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Abstract The approach of Causal Dynamical Triangula-
tions (CDT), a candidate theory of nonperturbative quantum
gravity in 4D, turns out to have a rich phase structure. We
investigate the recently discovered bifurcation phase Cb and
relate some of its characteristics to the presence of singular
vertices of very high order. The transition lines separating this
phase from the “time-collapsed” B-phase and the de Sitter
phase CdS are of great interest when searching for physical
scaling limits. The work presented here sheds light on the
mechanisms behind these transitions. First, we study how
the B–Cb transition signal depends on the volume fixing
implemented in the simulations, and find results compati-
ble with the previously determined second-order character
of the transition. The transition persists in a transfer matrix
formulation, where the system’s time extension is taken to be
minimal. Second, we relate the new Cb–CdS transition to the
appearance of singular vertices, which leads to a direct phys-
ical interpretation in terms of a breaking of the homogeneity
and isotropy observed in the de Sitter phase when crossing
from CdS to the bifurcation phase Cb.

1 Introduction

The asymptotic safety program is an attempt to describe
quantum gravity as an ordinary quantum field theory. To over-
come the well-known nonrenormalizability of the perturba-
tive quantization, the program needs to assume the existence
of a nonperturbative fixed point in the ultraviolet (UV). Con-
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crete continuum calculations using the so-called functional
renormalization group equations lend support to this assump-
tion [1–7], but they necessarily involve truncations. Since the
reliability of these truncations is ultimately difficult to quan-
tify, it is important to obtain independent evidence for the
existence of a UV fixed point from alternative, nonperturba-
tive methods.

Defining a quantum theory by using a lattice regulariza-
tion is a well-tested method for obtaining nonperturbative
results. The arguably most spectacular results of this kind
have been obtained in lattice QCD, where the underlying
theory is renormalizable, but many observables cannot be
calculated by perturbative methods. Lattice field theories are
also well suited to finding nonperturbative UV fixed points,
which typically are associated with second-order phase tran-
sitions. This means that the first step in a fixed point search
consists in localizing phase transition points or lines in the
space of bare coupling constants.

In nongravitational lattice field theories the lattice approx-
imates a piece of fixed, flat background space-time and the
lattice spacing a acts as a UV cutoff. Given that in Gen-
eral Relativity space-time itself becomes dynamical, it is
natural that in a corresponding lattice field theory the lat-
tices themselves should become dynamical entities also. This
is precisely what happens in the approach of Dynamical
Triangulations (DT) [8–21] and its Lorentzian counterpart,
Causal Dynamical Triangulations (CDT) [22–30]. Curved
space-times, which are summed over in the gravitational path
integral, are represented in the lattice regularization by d-
dimensional “lattices” constructed from elementary build-
ing blocks, d-dimensional simplices of lattice link length a,
which are glued together in all possible ways compatible with
topological and other constraints one may impose. Note that
the simplices are not “empty”, but are pieces of flat space-
time, such that by assembling them one obtains continuous,
piecewise flat manifolds, the said triangulations. The working
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Fig. 1 CDT phase diagram in terms of the bare couplings κ0 and �,
with the phases A, B, the de Sitter phase CdS and the bifurcation phase
Cb. The last two and the new phase transition line separating them
reflect our new, refined understanding of CDT’s phase structure. (Fat
dots and squares refer to actual measurements. The “quadruple point”
is based on extrapolation only)

hypothesis is that in the limit as a → 0 this set of piecewise
linear geometries becomes dense in the set of all continuous
geometries, assuming that a suitable metric can be defined
on the latter.

We focus on the CDT rather than the DT approach to
nonperturbative quantum gravity, because only in the CDT
case one has observed a second-order phase transition which
potentially can be used to obtain a UV scaling limit of the lat-
tice theory.1 Moreover, considering its conceptual simplicity
and simple action (see Eq. (3) below), CDT turns out to have
a remarkably rich phase diagram, as a function of the bare
inverse gravitational coupling κ0 and the asymmetry parame-
ter �. The existence of three distinct phases with correspond-
ing transition lines between them is one of the classic CDT
results [26,27,36]. There are two phases A and B in which
no meaningful (from the point of view of General Relativity)
semiclassical limit seems to exist, a conclusion one arrives at
by monitoring the dynamics of the total spatial volume of the
universe in time. By contrast, the phase C does display phys-
ically interesting behaviour, in that the dynamics generates a
quantum universe whose large-scale properties match those
of a four-dimensional de Sitter space. While the A–C phase
transition was subsequently shown to be first order, the B–C
transition turns out to be a second-order transition [37,38],
opening the exciting possibility of finding a UV fixed point
and an associated continuum theory.

Recently, this picture has been further refined with the
discovery of a new transition line cutting diagonally through
phase C and dividing it into two regions [39,40]; see Fig. 1.

1 A phase transition observed in DT was originally thought to be second
order [19–21], but subsequently shown to be first order [31,32]. Recent
attempts to enlarge the coupling constant space of DT in search of
second-order transition points have so far not been successful [33–35].

A first investigation of the order of the new phase transition
has not yielded a conclusive answer on whether it is of first
or higher order [41]. Since it has now become clear that there
are two phases instead of the single phase C , it is a good time
to settle on a definite name and notation for them. To ensure
continuity with the previous situation and at the same time be
descriptive we suggest “de Sitter phase” (CdS) for the phase
above the new phase transition (“above” in the usual κ0–�

phase diagram), and “bifurcation phase” (Cb) for the phase
below the transition. The transition formerly known as the
A–C transition then becomes the A–CdS transition, and the
former B–C transition becomes the B–Cb transition. New is
the de Sitter–bifurcation transition CdS–Cb.

The properties of the de Sitter phase CdS coincide with
those previously associated with phase C , including the de
Sitter-like scaling of the spatial volume. A de Sitter-like scal-
ing is also observed in the bifurcation phase Cb, but is mod-
ulated there by other dynamical effects, as became apparent
when studying the behaviour of the spatial volume in the con-
text of the so-called effective transfer matrix introduced in
[42]. In this setting one studies the CDT system with a min-
imal total number of time steps ttot, typically ttot = 2, com-
pared to the usual ttot = 80. While in the latter simulations
inside phase C the entire (de Sitter) universe is visible, in the
transfer matrix setting one only has access to a thin “slice”
of the universe. Of course, one has to investigate carefully
to what extent the two systems describe the same physics
(including phase structure and phase transitions), and to iso-
late finite-size and finite-time effects. Several of the results
presented below contribute to this issue.

A major new result found in the transfer matrix approach
is the new phase transition CdS–Cb, between a phase where
the three-volume of adjacent constant-time slices tends to
align (CdS) and a phase where the volume profile is modu-
lated such that the volumes of alternating slices align (Cb).
The latter results in a two-peak structure when one plots the
volume-volume correlator of neighbouring slices as a func-
tion of their (oriented) volume difference [39]. This moti-
vated the term “bifurcation phase”, since the corresponding
plot in the de Sitter phase CdS has only a single peak. Below,
we will uncover a dynamical mechanism behind the bifurca-
tion transitionCdS–Cb and give it a more direct interpretation
in terms of symmetry breaking. At the same time, this will
shed some light on the geometric nature of the bifurcation
phase, which at this stage is only incompletely understood.

