focussing on transport
properties induced by the chiral anomaly. The holographic
model was modified to be anomalous U (1)V × U (1)A
Maxwell theory in the Schwarzschild–AdS5 case. Under
various approximations, off-shell constitutive relations were
derived for vector/axial currents. In a weak external field
approximation, all-order derivatives in the vector/axial cur-
rents were resummed into six momenta-dependent TCFs:
the diffusion, the electric/magnetic conductivity, and three
anomaly-induced TCFs. The latter generalise the chiral mag-
netic/separation effects. Beyond weak external field approx-
imation, nonlinear transports were also revealed when con-
stant background external fields are present. Particularly,
the chiral magnetic effect, including all-order nonlinearity
in magnetic field, was proven to be exact when all exter-
nal fields except for a constant magnetic field are turned
off. Nonlinear corrections to the currents’ constitutive rela-
tions due to electric and axial external fields were com-
puted.

In the present work we continue the study of anomaly-
induced transports within the holographic model of [68].
No axial external fields will be turned on in this work. As
in [9,68] we work in the probe limit so that the currents
and energy-momentum tensor decouple. In dual gravity, the
probe limit ignores the back-reaction of the gauge dynam-
ics on the geometry. The holographic model under study
consists of two Maxwell fields in the Schwarzschild–AdS5

black brane geometry. The chiral anomaly is holographi-

3 See also [20–22] for earlier, related work.
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cally realised via the gauge Chern–Simons actions for both
Maxwell fields. Such a holographic setup can be realised via
a top–down brane construction of D4/D8/D8 [69].

Before diving into the details presented in the following
sections, we summarise our main results. The paper is split
into two largely independent parts. In the first part, we con-
sider a setup in which a static but spatially varying magnetic
field is the only external field that is turned on. Then the
constitutive relations for the vector/axial currents are

J t = ρ, J i = −1

2
∂iρ + 12κμ5 Bi − Gi (x = ∞), (3)

J t5 = ρ5 , J i5 = −1

2
∂iρ5 + 12κμBi − Hi (x = ∞), (4)

where ρ/ρ5 are vector/axial charge densities, the underlined
terms in J i/J i5 are the chiral magnetic/separation effects.
Gi , Hi contain derivatives of ρ, ρ5 ,

�B and are defined in
Sect. 3. It is important to stress that, in contrast to the
above discussion of linearised hydro, (3) and (4) are exact,
without any approximations for ρ, ρ5 ,

�B. The nonlinear-
ity of the CME/CSE in external magnetic field �B is com-
pletely accounted for by the chemical potentials μ,μ5 .
The non-derivative part of (3) is consistent with the “non-
renormalisability” of CME [48,49,70,71]. However, as will
be clear from (48) and (49), the derivative corrections in
Gi , Hi introduce new effects, which do modify the origi-
nal CME. Particularly, the currents along the direction of B
get affected.

When ρ, ρ5 ,
�B vary slowly from point to point, Gi , Hi

can be calculated order-by-order within boundary derivative
expansion. Let us introduce a scaling parameter λ:

∂μ = (∂t , ∂i ) −→ (λ∂t , λ∂i ) . (5)

Then derivative counting goes by powers of λ. Up to sec-
ond order in derivative expansion, we calculated Gi , Hi and
chemical potentials μ,μ5 without any further assumptions.
Given that these results are rather lengthy, we postpone to
present them in Sect. 3; see (48) and (49) and (50). At third
orderO(∂3), for Gi , Hi we calculated only terms that are lin-
ear in ρ, ρ5 ; see (51) and (52) for a complete listing. Among
these third order terms, the diffusion constantD0 (i.e., the DC
limit of the diffusion functionD) gets a negative B-dependent
correction

D0 = 1

2
− 18(2 log 2 − 1)κ2B2. (6)

To the best of our knowledge, this is the first anomaly-induced
correction to the diffusion constant, and, being negative, it
happens to violate the universal form of [72].

With the third order results for Jμ and Jμ
5 , we also com-

puted the dispersion relation for a free mode that can propa-
gate in the medium:

ω = [∓1 + 36(1 − 2 log 2)κ2B2]6κ �q · �B
−

[
1

2
+ 18 (1 − 2 log 2) κ2B2

]
iq2− i

8
q4 log 2 + · · · ,

(7)

where �B means a constant magnetic field. The first term in
(7) represents the chiral magnetic wave (CMW) [70]. Inter-
estingly, we see nonlinear in B corrections to both the speed
of CMW and its decay rate. Note that we also expect the
emergence in (7) of the following terms: (�q · �B)2, q2(�q · �B),
(�q · �B)3, q2(�q · �B)2 and (�q · �B)4. However, our ability to deter-
mine coefficients of these terms is limited by the undertaken
approximations.

In the second part of this work, we focus on a special
setup which is experimentally accessible in condensed mat-
ter systems.4 CME emerges from a nonzero axial chemical
potential μ5 , which is usually assumed to have some back-
ground profile. It is, however, possible to induce ρ5 (and thus
μ5 ) dynamically through the interplay between the electric
and magnetic fields, as is clear from the continuity equation
(2). Specifically, we are ready to consider a constant mag-
netic field �B and a time-dependent but spatially homogeneous
electric field �E(t). For simplicity the charge densities ρ, ρ5

will be assumed to be spatially homogeneous too5. From
(2), ρ could be set zero. The constitutive relations for the
vector/axial currents are

J t = 0, J i = Ei + ∂t Ei + 12κμ5Bi

− 12κεi jkA j (1)Ek + Gi (x = ∞), (8)

J t5 = ρ5 , J i5 = 12κμBi − 12κεi jkV j (1)Ek

+ Hi (x = ∞), (9)

where V j (1), A j (1), Gi and Hi depend on ρ5 , �E and �B
nonlinearly and will be computed below. Our study is further
split into two parts. In Sect. 4.1,V j (1),A j (1),Gi and Hi will
be evaluated perturbatively within the gradient expansion (5).
These perturbative results can be found in (65)–(68). In Sect.
4.2, we will consider another approximation—linearisation
of the constitutive relations in the external electric field.

In the linearised regime, we assume the following scaling
for ρ5 , �E and �B:

ρ5 ∼ O(ε), �E(t) ∼ O(ε), �B ∼ O(ε0), (10)

which will be referred to as an amplitude expansion. To linear
order in ε, the vector/axial currents are

J t = 0, �J = σe �E + τ1 κρ5
�B + τ2 κ2( �E · �B)�B

J t5 = ρ5 ,
�J5 = 0, (11)

4 We thank Dmitri Kharzeev for proposing us this study.
5 In principle it is not excluded that the charge densities ρ, ρ5 could be
spatially inhomogeneous. Yet such spatial inhomogeneity would render
the derivative resummation highly complicated.
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where σe is a q2 = 0 limit of the electric conductivity intro-
duced in (1), while τ1,2 are new TCFs. As with other TCFs,
they are functionals of time derivative operator and become
functions of frequency ω in Fourier space,

σe[∂t ] −→ σe(ω), τ1,2[∂t ] −→ τ1,2(ω). (12)

At the linear level (in external fields and hydro variables),
the transport coefficient functions in [9,68] were proved to
be frame independent. Along this line of proof, we expect
that σe, τ1,2 are also independent of the hydro frame choice.
Imposing the continuity equation (2), the electric current is
put on shell,

J i = σi j E j , σi j = σe︸︷︷︸
σT

(
δi j − BiB j

B2

)

+
[
σe−

(
12

iω
τ1−τ2

)
κ2B2

]
︸ ︷︷ ︸

σL

BiB j

B2 , (13)

where the transverse conductivity σT is not affected by the
magnetic field in contrast to the longitudinal conductivity
σL, which gets corrected by the magnetic field via the chiral
anomaly. In Sect. 4.2 the TCFs τ1, τ2 will be first analytically
evaluated in the hydro limit and then numerically for arbitrary
frequency.

