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Abstract We investigate observational constraints on a
specific one-parameter extension to the minimal quintessence
model, where the quintessence field acquires a quadratic cou-
pling to the scalar curvature through a coupling constant ξ .
The value of ξ is highly suppressed in typical tracker models
if the late-time cosmic acceleration is driven at some field
values near the Planck scale. We test ξ in a second class
of models in which the field value today becomes a free
model parameter. We use the combined data from type-Ia
supernovae, cosmic microwave background, baryon acous-
tic oscillations and matter power spectrum, to weak lensing
measurements and find a best-fit value ξ>0.289 where ξ = 0
is excluded outside the 95% confidence region. The effective
gravitational constant Geff subject to the hint of a non-zero ξ

is constrained to −0.003 < 1−Geff/G < 0.033 at the same
confidence level on cosmological scales, and it can be nar-
rowed down to 1 − Geff/G < 2.2 × 10−5 when combining
with Solar System tests.

1 Introduction

Cosmological observations in support of the late-time cosmic
acceleration, such as measurements for the Type-Ia super-
novae [1,2], the cosmic microwave background (CMB) radi-
ation [3,4], the large-scale structure and baryon acoustic
oscillations [5,6], strongly suggest that the current universe
density must consist of some unfamiliar “negative pressure
matter,” namely, dark energy. Dark energy can be explained
by a cosmological constant (�) with an extremely tiny den-
sity ρ� ≈ 10−47 GeV4, compared with the typical energy
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scales in particle physics. Another possible candidate for
such a source, as legitimate as imposing �, is referred to
a quintessence component whose dynamics is described by
a scalar field φ [7].

Quintessence with sufficiently flat potentials exhibits
attractor solutions such that wide ranges of initial conditions
approach the scalar field dominated universe (�φ = 1). One
of the common forms is the exponential potential V (φ) ∼
e−λκφ with κ2 = 8πG, where the cosmic acceleration is
realized if λ2 < 2 [8–11]. These late-time attractor solutions,
however, require nearly fixed values of the quintessence den-
sity ρφ all along the evolution history of the universe. The fact
that ρφ coincides with the (dust-like) matter density today
implies that the initial densities of the two species have to
be in some huge yet precise hierarchy, leading to the cosmic
coincidence problem [12].

On the other hand, tracker fields are introduced as a spe-
cific class of quintessence aiming to solve the cosmic coinci-
dence problem [12,13]. The main advantage of a tracker field
is that the initial value of �φ can be close to unity to within
few orders of magnitude, and thus it accepts the assumption
of equipartition after inflation [12,13]. Typical tracker solu-
tions have been found in potentials of the inverse power-law
V (φ) ∼ φ−α with α > 0 [8,14,15]. Unfortunately, recent
observational constraints on the tracker fields require α � 1
[16–19], which significantly narrows down the tracking basin
of attraction [20]. To mimic a cosmological constant by tak-
ing α → 0, the present energy density must be realized from
the fine-tuned initial condition ρφ � 10−47 GeV4, only to
duplicate the cosmic coincidence problem.

Given these considerations, many efforts have been made
to address the extended scenario in which the quintessence
field is non-minimally coupled to the scalar curvature R
([21,22]; see also [23–31]) through a non-minimal coupling
ξ Rφ2, where ξ is the coupling constant. There exist track-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-4720-1&domain=pdf
mailto:geng@phys.nthu.edu.tw
mailto:g9522545@oz.nthu.edu.tw
mailto:ypwu@phys.sinica.edu.tw


162 Page 2 of 15 Eur. Phys. J. C (2017) 77 :162

ing solutions purely induced by the non-minimal coupling
such that a very wide range of initial values of ρφ can evolve
toward the late-time attractor of the cosmic acceleration, even
if the potential is extremely flat [32]. This gravitational effect
is manifest under conditions of the R-boost [22] or the slow-
roll [33]. In either case, the gravitational tracker solutions are
obtained without assuming particular forms of the potentials.

A fine-tuned potential, however, is needed to achieve
a preferable cosmic acceleration, despite that the gravita-
tional tracker solutions help to relax the cosmic coincidence
problem. In particular, when the potential is exactly flat the
extended quintessence model [21] can be cast into the pro-
totype Brans–Dicke (PBD) theory [34,35] but with a time-
varying Brans–Dicke parameter ω depending on the value
of φ. Constraints on the value of ω have been widely stud-
ied from the CMB anisotropy and structure formations [36–
40], the parametrized post-Newtonian parameters [41–44],
and the big-bang nucleosynthesis [45–47]. These constraints
in terms put a tight bound on the non-minimal coupling as
|ξ | < 10−2 in the inverse power-law model of the [14] type,
given that the scalar field must reach a Planck scale by now
(φ0 ∼ 1019 GeV) after rolling on the track from arbitrary
initial conditions [22].

In this work, we show that the restriction on ξ shall
be significantly reduced in other types of potentials where
the present day value of field can be freely determined by
its initial conditions. As a concrete example, we put the
quintessence field in the slow-roll exponential potential type
[8–11] where the field value is nearly frozen all along the
expansion history when λ → 0. We investigate the effects
of ξ from an analytic approach to the background equation
of state w and to the effective gravitational constants on cos-
mological scales or inside the Solar System. These modified
gravitational constants are sketched by the phenomenologi-
cal functions μ and �, which can be useful for testing the
deviation from the �CDM model [48–50]. We then confront
the exponential model with the recent observational data to
fit the most preferable value of ξ on cosmological scales. We
pick up the absolutely flat model (λ = 0) as our paradigm
for which its background dynamics is identical to that of
�CDM where ξ only modifies the growth dynamics through
μ or �. It is also interesting that the flat model with a con-
stant potential has only the same free parameters as that of
the PBD theory. Finally, we study the possible near future
cosmic evolution based on a non-zero ξ .

This article is organized as follows: In Sect. 2, we review
basic equations of a non-minimally coupled scalar field. In
Sect. 3, we provide the analytic and numerical results of the
field evolution in the exponential potential model, including
the constant potential model as a special case. We use obser-
vational data to obtain the best-fit or constraints on the model
parameters, as shown in Sect. 4. We present a summary and
discussions in Sect. 5.

2 Extended quintessence models

2.1 Background equations

In this work we shall focus on the one-parameter extension
of the minimal dark energy scenario [7] that the quintessence
field φ has an explicit coupling to the scalar curvature R given
by the action

S = Sφ + SM , (1)

where SM is the action for both the relativistic and the non-
relativistic matter, and

Sφ =
∫

d4x
√−g

[(
1+ξκ2φ2

) R

2κ2 − 1

2
(∇φ)2 − V (φ)

]
,

(2)

with the constant ξ representing the non-minimal coupling
parameter which exhibits the minimal value at ξ = 0 and
the conformal one at ξ = −1/6. If the potential is simply
a constant, say V (φ) = �, the model (2) can be cast into
the PBD theory [34,35] through the field redefinition 
 =
(1 + ξκ2φ2)/2, leading to

Sφ = S
 ≡ 1

κ2

∫
d4x

√−g
[

R − ω



(∇
)2 − κ2�

]
,

(3)

with the time evolving Brans–Dicke parameter

ω(φ) = 1 + ξκ2φ2

4ξ2κ2φ2 . (4)

Therefore a massless extended quintessence is a special
scalar-tensor theory that has only the same number of model
parameters as that of the PBD theory. Note that the positive
energy condition 1 + ξκ2φ2 > 0 guarantees ω > 0 so that
the model (2) can satisfy the no-ghost condition ω > −3/2
in the Brans–Dicke theory [35]. The Solar System measure-
ments report a very strong constraint ω > 40,000 on the
Brans–Dicke parameter ([41–43]), but this constraint is sig-
nificantly reduced to ω > 692 on cosmological scales [40].

The variation of the action (2) with respect to the metric
gμν results in the modified Einstein field equation

(
1 + ξκ2φ2

)
Gμν = κ2 (

Tμν + �μν

)
, (5)

where

�μν = ∇μφ∇νφ − gμν

[
(∇φ)2

2
+ V

]

+ ξ
(
∇μ∇ν − gμν∇2

)
φ2. (6)
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Here Gμν is the Einstein tensor and Tμν is the energy-
momentum tensor of matter. Taking the spatially flat
Friedmann–Robertson–Walker (FRW) background,

ds2 = −dt2 + a2(t)dx 2, (7)

with the scale factor a(t), the background field equations are
given by

H2 = κ2

3

(
ρM + ρφ

)
, (8)

Ḣ = −κ2

2

(
ρM + ρφ + PM + Pφ

)
, (9)

ρφ = φ̇2

2
+ V − 3ξH2φ2 − 6ξHφφ̇, (10)

Pφ = φ̇2

2
− V + ξ

(
2Ḣ + 3H2

)
φ2 + 2ξ

(
φ̈φ

+ φ̇2 + 2Hφφ̇
)

, (11)

where ρM and PM are the energy density and pressure of
matter, while ρφ and Pφ are the effective energy density and
pressure of the scalar field, respectively.