The reason why such an understanding is not straight-
forward has to do with the nonperturbative character of the
dynamics, which is determined by the interplay between the
action and the entropy, that is, the number of configurations
(triangulated space-times) for given values of the action. An
example of this is the behaviour of CDT near the second-
order B–Cb transition. The original investigation [37,38]
exhibited unusual features, some of them more reminiscent
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of a first-order transition. Interestingly, as we will see, these
first-order aspects disappear when one employs a different
prescription for fixing the overall space-time volume. By per-
forming a quantitative analysis of the entropy factor near the
transition, we will give a common explanation for both of
these phenomena below.

All results presented in this work contribute to the under-
standing of the dynamical mechanisms determining the
behaviour and phase structure of nonperturbative systems of
higher-dimensional (in this case four-dimensional) geometry,
about which relatively little is known, compared to the well-
studied case of two-dimensional gravity of either signature.
To the extent that these properties are driven by “entropic
effects”, one would expect them to be largely independent
of the details of the CDT set-up, and therefore not neces-
sarily confined to this particular approach to nonperturbative
quantum gravity.

The remainder of this paper is organized as follows. After a
short summary of some vital ingredients of the CDT approach
in Sect. 2, we concentrate in Sect. 3 on the second-order B–Cb

phase transition. We explain a curious dependence of the tran-
sition signal on the choice of volume fixing found in previous
work by carefully analyzing the entropy factor underlying
this behaviour. In the appendix we show that a simple ansatz
for this factor can reproduce the characteristic shapes of the
transition signals. Section 4 is dedicated to a closer examina-
tion of the new bifurcation phaseCb. It is performed by simu-
lating an ensemble of CDT configurations with minimal time
extension ttot = 2, which is found to display the same phase
characteristics and phase transitions as the more customary
large-time ensemble. We obtain a quantitative understanding
of the properties of the bifurcation phase in terms of a vertex
of very high order that appears on one of the two spatial slices
of the system. This enables us to give a direct interpretation of
the CdS–Cb phase transition in terms of symmetry breaking,
in this case, the breaking of the homogeneity and isotropy of
the average geometry observed in the neighbouring de Sit-
ter phase CdS . A summary and conclusions are presented in
Sect. 5.

2 CDT set-up in a nutshell

We will briefly review the ingredients of the CDT construc-
tion and their notation, to the extent that they are needed in the
rest of the paper. A comprehensive description of the set-up
can be found in [43]. The regularized CDT implementation
of the path integral for pure gravity takes the form of a sum
over distinct causal triangulations T . After Wick rotation, it
is schematically given as the partition function

Z =
∑

T∈T

1

CT
e−SEH (T ), (1)

where SEH (T ) is the Einstein–Hilbert action of the piecewise
flat manifold T (originally due to Regge) and CT denotes the
order of the automorphism group of T , a number equal to
1 in the generic case that the triangulation T does not pos-
sess any such symmetries. A triangulation can be thought
of as assembled from elementary building blocks, the four-
dimensional simplices, which in the standard CDT formu-
lation come in two types, depending on their edge length
assignments.

Recall that the interior, flat geometry of a d-dimensional
simplex (a “d-simplex”) is completely fixed by its edge
lengths. CDT configurations have two types of edges, space-
like and time-like. All space-like edges have the same proper
length squared a2, and all time-like edges the same proper
length squared −αa2, where α > 0 and a denotes a UV
cutoff that will be taken to zero as the regularization is
removed. After Wick rotating, which amounts to an ana-
lytic continuation of the parameter α to the negative real
half-axis in the complex α-plane [43], the triangulations still
have two different edge lengths (unless α is set to unity),
namely,

�2
space-like = a2, �2

time-like = α a2, (2)

where α > 7/12 to satisfy triangle inequalities.
In addition to the Minkowskian geometry of its simpli-

cial building blocks, the causal character of CDT quan-
tum gravity is reflected in the gluing rules for the four-
simplices, which are such that the causal (=light cone) struc-
ture of each triangulation T is well defined. In standard CDT
this is achieved through the presence of a stacked structure
associated with the presence of a discrete time parameter
t .2 A causal triangulation consists of a sequence of three-
dimensional spatial triangulations, each labelled by an inte-
ger t , with four-dimensional space-time simplices interpo-
lating between adjacent slices of constant times t and t + 1.
In the present work, the spatial slices will have the topology
of the three-sphere.

The two four-simplex types mentioned above are pre-
cisely those that are compatible with this stacked or lay-
ered structure. They are the (4, 1)-simplex (together with
its time-reflection, the (1, 4)-simplex) and the (3, 2)-simplex
(together with the time-reflected (2, 3)-simplex). A (4, 1)-
simplex shares a purely space-like three-simplex (spanned
by four vertices) with the three-dimensional triangulation at
time t and a single vertex with the spatial triangulation at time

2 There is an alternative version of CDT, using so-called locally causal
dynamical triangulations (LCDT) [44], where the causal structure is
only implemented locally, without referring to a preferred global lattice
time slicing. This can be achieved by introducing new types of building
blocks (with edge lengths still given by Eq. (2)). In three space-time
dimensions, this approach has produced results compatible with those
of CDT [45,46], at the expense of considerable additional computational
complexity.
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Fig. 2 The two types of
four-simplex appearing in CDT,
the (4, 1)-simplex (left) and the
(3, 2)-simplex (right),
interpolating between
neighbouring spatial slices of
constant integer time t .
Space-like edges are drawn in
blue, time-like ones in red

t + 1, whereas a (3, 2)-simplex shares a two-dimensional
space-like triangle (spanned by three vertices) with the slice
at time t and a space-like edge (spanned by two vertices)
with the slice at time t + 1. It follows that a (4, 1)-simplex
has 6 space-like and 4 time-like links, and a (3, 2)-simplex
has 4 space-like and 6 time-like links (see Fig. 2). Analo-
gous statements hold for the (1,4)- and (2, 3)-simplices when
interchanging t and t + 1.

Since there are only two geometrically distinct building
blocks, the Einstein–Hilbert–Regge action (including a cos-
mological constant term) assumes a simple form in terms
of the global “counting variables” Ni (T ), i = 0, 1, . . . , 4,
which for a given triangulation T count the number of i-
dimensional simplices contained in T . Below, we will use
the numbers N0 of vertices and N4 of four-simplices. It will
be essential to keep track of the separate numbers N (4,1)

4 and

N (3,2)
4 of the two different types, where by definition these

numbers count building blocks of either time orientation, for
example, N (4,1)

4 is the number of (4, 1)- and (1, 4)-simplices
together. Since they occur frequently in our formulae, we will
use N41 :=N (4,1)

4 and N32 :=N (3,2)
4 as a shorthand notation.