While there is some overlap between our results and the
literature, differences between the present study and those
of [73–76] must be clarified. Utilising the weak electric field
approximation (10), [73] analytically evaluated the magnetic
field dependence of the longitudinal conductivity σL in DC
limit, while [74] calculated its ω-dependence. Back-reaction
effects on σL were considered in [76]. References [77] per-
formed a similar study, focussing on time evolution of the
induced vector current, given some specially chosen initial
profile for the electric field. All the studies [73–76] focussed
on a weak electric field, in which the axial current vanishes.
Therefore, our nonlinear results and particularly the axial
charge separation current (66) appears as new. As for the lin-
earised setup (10), [73–76] imposed the continuity equation
and replaced the axial charge density ρ5 in favour of the exter-
nal electric and magnetic fields, so the vector current there
is on shell. This is in contrast to our off-shell formalism. As
we argued in our previous publications [7,9–12], only off-
shell construction reveals transport properties of the system
in full. Particularly, there are three independent TCFs (σe and
τ1,2) in the constitutive relation (11), all of which we are able
to determine separately, compared to only two independent
conductivities in (13).

Another difference worth mentioning is that we explicitly
trace all the effects in the induced current that arise from the
relative angle between �E(t) and �B fields. This is in contrast
to [74,77], which limited their study to the case of parallel

fields only, primarily focussing on the longitudinal electric
conductivity σL. By varying the relative angle between �E(t)
and �B fields, one can separate the anomaly-induced effects
(parametrised by τ1 and τ2) from the ones that are not related
to the anomaly (σe).

The paper is structured as follows. In Sect. 2 we present
the holographic model and outline the strategy of deriving the
boundary currents from solutions of the anomalous Maxwell
equations in the bulk. Section 3 presents the first part of
our study: CME/CSE with static but varying in space mag-
netic field. In Sect. 4, CME/CSE in the presence of constant
magnetic and time-varying electric fields are analysed. This
study is further split into two subsections. The exploration
of nonlinear phenomena in the induced vector/axial currents
is done in Sect. 4.1. In Sect. 4.2 we focus on the linearised
regime (10) and calculate the dependence of AC conductivity
on magnetic field. Section 5 presents the conclusions. Two
appendices supplement computations of Sects. 3 and 4.

2 The holographic model: U(1)V × U(1)A

The holographic model is the U (1)V ×U (1)A theory in the
Schwarzschild–AdS5 case. The chiral anomaly of the bound-
ary field theory is modelled via the gauge Chern–Simons
terms in the bulk action,

S =
∫

d5x
√−gL + Sc.t., (14)

where

L = − 1
4 (FV )MN (FV )MN − 1

4 (Fa)MN (Fa)MN + κ εMNPQR

2
√−g

×
[
3AM (FV )N P (FV )QR + AM (Fa)N P (Fa)QR

]
,

(15)

and the counter-term action Sc.t. is

Sc.t. = 1

4
log r

∫
d4x

√−γ [(FV )μν(F
V )μν

+ (Fa)μν(F
a)μν]. (16)

The field strengths (FV )MN and (Fa)MN are defined as

(FV )MN = ∂MVN − ∂NVM , (Fa)MN = ∂M AN − ∂N AM .

(17)

εMN PQR is the Levi–Civita symbol with the convention
εr t xyz = +1, and the Levi–Civita tensor is εMN PQR/

√−g.
Our choice for (16) is based on minimal subtraction, that is,
the counter-term does not make a finite contribution to the
boundary currents.

In the ingoing Eddington–Finkelstein coordinates, the
spacetime metric is

ds2 = gMN dxMdxN = 2dtdr − r2 f (r)dt2 + r2δi jdx
idx j ,
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(18)

where f (r) = 1 − 1/r4, so that the Hawking temperature
(identified as temperature of the boundary theory) is nor-
malised to πT = 1. On the constant r hypersurface �, the
induced metric γμν is

ds2|� = γμνdxμdxν = −r2 f (r)dt2 + r2δi jdx
idx j . (19)

The equations of motion for V and A fields are as follows.

Dynamical equations : EVμ = EAμ = 0, (20)

Constraint equations : EVr = EAr = 0, (21)

where

EVM ≡ ∇N (FV )NM + 3κεMN PQR

√−g
(Fa)N P (FV )QR, (22)

EAM ≡ ∇N (Fa)NM + 3κεMN PQR

2
√−g

×
[
(FV )N P (FV )QR + (Fa)N P (Fa)QR

]
. (23)

The boundary currents are defined as

Jμ ≡ lim
r→∞

δS

δVμ

, Jμ
5 ≡ lim

r→∞
δS

δAμ

, (24)

which, in terms of the bulk fields, are

Jμ = limr→∞
√−γ

×
{
(FV )μMnM + 6κεMμNQR√−g

nM AN (FV )QR

−∇̃ν(FV )νμ log r
}
,

Jμ
5 = limr→∞

√−γ

×
{
(Fa)μMnM + 2κεMμNQR√−g

nM AN (Fa)QR

−∇̃ν(Fa)νμ log r

}
,

(25)

where nM is the outpointing unit normal vector on the slice
�, and ∇̃ is compatible with the induced metric γμν .

The currents (24) are defined independently of the con-
straint equations (21). Throughout this work, the radial gauge
Vr = Ar = 0 will be assumed. Consequently, in order to
completely determine the boundary currents (25) it is suf-
ficient to solve the dynamical equations (20) for the bulk
gauge fields Vμ, Aμ only, leaving the constraints aside. The
constraint equations (21) give rise to the continuity equa-
tions (2). In this way, the currents’ constitutive relations to
be derived below are off shell.