The equation of motion for the scalar field is governed by
the Klein–Gordon equation,

�φ + ξ Rφ − Vφ = 0, (12)

where � ≡ ∇μ∇μ and Vφ ≡ dV/dφ. In the homogeneous
FRW background, the Klein–Gordon equation takes the form
of

φ̈ + 3H φ̇ + Vφ − 6ξ
(
Ḣ + 2H2

)
φ = 0, (13)

where we have used R = 6Ḣ + 12H2. The background
equation (13) can be regained from the continuity equation
of ρφ and Pφ :

ρ̇φ + 3H
(
ρφ + Pφ

) = 0 , (14)

so that the non-minimally coupled scalar field is effectively
a perfect fluid with an equation of state wφ = Pφ/ρφ .

In terms of the e-folding N = ln a, the Klein–Gordon
Eq. (13) becomes

φ′′ +
(

3 + H ′

H

)
φ′ − 6ξ

(
2 + H ′

H

)
φ + κVφ

H2 = 0, (15)

where the primes are e-folding derivatives, and the Planck
unit has been used for φ. Taking H ′ = −3/2(1 + w)H ,
Eq. (15) can be rewritten as

φ′′ + 3

2
(1 − w)φ′ − 3ξ (1 − 3w)φ + κVφ

H2 = 0. (16)

Similarly, the first Friedmann equation (8) can be given in
terms of the density fraction as

1 = �r + �m + �φ, (17)

where �r (�m) is the density fraction of radiation (dust-like
matter) with today’s value �m0 = 0.308 [4], and �φ is the
density of the scalar field, which is further divided into

�φ = κ2ρφ

3H2 = �V + �nc
φ , (18)

where �V = κ2V/(3H2) and

�nc
φ = 1

6
φ′2 − ξφ2 − 2ξφφ′. (19)

Note that we have included the kinetic term φ̇2/2 into �nc
φ

since it depends nontrivially on the parameter ξ .

2.2 Perturbation functions

Let us characterize the effects of the non-minimal coupling to
the gravitational constants in the linear density perturbations.
The full perturbed Einstein equations are provided in Sect.
Appendix A: (see also [51,52]). For the study of non-linear
perturbations one may refer to [53,54]

In a non-minimally coupled theory, the scalar field fluc-
tuations give rise to anisotropy between the curvature per-
turbation 
 and the Newtonian potential � (as defined in
Eq. (A.1)). On subhorizon scales where k � aH and in
the Newtonian limit where time derivatives are negligible
with respect to spatial derivatives, the anisotropy parameter
γ (φ, k) = 
/� is determined by

γ = 1 + ω(1 + β)

2 + ω(1 + β)
, (20)

where β(k) = a2M2/k2 and M2 = d2V (φ)/dφ2.
The modified Poisson equation for the dust-like matter

and the relativistic matter are given by [49]

k2� = −4πGμ(φ, k) a2ρM�, (21)

k2(
 + �) = −8πG�(φ) a2ρM�, (22)

respectively, where � is the comoving matter density per-
turbation. In the extended quintessence model (2), we have a
scale-independent function for the lensing effect (φ in Planck
unit)

� = 1

1 + ξφ2 , (23)
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and a scale-dependent function for the matter growth

μ = 2�

1 + γ
= 4 + 2ω(1 + β)

3 + 2ω(1 + β)
�. (24)

It is possible to choose a present value φ0 = 0 such that
γ0 = μ0 = �0 = 1, which coincide with the predictions in
general relativity. Constraints on the deviation from general
relativity are 1−μ0 = −0.05±0.25 and 1−�0 = 0.00±0.14
for the fiducial �CDM background expansion at the 68%
confidence level [55]. Some tension with the �CDM predic-
tion is reported by the combined Planck CMB polarization
and low multipole data with the BAO and weak lensing mea-
surement [56].

We can define κ2
eff = 8πGeff = 8πG� to rewrite the

Einstein equation (5) as

Gμν = κ2
eff

(
Tμν + �μν

)
, (25)

so that the Friedmann equations (8) and (9) take the same
forms as those in the minimal quintessence model up to the
effective constant Geff when φ̇ is negligible. Let us consider
the usual slow-roll potential of the exponential form

V (φ) = V0e
−λφ, (26)

where M2 = λ2V with φ in the Planck unit. Suppose that
λ = 0.01 and φ0 = 1, one can easily check that the energy
difference of the potential |V (φ)/V (φ0) − 1| � 0.01 for
φ ∈ [0, 2]. This model recovers the PBD theory when λ = 0,
in which β = M = 0 and

γBD = 1 + ω

2 + ω
, (27)

μBD = 2�BD

1 + γ
= 4 + 2ω

3 + 2ω
�BD, (28)

where ξ = 0 leads to �BD = μBD = 1 with ω → ∞. In
the PBD case (λ = 0) [40] report 0.981 ≤ �0 ≤ 1.285 at
the 99% confidence level from cosmological tests. The Solar
System bound on the time variation of the Newton gravi-
tational constant is |ĠN/GN| < 1.3 × 10−12 year−1 [42],
where GN = Gμlocal. In general, the local value μlocal is
determined by the present day value of φ in our Solar Sys-
tem. Yet, if no screening mechanism is assumed, μlocal may
coincide with the background value μ0 = μ(φ = φ0) under
the weak-field condition with the quasi-static approximation
(see for example [57,58]).

3 Model parameters

Here we outline the generic feature of the parameter depen-
dence in the exponential potential model (26), and we refer
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Fig. 1 Full-time (upper panel) and late-time (lower panel) evolutions
of the background equation of state in models with parameters given by
CP1[(λ, ξ ) = (0, −0.2)], CP2[(λ, ξ ) = (0, 0.2)], CP3[(λ, ξ ) = (0, 2)],
EP1[(λ, ξ ) = (0.02, −0.2)], EP2[(λ, ξ ) = (0.02, 0.2)]

the interested reader to subsections for the analytic solu-
tions up to the asymptotic future. In a constant potential case
(λ = 0), the background equation of state w is basically
indistinguishable from that of the �CDM model, but w may
notably deviate from −1 in the near future if ξ > 0; see the
upper panel of Fig. 1. In cases where λ > 0, the actual value
of w given by the numerical result in the lower panel of Fig.
1 can differ from that of the �CDM model, and the differ-
ence is enhanced if ξ > 0. Viable cosmic expansions can
be realized even if ξ > 1.5, but the tracking basin of attrac-
tion is tightly restricted. For λ ≥ 0, the � function tends
to deviate from (converge to) unity since matter became to
dominate the universe, given that φ is governed by an increas-
ing (decreasing) mode when ξ > 0 (ξ < 0), as shown in
Fig. 2.
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Fig. 2 Time evolution of � in the constant potential model (λ = 0)
with the initial condition φ′ = 0 at Ni = −20, where the non-minimal
coupling is ξ = −0.2 (upper panel) and ξ = 0.2 (lower panel)

3.1 Constant potential models

Let us study the case with an absolutely flat potential λ = 0,
where V (φ) = V0 and Vφ = 0. In this case, the Klein–
Gordon equation (16) is reduced to1

φ′′ + 3

2
(1 − w)φ′ − 3ξ (1 − 3w)φ = 0. (29)

If w is a constant, this equation can be exactly solved as

φ(N ) = C+eL+N + C−eL−N , (30)

1 We assume the background equation of state is a constant with w =
1/3 during the epoch of radiation domination (RD) and w = 0 during
matter domination (MD).

where C± are constants to be determined by the initial con-
ditions and

L±(w, ξ) = −3

4
(1 − w) ±

√
9

16
(1 − w)2 + 3ξ(1 − 3w).

(31)

For ξ > 0, one finds L+ > 0 and thus eL+N = aL+ cor-
responds to an increasing mode, while eL−N = aL− is a
decreasing mode as L− < 0. For ξ = 0, L+ = 0 holds,
showing the constant mode of a massless scalar field. For
ξ < 0, no increasing mode exists since L± ≤ 0. In what
follows we examine the evolution of φ with (a) ξ ≤ 0, (b)
0 < ξ ≤ 3/2 and (c) ξ > 3/2, respectively.

(a) ξ ≤ 0

If ξ = 0, φ is governed by a constant mode and the kinetic
energy decays rapidly. Eventually, we find ρφ = V0 and
wφ = −1 for arbitrary initial conditions. In this limit the
quintessence field reproduces the result of a cosmological
constant.

For ξ < 0, we have (L+, L−) = (0,−1) in RD, and
(L+, L−) < (0, 0) in MD. If φ is released from rest, the
decreasing mode (∝ eL−N ) becomes negligible with the
expansion of the universe and the solution (30) can be approx-
imated to be2

φ = C+eL+N . (32)

Taking this solution into Eq. (10), the energy density reads

ρφ = V0 + 1

κ2

(
L2+
2

− 3ξ − 6ξL+

)
H2φ2. (33)

Assuming that the initial condition satisfies ρφ � V0, the
energy density is then reduced to

ρφ ≈ ρnc
φ = 1

κ2

(
L2+
2

− 3ξ − 6ξL+

)
H2φ2. (34)

Here, ρφ ∝ H2φ2 ∝ a2L+−3(1+w) indicates that the equation
of state takes the form

wφ(w, ξ) = w − 2

3
L+(w, ξ), (35)

resulting in wφ(1/3, ξ) = 1/3 and wφ(0, ξ) = 1/2 −√
1/4 + (4ξ)/3.