Of course, we have N41(T )+N32(T ) = N4(T ) for any T . In
terms of these, we can finally write the gravitational action
as [43]

SEH (T ) = −(κ0 + 6�)N0 + κ4(N41 + N32)

+�(2N41 + N32), (3)

where κ0 is the bare inverse Newton constant, κ4 (up to a
κ0-dependent shift) the bare cosmological constant, and �

is an asymmetry parameter that depends on the finite, rela-
tive scaling α between time- and space-like links introduced
in (2). Details of this algebraic dependence will not con-
cern us here, other than the fact that � vanishes for equi-
lateral simplices, that is, �(α = 1) = 0. In the nonper-
turbative regime investigated by CDT, � plays the role of
a coupling constant. To emphasize various aspects of the
action (3), whose motivation will become clear in subse-
quent sections, we can rewrite it in a number of equivalent
ways,

SEH (T ) ≡ −κ0N0 + (κ4 + �)N4 + �(N41 − 6N0) (4)

≡ −(κ0 + 6�)N0 +
(

κ4 + 3�

2

)
N4 + �

2
x (5)

≡ −κ ′
0N0 + κ41N41 + κ32N32. (6)

Equation (4) is a straightforward reshuffling of terms, Eq. (5)
is a rewriting of (3) using the difference x := N41 − N32,
while (6) results after performing a linear redefinition of the
coupling constants according to κ ′

0 := κ0 + 6�, κ41 :=
κ4 + 2� and κ32 := κ4 + �.

In the actual CDT computer simulations the lattice volume
is kept (approximately) constant, by adding a volume-fixing
term Sfix to the bare action (3). This means there are de facto
only two tunable bare couplings, κ0 and �, as illustrated by
the phase diagram of Fig. 1. Two different quadratic volume
fixings have been used in the literature, either fixing the total
number of four-simplices to N̄4 by setting

SN̄4
fix (N4) = ε(N4 − N̄4)

2 (7)

or fixing the number of (4, 1)-simplices to some target value
N̄41 by setting

SN̄41
fix (N41) = ε(N41 − N̄41)

2, (8)

where ε in both cases denotes an appropriately chosen small,
positive parameter. Inside the “old” phase C and well away
from the phase transitions B–Cb and A–CdS one does not
expect results to depend on the volume fixing used, since at
a given (κ0,�) the two four-simplex types occur approxi-
mately in a fixed ratio [43]. However, as already mentioned
above, some measurements at the B–Cb transition appear
to depend on the volume fixing, a phenomenon that will be
explained in Sect. 3.

3 A second look at the B–Cb transition

We begin by examining the transition between phase B and
the bifurcation phase Cb. It has been known for some time to
be a second-order transition, and thus potentially interesting
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for continuum physics. The original investigation of what
was then called the B–C transition was performed at fixed
N4, implemented by a volume fixing of the form (7), for vol-
umes of up to N4 = 160k [37,38]. The order parameter cho-
sen to study the transition was conj(�) := N41 −6N0, which
is the expression conjugate to � at fixed N4, as can be read
off from (4). The analysis required some care, because the
probability distribution of conj(�) measured at the transition
exhibited a double-peak structure. This is unusual, because
a double peak is typically associated with a first-order tran-
sition, where it is brought about by a jumping of the order
parameter between two metastable states on either side of
the transition. However, in the case at hand a careful analysis
of finite-size effects in terms of observables like the Binder
cumulant, particularly suited to distinguishing between first-
and higher-order transitions, all pointed towards a second-
order transition.

We have found it convenient to work with another order
parameter, the quantity x = N41 − N32 introduced earlier.
Looking at the action (5), one observes that x would be con-
jugate to � for fixed N4 if we also held N0 fixed (which
we do not). Using x instead of conj(�) as an order param-
eter corresponds to approaching the transition line along a
slightly different phase space trajectory, and it leads to an
equivalent result for its probability distribution P̄(x).3 The
results for P̄(x), measured at fixed N4 = 40k and for time
extension ttot = 80, are shown in Fig. 3 and display the same
kind of double peak as in the original work [37,38]. Note that
the relative height of the two peaks in the distribution P̄(x)
depends on the coupling �. We define the critical value �c

as the value where the peaks have the same height.4

Following a space-time configuration and measuring its
x-value as a function of Monte Carlo time, one finds that
x is located close to one of the peaks for some time and
then makes a very rapid change to the other peak where it
again stays for some time. (Examples of Monte Carlo time
histories of order parameters, albeit in a slightly different
context, are depicted in Fig. 9 below.) This is precisely the
behaviour expected at a first-order transition, for sufficiently
small volumes. However, for a genuine first-order transition
such a cross-over between different phases will be suppressed
as the system size goes to infinity. The absence of such a
behaviour for increasing volume led to the more detailed
investigation of [37,38], with the outcome that the B–Cb

transition in CDT appears to be of higher order.
Somewhat surprisingly, when repeating the same mea-

surements with N41 rather than N4 kept fixed, we found no

3 We will use an over-bar notation P̄(x) for the distribution at fixed N4
and an over-tilde notation P̃(x) for the distribution at fixed N41.
4 Alternatively, one could define �c as the point where the areas under
the two peaks become equal. The resulting �c differs only slightly from
the “equal-height �c”.

P
(x

)

x = N41 − N32

Δ = 0.0218
Δ = 0.0220
Δ = 0.0222

Fig. 3 Probability distribution P̄(x) of the order parameter x , mea-
sured at three different couplings � close to the critical point �c ≈
0.0220, for total volume N4 = 40k and κ0 = 2.2

trace of a double-peak structure for any of the order parame-
ters considered. The distribution of x (which for constant N41

coincides with the distribution of N32) is shown in Fig. 4. As
explained in more detail in Sect. 3.2 below, we have deter-
mined the (pseudo-)critical value �c from a peak in the sus-
ceptibility χ(x) = 〈x2〉 − 〈x〉2 under variation of �, where
the distribution P̃(x) has maximal width. Thus it appears that
for fixed N41 the situation is consistent with that of a typical
second-order transition.

In the following, we will demonstrate that the observed
dependence of the distribution of x on the volume fixing has
its origin in the function that counts the number of config-
urations (including their symmetry factors 1/CT ) for given
values of the counting variables N0, N41 and N32, the entropy
(factor)

N (N0, N41, N32) =
∑

T∈T (N0,N41,N32)

1

CT
, (9)

whereT (N0, N41, N32) denotes the set of triangulations with
fixed N0, N41 and N32. Using the action in the form (6), the
partition function can now be written as

Z(κ ′
0, κ41, κ32) =

∑

N0,N41,N32

e−S(N0,N41,N32)N (N0, N41, N32).

(10)

We will apply Monte Carlo techniques to extract the entropy
N (N0, N41, N32). In order to measure this function over a
whole range of values in the (N41, N32)-plane, as we would
like to do, an efficient method is to modify the action in
a controlled way such that one probes smaller regions. By
adding quadratic terms,

SN̄41,N̄32
fix (N41, N32) = ε(N41 − N̄41)

2 + ε(N32 − N̄32)
2,

(11)
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Fig. 4 For fixed volume N41,
the probability distribution P̃(x)
does not have a double-peak
structure close to the critical
point �c ≈ 0.0220. The violet
curve shows Monte Carlo
measurements taken at
N41 =33k, for
κ ′

0 =2.3320, κ41 =0.9856 and
κ32 =0.9636 (couplings defined
below Eq. (6). The blue curve
represents the cross section (17);
see Sect. 3.2
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to the action (6), one ensures that the Monte Carlo simulations
probe a well-defined, not too large region in the vicinity of
a prescribed point (N̄41, N̄32). More specifically, a given set
of numbers N0, N41 and N32 will occur with probability

PN̄41,N̄32
(N0, N41, N32) ∝ N (N0, N41, N32)

· e−S(N0,N41,N32)−S
N̄41,N̄32
fix (N41,N32). (12)