It is useful to reexpress the currents (25) in terms of the
coefficients of the near-boundary asymptotic expansion of
the bulk gauge fields. Near r = ∞,

Vμ = Vμ + V (1)
μ

r
+ V (2)

μ

r2 − 2V L
μ

r2 log r + O
(

log r

r3

)
,

Aμ = A(2)
μ

r2 + O
(

log r

r3

)
, (26)

where

V (1)
μ = FV

tμ, 4V L
μ = ∂νFV

μν. (27)

In (26) the constant term for Aμ is set zero given that
axial external fields are turned off in our present study. The
holographic dictionary implies that Vμ is a gauge potential
of external electromagnetic fields E and �B,

Ei = FV
it = ∂iVt − ∂tVi , Bi = 1

2
εi jkFV

jk = εi jk∂ jVk . (28)

When obtaining (26) and (27), only the dynamical equa-
tions (20) were utilised. The the near-boundary data V (2)

μ and

A(2)
μ have to be determined by completely solving (20) from

the horizon to the boundary. The currents (25) become

Jμ = ημν(2V (2)
ν + 2V L

ν + ησ t∂σFV
tν ), J

μ
5 = ημν2A(2)

ν .

(29)

The remainder of this section is to meant to outline the
strategy for deriving the constitutive relations for Jμ and
Jμ

5 . To this end, consider finite vector/axial charge densities
exposed to external electromagnetic fields. Holographically,
the charge densities and external fields are encoded in asymp-
totic behaviours of the bulk gauge fields. In the bulk, we will
solve the dynamical equations (20) assuming some charge
densities and external fields, but without specifying them
explicitly.

Following [9] we start with the most general static and
homogeneous profiles for the bulk gauge fields which solve
the dynamical equations (20),

Vμ = Vμ − ρ

2r2 δμt , Aμ = − ρ5

2r2 δμt , (30)

where Vμ, ρ, ρ5 are all constants for the moment. The regu-
larity requirement at r = 1 fixes one integration constant for
each Vi and Ai . As explained below (27), the constant in Aμ

is set to zero. Through (29), the boundary currents are

J t = ρ, J i = 0; J t5 = ρ5 , J i5 = 0. (31)

Hence, ρ and ρ5 are identified as the vector/axial charge den-
sities.

Next, following the idea of fluid/gravity correspon-
dence [14], we promote Vμ, ρ, ρ5 into arbitrary functions
of the boundary coordinates,

Vμ → Vμ(xα), ρ → ρ(xα), ρ5 → ρ5(xα). (32)

Then (30) ceases to be a solution of the dynamical equa-
tions (20). To have them satisfied, suitable corrections in Vμ

and Aμ have to be introduced:

Vμ(r, xα) = Vμ(xα) − ρ(xα)

2r2 δμt + Vμ(r, xα),
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Aμ(r, xα) = −ρ5(xα)

2r2 δμt + Aμ(r, xα), (33)

where Vμ,Aμ will be determined from solving (20). Appro-
priate boundary conditions have to be specified. First, Vμ

and Aμ have to be regular over the whole integration interval
of r ∈ [1,∞]. Second, at the conformal boundary r = ∞,
we require

Vμ → 0, Aμ → 0 as r → ∞, (34)

which amounts to fixing the external gauge potentials to be
Vμ and zero (for the axial fields). Additional integration con-
stants will be fixed by the Landau frame convention for the
currents,

J t = ρ(xα), J t5 = ρ5(xα). (35)

The Landau frame choice can be identified as a residual gauge
fixing for the bulk fields.

The vector/axial chemical potentials are defined as

μ = Vt (r = ∞) − Vt (r = 1) = 1
2ρ − Vt (r = 1),

μ5 = At (r = ∞) − At (r = 1) = 1
2ρ5 − At (r = 1).

(36)

Generically, μ,μ5 are nonlinear functionals of densities and
external fields.

In terms of Vμ and Aμ, the dynamical equations (20) are

0 = r3∂2
r Vt + 3r2∂rVt + r∂r∂kVk

+ 12κεi jk
[
∂rAi

(
∂ jVk + ∂ jVk

) + ∂rVi∂ jAk
]
, (37)

0 = (r5 − r)∂2
r Vi + (3r4 + 1)∂rVi + 2r3∂r∂t

×Vi − r3∂r∂iVt + r2 (∂tVi − ∂iVt )

+ r(∂2
Vi − ∂i∂kVk) − 1

2∂iρ + r2 (∂tVi − ∂iVt )

+ r
(
∂2Vi − ∂i∂kVk

)
+ 12κr2εi jk

×
(

1
r3 ρ5∂ jVk + 1

r3 ρ5∂ jVk + ∂rAt∂ jVk + ∂rAt∂ jVk

)
− 12κr2εi jk∂rA j

×
[
(∂tVk − ∂kVt ) + (∂tVk − ∂kVt ) + 1

2r2 ∂kρ
]

− 12κr2εi jk
{
∂rV j

[
(∂tAk − ∂kAt ) + 1

2r2 ∂kρ5

]

− ∂ jAk

(
∂rVt + 1

r3 ρ
)}

,

(38)

0 = r3∂2
r At + 3r2∂rAt + r∂r∂kAk + 12κεi jk

× [
∂rVi

(
∂ jVk + ∂ jVk

) + ∂rAi∂ jAk
]
, (39)

0 = (r5 − r)∂2
r Ai + (3r4 + 1)∂rAi

+ 2r3∂r∂tAi − r3∂r∂iAt + r2 (∂tAi − ∂iAt )

+ r(∂2
Ai − ∂i∂kAk) − 1

2∂iρ5

+ 12κr2εi jk
(
∂ jVk + ∂ jVk

) (
∂rVt + 1

r3 ρ
)

− 12κr2εi jk∂rV j

×
[
(∂tVk − ∂kVt ) + (∂tVk − ∂kVt ) + 1

2r2 ∂kρ
]

− 12κr2εi jk

×
{
∂rA j

[
(∂tAk − ∂kAt ) + 1

2r2 ∂kρ5

]

− ∂ jAk

(
∂rAt + 1

r3 ρ5

)}
.

(40)

In the following sections we will present solutions to the
dynamical equations (37)–(40) under the two independent
setups discussed in Sect. 1.

3 CME/CSE with time-independent inhomogeneous
magnetic field

In this section we consider the case in which the magnetic
field is the only external field that is turned on. The magnetic
field is assumed to be varying in space, but it should be time
independent to avoid creating an electric field. There is no
restriction on the charge densities ρ, ρ5 . From the general
results (26) and (27),

Vt ,At ∼ O
(

log r

r3

)
, Vi ∼ O

(
log r

r2

)
,

Ai ∼ O
(

1

r2

)
, as r → ∞. (41)

In obtaining large r estimates for Vt and At , the frame
convention (35) was used to fix the coefficients of 1/r2 in
the near-boundary expansion for Vt , At (thus those of Vt and
At ). The dynamical equations (37)–(40) get simplified,

0 = r3∂2
r Vt + 3r2∂rVt + r∂r∂kVk

+ 12κεi jk[∂rAi (∂ jVk + ∂ jVk) + ∂rVi∂ jAk], (42)

0 = (r5 − r)∂2
r Vi + (3r4 + 1)∂rVi

+ 2r3∂r∂tVi − r3∂r∂iVt + r2 (∂tVi − ∂iVt )