2 Initial conditions with C+ = 0 and C− �= 0 imply φ = −φ′ at the
initial time. Since L− = −1 during RD, one finds that φ ∝ eL−N ∝ 1/a
and ρφ ∝ H2φ2 ∝ a−6, similar to the case in which the initial energy
density is dominated by the kinetic energy (ρφ ≈ φ̇2/2).
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Given that wφ > 0 in MD when ξ < 0, ρφ decays faster
than the matter density as φ approaches zero. Eventually,
the value of φ is frozen around zero and one reproduces
the behavior of a cosmological constant with wφ → −1 as
ρφ → V0.

(b) 0 < ξ ≤ 3/2

In this case, the initial density of φ may be negative. Given
that L+ > 0 holds during both RD and MD, eL+N is always
increasing with time. Assuming that φ is released from rest,
we can adopt the solution (32), and the evolution essentially
has three stages:

(i) During RD or MD where ρφ is subdominant, the energy
density is increasing with time. To see this, we may
denote the solution at this stage as

φ1 = C1e
L1N , (36)

where the decreasing mode has been neglected and
(C1, L1) = (C+, L+).
The energy density with φ = φ1 takes the form

ρφ = 1

κ2

(
L2

1

2
− 3ξ − 6ξL1

)
H2φ2

1 , (37)

where it can be checked that ρφ < 0 in both RD and MD.
One may deduce wφ = w1 from Eq. (37) as w1(w, ξ) =
w − 2

3 L1(w, ξ), which gives

w1 = 1

3
(RD) and w1 = 1

2
−

√
1

4
+ 4

3
ξ (MD),

(38)

where −1 ≤ w1 < 0 in MD for 0 < ξ ≤ 3/2.
(ii) Once the density of V0 is dominant, the universe will

undergo a de Sitter expansion. Consequently, we can
assume that w = −1 with H ′ = 0 so that H = Hds is a
constant. Accordingly, Eq. (15) is simplified as

φ′′ + 3φ′ − 12ξφ = 0. (39)

The corresponding solution (keeping only the increasing
mode) reads

φ2 = C2e
L2N , (40)

where

L2 = −3

2
+

√
9

4
+ 12ξ, (41)

and the energy density (10) is of the form

ρφ = V0 + 1

κ2

(
L2

2

2
− 3ξ − 6ξL2

)
H2

dsφ
2
2 . (42)

Note that L2 > 0 since ξ > 0 and therefore, φ remains
increasing with time during the V0 domination epoch.

(iii) Since φ2
2 ∝ a2L2 is increasing with time, the subdomi-

nant energy density of ρφ (the second term in the right-
hand side of Eq. (42)) eventually becomes comparable
with V0, where the de Sitter expansion is interrupted.
To calculate the cosmological evolution after the V0-
domination, we study the asymptotic universe, which
has a constant equation of state w = w3, satisfying

φ′′ + 3

2
(1 − w3)φ

′ − 3ξ (1 − 3w3) φ = 0. (43)

Again, by neglecting the decreasing mode, the solution is
given by

φ3 = C3e
L3N , (44)

where

L3 = −3

4
(1 − w3) +

√
9

16
(1 − w3)2 + 3ξ(1 − 3w3). (45)

Provided that the scalar field is the dominant species of the
universe, the Friedmann equation yields

3H2 = κ2ρφ, (46)

where the energy density

ρφ = V0 + 1

κ2

(
L2

3

2
− 3ξ − 6ξL3

)
H2φ2

3 . (47)

For a sufficiently large N such that φ3 � 6/(L2
3 − 6ξ −

12ξL3), the left-hand side of Eq. (46) is negligible and the
lowest order of the Friedmann equation gives ρφ = V0 +
ρnc

φ = 0. The asymptotic solution shows a fine cancelation
between V0 and ρnc

φ (the second term in the right-hand side of

Eq. (47)). This cancelation implies φ2
3 ∼ H−2 ∝ a3(1+w3),

which leads to

w3 = −3 + 2ξ

3(1 + 2ξ)
, and L3 = 4ξ

1 + 2ξ
, (0 < ξ ≤ 3/2).

(48)

Given that −1 < w3 ≤ 0 with 0 < ξ ≤ 3/2, the scalar field
will keep overtaking the matter density after the epoch of the
de Sitter expansion (the phase of the V0-domination), as seen
from Fig. 1.
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(c) ξ > 3/2

If the initial value of ρφ is too small such that it remains neg-
ative during MD, Eq. (38) shows that w1 < −1 for ξ > 3/2
and therefore, the energy density ρφ will always be domi-
nated by the non-minimal coupling term (ρnc

φ ) as given by
Eq. (37). In this case, ρφ is always negative, and the constant
potential V0 is never important so that there exhibits no epoch
of the cosmic acceleration.

On the other hand, if ρφ can be positive before MD, V0

will dominate the universe and drive a de Sitter expansion.
Similarly, this de Sitter expansion shall be interrupted with
the growths of φ and |ρnc

φ |, where the resulting solution has
w = wφ = (−3 + 2ξ)/[3(1 + 2ξ)]. However, since wφ > 0
for ξ > 3/2, the matter density ρM may eventually catch
up with ρφ and become one of the dominant density compo-
nents.

Let us assume that the asymptotic solution for ξ > 3/2
has a constant equation of state w3 with φ3 taken the form of
Eq. (44). For arbitrary initial conditions, the final attractor is
a fine cancelation between ρM and ρnc

φ , leading to the lowest

order Friedmann equation ρM+ρnc
φ = 0. Since ρnc

φ ∝ H2φ2
3 ,

the Friedmann equation indicates φ2
3 ∼ H−2a−3 ∝ a3w3 ,

which results in

w3 = 4ξ

3(1 + 4ξ)
, and L3 = 2ξ

1 + 4ξ
, (ξ > 3/2). (49)

The condition of the late-time cosmic acceleration restricts
the value of φ at the initial time. Since φ is a constant
during RD, a non-negative ρφ shall satisfy 3ξH2

eqφ
2
i ≤

κ2V0 � 3H2
0 , where Heq is the Hubble parameter at the

matter-radiation equality. This condition is approximately
φ2
i ≤ ξ−1 × 10−17 for ξ > 3/2, assuming that the equality

temperature Teq ≈ 5.5 eV.

3.2 Exponential potential models

We now revisit the model with V (φ) = V0 e−λκφ , where λ is
a non-negative constant. Rescaling φ by κφ, we may rewrite
Eq. (16) with the exponential potential as

φ′′ + 3

2
(1 − w)φ′ − 3ξ (1 − 3w)φ − λ

κ2V0

H2 e−λφ = 0.

(50)

Analytical solutions in the minimal coupling limit (ξ = 0)
are shown in [10,11], where attractor solutions of the φ-
domination are known to exist for λ2 < 6. For 3(1 + w) <

λ2 < 6, where w is the background equation of state,
the asymptotic attractor is a scaling solution with �φ =
3(1 + w)/λ2 and wφ = w. For 0 < λ2 < 3(1 + w), the φ-
domination solution is stable, and the final state gives �φ = 1
with wφ = −1 + λ2/3. One can see that the cosmic acceler-

ation can be realized in the regime 0 < λ <
√

2, where the
asymptotic attractor solution conducts −1 < wφ < −1/3.

SinceV0 corresponds to the energy scale of the dark energy
domination, one finds that the potential term is negligibly
small in the early time (N � 0), where the equation of
motion (50) coincides with that of the constant potential,
as given by Eq. (29). For simplicity, we assume that φ is
released from rest so that the solution (32) can be applied
with the evolutions discussed as follows.

(a) ξ < 0

For ξ < 0, the non-minimal coupling term in the Klein–
Gordon equation tends to pull back the scalar field from
rolling down the potential, and the solution of φ is a con-
stant mode in RD and a decreasing mode in MD (see Sect.
III A). Even if φ is initially at rest, ρφ can be much greater
than the potential energy, and it takes the form of Eq. (34)
with a nearly constant equation of state as given by Eq. (35).
In this case ρφ is decaying with time for N � 0, and even-
tually approaches V (φ) as φ → 0.

Whenever ρφ = V (φ) is reached, the φ-field will be tem-
porarily frozen by the friction of the Hubble expansion with
wφ � −1 until ρφ starts to dominate the universe.

The asymptotic attractor solution is the stable point bal-
anced between V (φ) and the non-minimal coupling term.
Taking φ to be asymptotically stabilized at some value
φ f with H = H f a constant, we may obtain 3H2

f =
κ2V0e−λφ f − 3ξH2

f φ
2
f from the Friedmann equation and

−12ξH2
f φ f = λκ2V0e−λφ f from the Klein–Gordon equa-

tion. It is straightforward to find

φ f = −2

λ
+

√
4

λ2 − 1

ξ
, and H2

f = κ2V0

3(1 + ξφ2
f )
e−λφ f ,

(51)

where the final energy density reads

ρφ = V0

1 + ξφ2
f

e−λφ f . (52)

It can be checked that φ f < 1/
√−ξ is satisfied for an arbi-

trary value of λ, and thus ρφ will not reach the singularity
when 1 + ξφ2 = 0.

(b) ξ > 0

The non-minimal coupling term with ξ > 0 acts as an addi-
tional force in the Klein–Gordon equation that pushes φ to
run downhill, and thus φ is governed by an increasing mode
during RD and MD (see Eq. (36)). Let us schematically divide
the evolutions into five stages:
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(i) For ξ > 0, a wide range of initial conditions can lead to a
negative energy density during RD and MD with |ρφ | >

V (φ), where ρφ is given by Eq. (37) and increasing
toward V (φ). Once ρφ = V (φ) is reached, the energy
density becomes positive and the value of φ remains
increasing due to the effect of the non-minimal coupling.