We have covered the region of interest by eight patches corre-
sponding to different values N̄41, N̄32, such that they overlap
mutually. This allows us to adjust the relative probability
distributions measured in the different patches to a common
probability distribution, which is determined up to a common
normalization factor. We could in principle have chosen dif-
ferent values for the three couplings κ ′

0, κ41 and κ32 in the
various patches, but we keep them constant across all patches
and equal to the reference values κ̄ ′

0, κ̄41 and κ̄32.
To simplify the comparison between fixing N4 and N41,

we integrate out the number N0 of vertices weighted by eκ̄ ′
0N0

to obtain the “reference” probability distribution

P(N41, N32) := C ·
∑

N0

N (N0, N41, N32)

· eκ̄ ′
0N0−κ̄41N41−κ̄32N32 , (13)

where the normalization factor C ensures that the probabili-
ties add up to one. The distribution (13) can be extracted from
the measured quantities PN̄41,N̄32

(N0, N41, N32) according
to

P(N41, N32) = C̃ ·
∑

N0

PN̄41,N̄32
(N0, N41, N32)

· eS
N̄41,N̄32
fix (N41,N32). (14)

It is understood that during the matching process for the over-
lap regions the various PN̄41,N̄32

have been normalized rela-

tive to each other such that after multiplication with exp(Sfix)

and summing over N0 only a single common normalization
factor C̃ is needed, as already mentioned above. The right-
hand side of Eq. (14) therefore describes a single, joint prob-
ability distribution, which by construction no longer depends
on N̄41 and N̄32.

Rather than working directly with P(N41, N32), we have
found it convenient to work with its logarithm

F(N41, N32) := logP(N41, N32) = −κ̄41N41

−κ̄32N32 + log
∑

N0

N (N0, N41, N32) · eκ̄ ′
0N0 , (15)

which can be interpreted as (minus) the free energy of the
system. The density plot of the measured free energy (15) as a
function of N41 and N32 is shown in Fig. 5. Simulations were
performed at κ̄ ′

0 = 2.3320, κ̄41 = 0.9856 and κ̄32 = 0.9636,
corresponding to the critical point on the B–Cb transition line
observed in simulations with fixed N4 and N41. The colours
run from blue, corresponding to low values of the free energy
F(N41, N32) and thus of the probability P(N41, N32), to red,
indicating high values of F and P . Note that the function
F(N41, N32) has a saddle point at the centre of the region
considered; it is convex for N32 = const (horizontal line in
Fig. 15) and concave for N41 =const (vertical line). We will
show below that this shape explains the different behaviour
of the probability distributions P̄(x) and P̃(x) of the order
parameter x , depending on whether N4 or N41 is kept fixed
in the simulations.

3.1 Double-peak structure for fixed N4

In connection with Fig. 3 we already reported on the double
peak in direct Monte Carlo simulations of the probability
distribution P̄(x) observed for fixed N4. Remarkably, the
same double peak can be reproduced by taking a cross section
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Fig. 5 The free energy
F(N41, N32) for κ̄ ′

0 =2.3320,
κ̄41 =0.9856 and κ̄32 =0.9636.
Its value increases from blue to
red. The grey lines represent the
cross sections considered in the
text
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Fig. 6 Distribution P̄(x) of the order parameter x for fixed N4 =40k:
direct measurement from Monte Carlo data (yellow curve; � adjusted
to obtain peaks of equal height), calculated from the free energy
F(N41, N32) according to Eq. (16) (blue dots), and obtained from a
model function for the free energy (green curve); see the appendix for
further details

along the diagonal grey line N4 =40k indicated in Fig. 5, and
extracting a probability distribution P̄(x) from the measured
values F(N41, N32) according to

P̄(x) = P
(
N41 = N4 + x

2
, N32 = N4 − x

2

)

= exp

(
F

(
N4 + x

2
,
N4 − x

2

))
, (16)

where again x = N41 −N32. This is illustrated in Fig. 6 (blue
dotted curve). The fact that we can reconstruct the double
peak in this way shows that the saddle-shaped geometry of the
free energy F(N41, N32) is responsible for this structure. In
other words, in the volume range considered, the occurrence
of such a double peak is caused by “entropy”, in the sense
of the distribution of configurations contributing to the path
integral, and is not an indication of the presence of a first-
order transition.

3.2 Single-peak structure and transition for fixed N41

By contrast, for fixed N41, implemented by adding the
volume-fixing term (8) to the action, the distribution P̃(x)
is well approximated by a concave function with a single
“Gaussian-like” bump as illustrated by Fig. 4. The violet
curve shows the results of standard Monte Carlo simulations
for P̃(x), while the blue line represents

P̃(x) = P(N41 = N̄41, N32 = N̄41 − x) = eF(N̄41,N̄41−x),

N̄41 = 33k. (17)

The corresponding cross section through the (N41, N32)-
plane is given by the vertical grey line in Fig. 5. The two
methods for determining this distribution are in perfect agree-
ment. Note also that the maximum of P̃(x) of Fig. 4 and the
minimum of P̄(x) of Fig. 3 occur approximately at the same
point, namely, N41 = 33k, N32 = 8k.

The free energy F(N̄41, N̄41−x), together with a quadratic
fit, is shown in Fig. 7. As mentioned earlier, by looking at
where the standard deviation σ(x) of the distribution P̃(x)
for N41 = N̄41 peaks as a function of the coupling �, we
can extract the critical value of �. To obtain the standard
deviation of P̃(x) one can proceed in two different ways.
One option is to simply perform Monte Carlo simulations at
fixed N41 for a number of selected values of � (yellow dots in
Fig. 8). The other procedure (whose results are represented by
the blue dots) is more indirect and involves a reconstruction
from measurement data taken at fixed �.

More specifically, we have taken as a starting point the
distribution P̃(x) displayed in Fig. 4, which was measured
for fixed κ̄ ′

0 = 2.3320, κ̄41 = 0.9856 and κ̄32 = 0.9636,
and therefore corresponds to the single, fixed value �̄ :=
κ̄41 − κ̄32 = 0.0220. Since N41 is kept fixed, the relevant
coupling constants are κ̄ ′

0 and κ̄32. Due to the simple form
of the action (6), there is an easy relation which allows us to
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Fig. 7 Measurement of the free energy F(N̄41, N̄41 − x) along a line
of constant N̄41 = 33k (blue dots), together with a quadratic best fit
(continuous curve)
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Fig. 8 Standard deviation σ(x) of the distribution P̃(x) as a function
of � extracted from actual Monte Carlo simulations (yellow sparse
dots) by varying �, as well as from F(N41, N32) (blue dense dots) for
constant N41

construct from the distribution P̃κ̄32(x) at some fixed κ̄32 the
distribution P̃κ32(x) of any other value κ32 (while leaving κ̄ ′

0
and κ̄41 unchanged), namely,

P̃κ32(x) ∝ P̃κ̄32(x) e(κ̄32−κ32)(N̄41−x). (18)

Since we are keeping κ41 fixed, a change in κ32 is equivalent
to a change in �, in the sense that � = �̄+ κ̄32 −κ32, which
is exactly what we are interested in when determining the
standard deviation σ(x) of P̃(x).

