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Abstract The general theoretical ground for models based
on compact angle coordinates is presented. It is observed
that the proper dependence on compact coordinates has to be
through the group elements and is achieved most naturally
in a discrete-time formulation of the theory. By the construc-
tion, the discrete worldline inlaid by compact coordinates
resembles the spin chains of magnetic systems. As exam-
ples, the models based on the groups U(1), ZN and SU(2)
are explicitly constructed and their exact energy spectra are
obtained. As the consequence of the minima in the spectra,
the models exhibit a phase transition of first order. We attempt
to fit the dynamics by the U(1) group to the proposed role
for monopoles in the dual Meissner effect of the confinement
mechanism.

1 Introduction

It is well known that treating the gauge fields as compact
angle variables would reveal some non-trivial aspects of
gauge field theories [1–4]. Among studies based on the com-
pactness of gauge fields, the lattice formulation of gauge the-
ories has provided an explanation for the confinement mech-
anism as well as a basis for numerical studies at the strong
coupling regime [4–6].

By now there are specific instances of the affinities
between coordinates and gauge fields. The oldest example
is the one of the special theory of relativity, by which it
is understood that both space-time coordinates and gauge
fields transform as 4-vectors under the Lorentz transforma-
tions. As another example, based on the duality proposed in
[7], one can formulate the coordinate/field correspondence in
both Abelian and non-Abelian gauge theories [8]. The other
instance of the relation between coordinates and gauge fields
is provided by the T-duality of string theory. Accordingly, the
transverse coordinates of Dp-branes in the dual theory are
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represented by the gauge fields of open string states, leading
to the correspondence [9,10]

Ai ←→ Xi/ l
2
s , (1)

in which ls is the string theory length. At weak coupling
the dynamics of Xi ’s is captured by the theory resulting
from dimensional reduction of the ordinary U(1) gauge the-
ory [9,10]. In particular the reduction on all spatial com-
ponents of the gauge field yields the D0-brane dynamics,
namely [9]

SD0 =
∫

dt
m0

2
ẋ2
i , (2)

in which m0 ∝ 1/g2 (g: gauge coupling) [9]. The transverse
coordinates of N , the number of Dp-branes, are represented
by N dimensional hermitian matrices [11].

In [12] the dimensional reduction of pure U(1) lattice
gauge theory is considered to model the dynamics of 0-branes
at strong coupling regime. The model by [12] might be con-
sidered as a result of the combination of two themes men-
tioned earlier, (1) treating gauge fields as compact angle vari-
ables [1–4], (2) assuming similar characters between coordi-
nates and gauge fields [7–10]. The explicit form of the action
after the dimensional reduction of U(1) lattice gauge theory
is

S0 = 1

g2

∑
n

(
cos

xn+1 − xn
R

− 1

)
, (3)

in which the coordinates appear as the compact angle vari-
ables depending on discrete imaginary time label n. By this
form the worldline theory takes the form of the 1D plane-
rotator model of spin lattice systems [13]. Based on the pre-
scription for the original lattice gauge theory [4], using the
transfer-matrix method the quantization of the model is for-
mulated. The exact energy spectrum as the function of gauge
coupling is obtained, with a minimum at critical coupling
gc = 1.125 in the lowest energy. As a direct consequence
of the minimum, the model exhibits a first-order phase tran-
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sition between coexistent phases with small and large cou-
plings [12]. Based on the discontinuous nature of the first-
order phase transition, for g < gc and T ≈ 0 the effective
zero mean-square velocity 〈v2〉 is zero.

The purpose of the present work is to provide a general the-
oretical ground for the models based on compact angle coor-
dinates. It is clarified that the dependence on the group ele-
ments rather than the algebra ones would lead to invariance
of the action under the total shifts in the compact domain,
like what is happening in (3). It is observed that the proper
dependence is achieved most naturally in a discrete-time for-
mulation of the theory. The worldline action by the formu-
lation resembles the 1d spin chain Hamiltonian of magnetic
systems, with coordinates appearing as the spin degrees of
freedom. The transfer-matrix method is used to define the
quantum theory [14]. As now the 1d spin chain is used for
a “particle-like” dynamics interpretation, there should be a
square root of the mass in the definition of the transfer-matrix
elements [14]. As a direct consequence of the presence of the
square root, opposite to the 1d chains of magnetic systems,
here the energy spectra develop minima. In a path-integral
representation of the formulation, it is emphasized that the
square root prefactor in the definition of the transfer-matrix
elements, in contrast to the case with infinite-extent coor-
dinates, cannot be absorbed by a change of the integration
variables.

It is well known that the 1d spin systems with short range
interactions do not exhibit the second-order phase transition
expected for these systems. However, the present model, as
a consequence of the minima in the spectrum, exhibits a
first-order phase transition. As mentioned earlier, although
the worldline according to the model looks like a 1d spin
chain, due to the square root prefactor in the matrix elements
the spectrum is different. The phase transition nature of the
model will be discussed based on the behavior of the Gibbs
free energy. In particular, the plot of G versus the thermody-
namical variable M , as the effective mean-square velocity,
develops a cusp below a critical temperature Tc. At the cusp
the derivative ∂G

∂M is discontinuous, as expected in a first-order
phase transition.