+ r(∂2
Vi − ∂i∂kVk) − 1

2∂iρ + r∂kFV
ki

+ 12κr2εi jk∂r

(
At − ρ5

2r2

) (
∂ jVk + ∂ jVk

)
− 12κr2εi jk

×
{
∂rV j

[
(∂tAk − ∂kAt ) + 1

2r2 ∂kρ5

]
− ∂ jAk∂r

(
Vt − ρ

2r2

)}
− 12κr2εi jk∂rA j

×
[
(∂tVk − ∂kVt ) + 1

2r2 ∂kρ
]
,

(43)
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0 = r3∂2
r At + 3r2∂rAt + r∂r∂kAk + 12κεi jk

× [
∂rVi

(
∂ jVk + ∂ jVk

) + ∂rAi∂ jAk
]
, (44)

0 = (r5 − r)∂2
r Ai + (3r4 + 1)∂rAi

+ 2r3∂r∂tAi − r3∂r∂iAt + r2 (∂tAi − ∂iAt )

+ r(∂2
Ai − ∂i∂kAk) − 1

2∂iρ5

+ 12κr2εi jk
(
∂ jVk + ∂ jVk

)
∂r

(
Vt − ρ

2r2

)
− 12κr2εi jk

×
{
∂rA j

[
(∂tAk − ∂kAt ) + 1

2r2 ∂kρ5

]

− ∂ jAk∂r

(
At + ρ5

2r2

)}
− 12κr2εi jk∂rV j

×
[
(∂tVk − ∂kVt ) + 1

2r2 ∂kρ
]
.

(45)

For generic profiles of ρ, ρ5 and �B(�x), nonlinearity makes
it difficult to solve (42)–(45). To explore the general structure
of the vector/axial currents, we rewrite the dynamical equa-
tions (42)–(45) into integral forms. In this way, the near-
boundary asymptotic expansion for Vμ and Aμ could be
extracted from the integral forms of (42)–(45). For simplic-
ity, we address the details in Appendix A. Substituting the
near-boundary behaviour (94)–(97) into (29) produces the
results (3) and (4). As mentioned below (3) and (4), Gi , Hi

are functionals of ρ, ρ5 ,
�B and are presented in (98) and (99).

The formal analysis establishes the structure of Jμ/J 5
μ, par-

ticularly the “non-renormalisation” of CME and its gradient
corrections.

We proceed with the hydrodynamic gradient expansion for
Jμ/J 5

μ. This requires us to perturbatively solve the dynamical
equations (42)–(45) within the boundary derivative expan-
sion (5),

∂μ = (∂t , ∂i ) −→ (λ∂t , λ∂i ) . (46)

The corrections Vμ and Aμ are expandable in λ,

Vμ =
∞∑
n=1

λnV[n]
μ , Aμ =

∞∑
n=1

λnA[n]
μ . (47)

At each order in λ,V[n]
μ andA[n] form a system of ordinary

differential equations in r -coordinate, which can be solved
via direct integration over r . The results for V[n]

μ and A
[n] up

to n = 2 can be found in Appendix A; see (100)–(106).
Substituting the first order solutions (100)–(102) into (98)

and (99) generates a hydrodynamic expansion for Gi , Hi up
to second order in the gradient expansion (throughout this
work, the electromagnetic fields are thought of as of first
order in derivative counting),

Gi (x = ∞) = −π
8 ∂t∂iρ

+ ( 3
2π + 3 log 2

)
κ∂tρ5 Bi

+ 18 (1 − 2 log 2) κ2
(
ρ2

5
+ ρ2

)
× εi jk∂ j Bk + 18(2 − 3 log 2)κ2εi jk

× (ρ5∂ jρ5 Bk + ρ∂ jρBk) + O(∂3),

(48)

Hi (x = ∞) = −π
8 ∂t∂iρ5

+ ( 3
2π + 3 log 2

)
κ∂tρBi

+ 36 (1 − 2 log 2) κ2ρρ5ε
i jk∂ j Bk

+ 18 (2 − 3 log 2) κ2εi jk

× (
ρ5∂ jρBk + ρ∂ jρ5 Bk

) + O(∂3).

(49)

Meanwhile, the second order results (103) and (104) give
rise to the gradient expansion of chemical potentials (36)

μ = ρ

2
+ 1

16
(π − 2 log 2) ∂2ρ − 3

4
(π − 2 log 2)

κBk∂kρ5 + 18 (1 − 2 log 2) κ2ρB2 + O(∂3),

μ5 = μ(ρ ↔ ρ5). (50)

In principle, the second order results (103)–(106) could be
inserted into (98) and (99), producing derivative expansion
for Gi (x = ∞) and Hi (x = ∞) up to third order. How-
ever, at third order O(∂3), computing Gi , Hi becomes quite
involved. Therefore, at third order O(∂3) we decided to track
only terms linear in ρ, ρ5 . As a result, we are able to identify
the first anomalous correction to the diffusion constant D0

due to magnetic field. The final expressions are

G[3]
i (x = ∞) = π2

48 ∂2
t ∂iρ + 1

16 (π − 2 log 2) ∂2∂iρ

+ 12#1κ∂2
t ρ5 Bi − π2

8 κ

× [
∂2

(
ρ5 Bi

) − ∂i∂k
(
ρ5 Bk

)]
+ 3

4 (π − 2 log 2)κ∂i
(
Bk∂kρ5

)
+ 18(1 − 2 log 2)κ2B2∂iρ

+ 18(1 − 2 log 2)κ2ρ∂i B2

+O(ρ2, ρ2
5
, ρρ5),

(51)

H [3]
i (x = ∞) = G[3]

i (x = ∞)(ρ ↔ ρ5), (52)

where #1 in (51) is given by the integral

#1 ≡ 1

2

∫ ∞

1
dy[2y∂yb2(y) + b2(y)] ≈ 0.362, (53)

where b2(r) is given in (109). The underlined term in (51) is a
κ2B2-correction to the diffusion constant D0. Given that the
lowest order anomalous correction to the diffusion constant
is negative, it is interesting to explore this effect further for
arbitrary magnitude of the magnetic field, which, however,
goes beyond the scope of the present study.
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Our results for Jμ and Jμ
5 can be used to explore dis-

persion relations for free modes propagating in the chiral
medium. We consider a constant magnetic field only. Let us
take a plane wave ansatz for the vector/axial charge densities

ρ = δρ exp (−iωt + �q · �x) , ρ5 = δρ5 exp (−iωt + �q · �x) .

(54)

Then the continuity equation (2) becomes

aδρ + bδρ5 = 0, bδρ + aδρ5 = 0, (55)

which has a nontrivial solution when and only when

a2 = b2 
⇒ a = ±b, (56)

where

a = −iω + 1
2q

2 + 9 (π − 2 log 2) κ2(�q · �B)2

+ 216 (1 − 2 log 2) κ3B2i �q · �B + π
8 iωq

2

− π2

48 ω2q2 − 1
16 (π − 2 log 2) q4

+ 18 (1 − 2 log 2) κ2B2q2,

(57)

b = 6κi �q · �B − 3
4 (π − 2 log 2) κq2 �q · �B

− ( 3
2π + 3 log 2

)
κω�q · �B + 12#1κω2i �q · �B

+ 3
4 (π − 2 log 2) κq2 �q · �B.