The only limitation to be taken into account when con-
structing σ(x) from numerical data in this way is that κ32

should not differ too much from κ̄32. One typically has accu-
rate measurements of P̃κ̄32(x) only for some limited range
in x , which means that for |κ̄32 −κ32| too large the centre
of P̃κ32(x) will be shifted to an x-interval where P̃κ̄32(x) is
poorly determined, and thus will lead to a large uncertainty
in the derived distribution P̃κ32(x). As can be seen in Fig. 8,
in the case at hand the two very different ways of determin-
ing the standard deviation agree remarkably well, especially
with regard to the location of their peaks. This has allowed
us to extract the critical value of � with good accuracy as
�c ≈0.026. The fact that this differs slightly from the mea-

surement at fixed N4 is not particularly surprising, since at
finite volume the two volume fixings lead to systems with
different behaviour.

In the appendix, we make a simple ansatz for the free
energy F(N41, N32) in terms of several free functions at
most quadratic in N41 and N32, which we determine uniquely
from fitting them to our data. This ansatz reproduces the fea-
tures described in this section: a cross section N4 = const
results in a double-peak structure and a cross section N41 =
const in a single-peak structure for the probability distribu-
tion of x = N41 − N32. At the same time, the ansatz is
too simple to reproduce the observed higher-order critical
behaviour at the transition. This demonstrates explicitly that
the unusual double-peak structure near the B–Cb transition
is not necessarily related to any critical behaviour and the
question whether the observed transition is of first or second
order.

4 The bifurcation phase

Having exhibited one aspect of the nonperturbative dynam-
ics of CDT near the B–Cb transition, we now turn to a closer
analysis of the bifurcation phase Cb, including the associ-
ated, new CdS–Cb transition. The results we will discuss are
obtained in the framework of the so-called effective trans-
fer matrix [42], which was instrumental in the discovery of
the bifurcation phase in the first place [39]. This formula-
tion involves the reduced transfer matrix M , whose matrix
elements

〈m|M |n〉, m = N3(t), n = N3(t + 1), (19)

describe the transition amplitudes between a spatial config-
uration of three-volume m at time t and a neighbouring spa-
tial configuration of three-volume n at time t + 1. They are
obtained by measuring the probabilities

P(2)(m, n) := 〈m|M |n〉〈n|M |m〉
Tr M2 (20)

for a system with a total time extension ttot = 2 [39] and
extracting the matrix elements according to

〈m|M |n〉 ∝
√
P(2)(m, n). (21)

The term reduced or effective transfer matrix refers to the fact
that of all the geometric degrees of freedom that characterize
the three-dimensional spatial slices of constant integer time,
one only keeps track of the total three-volume N3(t) of the
slices at constant t . It is a nontrivial finding that one can recon-
struct the well-known effective, “minisuperspace” action and
the global dynamics of the three-volume [26–30] from mea-
surements of the reduced transfer matrix alone [39,42]. It
was a closer examination of the “unphysical” phases A and,
more specifically, B in terms of the effective transfer matrix
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Fig. 9 Two order parameters
measured at the B–Cb
transition, at N4 =10k, minimal
time extension ttot =2 and
κ0 = 2.2: order of the
highest-order vertex, normalized
to lie between 0 and 1 (upper
graph), and conj(�)/N4, the
variable conjugate to � (lower
graph), both plotted as functions
of Monte Carlo time

and the associated effective actions that led to the discovery
of the new bifurcation phase [39].

We will study this new phase by concentrating on the cor-
relations between neighbouring spatial slices. To facilitate
the investigation and allow for large spatial slices we will
consider the situation ttot = 2 with just two spatial slices and
periodic boundary conditions.5 Furthermore, we will keep
N4 fixed by including a term (7) in the action, and set κ0 =2.2
throughout.

4.1 Equivalence with large-time simulation

Note that imposing periodic boundary conditions in time can
be viewed formally as studying the system at a finite temper-
ature that is inversely proportional to the time period ttot. Cer-
tain phase transitions may disappear when the temperature
increases and the time period therefore decreases. However,
in previous computer simulations for ttot =4, 6 we found no
indications that the presence of the B–Cb transition depends
on ttot [42]. Also for the minimal time extension ttot =2 used
here we still see a clear transition signal. By way of illustra-
tion, Fig. 9 shows the measurements of two different order
parameters at the B–Cb transition, for N4 = 10k kept fixed.
One of them is the order of the highest-order vertex in the
triangulation T , where “order” is defined here as the number
of one-dimensional edges sharing the vertex, normalized to
lie between 0 and 1.6 The other one is a normalized version of

5 More precisely, we work with ttot = 4, where the space-time geometry
between t = 2 and t = 4 is an identical copy of the geometry between
t = 0 and t = 2. This is done to maintain a regular triangulation, where
by definition any (sub-)simplex is uniquely identified by its vertices,
and happens purely for convenience of our computer code.
6 Many different definitions of “vertex order” and normalization are
possible, leading to qualitatively similar results. The normalization

the quantity conj(�) := N41 − 6N0 introduced at the begin-
ning of Sect. 3. As also discussed in Sect. 3, at fixed N4 and
large ttot one finds a double-peak structure in the probability
distribution of the order parameter x = N41 − N32, superfi-
cially resembling the behaviour encountered at a first-order
transition. Our observations for small ttot are entirely compat-
ible with this picture, in the sense that the order parameters
depicted in Fig. 9 also display a typical first-order behaviour,
jumping back and forth between two different states on either
side of the transition.

The B–Cb transition appears when we keep κ0 fixed (and
not too large) and, coming from inside Cb, decrease the cou-
pling �. Its pseudo-critical value �c(N4) is a function of the
system size N4. By studying its behaviour as a function of
N4 we have found a dependence which can be fitted well to
the functional form

�c(N4) = �c(∞) − c2N−1/γ
4 , (22)

with some non-vanishing constant c and an exponent γ ≈ 2.4
that within measuring accuracy agrees with the correspond-
ing exponent γ = 2.51(3) determined originally for a system
with large time period [37,38].

In a similar vein, one can compare the behaviour of order
parameters away from the B–Cb transition, into phase Cb

and beyond, by increasing � for fixed κ0. As an example,
Fig. 10 shows the behaviour of the order parameter OP1,
defined as the absolute value of the difference of the average

Footnote 6 continued
chosen here is a division by the maximal number of edges that could
meet at a vertex in a triangulation that has the same numbers of vertices
in the two spatial slices as the given triangulation T . This theoretical
maximum would entail that the vertex is connected by an edge to every
other vertex in the same spatial slice and to every vertex in the neigh-
bouring spatial slice.
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Fig. 10 The order parameter
OP1 as a function of the
coupling �, measured at
ttot = 2, N4 = 10k and
κ0 = 2.2, indicating the
presence of a phase transition
between the de Sitter and
bifurcation phases

spatial curvatures of two adjacent spatial slices,

OP1 := |R̄(t) − R̄(t + 1)|, R̄(t) = 2π
N0(t)