As examples for the formulation, the models based on the
U(1), ZN and SU(2) groups are explicitly constructed. In all
examples the exact energy eigenvalues are obtained, leading
to the first-order phase transition.

The organization of the rest of the paper is as follows. In
Sect. 2 the basic assumptions and ingredients for the for-
mulation based on compact coordinates are presented. In
Sects. 3, 4 and 5 three examples based on the groups U(1),
ZN and SU(2) are presented explicitly. For all the three
groups the energy eigenvalues are obtained exactly, together
with the discussion of the nature of the phase transitions in
them. Section 6 is devoted to our conclusion and a discus-
sion.

2 Basics and formulation

The transition amplitude between positions x0 and xN at
times t0 and tN is represented by the path-integral [15]

〈xN , tN |x0, t0〉= lim
N→∞

∫ ∞

−∞

N−1∏
n=1

√
m

2π i h̄ ε
dxn ei S[t0,tN ]/h̄,

(4)

in which ε = (tN − t0)/N , tending to zero in the limit
N → ∞. It is noticed that in the above all the intermediate
positions xn’s have infinite extents, −∞ < xn < ∞. From
the considerations mentioned in Sect. 1, here the main con-
cern is the finite-extent coordinates. The finite-extent coor-
dinates are quite well known in physics. The most familiar
ones are the angle variables of polar coordinates in 2D and
3D problems. The other example occurs when the system
is defined inside a finite volume, like a box or a sphere. As
a definite example, let us consider a free particle on a cir-
cle of radius R. Defining the angle variable φ = x/R with
−π ≤ φ ≤ π , we have

L = 1

2
mR2φ̇2 → H = p2

φ

2mR2 , (5)

leading to the eigenfunctions and eigenvalues

ψn(φ) = 1√
2π

ei nφ, En = n2h̄2

2mR2 . (6)

Then the transition amplitude between two different positions
is known to be

〈φN , tN |φ0, t0〉 =
∞∑

n=−∞
ψn(φN )ψ∗

n (φ0) e−i En(tN−t0)/h̄

= 1

2π

∞∑
n=−∞

ei n(φN−φ0)e−i n2h̄(tN−t0)/2mR2
.

(7)

The above can be expressed in terms of the third Jacobi theta
function,

ϑ3(z, τ ) =
∞∑

n=−∞
ei π τ n2+2 i n z, (8)

by which we have [16]

〈φN , tN |φ0, t0〉 = 1

2π
ϑ3

(
φN − φ0

2
,
−h̄(tN − t0)

2πmR2

)
. (9)

Using the modular property of ϑ3,

ϑ3(z, τ ) = (−i τ)−1/2e−i z2/πτ ϑ3

(
z

τ
,− 1

τ

)
, (10)
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the transition amplitude is recast as [16]

〈φN , tN |φ0, t0〉 =
∞∑

n=−∞

√
mR2

2π i h̄(tN − t0)

× exp

(
i

h̄

mR2(φN − φ0 − 2πn)2

2(tN − t0)

)
,

(11)

in which the summand is easily recognized as the transition
amplitude of a free particle experiencing the position differ-
ence xN − x0 = R(φN − φ0 − 2πn) during time tN − t0
[15]. There is a nice interpretation for the sum as well. As
the particle moves on the circle from φ0 to φN , it matters
how many times it rounds the circle. The sum on n, the so-
called winding number, is responsible for taking into account
the contributions from different rounds to the amplitude. So,
although the coordinate φ has finite extent, practically the
particle may travel long distances 	x = R|φN − φ0 − 2πn|
for n = 0,±1,±2, . . . . In fact (11) may attain a form sim-
ilar to (4) with only an extra summation. First let us present
a time-sliced form of (11) [16]:

〈φN , tN |φ0, t0〉 = lim
N→∞

∫ π

−π

N−1∏
j=1

√
mR2

2π i h̄ ε
dφ j

×
N−1∏
l=0

∞∑
nl=−∞

exp

[
i

h̄

mR2(φl+1 − φl − 2πnl)2

2 ε

]
. (12)

It is noticed that at lth time-slice the winding number nl
is introduced [16]. Now, by the change in the integral vari-
ables [16]

∞∑
nl=−∞

∫ (2nl+1)π

(2nl−1)π

dφl →
∫ ∞

−∞
d
l (13)

Eq. (12) is recast to [16]

〈φN , tN |φ0, t0〉 = lim
N→∞

∞∑
n=−∞

∫ ∞

−∞

N−1∏
j=1

√
mR2

2π i h̄ ε
d
 j

× exp

[
i

h̄

N−1∑
i=0

mR2(
i+1 − 
i )
2

2 ε

]
,

(14)

in which 
N = φN and 
0 = φ0 + 2πn. In the above all
the intermediate angles 
 j ’s are integrated over the whole
real-line R. In fact by the change of variable (13), integrating
the intermediate angle φl over [−π, π ] together with a sum
over infinite possible rounds nl is replaced by integration of

l over (−∞,∞).