(58)

Solving (56) leads to the B-corrected dispersion relation, as
summarised in (7).

4 CME/CSE with constant magnetic and
time-dependent electric fields

Creating systems with chiral imbalance (μ5 �= 0) experimen-
tally is problematic. In this section we consider a special setup
in which the axial chemical potential μ5 is not imposed exter-
nally but rather is induced dynamically through the chiral
anomaly. This setup is of particular interest due to intriguing
possibility for it to be realised experimentally in chiral con-
densed matter systems. Consider a constant magnetic field �B
and a time-dependent homogeneous electric field �E(t). We
also assume the charge densities to be spatially homogeneous
as well.6 The continuity equation (2) degenerates to

∂t J
t = 0, ∂t J

t
5 = 12κ �E · �B, (59)

which implies that the vector charge density is constant while
the axial charge density has nontrivial time dependence inher-

6 While from the continuity equation (2) the charge densities can still
have a nontrivial spatial-dependence, we found that such spatial inho-
mogeneity of the charge densities would make the gradient resummation
out of control.

ited from E(t). The setup under consideration is

ρ = 0, ρ5 = ρ5(t), �E = �E(t), �B = constant. (60)

Under the frame convention (35), the corrections Vμ and Aμ

of (33) depend on r and t only. As a result, the dynamical
equations (37)–(40) are reduced to

0 = r3∂2
r Vt + 3r2∂rVt + 12κ∂rAkBk, (61)

0 = (r5 − r)∂2
r Vi + (3r4 + 1)∂rVi + 2r3∂r∂tVi

+ r2∂tVi − r2Ei + 12κr2∂rAtBi

+ 12
r κρ5Bi − 12κr2εi jk∂rA j (∂tVk − Ek)

− 12κr2εi jk∂rV j∂tAk,

(62)

0 = r3∂2
r At + 3r2∂rAt + 12κ∂rVkBk, (63)

0 = (r5 − r)∂2
r Ai + (3r4 + 1)∂rAi + 2r3∂r∂tAi

+ r2∂tAi + 12κr2∂rVtBi

− 12κr2εi jk∂rV j (∂tVk − Ek)

− 12κr2εi jk∂rA j∂tAk .

(64)

4.1 Nonlinear phenomena: general analysis and derivative
expansion

The objective of this subsection is to show that beyond lin-
earised limit (69) the setup (60) also induces a non-vanishing
axial current �J5, which has been omitted in the literature. To
this end, as in Sect. 3, we first give a fully nonlinear analysis
for the dynamical equations (61)–(64), followed by perturba-
tive calculations for Vμ,Aμ within the derivative expansion
(5). All calculational details are addressed in Appendix B.

As in Sect. 3 the formal analysis are based on rewrit-
ing the dynamical equations (61)–(64) into integral form,
from which one could deduce the near-boundary asymptotic
behaviours for Vμ,Aμ. The results can be found in (112)–
(115). Plugged them into (29), the near-boundary behaviour
forVμ,Aμ presented in (112)–(115) is translated into bound-
ary currents (8) and (9). Generically, the quantities Vi (1),
Ai (1), Gi (x = ∞) and Hi (x = ∞) in (8) and (9) cannot
be computed analytically. However, as in Sect. 3, the formal
analysis determines the generic forms for Jμ/Jμ

5 .
Within the gradient expansion (5), we perturbatively solve

the dynamical equations (61)–(64). Up to second order
O(∂2), Vμ,Aμ are shown in (118)–(121). The perturbative
solutions (118)–(121) can be plugged into (116) and (117)
to generate hydrodynamic expansion for Jμ/Jμ

5 :

�J = 12κμ5
�B + �E − log 2

2 ∂t �E − π2

24 ∂2
t

�E
− ( 3

2π + 3 log 2
)
κ∂tρ5

�B
+ 9π2κ3ρ5(

�B × �E) × �E + 12#1κ∂2
t ρ5

�B + O (
∂4

)
,

(65)
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�J5 = 12κμ�B − 36 log 2 κ2ρ5
�B × �E

+ 3
2

(
π2 + 3π log 2 + 6 log2 2

)
κ2∂tρ5

�B × �E
− 3

8

(
48C + π2 − 12π log 2

)
κ2ρ5

�B × ∂t �E + O (
∂4

)
,

(66)

where C is a Catalan constant and #1 is known numerically
only,

#1 ≈ 0.362. (67)

Up to second order in derivatives O(∂2), the chemical poten-
tials (36) are7

μ = 0 + O(∂3), μ5 = 1

2
ρ5 + 3

2
(π − 2 log 2) κ �E · �B

+ 18 (1 − 2 log 2) κ2ρ5B
2 + O

(
∂3

)
. (68)

Evaluated on shell via (2), the axial current J i5 is fully
nonlinear in the amplitude of the electric field �E(t), as clear
from (66).

4.2 Linear in �E phenomena

In the previous subsection we focussed on hydrodynamic
regime, in which we were able to identify some nonlinear
phenomena. Below, we proceed with an alternative approxi-
mation, that is, the weak electric field approximation (10):

ρ5(t) ∼ O(ε), �E(t) ∼ O(ε), �B ∼ O(ε0). (69)

The scaling of ρ5 follows from the continuity equation (59).
Both corrections Vμ and Aμ are of order O(ε) too. The
dynamical equations (61)–(64) get further simplified,

0 = r3∂2
r Vt + 3r2∂rVt + 12κ∂rAkBk, (70)

0 = (r5 − r)∂2
r Vi + (3r4 + 1)∂rVi + 2r3∂r∂tVi

+ r2∂tVi − r2Ei + 12κr2
(
∂rAt + ρ5

r3

)
Bi , (71)

0 = r3∂2
r At + 3r2∂rAt + 12κ∂rVkBk, (72)

0 = (r5 − r)∂2
r Ai + (3r4 + 1)∂rAi + 2r3∂r∂tAi

+ r2∂tAi + 12κr2∂rVtBi . (73)

Integrating (70) and (72) over r once, we get

∂rVt = −12κ

r3 AkBk, ∂rAt = −12κ

r3 VkBk, (74)

where the frame convention (35) was used to fix the integra-
tion constant. Equation (74) makes it possible to decouple
Vi ,Ai from Vt ,At . Consequently, (71) and (73) become

7 While we suspect that the chemical potential μ is zero to all orders
in the gradient expansion, we have not been able to prove this.

0 = (r5 − r)∂2
r Vi + (3r4 + 1)∂rVi + 2r3∂r∂tVi

+ r2∂tVi − r2Ei + 12κ

r
Bi

(
ρ5 − 12κVkBk

)
, (75)

0 = (r5 − r)∂2
r Ai + (3r4 + 1)∂rAi + 2r3∂r∂tAi

+ r2∂tAi − 144

r
κ2Bi (AkBk). (76)

The homogeneity property of (76), combined with the reg-
ularity requirement at r = 1 and vanishing boundary condi-
tion at r = ∞ for Ai , fixes Ai = 0 completely. From (74),
Vt = 0. That is,

Vt = Ai = 0. (77)

Therefore, at order O(ε), the axial current �J5 = 0 as read
off from (29). This is in contrast with the nonlinear analysis
of Sect. 4.1.