N3(t)
− const.,

(23)

where N0(t) and N3(t) denote the numbers of vertices and
spatial tetrahedra contained in the spatial triangulation at time
t . This quantity is one of several order parameters first intro-
duced in [40] to study the newly discovered CdS–Cb phase
transition. The data points shown in Fig. 10, measured at
ttot = 2, are qualitatively very similar to measurements of
the same quantity for large ttot [40,41].7 This holds for the
entire range of � ∈ [0, 0.6] considered here, with the CdS–
Cb phase transition presumably located around � = 0.2. For
the volume N4 = 10k used presently, the B–Cb transition lies
at � = −0.042(2) and therefore well outside the measure-
ment range of Fig. 10. Note that the �-values in the two-slice
system with ttot = 2 are systematically lower than those of the
system with full time extension ttot = 80 of [37,38], includ-
ing for the extrapolated critical value �c(∞) of the B–Cb

transition. Comparing with the results of [40,41], where the
order of the CdS–Cb transition is analyzed in more detail,
the same seems to be true for this transition also. This is not
surprising, since the systems are genuinely different and the
location of a critical point is not a universal quantity. We con-
clude that our simulations with ttot = 2 reproduce the same
characteristics of the bifurcation phase Cb and the adjacent

7 Another difference is that in previous work [40,41] N41 was kept
constant. However, unlike what happens at the B–Cb transition, inside
phases Cb and CdS and away from this transition the ratio of N41 and
N32 does not change significantly when � is varied. We therefore do not
expect physical results in this region to depend on the type of volume
fixing.

phase transitions as were already seen for the large-time sys-
tem with ttot = 80. The two-slice system therefore seems
well suited for a further investigation of this phase.

4.2 Singular vertices

A key feature of the bifurcation phase, already reported in
[40], is the appearance of a single “singular” vertex8 of very
high coordination number (this is the number nc(v) of four-
simplices sharing a vertex v) on every second spatial slice.
Coming from the de Sitter phase and moving into the bifurca-
tion phase by lowering �, one finds that a gap opens between
the coordination number of the vertex with largest nc and that
of the vertex with the second-largest nc. Well inside phase
Cb, the maximal nc(v) in a spatial slice containing such a sin-
gular vertex is typically orders of magnitude bigger than the
average coordination number in the slice. At the same time,
such a vertex is also singular from a purely three-dimensional
point of view, in the sense that it is also shared by an excep-
tionally large number of spatial tetrahedra inside the spatial
slice where it is located. Another observation, made in [40], is
that in simulations with large ttot and therefore many spatial
slices, the singular vertices on alternating slices are associ-
ated with a four-dimensional substructure of the triangula-
tion, which takes the form of a chain of “diamond-shaped”
regions in the time direction. This substructure is embedded
in the rest of the triangulation and contains a large, finite
fraction of the triangulation’s total four-volume.

8 Strictly speaking, there is nothing singular about these vertices from
the point of view of piecewise linear geometry at finite volume. We will
nevertheless stick with this notion, which was originally coined in the
context of Euclidean Dynamical Triangulations [47–49].
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As already remarked in [40], the presence in the bifurca-
tion phase Cb of singular vertices and the structures associ-
ated with them breaks the homogeneity and isotropy (on aver-
age) of geometry which is present in the de Sitter phase CdS .
Given the way Causal Dynamical Triangulations are imple-
mented, there is nothing in principle that prevents homogene-
ity and isotropy of the average universe modelled by CDT
triangulations, in the limit as the lattice spacing is taken to
zero. This is indeed what is observed in phase CdS , where a
number of properties of the dynamically generated “quantum
universe” are very well described by a minisuperspace model
with built-in spatial homogeneity and isotropy [26,27,50].
Moreover, in CdS the average shape of the universe can be
fitted to a de Sitter space, a maximally symmetric space-time
solving the classical Einstein equations. The appearance of
isolated vertices of very high coordination number in phase
Cb is clearly incompatible with these symmetries. Given that
phase transitions in physical systems are often related to the
breaking of a symmetry, it is natural to associate the CdS–Cb

phase transition with a symmetry breaking also, namely, of
homogeneity and isotropy.

4.3 Singular vertices cause bifurcation split

In the following, we will provide further evidence that phase
Cb is associated with the appearance of singular vertices
and that they can be viewed as the decisive characteristic
of the bifurcation phase. More specifically, we will estab-
lish a quantitative relation between the “bifurcation split”,
the observed typical volume difference between neighbour-
ing spatial slices [40,41], and the order of the singular vertex
present. We will set � = 0, which for the volumes consid-
ered places us in the bifurcation phase, and at a safe distance
from either of the adjoining phase transitions.

To analyze the geometry of the triangulations with ttot =
2 in greater detail, we will use a variant of the notion of
vertex order, which for a given vertex v counts the number of
(4, 1)-simplices between the two slices that share the vertex v

and have a spatial three-simplex in common with the spatial
slice not containing v. Using this definition,9 we will call
Omax the maximal vertex order occurring in a given two-
slice configuration. When a singular vertex is present, Omax

will coincide with the order of this vertex. Like in our earlier
discussion of the matrix elements (19) of the reduced transfer
matrix, we will use the letters m and n to denote the three-
volumes of the two adjacent spatial slices. In addition, by
definition, m will denote the volume of the slice that contains
the vertex of maximal order, and n the volume of the slice

9 We have checked that other notions of vertex order, including the
coordination number nc defined in subsection (4.2), lead to equivalent
results. The vertex order used presently is convenient since it is directly
related to the diamond volume.

Fig. 11 Distribution of the highest vertex order Omax versus the dif-
ference n − m of the spatial-slice volumes, where by definition the
highest-order vertex is contained in the slice of volume m. Data taken
in the bifurcation phase (κ0 =2.2, �=0, N4 =10k)

that does not. Note that if a singular vertex vs is present in
the spatial slice of volume m, Omax ≤ n is the three-volume
of the intersection of the (half-)diamond with tip vs and the
spatial slice of volume n.

In Fig. 11 we show the distribution of the highest ver-
tex order Omax versus the volume difference n−m of the
two spatial slices. One can roughly distinguish two regions.
Below Omax ≈ 300, the configurations contain no singular
vertex in the sense that there is no significant gap between
Omax and the orders of the other vertices. A closer analy-
sis reveals that for fixed Omax in this region, the distribution
of the volume differences is approximately Gaussian around
n−m=0. In other words, neighbouring slices preferentially
have equal volumes. From previous investigations [39] we
recognize the latter property as characteristic for configura-
tions inside the de Sitter phase CdS . These configurations by
no means dominate the dynamics of the bifurcation phase
studied here, but the system makes occasional excursions to
them, at least for the space-time volume we are considering.
This will be further corroborated by data presented below.

The vast majority of configurations lie in the region where
Omax �400. Around Omax =400 a gap opens between Omax

and the distribution of the orders of the remaining vertices
that becomes larger as the value of Omax increases, signalling
the appearance of a singular vertex. At the same time, at
fixed Omax, the configurations are now peaked around a non-
vanishing volume difference.10 This is typical for the bifur-
cation phaseCb, where the effective transfer matrix 〈n|M |m〉
has a double-peak structure as a function of the volume differ-
ence n−m (and at fixed m+n), unlike the single peak found

10 Of course, these statements should be understood as statistical state-
ments, arrived at by analyzing many configurations.
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Fig. 12 Expectation value of
the highest vertex order Omax as
a function of the difference
n−m of the spatial-slice
volumes (same specifications as
in Fig. 11)

in CdS . It entails that the two-slice volumes preferentially
differ by a finite amount 〈|n − m|〉 �= 0.