The above example shows that it is insufficient to merely
use finite-extent coordinates to be granted the non-trivial
aspects. The key point as regards the above treatment of a
motion on a circle is that the time-sliced form of the action

appearing in the path-integral (12) is not invariant under the
multi-round shifts,

φl → φl + 2π kl , kl = 0,±1,±2, . . . (15)

with kl �= k j for l �= j . It is noticed that the above shift is
directly related to the different number of possible rounds
on the circle represented earlier by nl in (12). Recalling that
the group space of U(1) is a circle, we can express the main
idea in a group theoretical language. Defining the U(1) group
element by Uφ = exp(i φ), the action by the Lagrangian (5)
can be expressed as [16]

S = 1

2
mR2

∫
dt (U †

φU̇φ)(U †
φU̇φ)† = 1

2
mR2

∫
dt φ̇2. (16)

In the above, although the starting point is taken to be the
group element Uφ , the Lagrangian depends in fact on the
algebra element φ. This observation for the group U(1) is
general and holds for other groups as well [16]. Obviously
the situation changes if the action would be invariant under
the shift (15), namely due to the dependence on the group ele-
ments exp(i φl)’s instead of the algebra elements φl ’s. Inter-
estingly, once the time parameter is assumed to be discrete
the desired dependence is obtained. By taking the time as
tn = n a for some finite value a and integer n, the worldline
looks like a chain or 1D lattice with spacing parameter a. On
the nth site of this chain we have the angle φn . So at time
step n we have Un = exp(i φn), by which the discrete-time
version of the action (16) is

S = 1

2
mR2 a−1

∑
n

(U †
n (Un+1 −Un))(U

†
n (Un+1 −Un))

†

= 1

2
mR2 a−1

∑
n

(U †
nUn+1 − 1)(U †

n+1Un − 1)

= −1

2
mR2 a−1

∑
n

(U †
nUn+1 +U †

n+1Un − 2), (17)

which obviously keeps invariance under the shift (15). The
phenomenon observed here is partially in the reverse direc-
tion of what has happened in the lattice formulation of gauge
theories. Namely, once one tries to introduce gauge symme-
try to the theory on the lattice the algebra elements Aμ’s
are to be replaced by the group elements exp(i a Aμ)’s in
the action [4]. Here as we were going to keep the invariance
under the shift (15) the natural solution appears to be defining
the action on the discrete-time worldline. In the next sections
we will use this as a basis for model building.

Before ending this section it is helpful to discuss the
prominent role of the imaginary time in the quantization of
models with compact domain support in the sense described
above. In particular let us consider the matrix element
by (4) [15],

123



159 Page 4 of 11 Eur. Phys. J. C (2017) 77 :159

〈x |Û |x ′〉 = 〈x | exp(−i 	t Ĥ/h̄) |x ′〉
=

√
m

2π i h̄ 	t
ei S[t,t+	t]/h̄, (18)

in which Û is the unitary time evolution operator, Ĥ is the
Hamiltonian, and S[t, t + 	t] is the action between times
t and t + 	t [15]. The basic observation is that the above
representation in terms of the action is not possible when
the dynamical variables are to take values inside a compact
domain in the sense mentioned earlier. The reason can easily
be understood for a system with one dynamical variable λ

(field or coordinate). The generalization to systems with more
variables is then straightforward. The identity ÛÛ † = 1
for the unitary evolution operator Û , defining U (λ, λ′′) =
〈λ|Û |λ′′〉, in the λ-basis takes the form
∫

�

dλ′′ U (λ, λ′′) U 
(λ′, λ′′) = δ(λ − λ′), (19)

in which � is the compact domain in which λ takes values.
Now, by the representation like (19), as the integrand consists
of only the ordinary regular functions and not the distribution
ones, there is no way that the integral over a compact domain
can develop a δ-function. Lacking the representation (18) for
a unitary time evolution operator, the alternative is to assume
that time is imaginary (t → −i t). In the models with discrete
time (	t = a), by this alternative option the one-step unitary
operator Û1 = exp(−i aĤ/h̄) is replaced by the so-called
transfer-matrix operator V̂ whose matrix element between
two adjacent times n and n + 1 is given by [14]

〈λn+1|V̂ |λn〉 ∝ √
m exp(SE (n, n + 1)/h̄), (20)

in which SE (n, n+1) is the Euclidean action. Then by com-
mon eigenstates for Ĥ and V̂ , the eigenvalues of Ĥ are
defined by [4,14]

Es = −h̄ a−1 ln vs (21)

where vs is the corresponding eigenvalue of V̂ . Provided that
V̂ does not have negative eigenvalues, the above would give
a consistent description of the quantum theory based on an
action with discrete imaginary time [4,14]. This approach
is exactly the one that is chosen in a lattice formulation of
gauge theories [4], turning space-time to a Euclidean one,
and it will be used in the present work as well.