(ii) Once the φ-field dominates the total energy density, the
universe experiences a (quasi) de Sitter expansion for a
sufficiently small λ. The solution and the energy den-
sity of φ at this stage are given by Eqs. (40) and (42),
respectively.

(iii) Similar to the case of a constant potential, this de
Sitter expansion is going to be interrupted with the
increase of φ, once the contribution of the non-minimal
coupling term in ρφ is comparable with V (φ). For
0 < ξ < 3/2, the solution that follows the de Sitter
expansion is a power-law expansion with w = wφ =
(−3+2ξ)/[3(1+2ξ)] from a temporary fine cancelation
of the energy density (that is, ρφ = 0; see Eq. (48)).

(iv) As φ keeps growing, V (φ) is exponentially decaying
with time so that at some epoch the potential energy
suddenly transits to the kinetic energy, leading to a phase
of the super kinetic-energy domination with wφ > 1.
Given that V (φ) becomes negligible, the lowest order
of the Friedmann equation gives

0 = 1

κ2

(
L2

4

2
− 3ξ − 6ξL4

)
H2φ2

4 , (53)

whereφ4 = C4eL4N is the solution of the Klein–Gordon
equation with the potential term neglected, and L4 =
−3/4(1 − w4) + √

9/16(1 − w4)2 + 3ξ(1 − 3w4).
Since Eq. (53) implies L4 = 6ξ + √

6ξ(1 + 6ξ), one
can find that

w4 = 1 + 8ξ + 4

√
2ξ

3
(1 + 6ξ). (54)

(v) The density ρφ once again turns into negative when
V (φ) is subsidiary with the increase of φ. We may
denote the solution at the final stage as
φ5 = C5eL5N , where L5 = −3/4(1 − w5) +√

9/16(1 − w5)2 + 3ξ(1 − 3w5). The asymptotic attrac-
tor is a scaling solution in which the density of the
φ-field closely tracks that of the dust-like matter, that
is, ρφ = −ρM ∝ a−3, while the total energy density
of the universe ρtot � ρM is always positive. Since
ρφ ∝ H2φ2

5 ∝ a−3, we can obtain

w5 = 4ξ

3(1 + 4ξ)
, and L5 = 2ξ

1 + 4ξ
, (ξ > 0).

(55)

4 Observational constraints

In this section we confront the extended quintessence model
with cosmological observations. We define ε ≡ �V /�φ −
1 to parametrize the fraction of the dark energy density in
addition to the potential. The density fraction induced by
the non-minimal coupling is then given by |�nc

φ | ≡ |ε �φ |,
where ε is positive (negative) for ξ > 0 (ξ < 0). Given
that in the potential (26) a constant shift of the field value φ

can be absorbed into a redefined V0, we will fix V0 and treat
φ0 as a free parameter to be determined by the present day
value ε = ε0. To do so we have to further fix λ so that the
exponential model has in total 2 + 6 parameters, which are ξ

and ε0 plus the six parameters of the standard spatially flat
�CDM model [3]. Our optimal choice for the potential is
λ = 0 where the background expansion closely reproduces
that of the �CDM model. The prior ξ > 0 is chosen due to the
enhancement on the value of φ at low redshifts, which results
in interesting modifications of w and � to the values in the
�CDM model (see Sect. 3). On the other hand each sample
with ξ < 0 eventually converges to the result of �CDM.

We fit the model parameters by virtue of the Markov-chain
Monte Carlo approach through the cosmomc program [59].
The background and linear perturbation equations given in
Sect. 2 and Appendix Appendix A: are numerically solved
by the mgcamb package [60,61], where formalisms in both
the conformal Newtonian gauge and the synchronous gauge
are used. We have included both the scalar and the tensor
mode perturbations in our code, as considered in [62,63].

We use the selected data sets from the Planck 2015 full-
mission release [64,65] for the CMB temperature and polar-
izations (and partially for the gravitational lensing [66]); the
6dF Galaxy Survey [67], the SDSS DR7 [68], the SDSS-III
(BOSS) DR10 and 11 [6] for the baryon acoustic oscilla-
tions (BAO); the SDSS DR4 and WiggleZ [69] for the mat-
ter power spectrum (MPK); the SCP Union 2.1 [70] for the
supernova survey; and the CFHTLenS [71] for the weak lens-
ing effect.

We first fix the value of ξ to test the allowed region of
ε0 by using the combined data of PLANCK + BAO + MPK
with supernova (SNIa) and weak lensing (WL). We find ε0 <

{0, 016, 0.051, 0.085} and ε0 < {0, 035, 0.114, 0.201} at the
68 and 95% confidence levels for ξ = {0.1, 0.3, 0.5}, as
shown in Table 1. Results of the main model parameters with
fixed ξ values are given in Fig. 3 and Table 2. We note that the
increase of the ξ value tends to suppress the active neutrino
mass sum, as seen by Table 1.

We then treat ξ as a free parameter and perform the fitting
with respect to various combinations of data sets. The best-
fit value for ε0 is less than 0.2 in the first two sets of results
based on PLANCK + BAO and their combination with MPK.
The best-fit value becomes less than 0.1 when the SNIa and
WL data are included in sequence, as shown in Fig. 4. In
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Table 1 Upper bounds of the model parameters ε0 and �mν in the
constant potential model with the fixed non-minimal coupling parameter
ξ by using the combined PLANCK, BAO, MPK, SNIa, and WL data

ξ = 0.1 ξ = 0.3 ξ = 0.5

68% 95% 68% 95% 68% 95%

ε0 0.016 0.035 0.051 0.114 0.085 0.201

�mν (eV) 0.092 0.181 0.089 0.177 0.083 0.163

particular, we find ε0 < {0.223, 0.456} at the 68 and 95%
confidence levels from the PLANCK + BAO + MPK data,
and the constraints are narrow down to ε0 < {0.077, 0.180}
by adding SNIa. Given that ε0 = 0 is located inside the 1σ

limit in all four sets of results, we conclude that there is no
hint for the existence of the additional density �nc

φ , or namely
�φ = �V today.

Fig. 3 Contours of the model parameters in the constant potential model with the fixed non-minimal coupling parameter ξ by using combined
PLANCK, BAO, MPK, SNIa, and WL data, where the prior of the model parameters is given in Table 1
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Table 2 Constraints of the model parameters at the 95% confidence
level in the constant potential model with the fixed non-minimal cou-
pling parameter ξ by using the combined PLANCK, BAO, MPK, SNIa,
and WL data

ξ = 0.1 ξ = 0.3 ξ = 0.5

100 �bh2 2.230+0.027
−0.026 2.230 ± 0.027 2.232 ± 0.027

100 �ch2 11.842+0.217
−0.213 11.815 ± 0.207 11.791+0.198

−0.197

100 θMC 1.0408 ± 0.0006 1.0409 ± 0.0006 1.0409+0.0006
−0.0005

τ 0.069+0.028
−0.026 0.068+0.028

−0.026 0.069 ± 0.026

ns 0.969+0.007
−0.008 0.969+0.008

−0.007 0.970+0.007
−0.008

ln (1010As) 3.069+0.052
−0.049 3.066+0.052

−0.049 3.066+0.051
−0.048

�0 0.993+0.008
−0.011 0.986+0.016

−0.022 0.983+0.021
−0.032

We now discuss the constraint on the non-minimal cou-
pling parameter ξ and the today’s value of �, where the
full data combinations are listed in Table 3. We observe the
result ξ > {1.071, 0.519} at the 68 and 95% confidence lev-
els by using PLANCK + BAO + MPK, but this result can be
relaxed to ξ > {0.436, 0.289} at the same confidence lev-
els after combining with the SNIa data. On the other hand,
�0 = {0.974+0.025

−0.009, 0.974+0.030
−0.040} is found at the 68 and 95%

levels with the PLANCK + BAO + MPK data and a stronger
constraint �0 = {0.989+0.012

−0.004, 0.989+0.014
−0.023} is given with the

combination of SNIa. We can estimate the present day value
φ0 from these results by virtue of the relation

φ2
0 = 1 − �0

ξ�0
. (56)

For example, taking �0 = 0.989 we find the upper bounds
φ0 < {0.19, 0.11} for ξ > {0.3, 1.0}.

Let us consider more specifically that the extended
quintessence model remains a valid approximation on very
small scales, such as inside our Solar system. In this case we
can use ω0 > 40,000 as an independent constraint, where
Eq. (4) leads to

160000ξ2 − ξ < φ−2
0 . (57)

As a result, we have φ0 < {8.3 × 10−3, 2.5 × 10−3} for
ξ = {0.3, 1.0}. For models that give a Planck scale with
φ0 = 1, Eq. (57) results in −0.0025 < ξ < 0.0025. Since 1−
�0 = ξφ2

0 �0 = 1/(4ξω0), we can use the local constraint
ω0 > 40,000 to find that 1−�0 < {2.1×10−5, 6.3×10−6}
for ξ = {0.3, 1.0}, which are roughly 1000 times stronger
than those of the cosmological tests.