The differential equation (76) is linear in the correction
Vi . Therefore, (76) can be solved via the technique developed
in [7,10–12]. The bulk equations reduce to linear inhomo-
geneous partial differential equations while the inhomoge-
neous terms are built from boundary derivatives of the fluid-
dynamic variables and external fields. The equations then
can be exactly solved using the Green function formalism:
the bulk fields are decomposed in terms of all possible basic
vector structures constructed from the fluid-dynamic vari-
ables and external fields. These decomposition coefficients
(components of the inverse Green function) are functions
of the holographic radial coordinate and functionals of the
boundary derivative operators. The functional dependence
of the decomposition coefficients on the boundary derivative
operation encodes all-order linear derivatives in the constitu-
tive relations. Transformed into momentum space, the bulk
equations give rise to ordinary differential equations for those
decomposition coefficients, which are RG-like equations in
AdS space. Solving the RG-like equations completely deter-
mines the fluid’s constitutive relations and all transport coef-
ficients. Below we implement these steps.

Vi is decomposed as8

Vi = C1Ei + C2κρ5Bi + C3κ
2( �E · �B)Bi , (78)

where

Ci = Ci (r, ∂t ) → Ci (r, ω), i = 1, 2, 3. (79)

The decomposition coefficients Ci satisfy the partially
decoupled ordinary differential equations (ODEs),

0 = (r5 − r)∂2
r C1 + (3r4 + 1)∂rC1 − 2iωr3∂rC1

− iωr2C1 − r2, (80)

8 In the decomposition forVi , one could have included a termC4 �E× �B.
However, the coefficient C4 would satisfy a homogeneous ODE. Under
the same arguments leading to Ai = 0, C4 has to be zero too.
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0 = (r5 − r)∂2
r C2 + (3r4 + 1)∂rC2 − 2iωr3∂rC2 − iωr2C2

+ 12

r

(
1 − 12κ2B2C2

)
, (81)

0 = (r5 − r)∂2
r C3 + (3r4 + 1)∂rC3 − 2iωr3∂rC3

− iωr2C3 − 144

r

(
C1 + κ2B2C3

)
. (82)

While C1 does not feel the effect of the magnetic field, C2,3

have a nontrivial dependence on the magnetic field via κ2B2.
Near r = ∞, the pre-asymptotic expansions of the Ci are

C1 → −1

r
+ c1

r2 − iω log r

2r2 + O
(

log r

r3

)
,

C2 → c2

r2 + O
(

1

r3

)
, C3 → c3

r2 + O
(

1

r3

)
, (83)

where the ci are boundary data and have to be fixed through
full solution of (80)–(82) from the horizon r = 1 to the
conformal boundary r = ∞. From (29), the conductivities
of (11) are determined by the boundary data ci ,

σe = 2c1 − 1

2
iω, τ1 = 2c2, τ2 = 2c3. (84)

The ODE for C1 was solved in [9]. The conductivity σe,
which is computed from C1, was completely determined and
explored in [9], while only q = 0 limit enters into our current
study (the results are quoted below). We therefore focus on
the remaining two conductivities τ1, τ2, both induced by the
chiral anomaly. As is obvious from (80)–(82), τ1, τ2 depend
on the magnetic field via κ2B2.

Using the continuity equation (59), the constitutive rela-
tions (11) are put into a linear response form, from which
on-shell current–current correlators can be read off. Since the
electric field is the only external perturbation that is turned
on, it is possible to compute only a subset of all two-point
correlators in the theory,

〈J i J j 〉 = iωσe︸︷︷︸
GT

(
δi j − BiB j

B2

)

+
[
iωσe − (12τ1 − iωτ2)κ

2B2
]

︸ ︷︷ ︸
GL

BiB j

B2 , (85)

〈J t5 J i 〉 = −12κBi , (86)

〈J t J i 〉 = 〈J i5 J j 〉 = 0, (87)

where 〈J i J j 〉 is split into transverse (GT) and longitudi-
nal (GL) components with respect to the direction of �B.
To determine the remaining current–current correlators we
would have to introduce additional field perturbations, par-
ticularly an axial external field, which is beyond the scope of
this paper.

To evaluate the TCFs τ1, τ2, we have to completely solve
the ODEs (80)–(82). We first analytically solve them when
ω = 0. As a result, the DC limits τ 0

1 (for arbitrary B) and τ 0
2

(up to leading B2-correction) are known analytically,

τ 0
1 = �

[
3/4−√

1−144κ2B2/4
]
�

[
3/4+√

1−144κ2B2/4
]

3κ2B2�
[
1/4−√

1−144κ2B2/4
]
�

[
1/4+√

1−144κ2B2/4
]

−→ 6 + 216 (1 − 2 log 2) κ2B2 + O(B4), as B → 0,

(88)

τ 0
2 = 18 (π − 2 log 2) + #2κ

2B2 + O
(
B4

)
, as B → 0,

(89)

where �[z] is the Gamma function, and #2 is known numer-
ically only,

#2 ≡
∫ ∞

1

dr

r3

{∫ ∞

r

722xdx

x4 − 1

∫ x

1

dy

y

×
[

log
(1 + y)2

1 + y2 − 2 arctan(y) + π

]}
≈ −495.268.

(90)

When the magnetic field is very strong, τ 0
1 and τ 0

2 behave
similarly

τ 0
1 , τ 0

2 −→ 1

κB
, asκB → ∞. (91)

The result for τ 0
1 is in agreement with [74,77]. In the DC

limit ω → 0, when the magnetic field is very strong, the
on-shell vector current (13) behaves as

J i → −12κBVi , (92)

which is in agreement with [77]. When ω → 0 (DC limit),
the current–current correlator is dominated by the chiral
anomaly-induced effects ∼ τ 0

1 . The DC limit is of interest for
experiments with electric fields turned on adiabatically, such
as the ones considered in [77]. Meanwhile, when ω → 0, the
longitudinal conductivity σL in (13) is parametrised as

σ 0
L = i

ω
12κ2B2τ 0

1 + [σ 0
e + κ2B2(τ 0

2 − 12τ 1
1 )], (93)

where σ 0
e = 1, τ 1

1 is the coefficient of iω in the hydrodynamic
expansion of τ1. For illustration, in Fig. 1 we show the κB-
dependence of τ 0

1 , τ 0
2 (divided by 5 to match scales), τ 1

1 and
Re

(
σ 0

L

)
. The behaviour of Re

(
σ 0

L

)
agrees perfectly with that

of [74].
In our calculation, Re

(
σ 0

L

)
acquires a negative correction

due to the magnetic field and eventually vanishes when the
magnetic field gets large; see Fig. 1. This is in contrast with
many related studies of negative magnetoresistivity, the phe-
nomenon of enhancement of the longitudinal DC conductiv-
ity due to the magnetic field [78–83]. However, taking a strict
DC limit in σ 0

L is problematic due to the explicit 1/ω diver-
gence. The latter is frequently regularised by introduction
of axial charge dissipation effects via shifting the frequency
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2 for different values of κB

ω → ω + i/τ5, where τ5 corresponds to some relaxation
time. The physics of this axial charge relaxation is beyond
the scope of the present work. It was addressed within the
holographic approach in [73–76]. These studies primarily
rely on the Kubo formula.