In the formulation presented above the discrete world-
line is inlaid by numbers as spin variables. An interesting
extension is to consider the case in which the site n on the
worldline is equipped with the spin operator Ŝn , promoting
the worldline to a quantum spin chain. As an example, let us
consider the Heisenberg XYZ model, defined by the Hamil-
tonian operator for two arbitrary adjacent sites,

ĤXYZ = −1

2

(
κx Ŝ

x
n Ŝ

x
n+1 + κy Ŝ

y
n Ŝ

y
n+1 + κz Ŝ

z
n Ŝ

z
n+1

)
. (22)

The spin operators in the above are not restricted to a spe-
cific representation, and they generally belong to the 2s + 1
dimensional representation for s = 1

2 , 1, 3
2 , . . . . The transfer

matrix V̂ of the model, in analogy with (20), is then defined
by

V̂ ∝ √
κxκyκz exp(−a ĤXYZ). (23)

The matrix V̂ in the above is hermitian by construction, as it
should. The energy spectrum by the model can be obtained by
the prescription (21). The detailed nature of the spectrum and
the phase structure by the model based on the quantum spin
chain is not discussed here, and it is left for future studies.

In summary, by the considerations mentioned above, the
following are the basis for model building:

1. Time is assumed to be discrete and imaginary, taking
values tn = n a for integer n.

2. The action with discrete time depends on the group ele-
ments to enhance the features by the compact nature of
group.

3 U(1) group

For the i th direction with coordinate −πRi ≤ xi ≤ πRi ,
the U(1) group element at nth time step is taken as Ui

n =
exp(i xin/R). Here for simplicity we take all radii Ri ’s equal
to R. Following (17) the Euclidean action takes the form

SE = κ

2

∑
n, i

(Ui †
n Ui

n+1 +Ui †
n+1 U

i
n − 2)

= κ
∑
n,i

(
cos

xin+1 − xin
R

− 1

)
. (24)

The dimensionless constant κ is the defining parameter of
the model (we have set h̄ = c = 1). The above, as discussed
in previous section, is invariant under the shift

xin → xin + 2π kin R, (25)

with the kin being integer numbers. In the first place let us
check the limits:

x/R � 1

xn+1 − xn → a ẋ∑
n

→ a−1
∫

dt, (26)

leading to

SE � − aκ

2R2

∫
dt ẋ2

i , (27)

which describes the dynamics of an ordinary free particle
with mass m0 = aκ/R2 in the imaginary time formalism.
As mentioned in the Introduction, the action (24) is used in
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[12] to model the dynamics of 0-branes in the strong coupling
limit. The action (24) is the result of dimensional reduction of
U(1) lattice gauge theory along spatial directions, by setting

κ = 1/g2

a Ai → xi/R. (28)

Equation (24) for the action is also known as the 1D plane-
rotator model of magnetic systems [13], although here it is
interpreted as a discrete worldline defined by the angle vari-
able coordinates xi . In this section we review the construction
by [12]. It is useful to define the new variables

yi = xi/R, (29)

taking values in [−π, π ], by which the action (24) takes the
form

S0 = κ
∑
n,i

(cos(yin+1 − yin) − 1). (30)

As the action is fully separable for each direction, it is suf-
ficient to consider only one copy, dropping the index i here-
after. As mentioned in Sect. 2, the action with discrete imag-
inary time can be used to define the quantum theory based
on the transfer-matrix V̂ , defined by its matrix elements

〈yn+1|V̂ |yn〉 =
√

κ

2π
exp[κ(cos(yn+1 − yn) − 1)], (31)

in which, recalling m0 ∝ κ , the normalization prefactor has
to be inserted to match the propagator (18) (see also (20))
[14]

〈x2, t2|x1, t1〉 ∝
√
m0

2π
exp

(−m0(x2 − x1)
2

2 (t2 − t1)

)
. (32)

Using the identity for the modified Bessel function of the first
kind,

exp[κ cos(y′ − y)] =
∞∑

s=−∞
Is(κ) ei s (y′−y), (33)

we have for (31)

〈yn+1|V̂ |yn〉 =
∞∑

s=−∞

√
κ

2π
e−κ Is(κ) ei s (yn+1−yn), (34)

by which one reads the normalized plane wave,

ψs(x) = 1√
2π

exp(i s y), −π ≤ y ≤ π, (35)

as eigenfunction with the eigenvalue

vs(κ) = √
2πκ e−κ Is(κ). (36)

By the well-known properties of the Is-functions we have
vs = √

2πκ e−κ Is(κ) ≥ 0. This guarantees that the transfer-
matrix method defined by (20) and (21) would lead to a con-
sistent quantum theory. Also by Is(z) = I−s(z) the spectrum

Fig. 1 The few lowest energies by (37) versus κ (E unit: a−1)

is doubly degenerate for s �= 0. The energy eigenvalues are
found by (21) and (36):

Es(κ) = −1

a
ln

[√
2πκ e−κ Is(κ)

]
. (37)

The behavior of the above in the limit κ → ∞ can be checked
by the saddle point approximation for Bessel functions,

Is(κ) = lim
κ→∞

1

2π

∫ π

−π

dy exp(κ cos y + i s y)

� eκ

√
2πκ

exp

(
− s2

2κ

)
, (38)

by which for (37) we obtain

Es � s2

2aκ
, (39)

matching the energy E = p2/(2m0) of a free particle with
momentum p = s/R along the compact direction, and mass
m0 = κ a/R2 by (27). So in the limit κ → ∞ the spectrum
approaches that of an ordinary particle. For the intermediate
κ the spectrum is discrete. In the limit κ → 0, using