The interesting new finding from our data is that the
expectation value 〈Omax〉 depends linearly on this “bifur-
cation split” n − m between the two spatial volumes, where
again the slice with the lower volume m is the one contain-
ing the highest-order vertex. This linear relation is illustrated
in Fig. 12. Extrapolating n−m down to zero one obtains a
vertex order of around 400, in agreement with Fig. 11. We
conclude that the bifurcation phenomenon, observed in pre-
vious studies of the effective transfer matrix [40], seems to
be a function of the appearance of singular vertices.

The particular choice of coupling constants for which the
above results have been obtained is associated with specific
expectation values for both the highest vertex order Omax and
the bifurcation split n−m. Not surprisingly, these variables
have Gaussian-like distributions around their mean values.
For example, Omax has an approximate Gaussian distribution
peaked at 675 with standard deviation around 50. Although
it is not very visible on the scatter plot of Fig. 11, there are
therefore many fewer configurations with vertex order 500 or
900, say, than there are with vertex order 700. Furthermore,
for each given value of Omax the width of the (Gaussian)
distribution of n−m is approximately the same and coincides
with the one determined by the effective action associated
with the effective transfer matrix. This implies that the width
is not a function of the vertex order for fixed values of the
coupling constants.

The much rarer configurations with Omax � 400 have a
special status, a fact that becomes clear when studying the
maximal vertex order as a function of Monte Carlo time. As
shown in Fig. 13, Omax fluctuates around 675. Since there
is a gap in the vertex order distribution below the maximal
value, and since vertex orders can only change by relatively

Fig. 13 Time series of the maximal vertex order Omax as a function of
Monte Carlo time, exhibiting rare dips to values below 500

small amounts in each Monte Carlo update, the highest-order
vertex usually remains located firmly in one of the two spa-
tial slices. However, occasionally Omax takes a very fast dip
to a value below 500, which means that the distinguished,
singular vertex disappears. After such a dip, a new singular,
highest-order vertex appears randomly on either one of the
spatial slices. We do not yet understand in detail how this pro-
cess works, but the excursions occur seldom and their dura-
tions are much too short in Monte Carlo time to be explained
as random processes associated with the Gaussian distribu-
tion of Omax. The configurations with Omax ≤500 in Fig. 11
constitute less than 0.1% of the total number of configura-
tions.

Finally, we would like to understand whether there is just
one singular vertex in a given spatial slice or whether further

123



Eur. Phys. J. C (2017) 77 :152 Page 13 of 17 152

Fig. 14 Relative order
Omax/N41 of the singular vertex
as a function of N4, at �=0,
together with a fit
−0.9x−0.3 + 1.3,
x = N4/10.000, and
corresponding residuals. Note
that the fit cannot be entirely
accurate for large volumes,
because for x � 39 it gives
values larger than 1, which is
not permissible

vertices with exceptionally high order can appear in the same
slice when the system size goes to infinity. Studying Omax

as a function of the total space-time volume N4, we found
that the relative order of the singular vertex, that is, Omax

divided by N41, grows with N4, as shown in Fig. 14. Recall
that Omax coincides with the four-dimensional volume of the
(half-)diamond whose tip is the singular vertex, which in turn
is bounded by N41. Since the measured ratio Omax/N41 is a
finite fraction of 1, there can be at most a finite number of sim-
ilarly “singular” vertices in the limit N4 → ∞. Presumably it
is just the single singular vertex on every second spatial slice
we see at lower volumes. However, the detailed interpretation
of this infinite-volume limit requires some care. The point is
that just taking N4 → ∞ at fixed coupling constant � cor-
responds to changing the real, effective coupling constant.
The presence of such a volume dependence is apparent from
Eq. (22), which describes how the pseudo-critical �c(N4)

increases with increasing N4. In the case at hand, for suffi-
ciently large volume N4 (larger than what we have considered
here), our present choice �=0 will therefore no longer lie in
phase Cb, but in phase B. With this caveat in mind, our data
indicate that in the infinite-volume limit, the CDT ensemble
with ttot =2 contains just one singular vertex.

5 Summary and conclusion

In this paper we have investigated the bifurcation phase Cb

recently discovered in CDT quantum gravity. We first re-
examined the B–Cb phase transition (formerly called the
B–C transition). The order parameter used previously to
determine the order of this transition exhibited an unexpected
dependence on how the total space-time volume was fixed

in the simulations: keeping the total number N4 of four-
simplices fixed resulted in a double-peak distribution for the
order parameter, whereas keeping the number N41 of four-
simplices of type (4,1) fixed yielded only a single peak. A
careful examination of the entropy factor N (N41, N32, N0)

revealed that in the volume range considered it has a rather
complicated form as a function of N41 and N32, which com-
pletely explains the observed behaviours of the order parame-
ter for the two different volume fixings. These findings recon-
firm that the double-peak structure seen for N4 = const in no
way contradicts the earlier conclusion that the B–Cb phase
transition is of second order [37,38].

The fact that the newCdS–Cb transition was discovered in
simulations with a short total time extension ttot, to determine
the so-called effective transfer matrix, raised the question
of whether the choice of ttot (as a long or short compacti-
fied time direction) has an influence on the observed phase
structure. In the measurements presented above we have not
found any indication that this is the case. The B–Cb transi-
tion is still present for the system with ttot = 2, with a signal
compatible with that observed for ttot = 80. Earlier work
[40,41] had already shown that the new CdS–Cb transition
between the de Sitter and the bifurcation phase is also present
for large ttot, and clearly visible for appropriate choices
of order parameters. There are preliminary indications that
this transition could be of higher order too [41], but more
extensive simulations are needed to obtain more conclusive
results.

The equivalence between long and short ttot motivated
our further study of the properties of the bifurcation phase
by considering the somewhat simpler two-slice system. We
showed that the behaviour of the highest-order, “singular”
vertex that appears in this phase is directly related to the
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previously observed tendency of the neighbouring spatial
slices to develop a non-vanishing mean volume difference
or “bifurcation split”. More specifically, the maximal vertex
order Omax scales linearly with this volume difference. This
gives us a more detailed, geometrical understanding of the
mechanism behind the bifurcation split: a finite fraction of the
(4, 1)-simplices between the two spatial slices clusters into
a half-diamond whose tip is the singular vertex. This half-
diamond forms a substructure, which is embedded in the rest
of the triangulation and leads to a corresponding “excess”
of three-volume of the slice not containing the singular
vertex.

At the same time, the appearance of a singular vertex11

when crossing into phase Cb from the de Sitter phase sig-
nals a breaking of the homogeneity and isotropy of geometry
present in the de Sitter phase on scales above the cutoff scale.
It suggests that the bifurcation–de Sitter phase transition can
be associated with the breaking of a symmetry, a situation
common in non-geometric statistical systems.

From this point of view the CdS–Cb phase transi-
tion resembles the phase transition between the branched-
polymer and the crumpled phase in (Euclidean) Dynami-
cal Triangulations. The DT configurations in the branched-
polymer phase appear to be homogeneous and isotropic
(although not in any sense that is associated with a four-
dimensional space-time), while configurations in the crum-
pled phase are characterized by the appearance of two dis-
tinguished, singular vertices of very high order and a sin-
gular link in between them [47–49]. Unfortunately, in this
purely Euclidean quantum gravity model the phase transi-
tion between the two phases is only a first-order transition,
even in extended DT models with an additional coupling
constant, as already mentioned in the Introduction. In CDT
we may be in the more exciting situation that the analogous
CdS–Cb phase transition is of second order, like the B–Cb

transition, and therefore it may be used to define a continuum
theory of quantum gravity.