For arbitrary ω, we resort to numerical methods and solve
ODEs (80)–(82) for representative values of κB. The numeri-

cal procedure is identical to that of [68] and for all the numer-
ical details we refer the reader to this publication. In Fig. 2
we show the ω-dependence for τ1 and τ2 for sample choices
of κB. In Fig. 3 we plot the normalised TCFs τ1/τ

0
1 and

τ2/τ
0
2 . Overall, τ1 and τ2 display quite similar dependences

on the frequency ω. After some oscillations, both τ1 and τ2

approach zero asymptotically.
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Approach to the asymptotic regime, however, depends on
strength of the magnetic field. When κB is increased, the
asymptotic behaviour is delayed towards larger ω. What is
more intriguing is that increasing κB renders τ1 and τ2 to
develop a resonance-like enhancement at finite ω. This could
be an interesting experimentally observable feature. For very
strong magnetic fields κB → ∞, the chiral anomaly-induced
effects would be pushed to the UV, corresponding to early
time effects, such as in [77].

In Fig. 4 we show two-point correlators GT,L for differ-
ent choices of κB. However, it is difficult to appreciate the
anomaly-induced effects from Fig. 4 because in the corre-
lators they get mixed with non-anomalous ones. To illumi-
nate κB-correction to GL, in Fig. 5 we plot the difference
δGL = GL − GT. From these plots, the effect of the chiral
anomaly on the induced vector current is seen more clearly.
We again notice a remarkable relative enhancement at inter-
mediate values of ω.

5 Conclusions

In this paper we continued explorations of the chiral anomaly
induced transport within a holographic model containing two
U (1) fields interacting via Chern–Simons terms. For a finite
temperature system, we computed off-shell constitutive rela-
tions for the vector/axial currents responding to external elec-
tromagnetic fields.

When a static spatially inhomogeneous magnetic field is
the only external field that is turned on, we showed that both
the CME and the CSE get corrected by derivative terms; see
(3) and (4). Within the derivative expansion, we analytically
calculated corrections up to third order in the expansion; see
(48) and (49) and (51) and (52). Apart from the derivative
corrections to CME and CSE, the diffusion constant D0 was
found to receive a negative anomaly-induced correction; see
(6). The dispersion relation of the chiral magnetic wave was
also found to be modified; see (7).
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In the second part of our study, we focussed on the case
of time-varying electric and constant magnetic fields without
any externally enforced axial charge asymmetry, though the
�E(t) · �B term in the continuity equation (59) generates the
axial charge density ρ5 (and thus μ5 ) dynamically. For such a
configuration of the external fields, we first analysed the most
general constitutive relations for the vector/axial currents;
see (8) and (9). Then, within the derivative expansion, we
explicitly calculated the currents up to third order at nonlinear
level; see (65) and (66). When put on shell, the axial current
�J5 is fully nonlinear in the external electric field.

Employing another approximation, we linearised the
constitutive relations assuming the electric field is weak
(10). Within this approximation the axial current is zero,
while the “off-shell” vector current is parameterised by
three frequency-dependent transport coefficient functions:
the electric conductivity σe, and two chiral anomaly-induced
conductivities τ1, τ2; see (11). In the DC limit, we analyti-
cally computed these conductivities; see (88) and (89). Then,
for generic ω, the numerical plots were presented in Sect. 4.2.
Based on these studies, we notice that the anomaly-induced
effects get enhanced at some finite frequency ω, whereas the
position of the maximum and strength of the effect depends
on the external magnetic field. It might be an effect worth
looking for experimentally.
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Appendix A: Supplement for Sect. 3

In this appendix we provide computational details regard-
ing non-renormalisation of CME and its gradient corrections
up to third order. The dynamical equations (37)–(40) have
a special property: in all equations, the first two terms can
be rewritten as total derivatives of Vμ,Aμ. Treating all the
remaining terms in (37)–(40) as sources, (37)–(40) can be
integrated over r twice, resulting in the following integral
forms:

Vt (r) = − ∫ ∞
r

dx
x3

∫ ∞
x

× {
y∂y∂kVk + 12κεi jk

[
∂yAi

(
∂ jVk + ∂ jVk

)
+ ∂yVi∂ jAk

]}
dy,

× r → ∞−−−−→O
(

log r
r3

)
,

(94)

Vi (r) =
∫ ∞

r

−xdx

x4 − 1

×
{
Gi (x) − 1 − x

2x
∂iρ − ∂kFV

ki log x

− 12κBi

(
μ5 + At − 1

2x2 ρ5

)}

× r → ∞−−−−→ − ∂iρ

4r2 + 1 + 2 log r

4r2 ∂kFV
ki + 6

r2 κμ5 Bi

− 1

2r2 Gi (x = ∞) + O
(

log r

r3

)
, (95)

At (r) = − ∫ ∞
r

dx
x3

∫ ∞
x

× {
y∂y∂kAk + 12κεi jk

[
∂yVi

(
∂ jVk + ∂ jVk

)
+ ∂yAi∂ jAk

]}
dy

× r → ∞−−−−→O
(

log r
r3

)
,

(96)

Ai (r) = − ∫ ∞
r

xdx
x4−1

× {
Hi (x) − 1−x

2x ∂iρ5 − 12κμBi

− 12κBi
(
Vt − 1

2x2 ρ
)}

× r → ∞−−−−→ − ∂iρ5
4r2 + 6

r2 κμBi

− 1
2r2 Hi (x = ∞) + O

(
1
r3

)
,

(97)

where μ and μ5 are the chemical potentials defined in (36).
The frame convention (35) was utilised to fix integration con-
stants, one for Vt and one for At . The functions Gi (x) and
Hi (x) are

Gi (x) = ∫ x
1 dy

{
− 2y∂y∂tVi + y∂y∂iVt

− (∂tVi − ∂iVt ) − 1
y

(
∂2
Vi − ∂i∂kVk

)
− 12κεi jk∂y

(
At − 1

2y2 ρ5

)
∂ jVk

− 12κεi jk∂y

(
Vt − 1

2y2 ρ
)

∂ jAk

+ 12κεi jk∂yA j

[
(∂tVk − ∂kVt ) + 1

2y2 ∂kρ
]

+ 12κεi jk∂yV j

×
[
(∂tAk − ∂kAt ) + 1

2y2 ∂kρ5

]}
,

(98)
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Hi (x) = ∫ x
1 dy

{
− 2y∂y∂tAi + y∂y∂iAt

− (∂tAi − ∂iAt ) − 1
y

(
∂2
Ai − ∂i∂kAk

)
− 12κεi jk∂y

(
Vt − 1

2y2 ρ
)

∂ jVk

− 12κεi jk∂y

(
At − 1

2y2 ρ5

)
∂ jAk

+ 12κεi jk∂yV j

[
(∂tVk − ∂kVt ) + 1

2y2 ∂kρ
]

+ 12κεi jk∂yA j

×
[
(∂tAk − ∂kAt ) + 1

2y2 ∂kρ5

]}
.