Is(z) � 1

s!
( z

2

)s
, z � 1, (40)

we have

Es = −
(
s + 1

2

)
ln κ

a
+ O(s ln s) + O(κ), (41)

in which the second term is independent of κ . Also at κ → 0

Es+1 − Es � − ln κ

a
� 1

a
. (42)

The interesting observation by the spectrum (37) is about
the energy of the ground state, which has a minimum at
κc = 0.790; see Fig. 1. As expected the existence of a mini-
mum leads to a first-order phase transition. The one-particle
partition function may be evaluated by the definition

Z1(β, κ) :=
∞∑

s=−∞
e−β Es (κ) (43)
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Fig. 2 The G–M plots at four temperatures. The dashed pieces are not
followed by the system due to the minimization of G

or by means of the transfer-matrix operator (β in a units) [14]

Z1(β, κ) = Tr V̂ β =
∫ π

−π

β−1∏
m=0

√
κ

2π
dym

× exp

⎡
⎣κ

β−1∑
n=0

(cos(yn+1 − yn) − 1)

⎤
⎦ (44)

supplemented by the periodic condition y0 = yβ . In the
present case the equivalence of (43) and (44) is checked by
numerical evaluations. The basic observation by the compact
angle variable in the above is, in contrast to the situation with
infinite-extent coordinates, the normalization factor cannot
be absorbed by a change of integration variable. As the mini-
mum of E0 is in the variable κ , we need the thermodynamical
conjugate variable M , defined by (T = β−1)

M(β, κ) := T
∂ ln Z1(β, κ)

∂ κ
, (45)

which is also interpreted as the equation of state of the system.
The Gibbs free energy can represent the exact nature of the
phase transition,

G1 = A1 + κ M, (46)

in which A1 = −T ln Z1 is the free energy per particle.
The isothermal G–M plots are presented in Fig. 2. Evidently
below the critical temperature Tc = 0.335 a−1 the plots
develop cusps, at which by the minimization of G at equilib-
rium, the system follows the path with lower G (solid lines
in Fig. 2). As the consequence, for T < Tc there is a jump
in first derivative of ∂G/∂M , indicating that the phase tran-
sition is a first-order one. It is evident by now that the above
phase structure is quite similar to the gas/liquid transition,
for which G–P plots show exactly the same behavior. In a
similar way the equation of state (45) should be modified
by the so-called Maxwell construction for P–V diagram,
by which during isothermal condensation the pressure (here

Fig. 3 The isothermal M–κ plots. The straight lines are due to the
Maxwell construction, replacing the dashed parts

M) is fixed. The results of the Maxwell construction for the
present model are plotted as isothermal M–κ curves in Fig. 3.
The flat part at Tc corresponds to the values

Tc = 0.335 : κ∗ = 1.403, M∗ = 0.064. (47)

For isothermal curves below Tc, the straight horizontal parts
describe the coexistent phases of lower and higher κ’s during
the phase transition. The interesting fact about the equation
of state modified by Maxwell construction is that M always
remains non-negative, that is, M ≥ 0. This is specially impor-
tant by expectations from the variable M in the limit κ � 1,
at which we expect the ordinary behavior for particles. In this
limit, going back to (27) and (39), we have

M � 1

2
〈ẏ2〉 ∝ T

m0
(48)

where the proportionality is by the properties of free ordinary
particles. In fact the asymptotic tails in Fig. 3 for largem0 ∝ κ

are explained by (48). There are also asymptotes at κ → 0,
although with different slopes. In fact the main difference
between the case with the present model and that of ordinary
particles is in the existence of a phase transition. In particular,
by the present model and below the critical temperature Tc,
the two asymptotes by large and small masses (large and
small κ) are connected with a first-order phase transition.

One may define the order parameter for the present model
as well. For ordinary magnetic systems with a second-order
phase transition the order parameter is the magnetization as
the derivative of G [17]. The non-zero magnetization is inter-
preted as the magnetic ordering phase. However, due to the
different nature of the first-order phase transitions, the deriva-
tive of G is discontinuous at cusps in Fig. 2. This situation
is again quite similar to the case with gas/liquid system, in
which the volume difference of the coexisting phases, as the
jump in the derivative ∂G/∂P , is taken as the order param-
eter [17]. Similarly, in the present case the jump in ∂G/∂M
defines the order parameter, being simply the difference of
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the κ of the coexisting phases (κ difference at the ends of the
fixed-M line in Fig. 3). Like the gas/liquid system, the order
parameter tends to zero at the critical point (47), and larger
values of the order parameter (larger κ-difference) at lower
temperatures corresponds to lower fixed-M line in Fig. 3.
In terms of the magnetic ordering yn � yn+1, this is the
expected behavior with M ∝ 〈ẏ2〉 � 0 by (48).