From a more general perspective, our investigation has
given us additional insights into the type of mechanisms
that can drive the nonperturbative dynamics of systems of
(a priori) higher-dimensional geometry and the appearance
of phase transitions, our understanding of which is rather
limited. A conclusion we can already draw at this stage is
that the phase structure of Causal Dynamical Triangulations
in four dimensions, despite the presence of only two tune-
able bare parameters, is amazingly rich and presents us with
further opportunities to uncover viable continuum theories
of quantum gravity.

11 Or of ttot/2 singular vertices when working with a larger (even)
number ttot > 2 of spatial slices.
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Appendix

In this appendix we construct a simple model function
F(N41, N32) for the free energy F(N41, N32) introduced in
Eq. (15), which reproduces the single- and double-peak sig-
nals at the B–Cb phase transition described in Sect. 3. It is
based on an ansatz of the form

F(N41, N32) = c1 + g1(N41) + g2(N32)

+ c2 g3(N41)g4(N32), (24)

where the ci are constants and the gi are functions of the
counting variables N41 and N32 as indicated. The motivation
behind this ansatz is that it can in principle account in a simple
way for the observed single- and double-peak structure of the
probability distributions of the parameter x = N41−N32, as
follows. Assume that all gi are quadratic functions of their
arguments in a reasonably large part of the (N41, N32)-plane
displayed in Fig. 5. For fixed N41,F is a quadratic function of
N32 and therefore of x , explaining the shape of the observed
probability distribution P̃(x) shown in Fig. 4. Conversely,
for fixed N4 = N41 +N32, the model function F will be a
fourth-order polynomial in x , and can in principle account
for the double peak in the observed probability distribution
P̄(x) depicted in Fig. 3.

On the other hand, it is clear that the ansatz (24) with
quadratic functions gi cannot be the whole story, because
it would make the associated probability distribution P̃(x),
obtained by exponentiating F according to Eq. (17), a pure
Gaussian. However, the standard deviation calculated using
(18) would then be independent of the coupling κ32, and
could not give rise to a peak like the ones shown in Fig. 8.
The fact that there is an ansatz which produces a double
peak in P̄(x), but no signal of critical behaviour in P̃(x)
further corroborates the original statement in [37,38] that
the presence of a double peak is not per se related to a (first-
order) transition.

We will now show that using the ansatz (24) in the rectan-
gular region N41 ∈ [30.000, 37.000], N32 ∈ [3.000, 11.000]
and imposing suitable normalization conditions on the func-
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tions gi , they can be determined uniquely from the data,
without assuming any specific functional form for them.
Also the constants ci get determined uniquely. Substitut-
ing the extracted functions and constants into (24) yields a
function F(N41, N32) that agrees with the directly measured
F(N41, N32) up to noise in the data.

The additional constraints we impose are

〈g1(N41)〉N41 = 〈g2(N32)〉N32 = 〈g3(N41)〉N41

= 〈g4(N32)〉N32 = 0,

〈g3(N41)
2〉N41 = 〈g4(N32)

2〉N32 = 1, (25)

where for each of the two variables z = N41, N32 the average
〈 f (z)〉z of a function f (z) is defined as

〈 f (z)〉z := 1

zmax−zmin+1

zmax∑

z=zmin

f (z). (26)

Taking into account the relations (25), three of the
unknown quantities can be constructed directly from the mea-
sured function F(N41, N32), namely,

c1 = 〈F(N41, N32)〉N41,N32 ,

g1(N41) = 〈F(N41, N32)〉N32 − c1, (27)

g2(N32) = 〈F(N41, N32)〉N41 − c1,

where the first equation involves a double average. We can
find the remaining functions g3(N41) and g4(N32) by solving
an eigenproblem. Let us define the two matrices

�N41,N32 := F(N41, N32) − c1−g1(N41)−g2(N32), (28)

MN41,N32 := �N41,N32 − c2 g3(N41) g4(N32). (29)

To find the best approximation of F(N41, N32)byF(N41, N32)

we have to minimize the error function E , defined as

E =
∑

N41,N32

(F(N41, N32) − F(N41, N32))
2

=
∑

N41,N32

M2
N41,N32

= Tr MMT . (30)

One can show that in order to extremize (30), g3(N41) must
be an eigenvector of the matrix ��T , and g4(N32) an eigen-
vector of the matrix �T�. To minimize E , one must choose
the eigenvectors corresponding to the largest eigenvalues, a
condition that fixes g3(N41) and g4(N32). The largest eigen-
value is positive and has the same value c2

2 for both matrices,
which also fixes the (positive) constant c2.

Having determined all functions gi and constants ci , the
resulting model function F(N41, N32) differs from the orig-
inal empirical function F(N41, N32) only by what looks like
noise, which suggests that in the selected region the func-
tional form assumed in (24) is very accurate.

The extracted functions g1(N41) and g2(N32) are shown
in Fig. 15. Although g1(N41) is approximated very well by

0 20 40 60 80

-2

0

2

4 g1(N41)
g2(N32)

Fig. 15 The functions g1(N41) (blue dots) and g2(N32) (yellowdots) of
the ansatz (24), extracted from the measured free energy F(N41, N32).
The ranges of the parameters N41 and N32 on the horizontal axis have
been rescaled by a common factor and shifted to fit them into a single
coordinate system. The red curves are best fit quadratic functions
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g4(N32)

Fig. 16 The functions g3(N41) (blue dots) and g4(N32) (yellow dots)
of the ansatz (24), extracted from the measured free energy F(N41, N32)

as described in the text. Again, the ranges of the parameters N41 and N32
on the horizontal axis have been rescaled and shifted. The red curves
are best fit quadratic functions

a quadratic function in a neighbourhood around its mini-
mum, that is, in the range of N41 we have been considering,
this cannot possibly be true for its entire range. The rea-
son is that a quadratic dependence would imply an entropy
growth proportional to e+const·N2

41 , which would contradict
the fact, proven in [51], that the number of triangulations
can grow at most exponentially with N41. The quadratic fit
displayed in Fig. 15 must therefore be a local approxima-
tion arising as an expansion of a slower growing function
of N41.

The extracted functions g3(N41) and g4(N32) are shown in
Fig. 16. Because both g2(N32) and g4(N32) are well approx-
imated by quadratic polynomials, the corresponding distri-
bution P̃(x) for fixed N41 (cf. Eq. (17)) is almost Gaussian.
The function g3(N41) is nearly linear so g3(N41) · g4(N32)

results in a decreasing width of the distribution P(N41, N32)

as N41 grows (the larger N41, the more negative is the coef-
ficient in front of N 2

32 in F(N41, N32)). Going back to our
earlier Fig. 6 depicting the distribution P̄(x) of x for fixed
N4, the green curve is based on the ansatz (24) with quadratic
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functions gi .12 It fits the data based directly on the measured
free energy F(N41, N32) (indicated by the blue dots) quite
well.

To summarize, we have demonstrated that a simple ansatz
like (24), with quadratic functions gi (x) can reproduce the
observed features of the probability distributions P̃(x) and
P̄(x), without at the same time reproducing any signal of
critical behaviour. This further supports earlier assertions that
the appearance of a double peak in P̄(x) is not necessarily
related to any specific form of critical behaviour.
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