The existence of a positive non-minimal coupling would
imply that the future equation of state may change to Eq.
(48) if ξ ≤ 1.5 or to Eq. (49) if ξ > 1.5. Let us define
φ∗ as the field value at the onset of the ξ -induced power-law
expansion. Assuming the late-time solution Eq. (40), we have

φ∗ = φ0eL2N∗ , where L2 is given by Eq (41). Given that the
background curvature is decreasing with the increase of ε,
we may take 3H2 ≈ |L2

2/2 − 3ξ − 6ξL2|H2φ2∗ to solve N∗,
which reads

N∗ = 1

2L2

[
ln

6∣∣L2
2 − 6ξ − 12ξL2

∣∣ − 2 ln φ0

]
. (58)

Setting ξ = 0.3, we find N∗ > 2.0 for φ0 < 0.19 from the
cosmological tests and N∗ > 5.4 for φ0 < 8.3 × 10−3 from
the local constraint. Therefore the onset of the ξ -induced
power-law expansion could occur as early as some 27.6
(74.5) billion years later from the present for N∗ > 2.0 (N∗ >

5.4). For the time unit, we have used H0dt = d ln a = dN
with H−1

0 ≈ 13.8 × 109 years.

5 Summary and discussions

We have considered one of the simplest extensions to the
�CDM model based on a quintessence field with a non-
minimal coupling ξ to gravity. Our principal goal has been
to identify the compatibility of such gravitational effect in
current observations. We have in particular focused on the
class of models with very weak restrictions on the today’s
field value φ0 so that both ξ and φ0 can be treated as free
model parameters. This condition is suitable for the slow-roll
type model V (φ) = V0e−λκφ , where the potential energy is
insensitive to the field value φ with a sufficiently small λ. In
the absolutely flat limit where λ = 0, the theory coincides
with the α = 0 limit of the tracker model V (φ) = V0(κφ)−α ,
which has a completely vanishing tracking basin of attraction.
However, in general cases the tracker models with α > 0 only
realize the cosmic acceleration when φ0 ∼ 1/κ , provided
that V0 is responsible for the energy scale of the dark energy
domination [12,13,22].

We have derived analytic solutions for the background
evolution in exponential models, including the possible
future time dynamics beyond the de Sitter expansion. For
ξ < 0, we have found that the asymptotic attractor is always
the de Sitter like solution Eq. (51) with the constant Hub-
ble parameter H f , the coupling constant ξ , and the final
field value φ f . In the special case where λ = 0, Eq. (51)
leads to φ f = 0 and H f = κ

√
V0/3. For ξ > 0, we have

shown that the current potential-driven expansion becomes
a ξ -induced expansion with w = (−3 + 2ξ)/[3(1 + 2ξ)].
This transition is due to the fine cancelation between the
potential energy and the negative density component cor-
responding to the non-minimal coupling (namely ρnc

φ ). In
the λ = 0 case, the ξ -induced power-law expansion can
occur even if ξ > 3/2, provided that ρφ is positive before
the matter domination. However, in this case the solution
w = (−3 + 2ξ)/[3(1 + 2ξ)] is a saddle point and the final
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Fig. 4 Contour of the model parameters in the constant potential model for the combined PLANCK, BAO, MPK, SNIa, and WL data, where the
prior of the model parameters is given in Table 1

attractor reads w = 4ξ/[3(1 + 4ξ)]. In general cases where
λ > 0, the final attractor can be a scaling solution in which
|ρφ | tracks closely with ρM . In addition, we have numeri-
cally checked that the total density of the universe is always
positive even if |ξ | is very large.

To probe the existence of ξ , we have taken the combined
data from type-Ia supernovae (Union 2.1), cosmic microwave
background (Planck 2015), baryon acoustic oscillations and

matter power spectrum (6dF Galaxy Survey, BOSS and Wig-
gleZ), to the weak lensing (CFHTLenS) measurements. With
the optimal choice λ = 0 of the model, the background evo-
lution is identical to the fiducial �CDM scenario and the
number of the model parameters is the same as that of the
PBD research [40]. We have confimed that the most prefer-
able value of ε0 is zero so that there is no hint for the dark
energy density additional to that of a pure cosmological con-
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Table 3 Constraints of the model parameters ξ and ε0 and the marginalized results of � in the constant potential models

ξ lower bound ε0 upper bound �0 H0 (km s−1Mpc−1) Age (Gyr)

68% 95% 68% 95% 68% 95% 68% 95% 68%

PLANCK + BAO 1.043 0.503 0.200 0.415 0.976+0.023
−0.008 0.976+0.029

−0.038 66.1+1.6
−1.0 66.1+2.4

−2.7 13.81 ± 0.03

PLANCK + BAO + MPK 1.071 0.519 0.224 0.450 0.974+0.025
−0.009 0.974+0.030

−0.040 66.0+1.6
−1.0 66.0+2.4

−2.7 13.81 ± 0.03

PLANCK + BAO + MPK + SNIa 0.436 0.289 0.077 0.180 0.989+0.012
−0.004 0.989+0.014

−0.023 67.3+0.9
−0.6 67.3 ± 1.5 13.80 ± 0.03

PLANCK + BAO + MPK + SNIa + WL 0.794 0.300 0.076 0.183 0.989+0.011
−0.003 0.989+0.014

−0.023 67.4+0.9
−0.6 67.4+1.5

−1.4 13.80+0.02
−0.04

stant. This result is true whether we fix a constant value to ξ

or treat it as a free parameter. Nevertheless, we have demon-
strated that the current observations prefer a non-zero value
ξ > 0.289 for a variable ξ , where ξ = 0 is excluded outside
the 95% confidence region. This is in contrast to the extended
tracker model [22] where a strong constraint |ξ | � 1 was
found. Meanwhile, the central value of the effective gravi-
tational constant � = Geff/G today is found to be slightly
less than unity as �0 = 0.989+0.014

−0.023 at 95% level, consistent
with the hint of a positive ξ . It is noteworthy that the best-fit
sample with a variable ξ parameter brings a slightly better χ2

results than those with fixed values of ξ . However, a ξ > 0
prior always leads to marginally larger χ2 than the �CDM
(ξ = 0) case.

It is noteworthy that the current observations [4] (see also
[73]) on the dark energy equation of state indicate a nearly
2σ preference in the phantom domain, i.e. wDE < −1.
This result implies the importance to probe the constraint
on ξ with a slightly phantom-type background expansion,
as a straightforward extension to our current study. Note
that the non-minimal theory given by (2) cannot cross the
phantom divide due to its conformal equivalence to the cou-
pled quintessence model [52]. In addition, it has been found
that the gravitational non-minimal coupling ξ can act as a
cosmological attractor for not only the early-time [74–79]
but also for the late-time [80] cosmic accelerations. In this
class of models one may go beyond the slow-roll conditions
for V (φ), and one may obtain a significant density fraction
|�nc

φ /�V | ∼ O(1) today.
We also emphasize that the working frame used in this

study is based on the matter point of view [81,82] (see also
[83,84]) in which both matter and radiation are minimally
coupled with gravity and the dark energy field. This physical
frame appears to be the most natural choice when perform-
ing the fitting with the cosmological priors given in Table 1,
whereas the possible distinction on observables in different
conformal frames is an issue goes beyond the scope of the
current paper.

Finally, we remark that if a future measurement would
confirm 1−�0 > 0, it can support the existence of a positive
coupling ξ but will falsify at the same time the contribution of
many types of screening mechanisms near the Solar System

[72]. On the other hand, a future measurement with 1−�0 <

0 (as already hinted in [56]) will not be in favor of a negative ξ

but instead can rule out the whole class of massless extended
quintessence models, given that ξ < 0 only leads to the decay
of the field value so that � always converges to the �CDM
limit where �0 = 1.
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Appendix A: Linear perturbation equations

We show the linear perturbation equations of the model (2)
with metric in the conformal Newtonian gauge of the form

ds2 =a2(τ )[−(1 + 2�)dτ 2+((1−2
)δi j+Di j )dx
idx j ],

(A.1)

where τ is the conformal time, � and 
 are, respectively, the
Newtonian and the curvature potentials, and Di j is a sym-
metric tensor that satisfies the traceless and transverse condi-
tions: Dii = 0, ∂i Di j = 0. The components of the perturbed
energy-momentum tensor T ν

μ are T 0
0 = − (ρM + δρM ),

T 0
i = (ρM + PM ) ∂ivM , T j

i = (PM + δPM ) δ
j

i + π
j

i ,
where vM is the peculiar velocity of matter, π i

j is the trace-
less anisotropic stress, and i, j = 1, 2, 3. It is convenient to
define the comoving matter density perturbation � such that

ρM� = δρM + 3
H

k
(ρM + PM ) vM , (A.2)

where H = da/dτ = aH .
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We decompose the scalar field into a homogeneous part
and a perturbation one as φ(x) = φ(τ) + δφ(x). Let us put
the perturbed metric, the perturbed energy-momentum tensor
and the perturbed φ in Eq. (5) to obtain the perturbed field
equations as (κ2

eff = �κ2)

2
[
3H

(

′ + H �

) − ∂2

]

= κ2
eff(−a2δρM + δ� 0

0 ),

(A.3)

2∂ i
(

′ + H �

) = κ2
eff

[
−a2 (ρM + PM ) ∂ ivM + δ� i

0

]
,

(A.4)

where in this section primes are derivatives with respect to
τ , and

δ� 0
0 = φ′2� − φ′δφ′ − [a2Vφ − 6ξH (φ′ + H φ)]δφ

−6ξφφ′(2H � + 
′) − 2ξφ(∂2δφ − 3H δφ′),
(A.5)