4 ZN group

The coordinates with a compact domain may form a discrete
group such as ZN . In this case the worldline looks like a
spin chain with discrete spin degrees sitting on its sites. In
general the worldline resembles the spin chain of the Potts
model (Z2 as of the Ising model). The members of the group
ZN are represented by

{1, �, �2, . . . , �N−1}, (49)

in which

� = exp(i 2π/N ), �N = 1. (50)

At time step n the position may be represented by rn as

Un = �rn = exp(i 2π rn/N ), rn = 0, 1, 2, . . . , N − 1,

(51)

by which the action takes the form

SE = κ

2

∑
n

(U †
n Un+1 +U †

n+1 Un − 2)

= κ
∑
n

(
cos

2π(rn+1 − rn)

N
− 1

)
. (52)

The action is invariant under the shifts by kn being any integer

rn → rn + kn N . (53)

It is convenient to define the new variable

2π r

N
= w = 0,

2π

N
,

4π

N
, . . . ,

(N − 1)2π

N
, (54)

by which the action gets the form

SE = κ
∑
n

(cos(wn+1 − wn) − 1). (55)

The transfer-matrix element then easily reads

〈n + 1|V̂ |n〉 = 1

N

√
2πκ exp[κ(cos(wn+1 − wn) − 1)]

(56)

=
N−1∑
s=0

e−a Es
1

N
ei s(wn+1−wn), (57)

in which the plane waves

ψs(w) = 1√
N

ei s w (58)

satisfy the orthonormality condition
∑
w

ψ

s (w)ψs′(w) = δss′ . (59)

By the identity (33) for Bessel functions, and using the con-
dition (59), the sum on Bessel functions can be partitioned
into N cyclic ones, leading to

e−a Es = √
2πκ e−κ

∞∑
q=−∞

Is+qN (κ), (60)

in which the sum is converging due to properties by Is-
functions. So the energy eigenvalues are simply given by

Es(κ) = −a−1 ln

⎡
⎣√

2πκ e−κ
∞∑

q=−∞
Is+qN (κ)

⎤
⎦ (61)

for s = 0, 1, 2, . . . , N − 1. Due to Is = I−s we have the
following degeneracy:

Es = EN−s . (62)

In fact the lowest and highest eigenvalues are

Emin = E0,

Emax = EN/2, N : even,

Emax = E(N±1)/2, N : odd. (63)

In the limit N → ∞ we expect to recover the spectrum (37)
by U(1) group. This is in fact the case using

I±∞
Ifinite

→ 0. (64)

It can easily be checked that for N = 2 and 3 there is no
extremum in E0. For N ≥ 4 there are both a minimum and
a maximum. The energy eigenvalues are plotted in Fig. 4 for
the group Z4, in which the extrema are at

κmin = 0.815, κmax = 1.87. (65)

Again the one-particle partition function (43), together with
the thermodynamical functions (45) and (46), can be defined
for the system. Like the case with the U(1) group, the appear-
ance of a minimum leads to a phase transition. The isother-
mal G–M plots for the Z4 are plotted in Fig. 5. As expected,
below the critical temperature Tc = 0.44 the plots develop
cusps, exhibiting a first-order phase between two coexisting
phases with low and high κ . However, at T ≈ 0 there is a
difference between the ZN and U(1) groups, that is, there is
a finite higher κ at which the systems follows the path with
finite M . This behavior is evident by the T ≈ 0 curve in
Fig. 5, in contrast to the U(1) group with M = 0 toward
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Fig. 4 The energies by (61) for Z4 group

Fig. 5 The G–M plots for Z4 group

κ → ∞ at T ≈ 0. The two critical κ of T ≈ 0 for the Z4

group at which the cusp starts and ends are as follows:

κc1 = 0.69, κc2 = 8.8. (66)

5 SU(2) group

As the case for a non-Abelian group here we consider the
SU(2) group in one spatial direction. Then at time step n the
group element is represented by

Un = exp(i xn · σ/2R), (67)

in which xn = (x1
n , x

2
n , x

3
n) represents the three components

in the SU(2) sector, and σ = (σ1, σ2, σ3) are Pauli matrices.
The action then simply gets the form

SE = κ

2

∑
n

Tr(U †
n Un+1 +U †

n+1 Un − 2 �2), (68)

in which Tr is the trace over the matrix structure, with
Tr(σασβ) = 2 δαβ . As the requirement mentioned earlier,
the above action is invariant under the shift:

|xn| → |xn| + 4πkn R, (69)

with the kn being integer numbers. Using the identity

1

2
Tr

(
ei xn+1·σ/2R e−i xn ·σ/2R

)

= cos
rn+1

2R
cos

rn
2R

+ x̂n+1 · x̂n sin
rn+1

2R
sin

rn
2R

=: cos
γn+1,n

2
, (70)

in which rn = |xn| and x̂n = xn/rn , the action is simplified
as

SE = 2κ
∑
n

(
cos

γn+1,n

2
− 1

)
. (71)

In the limits rn and rn+1 � R we have

γ 2
n+1,n � 1

R2 (xn+1 − xn)2 + O
( r

R

)4
, (72)

by which we have in the continuum limit

SE � − aκ

4R2

∫
dt ẋ2. (73)

In the above again the minus sign is due to the use of imag-
inary time in the formalism. The action (73) represents the
free motion of a free particle with mass m0 = aκ/(2R2).