(99)

Although we were unable to solve (42)–(45) for generic
ρ, ρ5 ,

�B(�x), integral forms (94)–(97) help to explore gen-
eral forms of Jμ/Jμ

5 , as quoted in (3) and (4).
In the hydrodynamic limit, we analytically solved the

dynamical equations (42)–(45) within the boundary deriva-
tive expansion (5).V[n]

μ andA[n]
μ up to n = 2 are listed below.

V
[1]
t = A

[1]
t = 0, (100)

V
[1]
i = −1

8

[
log

1 + r2

(1 + r)2 − 2 arctan(r) + π

]
∂iρ

+ 3κρ5 Bi log
1 + r2

r2 , (101)

A
[1]
i = V

[1]
i

(
ρ ↔ ρ5

)
, (102)

V
[2]
t = − ∫ ∞

r
dx
x3

∫ ∞
x dy

×
{

y ∂2ρ

2(y2+1)(y+1)
− y 6κBk∂kρ5

(y2+1)(y+1)
− 72κ2

y(y2+1)
ρB2

}
r=1



 − 1

16 (π − 2 log 2) ∂2ρ + 3
4 (π − 2 log 2)

× κBk∂kρ5 − 18(1 − 2 log 2)κ2ρB2,

(103)

A
[2]
t = V

[2]
t

(
ρ ↔ ρ5

)
, (104)

V
[2]
i = b0∂kFV

ki + b1∂t∂iρ + b26κ∂tρ5 Bi + b336κ2εi jk

× [
ρ5∂ j

(
ρ5 Bk

) + ρ∂ j (ρBk)
]

+ b436κ2εi jk
(
ρBj∂kρ + ρ5 Bj∂kρ5

)
,

(105)

A
[2]
i = b1∂t∂iρ5 + b26κ∂tρBi + b336κ2εi jk

× [
ρ∂ j

(
ρ5 Bk

) + ρ5∂ j (ρBk)
] + b436κ2εi jk

× (
ρ5 Bj∂kρ + ρBj∂kρ5

)
,

(106)

where

b0 =
∫ ∞

r

xdx

x4 − 1

∫ x

1

dy

y
, (107)

b1 =
∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

×
{

y

(y2 + 1)(y + 1)

− 1

8

[
log

1 + y2

(1 + y)2 − 2 arctan(y) + π

]}
, (108)

b2 =
∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

{
− 2

y2 + 1
+ 1

2
log

1 + y2

y2

}
,

(109)

b3 =
∫ ∞

r

xdx

x4 − 1

∫ x

1

1

y3 log
1 + y2

y2 dy, (110)

b4 =
∫ ∞

r

xdx

x4 − 1

∫ x

1

dy

y3(y2 + 1)
. (111)

These perturbative solutions, once inserted into (98), (99)
and (36), produces the results (48)–(52).

Appendix B: Supplement for Sect. 4

This appendix contains calculational details for Sect. 4. As
explained in Appendix 1, integrating the dynamical equations
(61)–(64) over r twice results in the following integral forms:

Vt = 12κ

∫ ∞

r

dx

x3 AkBk r → ∞−−−−→O
(

1

r3

)
, (112)

Vi = ∫ ∞
r

xdx
x4−1

∫ x
1 dy

{
2y∂y∂tVi + ∂tVi − Ei

+ 12κ∂y

(
At − 1

2y2 ρ5

)
Bi

− 12κεi jk∂yA j (−Ek + ∂tVk) − 12κεi jk∂yV j∂tAk
}

r → ∞−−−−→
1+2 log r

4r2 ∂t Ei −
(

1
r − 1

2r2

)
Ei + 6

r2 κμ5Bi

− 6
r2 κεi jkA j (1)Ek

+ 1
2r2 Gi (x = ∞) + O

(
1
r3

)
,

(113)

At = 12κ

∫ ∞

r

dx

x3 VkBk r → ∞−−−−→O
(

1

r3

)
, (114)

Ai = ∫ ∞
r

xdx
x4−1

∫ x
1 dy

{
2y∂y∂tAi + ∂tAi + 12κ∂yVtBi

+ 12κεi jk∂yV j Ek

− 12κεi jk∂yV j∂tVk − 12κεi jk∂yA j∂tAk
}

r → ∞−−−−→
6
r2 κμBi − 6

r2 κεi jkV j (1)Ek

+ 1
2r2 Hi (x = ∞) + O

(
1
r3

)
,

(115)
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where μ,μ5 are defined via (36). Gi and Hi are

Gi (x) =
∫ x

1
dy

{
2y∂y∂tVi + ∂tVi

− 12κεi jk
(
∂yA j∂tVk + ∂yV j∂tAk

)}
, (116)

Hi (x) =
∫ x

1
dy

{
2y∂y∂tAi + ∂tAi

− 12κεi jk
(
∂yV j∂tVk + ∂yA j∂tAk

) }
, (117)

where Vi = Vi + Ei/r . Note that we have split the Ei/r
piece from Vi so that Gi (x) is well defined at x = ∞. Via
the general formulas (29), the large r behaviours (112)–(115)
produce the formal results of (8) and (9).

Under the boundary derivative expansion (5), (70)–(73)
can be solved perturbatively. Up to second order O(∂2), the
corrections Vμ and Aμ are

Vt = O(∂3), (118)

At = a0(r)12κ �E · �B − 18

r2

[
1 − (1 + r2) log

1 + r2

r2

]
κ2ρ5B

2

+O(∂3), (119)

Vi = − 1
4

[
log (1+r)2

1+r2 − 2 arctan(r) + π
]
Ei

+ 3 log 1+r2

r2 κρ5Bi + a1(r)∂t Ei

+ b2(r)6κ∂tρ5Bi + O(∂3),

(120)

Ai = a2(r)72κ2ρ5ε
i jkB j Ek + O

(
∂3

)
, (121)

where

a0(r) = − 1

8r2

{
(r2 + 1)

(
2 arccot(r) − log

1 + r2

r2

)

+ 2(r2 − 1) log
r

1 + r

}
, (122)

a1(r) = −
∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

×
{

− 2y2

1 + y2 + 1

4

[
log

(1 + y)2

1 + y2 − 2 arctan(y) + π

]}
,

(123)

a2(r) = −
∫ ∞

r

xdx

x4 − 1

∫ x

1

dy

y(y2 + 1)
, (124)

and b2 is presented in (109). From these perturbative results,
we deduce the hydro expansion for the currents Jμ/Jμ

5 and
chemical potentials μ/μ5 , as summarised in (65), (66) and
(68).
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