δ� i
0 = (1 + 2ξ)φ′∂ iδφ − 2ξφ∂ i

(
H δ
 − δφ′ + φ′�

)
,

(A.6)

where ∂2 ≡ δi j∂i∂ j . The spatial part is divided into


 = � + 2κ2
effξφδφ, (A.7)

for the i �= j components and

2
[(
H 2 + 2H ′)� + H � ′ + 
′′ + 2H 
′] δ

j
i

= κ2
eff(a

2δPMδ
j

i + δ�
j
i ), (A.8)

for the i = j components, where

δ�
j
i = −a2δ

j
i Vφδφ + (1 + 4ξ)δ

j
i

(
φ′δφ′ − φ′2�

)

− 2ξδ
j

i

[
H φ′ − φ′′ − (H 2 + H ′)φ

]
δφ

− 2ξφδ
j

i (2H φ′� + 2φ′
′ + φ′� ′ + 2φ′′�
−H δφ′ − δφ′′). (A.9)

Similarly, the perturbed Klein–Gordon equation is derived
as

δφ′′ + 2H δφ′ − 6ξ(H ′ + H 2)δφ − ∂2δφ + a2Vφφδφ

+ 2ξφ[6(H ′ + H 2)� + 9H 
′ + 3H � ′ + 3
′′

+ ∂2(� − 2
)]
− 4H φ′� − 3φ′
′ − φ′� ′ − 2φ′′� = 0. (A.10)

The tensor mode perturbation given by the spatial part of the
modified Einstein equation (5) is simply

Di ′′
j + 2

(
H + ξ�φφ′) Di ′

j − ∂2Di
j = κ2a2�π i

j ,

(A.11)

where π i
j is assumed to be vanishing in this work.

References

1. A.G. Riess et al., Supernova Search Team Collaboration, Astron.
J. 116, 1009 (1998)

2. S. Perlmutter et al., Supernova Cosmology Project Collab-
oration, Astrophys. J. 517, 565 (1999). doi:10.1086/307221.
arXiv:astro-ph/9812133

3. P.A.R. Ade et al. [Planck Collaboration], Astron. Astro-
phys. 571, A16 (2014). doi:10.1051/0004-6361/201321591.
arXiv:1303.5076 [astro-ph.CO]

4. P.A.R. Ade et al. [Planck Collaboration], Astron. Astro-
phys. 594, A13 (2016). doi:10.1051/0004-6361/201525830.
arXiv:1502.01589 [astro-ph.CO]

5. L. Anderson et al., Mon. Not. R. Astron. Soc. 427(4), 3435 (2013).
doi:10.1111/j.1365-2966.2012.22066.x. arXiv:1203.6594 [astro-
ph.CO]

6. L. Anderson et al. [BOSS Collaboration], Mon. Not. R. Astron. Soc.
441(1), 24 (2014). doi:10.1093/mnras/stu523. arXiv:1312.4877
[astro-ph.CO]

7. R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev.
Lett. 80, 1582 (1998). doi:10.1103/PhysRevLett.80.1582.
arXiv:astro-ph/9708069

8. P.G. Ferreira, M. Joyce, Phys. Rev. Lett. 79, 4740 (1997). doi:10.
1103/PhysRevLett.79.4740. arXiv:astro-ph/9707286

9. P.G. Ferreira, M. Joyce, Phys. Rev. D 58, 023503 (1998). doi:10.
1103/PhysRevD.58.023503. arXiv:astro-ph/9711102

10. E.J. Copeland, A.R. Liddle, D. Wands, Phys. Rev. D 57, 4686
(1998). doi:10.1103/PhysRevD.57.4686. arXiv:gr-qc/9711068

11. A.P. Billyard, A.A. Coley, R.J. van den Hoogen, Phys.
Rev. D 58, 123501 (1998). doi:10.1103/PhysRevD.58.123501.
arXiv:gr-qc/9805085

12. I. Zlatev, L.M. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896
(1999). doi:10.1103/PhysRevLett.82.896. arXiv:astro-ph/9807002

13. P.J. Steinhardt, L.M. Wang, I. Zlatev, Phys. Rev. D
59, 123504 (1999). doi:10.1103/PhysRevD.59.123504.
arXiv:astro-ph/9812313

14. B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988). doi:10.
1103/PhysRevD.37.3406

15. P.J.E. Peebles, B. Ratra, Astrophys. J. 325, L17 (1988). doi:10.
1086/185100

16. T. Chiba, Phys. Rev. D 81, 023515 (2010). doi:10.1103/PhysRevD.
81.023515. arXiv:0909.4365 [astro-ph.CO]

17. T. Chiba, A. De Felice, S. Tsujikawa, Phys. Rev. D 87(8), 083505
(2013). doi:10.1103/PhysRevD.87.083505. arXiv:1210.3859
[astro-ph.CO]

18. S. Tsujikawa, Class. Quant. Grav. 30, 214003 (2013). doi:10.1088/
0264-9381/30/21/214003. arXiv:1304.1961 [gr-qc]

19. P.Y. Wang, C.W. Chen, P. Chen, JCAP 1202, 016 (2012). doi:10.
1088/1475-7516/2012/02/016. arXiv:1108.1424 [astro-ph.CO]

20. S.A. Bludman, Phys. Rev. D 69, 122002 (2004). doi:10.1103/
PhysRevD.69.122002. arXiv:astro-ph/0403526

21. F. Perrotta, C. Baccigalupi, S. Matarrese, Phys. Rev. D
61, 023507 (1999). doi:10.1103/PhysRevD.61.023507.
arXiv:astro-ph/9906066

22. C. Baccigalupi, S. Matarrese, F. Perrotta, Phys. Rev. D
62, 123510 (2000). doi:10.1103/PhysRevD.62.123510.
arXiv:astro-ph/0005543

123

http://dx.doi.org/10.1086/307221
http://arxiv.org/abs/astro-ph/9812133
http://dx.doi.org/10.1051/0004-6361/201321591
http://arxiv.org/abs/1303.5076
http://dx.doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/1502.01589
http://dx.doi.org/10.1111/j.1365-2966.2012.22066.x
http://arxiv.org/abs/1203.6594
http://dx.doi.org/10.1093/mnras/stu523
http://arxiv.org/abs/1312.4877
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://arxiv.org/abs/astro-ph/9708069
http://dx.doi.org/10.1103/PhysRevLett.79.4740
http://dx.doi.org/10.1103/PhysRevLett.79.4740
http://arxiv.org/abs/astro-ph/9707286
http://dx.doi.org/10.1103/PhysRevD.58.023503
http://dx.doi.org/10.1103/PhysRevD.58.023503
http://arxiv.org/abs/astro-ph/9711102
http://dx.doi.org/10.1103/PhysRevD.57.4686
http://arxiv.org/abs/gr-qc/9711068
http://dx.doi.org/10.1103/PhysRevD.58.123501
http://arxiv.org/abs/gr-qc/9805085
http://dx.doi.org/10.1103/PhysRevLett.82.896
http://arxiv.org/abs/astro-ph/9807002
http://dx.doi.org/10.1103/PhysRevD.59.123504
http://arxiv.org/abs/astro-ph/9812313
http://dx.doi.org/10.1103/PhysRevD.37.3406
http://dx.doi.org/10.1103/PhysRevD.37.3406
http://dx.doi.org/10.1086/185100
http://dx.doi.org/10.1086/185100
http://dx.doi.org/10.1103/PhysRevD.81.023515
http://dx.doi.org/10.1103/PhysRevD.81.023515
http://arxiv.org/abs/0909.4365
http://dx.doi.org/10.1103/PhysRevD.87.083505
http://arxiv.org/abs/1210.3859
http://dx.doi.org/10.1088/0264-9381/30/21/214003
http://dx.doi.org/10.1088/0264-9381/30/21/214003
http://arxiv.org/abs/1304.1961
http://dx.doi.org/10.1088/1475-7516/2012/02/016
http://dx.doi.org/10.1088/1475-7516/2012/02/016
http://arxiv.org/abs/1108.1424
http://dx.doi.org/10.1103/PhysRevD.69.122002
http://dx.doi.org/10.1103/PhysRevD.69.122002
http://arxiv.org/abs/astro-ph/0403526
http://dx.doi.org/10.1103/PhysRevD.61.023507
http://arxiv.org/abs/astro-ph/9906066
http://dx.doi.org/10.1103/PhysRevD.62.123510
http://arxiv.org/abs/astro-ph/0005543


162 Page 14 of 15 Eur. Phys. J. C (2017) 77 :162

23. R. de Ritis, A.A. Marino, C. Rubano, P. Scudellaro, Phys.
Rev. D 62, 043506 (2000). doi:10.1103/PhysRevD.62.043506.
arXiv:hep-th/9907198