As before, the action (71) can be used to define the quan-
tum theory based on the transfer-matrix method. The group
manifold of SU(2) is known to be the 3-sphere S3, for which
the initial parametrization x = (x1, x2, x3) in the spherical
coordinates x = (r, θ, φ) is defined in the intervals

0 ≤ r ≤ 2πR, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. (74)

Also it is convenient to use the replacement

χ = r

2R
, 0 ≤ χ ≤ π. (75)

By the above parametrization the SU(2) invariant measure
takes the form [18]

d�3 = sin2χ dχ d�, with d� = sin θ dθ dφ, (76)

satisfying∫
S3

d�3 = 2π2. (77)

As the case with U(1) group, by the complete orthonormal
spherical harmonics on S3 as the eigenfunctions, we can read
the eigenvalues of the matrix V̂ . The normalized spherical
harmonics on S3 are known to be [18]

Ys�m(χ,�) =
√

22�+1(s + 1) (s − �)! �! 2

π(s + � + 1)!
× sin�χ C (�+1)

s−� (cos χ) Y�m(�), (78)

in which C (�+1)
s−� (x) are the Gegenbauer polynomials and

Y�m(�) = Y�m(θ, φ) are the ordinary spherical harmonics
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on 2-sphere S2. In the above all indices are integers and obey
the ordering [18]

|m| ≤ � ≤ s = 0, 1, 2, . . . (79)

The above harmonics are the normalized ones [18]∫
S3

d�3 Ys�m(χ,�) Y


s′�′m′(χ,�) = δss′ δ��′ δmm′ . (80)

Using (70) and in the (χ, θ, φ) parametrization of S3, the
action (71) between the adjacent times n and n + 1 takes the
form

SE (n, n + 1) = 2κ (cosχn+1 cosχn

+ x̂n+1 · x̂n sinχn+1 sinχn − 1), (81)

in which

x̂n+1 · x̂n = cos θn+1 cos θn+ cos(φn+1 − φn) sin θn+1 sin θn .

(82)

Then the matrix element of the transfer matrix is given by

〈xn+1|V̂ |xn〉 =
√

κ

4π
exp[SE (n, n + 1)]. (83)

Using the identity for real w

ew x̂ · x̂′ =
√

π

2w
4π

∞∑
�=0

�∑
m=−�

I�+1/2(w) Y�m(�) Y 

�m(�′),

(84)

in which the direction of the two unit vectors x̂ and x̂′ are
given by ordinary solid-angles � and �′, respectively, and
I�+1/2 as before is the modified Bessel function. Taking w =
2κ sinχn sinχn+1, by (84) we have√

κ

4π
exp[SE (n, n + 1)]

=
√

κ

4π
e2κ(cosχn cosχn+1−1)

√
π

4κ sinχn sinχn+1

× 4π

∞∑
�=0

�∑
m=−�

I�+1/2

× (2κ sinχn sinχn+1) Y�m(�n) Y


�m(�n+1), (85)

for which we also have an expansion based on the energy
eigenvalues and the eigenfunctions as√

κ

4π
exp[SE (n, n + 1)]

=
∞∑
s=0

s∑
�=0

�∑
m=−�

e−aEs�m Ys�m(χn,�n) Y


s�m(χn+1,�n+1)

=
∞∑

�=0

�∑
m=−�

∞∑
s=�

e−aEs�m Ys�m(χn,�n) Y


s�m(χn+1,�n+1).

(86)

Using the orthonormality relation of Y�m , by (85) and (86),
after the changes χn → χ and χn+1 → χ ′, the explicit
expression (76) gives

∞∑
s=�

22�+1(s + 1) (s − �)! �! 2

π(s + � + 1)! e−aEs�

× sin�χ sin�χ ′ C (�+1)
s−� (cosχ)C (�+1)

s−� (cosχ ′)

=
√

κ

4π

√
π

4κ sinχ sinχ ′ 4π e2κ(cosχ cosχ ′−1)

×I�+1/2(2κ sinχ sinχ ′), (87)

in which we have dropped the index m in Es�, as it is now an
irrelevant one. This indicates that the energy eigenvalues has
at least an (2�+1)-level degeneracy. Using the orthogonality
of the Gegenbauer polynomials,
∫ π

0
C (�+1)
s−� (cos α)C (�+1)

s′−�
(cos α) sin2�+2α dα

= π (s + � + 1)!
22�+1(s + 1)(s − �)! �! 2 δss′ , (88)

by multiplication of the l.h.s. of (87) by sin�+2χ ′ C (�+1)
s−�

(cos χ ′) and integration over χ ′, we have

e−aEs� sin�χ C (�+1)
s−� (cosχ)

=
∫ π

0
dχ ′

√
κ

4π

√
π

4κ sinχ sinχ ′ 4π e2κ(cosχ cosχ ′−1)

× sin�+2χ ′ C (�+1)
s−� (cos χ ′)I�+1/2(2κ sinχ sinχ ′). (89)

Using the identity [19,20]
∫ π

0
ez cos χ cos χ ′

sin�+3/2χ ′ C (�+1)
s−� (cosχ ′)

×I�+1/2(z sinχ sinχ ′) dχ ′

=
√

2π

z
sin�+1/2χ C (�+1)

s−� (cosχ) Is+1(z) (90)

the integration in the r.h.s. of (89) can be calculated, setting
z = 2κ , leading to

e−a Es =
√

κ

4π

2π2

κ
e−2κ Is+1(2κ), (91)

in which we have dropped the index l from Es as well, since
there is no �-dependence in spectrum. By (91) we find the
energy with an (s + 1)2-level degeneracy:

Es =−1

a
ln

[√
κ

4π

2π2

κ
e−2κ Is+1(2κ)

]
, s=0, 1, 2, . . .

(92)

In Fig. 6 the four lowest energies are plotted, all having a
minimum. This is in contrast to the cases with U(1) and ZN

groups where only E0 has a minimum. The one-particle par-
tition function is given by
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Fig. 6 The few lowest energies
by (92) for SU(2) group

Fig. 7 The isothermal G–M plots for SU(2) group

Z1(β, κ) =
∞∑
s=0

(s + 1)2 e−β Es . (93)

Again the equation of state as well as the Gibbs free energy
can be obtained by (45) and (46). The G–M plots given in
Fig. 7 develop a cusp, indicating that the system exhibits
a first-order phase transition below the critical temperature
Tc = 0.67. At T ≈ 0 the critical κc = 0.29 is obtained above
which M gets non-zero values.

6 Conclusion and discussion

The general theoretical ground as well as specific examples
are presented for models based on compact angle coordi-
nates. The present construction might be considered as a con-
tinuation of the theme by which the gauge fields are treated as
compact angle variables [1–4]. In the present formulation the
action depends on the group elements rather than the alge-

bra elements, leading to the invariance under the total shifts
inside the compact domain. It is observed that a discrete-time
formulation of the theory is the natural way to obtain the
desired dependence on the group elements. The present for-
mulation in some sense develops in a reverse direction to what
has happened in the lattice formulation of gauge theories. In
particular, in the formulation of gauge theories on a lattice
the invariance under the gauge transformations requires that
the gauge fields are introduced into the theory via the group
elements. Here the require invariance under the total shifts of
compact coordinates treating the time parameter as discrete.
The worldline action by the formulation resembles the spin
chain Hamiltonian of magnetic systems, with coordinates
appearing as the spin degrees of freedom.

The quantization of the model is formulated based on the
transfer-matrix method [4,14]. The prefactor in the definition
of the elements of transfer-matrix, in contrast to the case with
infinite-extent coordinates, cannot be absorbed by a change
of the path-integral integration variables. This particularly
causes the energy eigenvalues to develop minima as functions
of the defining parameter of the theory.

As examples for the formulation, the models based on the
U(1), ZN , and SU(2) groups are explicitly constructed. In
all the models based on the three groups the exact energy
eigenvalues are obtained. As a consequence of the minima
in the spectrum all the models exhibit first-order transition
between the coexistent phases.

As mentioned earlier, by setting κ = 1/g2 the model
by the U(1) group is in fact the result of the dimensional
reduction of the pure U(1) lattice gauge theory. As one pos-
sible application of the present construction here we men-
tion the attempt in [12] to fit the model by the U(1) group
to the expectations from monopole dynamics. In particular,
the phase transition for the particles with mass m0 ∝ 1/g2

by (27) may lead to a better understanding of the role of
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Fig. 8 The isothermal M–g plots by the model based on the U(1) group

monopoles in the confinement mechanism based on the dual
Meissner effect in superconductors [21–26]. Based on the
proposed mechanism, in the strong coupling limit, at which
the monopoles have tiny masses, the motion of monopoles
around the electric fluxes prevents the fluxes to spread, lead-
ing to the confinement of the electric charges. Instead, in the
small coupling limit, where the monopoles are highly mas-
sive, the electric fluxes originating from source charges are
likely to spread over space, leading to the Coulomb law. It
is expected that there is a critical coupling gc at which the
transition from confined phase to the Coulomb phase occurs.

According to the model with the group U(1), the two
regimes with weak and strong couplings constants are related
by a first-order phase transition. The behavior of the system
at low temperatures, where the main contribution to the parti-
tion function is from the ground state, is of particular interest.
In the limit T → 0, due to the Maxwell construction, we have
M = 0 for g < gc = 1.125; see Fig. 8. So as a consequence
of the discontinuous nature of the first-order transition, at
low temperatures and below gc we have M∝〈v2〉 ≈ 0. This
behavior is to be compared with (48) for ordinary particles,
by which there is an asymptotic reduction of M by increas-
ing the mass at constant T . According to the present model,
at low temperatures and below gc, the particles with mass
m0 ∝ g−2 are hardly moving (〈v2〉 ≈ 0), leading to an exact
Coulomb phase. On the other hand, exhibiting a high-slope
increase of 〈v2〉 at gc, the confined phase is instantiated once
g exceeds gc at low temperatures. This picture and specially
the value of the critical coupling constant are in agreement
with theoretical and numerical studies [12].
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