24. L. Amendola, Phys. Rev. D 60, 043501 (1999). doi:10.1103/
PhysRevD.60.043501. arXiv:astro-ph/9904120

25. J.P. Uzan, Phys. Rev. D59, 123510 (1999). doi:10.1103/PhysRevD.
59.123510. arXiv:gr-qc/9903004

26. T. Chiba, Phys. Rev. D 60, 083508 (1999). doi:10.1103/PhysRevD.
60.083508. arXiv:gr-qc/9903094

27. N. Bartolo, M. Pietroni, Phys. Rev. D 61, 023518 (2000). doi:10.
1103/PhysRevD.61.023518. arXiv:hep-ph/9908521

28. V. Faraoni, Phys. Rev. D 62, 023504 (2000). doi:10.1103/
PhysRevD.62.023504. arXiv:gr-qc/0002091

29. F.C. Carvalho, A. Saa, Phys. Rev. D 70, 087302 (2004). doi:10.
1103/PhysRevD.70.087302. arXiv:astro-ph/0408013

30. A.A. Sen, G. Gupta, S. Das, JCAP 0909, 027 (2009). doi:10.1088/
1475-7516/2009/09/027. arXiv:0901.0173 [astro-ph.CO]

31. G. Gupta, E.N. Saridakis, A.A. Sen, Phys. Rev. D 79, 123013
(2009). doi:10.1103/PhysRevD.79.123013. arXiv:0905.2348
[astro-ph.CO]

32. S. Matarrese, C. Baccigalupi, F. Perrotta, Phys. Rev. D
70, 061301 (2004). doi:10.1103/PhysRevD.70.061301.
arXiv:astro-ph/0403480

33. T. Chiba, M. Siino, M. Yamaguchi, Phys. Rev. D 81, 083530
(2010). doi:10.1103/PhysRevD.81.083530. arXiv:1002.2986
[astro-ph.CO]

34. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961). doi:10.1103/
PhysRev.124.925

35. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rept. 513,
1 (2012). doi:10.1016/j.physrep.2012.01.001. arXiv:1106.2476
[astro-ph.CO]

36. R. Nagata, T. Chiba, N. Sugiyama, Phys. Rev. D 69, 083512 (2004).
doi:10.1103/PhysRevD.69.083512. arXiv:astro-ph/0311274

37. V. Acquaviva, C. Baccigalupi, S.M. Leach, A.R. Liddle, F. Per-
rotta, Phys. Rev. D 71, 104025 (2005). doi:10.1103/PhysRevD.71.
104025. arXiv:astro-ph/0412052

38. F. Wu, X. Chen, Phys. Rev. D 82, 083003 (2010). doi:10.1103/
PhysRevD.82.083003. arXiv:0903.0385 [astro-ph.CO]

39. Y.C. Li, F.Q. Wu, X. Chen, Phys. Rev. D 88, 084053 (2013). doi:10.
1103/PhysRevD.88.084053. arXiv:1305.0055 [astro-ph.CO]

40. A. Avilez, C. Skordis, Phys. Rev. Lett. 113(1), 011101 (2014).
doi:10.1103/PhysRevLett.113.011101. arXiv:1303.4330 [astro-
ph.CO]

41. B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003). doi:10.
1038/nature01997

42. J.G. Williams, S.G. Turyshev, D.H. Boggs, Phys. Rev.
Lett. 93, 261101 (2004). doi:10.1103/PhysRevLett.93.261101.
arXiv:gr-qc/0411113

43. J.G. Williams, S.G. Turyshev, D.H. Boggs, J.T. Ratcliff,
Adv. Space Res. 37, 67 (2006). doi:10.1016/j.asr.2005.05.013.
arXiv:gr-qc/0412049

44. L. Perivolaropoulos, Phys. Rev. D 81, 047501 (2010). doi:10.1103/
PhysRevD.81.047501. arXiv:0911.3401 [gr-qc]

45. T. Clifton, J.D. Barrow, R.J. Scherrer, Phys. Rev. D
71, 123526 (2005). doi:10.1103/PhysRevD.71.123526.
arXiv:astro-ph/0504418

46. A. Coc, K.A. Olive, J.P. Uzan, E. Vangioni, Phys. Rev.
D 73, 083525 (2006). doi:10.1103/PhysRevD.73.083525.
arXiv:astro-ph/0601299

47. A. Coc, K.A. Olive, J.P. Uzan, E. Vangioni, Phys. Rev. D79, 103512
(2009). doi:10.1103/PhysRevD.79.103512. arXiv:0811.1845
[astro-ph]

48. L. Pogosian, A. Silvestri, K. Koyama, G.B. Zhao, Phys.
Rev. D 81, 104023 (2010). doi:10.1103/PhysRevD.81.104023.
arXiv:1002.2382 [astro-ph.CO]

49. A. Hojjati, G.B. Zhao, L. Pogosian, A. Silvestri, R. Crittenden, K.
Koyama, Phys. Rev. D 85, 043508 (2012). doi:10.1103/PhysRevD.
85.043508. arXiv:1111.3960 [astro-ph.CO]

50. J. Zuntz, T. Baker, P. Ferreira, C. Skordis, JCAP 1206, 032
(2012). doi:10.1088/1475-7516/2012/06/032. arXiv:1110.3830
[astro-ph.CO]

51. S. Tsujikawa, Phys. Rev. D 76, 023514 (2007). doi:10.1103/
PhysRevD.76.023514. arXiv:0705.1032 [astro-ph]

52. V. Pettorino, C. Baccigalupi, Phys. Rev. D 77, 103003 (2008).
doi:10.1103/PhysRevD.77.103003. arXiv:0802.1086 [astro-ph]

53. F. Pace, L. Moscardini, R. Crittenden, M. Bartelmann, V. Pettorino,
Mon. Not. R. Astron. Soc. 437(1), 547 (2014). doi:10.1093/mnras/
stt1907. arXiv:1307.7026 [astro-ph.CO]

54. Y. Fan, P. Wu, H. Yu, Phys. Rev. D 92(8), 083529 (2015). doi:10.
1103/PhysRevD.92.083529. arXiv:1510.04010 [gr-qc]

55. F. Simpson et al., Mon. Not. R. Astron. Soc. 429, 2249 (2013).
doi:10.1093/mnras/sts493. arXiv:1212.3339 [astro-ph.CO]

56. P. A. R. Ade et al. [Planck Collaboration], Astron. Astro-
phys. 594, A14 (2016). doi:10.1051/0004-6361/201525814.
arXiv:1502.01590 [astro-ph.CO]

57. T. Damour, K. Nordtvedt, Phys. Rev. Lett. 70, 2217 (1993). doi:10.
1103/PhysRevLett.70.2217

58. T. Damour, K. Nordtvedt, Phys. Rev. D 48, 3436 (1993). doi:10.
1103/PhysRevD.48.3436

59. A. Lewis, S. Bridle, Phys. Rev. D 66, 103511 (2002). doi:10.1103/
PhysRevD.66.103511. arXiv:astro-ph/0205436

60. A. Lewis, A. Challinor, A. Lasenby, Astrophys. J. 538, 473 (2000).
doi:10.1086/309179. arXiv:astro-ph/9911177

61. A. Hojjati, L. Pogosian, G.B. Zhao, JCAP 1108, 005 (2011). doi:10.
1088/1475-7516/2011/08/005. arXiv:1106.4543 [astro-ph.CO]

62. J. c. Hwang, H. Noh, Phys. Rev. D 54, 1460 (1996). doi:10.1103/
PhysRevD.54.1460

63. X.Y. Zhou, J.H. He, Commun. Theor. Phys. 62, 102 (2014). doi:10.
1088/0253-6102/62/1/18. arXiv:1406.6822 [astro-ph.CO]

64. R. Adam et al. [Planck Collaboration], Astron. Astrophys.594, A10
(2016). doi:10.1051/0004-6361/201525967. arXiv:1502.01588
[astro-ph.CO]

65. N. Aghanim et al. [Planck Collaboration], Astron. Astro-
phys. 594, A11 (2016). doi:10.1051/0004-6361/201526926.
arXiv:1507.02704 [astro-ph.CO]

66. P. A. R. Ade et al. [Planck Collaboration], Astron. Astro-
phys. 594, A15 (2016). doi:10.1051/0004-6361/201525941.
arXiv:1502.01591 [astro-ph.CO]

67. F. Beutler et al., Mon. Not. R. Astron. Soc.416, 3017 (2011). doi:10.
1111/j.1365-2966.2011.19250.x. arXiv:1106.3366 [astro-ph.CO]

68. A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden,
M. Manera, Mon. Not. Roy. Astron. Soc. 449(1), 835 (2015).
doi:10.1093/mnras/stv154. arXiv:1409.3242 [astro-ph.CO]

69. C. Blake et al., Mon. Not. R. Astron. Soc. 418, 1707 (2011). doi:10.
1111/j.1365-2966.2011.19592.x. arXiv:1108.2635 [astro-ph.CO]

70. N. Suzuki et al., Astrophys. J. 746, 85 (2012). doi:10.1088/
0004-637X/746/1/85. arXiv:1105.3470 [astro-ph.CO]

71. C. Heymans et al., Mon. Not. R. Astron. Soc. 432, 2433 (2013).
doi:10.1093/mnras/stt601. arXiv:1303.1808 [astro-ph.CO]

72. L. Pogosian, A. Silvestri, Phys. Rev. D 94(10), 104014 (2016).
doi:10.1103/PhysRevD.94.104014. arXiv:1606.05339 [astro-
ph.CO]

73. D.N. Spergel et al., WMAP Collaboration. Astrophys. J. Suppl.
170, 377 (2007). doi:10.1086/513700. arXiv:astro-ph/0603449

74. R. Kallosh, A. Linde, D. Roest, JHEP 1311, 198 (2013). doi:10.
1007/JHEP11(2013)198. arXiv:1311.0472 [hep-th]

75. R. Kallosh, A. Linde, JCAP 1307, 002 (2013)
76. S. Ferrara, R. Kallosh, A. Linde, M. Porrati, Phys. Rev. D 88(8),

085038 (2013)
77. M. Galante, R. Kallosh, A. Linde, D. Roest, Phys. Rev. Lett.

114(14), 141302 (2015)

123

http://dx.doi.org/10.1103/PhysRevD.62.043506
http://arxiv.org/abs/hep-th/9907198
http://dx.doi.org/10.1103/PhysRevD.60.043501
http://dx.doi.org/10.1103/PhysRevD.60.043501
http://arxiv.org/abs/astro-ph/9904120
http://dx.doi.org/10.1103/PhysRevD.59.123510
http://dx.doi.org/10.1103/PhysRevD.59.123510
http://arxiv.org/abs/gr-qc/9903004
http://dx.doi.org/10.1103/PhysRevD.60.083508
http://dx.doi.org/10.1103/PhysRevD.60.083508
http://arxiv.org/abs/gr-qc/9903094
http://dx.doi.org/10.1103/PhysRevD.61.023518
http://dx.doi.org/10.1103/PhysRevD.61.023518
http://arxiv.org/abs/hep-ph/9908521
http://dx.doi.org/10.1103/PhysRevD.62.023504
http://dx.doi.org/10.1103/PhysRevD.62.023504
http://arxiv.org/abs/gr-qc/0002091
http://dx.doi.org/10.1103/PhysRevD.70.087302
http://dx.doi.org/10.1103/PhysRevD.70.087302
http://arxiv.org/abs/astro-ph/0408013
http://dx.doi.org/10.1088/1475-7516/2009/09/027
http://dx.doi.org/10.1088/1475-7516/2009/09/027
http://arxiv.org/abs/0901.0173
http://dx.doi.org/10.1103/PhysRevD.79.123013
http://arxiv.org/abs/0905.2348
http://dx.doi.org/10.1103/PhysRevD.70.061301
http://arxiv.org/abs/astro-ph/0403480
http://dx.doi.org/10.1103/PhysRevD.81.083530
http://arxiv.org/abs/1002.2986
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://arxiv.org/abs/1106.2476
http://dx.doi.org/10.1103/PhysRevD.69.083512
http://arxiv.org/abs/astro-ph/0311274
http://dx.doi.org/10.1103/PhysRevD.71.104025
http://dx.doi.org/10.1103/PhysRevD.71.104025
http://arxiv.org/abs/astro-ph/0412052
http://dx.doi.org/10.1103/PhysRevD.82.083003
http://dx.doi.org/10.1103/PhysRevD.82.083003
http://arxiv.org/abs/0903.0385
http://dx.doi.org/10.1103/PhysRevD.88.084053
http://dx.doi.org/10.1103/PhysRevD.88.084053
http://arxiv.org/abs/1305.0055
http://dx.doi.org/10.1103/PhysRevLett.113.011101
http://arxiv.org/abs/1303.4330
http://dx.doi.org/10.1038/nature01997
http://dx.doi.org/10.1038/nature01997
http://dx.doi.org/10.1103/PhysRevLett.93.261101
http://arxiv.org/abs/gr-qc/0411113
http://dx.doi.org/10.1016/j.asr.2005.05.013
http://arxiv.org/abs/gr-qc/0412049
http://dx.doi.org/10.1103/PhysRevD.81.047501
http://dx.doi.org/10.1103/PhysRevD.81.047501
http://arxiv.org/abs/0911.3401
http://dx.doi.org/10.1103/PhysRevD.71.123526
http://arxiv.org/abs/astro-ph/0504418
http://dx.doi.org/10.1103/PhysRevD.73.083525
http://arxiv.org/abs/astro-ph/0601299
http://dx.doi.org/10.1103/PhysRevD.79.103512
http://arxiv.org/abs/0811.1845
http://dx.doi.org/10.1103/PhysRevD.81.104023
http://arxiv.org/abs/1002.2382
http://dx.doi.org/10.1103/PhysRevD.85.043508
http://dx.doi.org/10.1103/PhysRevD.85.043508
http://arxiv.org/abs/1111.3960
http://dx.doi.org/10.1088/1475-7516/2012/06/032
http://arxiv.org/abs/1110.3830
http://dx.doi.org/10.1103/PhysRevD.76.023514
http://dx.doi.org/10.1103/PhysRevD.76.023514
http://arxiv.org/abs/0705.1032
http://dx.doi.org/10.1103/PhysRevD.77.103003
http://arxiv.org/abs/0802.1086
http://dx.doi.org/10.1093/mnras/stt1907
http://dx.doi.org/10.1093/mnras/stt1907
http://arxiv.org/abs/1307.7026
http://dx.doi.org/10.1103/PhysRevD.92.083529
http://dx.doi.org/10.1103/PhysRevD.92.083529
http://arxiv.org/abs/1510.04010
http://dx.doi.org/10.1093/mnras/sts493
http://arxiv.org/abs/1212.3339
http://dx.doi.org/10.1051/0004-6361/201525814
http://arxiv.org/abs/1502.01590
http://dx.doi.org/10.1103/PhysRevLett.70.2217
http://dx.doi.org/10.1103/PhysRevLett.70.2217
http://dx.doi.org/10.1103/PhysRevD.48.3436
http://dx.doi.org/10.1103/PhysRevD.48.3436
http://dx.doi.org/10.1103/PhysRevD.66.103511
http://dx.doi.org/10.1103/PhysRevD.66.103511
http://arxiv.org/abs/astro-ph/0205436
http://dx.doi.org/10.1086/309179
http://arxiv.org/abs/astro-ph/9911177
http://dx.doi.org/10.1088/1475-7516/2011/08/005
http://dx.doi.org/10.1088/1475-7516/2011/08/005
http://arxiv.org/abs/1106.4543
http://dx.doi.org/10.1103/PhysRevD.54.1460
http://dx.doi.org/10.1103/PhysRevD.54.1460
http://dx.doi.org/10.1088/0253-6102/62/1/18
http://dx.doi.org/10.1088/0253-6102/62/1/18
http://arxiv.org/abs/1406.6822
http://dx.doi.org/10.1051/0004-6361/201525967
http://arxiv.org/abs/1502.01588
http://dx.doi.org/10.1051/0004-6361/201526926
http://arxiv.org/abs/1507.02704
http://dx.doi.org/10.1051/0004-6361/201525941
http://arxiv.org/abs/1502.01591
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://arxiv.org/abs/1106.3366
http://dx.doi.org/10.1093/mnras/stv154
http://arxiv.org/abs/1409.3242
http://dx.doi.org/10.1111/j.1365-2966.2011.19592.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19592.x
http://arxiv.org/abs/1108.2635
http://dx.doi.org/10.1088/0004-637X/746/1/85
http://dx.doi.org/10.1088/0004-637X/746/1/85
http://arxiv.org/abs/1105.3470
http://dx.doi.org/10.1093/mnras/stt601
http://arxiv.org/abs/1303.1808
http://dx.doi.org/10.1103/PhysRevD.94.104014
http://arxiv.org/abs/1606.05339
http://dx.doi.org/10.1086/513700
http://arxiv.org/abs/astro-ph/0603449
http://dx.doi.org/10.1007/JHEP11(2013)198
http://dx.doi.org/10.1007/JHEP11(2013)198
http://arxiv.org/abs/1311.0472


Eur. Phys. J. C (2017) 77 :162 Page 15 of 15 162

78. S.D. Odintsov, V.K. Oikonomou, arXiv:1611.00738 [gr-qc]
79. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 94(12), 124026

(2016)
80. E.V. Linder, Phys. Rev. D 91(12), 123012 (2015)
81. G. DomÃlnech, M. Sasaki, JCAP 1504(04), 022 (2015).

arXiv:1501.07699 [gr-qc]

82. G. DomÃlnech, M. Sasaki, Int. J. Mod. Phys. D 25(13), 1645006
(2016). arXiv:1602.06332 [gr-qc]

83. S. Bahamonde, S.D. Odintsov, V.K. Oikonomou, M. Wright, Ann.
Phys. 373, 96 (2016). arXiv:1603.05113 [gr-qc]

84. S. Bahamonde, S.D. Odintsov, V.K. Oikonomou, P.V. Tretyakov,
arXiv:1701.02381 [gr-qc]

123

http://arxiv.org/abs/1611.00738
http://arxiv.org/abs/1501.07699
http://arxiv.org/abs/1602.06332
http://arxiv.org/abs/1603.05113
http://arxiv.org/abs/1701.02381

	Probing gravitational non-minimal coupling with dark energy surveys
	Abstract 
	1 Introduction
	2 Extended quintessence models 
	2.1 Background equations
	2.2 Perturbation functions

	3 Model parameters 
	3.1 Constant potential models
	(a) ξleq0
	(b) 0 < ξleq3/2
	(c) ξ> 3/2

	3.2 Exponential potential models
	(a) ξ< 0
	(b) ξ> 0


	4 Observational constraints
	5 Summary and discussions
	Acknowledgements
	Appendix A: Linear perturbation equations
	References




