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Abstract We consider a model based on A4 symmetry to
explain the phenomenon of neutrino mixing. The sponta-
neous symmetry breaking of A4 symmetry leads to a co-
bimaximal mixing matrix at leading order. We consider the
effect of higher order corrections in neutrino sector and find
that the mixing angles thus obtained, come well within the
3σ ranges of their experimental values. We study the impli-
cations of this formalism on the other phenomenological
observables, such as CP violating phase, Jarlskog invariant
and the effective Majorana mass |Mee|. We also obtain the
branching ratio of the lepton flavour violating decay μ → eγ
in the context of this model and find that it can be less than
its present experimental upper bound.

1 Introduction

Neutrinos are the least interacting entities among the standard
model particles and exist in three flavours (electron neutrino,
muon neutrino and tau neutrino). They change their flavour
as they propagate and this phenomenon is known as neu-
trino oscillation which occurs since the flavour eigenstates
of neutrinos are mixture of mass eigenstates. The mixing is
described by PMNS matrix [1,2], which can be parameter-
ized in terms of three mixing angles and three CP violating
phases as

VPMNS = UPMNS.Pν

=
⎛
⎝

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23
s12s23 − c12s13c23e

iδ −c12s23 − s12s13c23e
iδ c13c23

⎞
⎠ Pν,

(1)

where ci j = cos θi j and si j = sin θi j , θ12, θ23 and θ13 are the
three mixing angles, δCP is the Dirac phase and the other two
Majorana phases come in Pν

Pν = diag(eiρ, eiσ , 1).
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Neutrino oscillation experiments gained a lot of interest as
a probe to neutrino mixing and mass spectrum since the
oscillation probability depends on mixing angles, Dirac CP
phase and the mass square differences (�m2

21 and �m2
23).

Results from earlier experiments indicated that θ13 is very
small, can be zero and the lepton mixing is very close to
TBM (tri-bimaximal mixing) see also [3–12], which predicts
sin θ13 = 0, sin2 θ23 = 1/2 and tan2 θ12 = 1/2. This made
it possible to explain the neutrino mixing as TBM type, with
small deviation due to perturbation in the charged-lepton
or neutrino sector. There are many models which explain
TBM mixing pattern on the basis of A4 symmetry [13] with
a certain set of Higgs scalars and vacuum alignments. Recent
experimental observations of moderately large θ13 [14,15],
made neutrino mixing a little far from TBM type, but close to
co-bimaximal mixing which predicts non-zero θ13 (θ13 �= 0,
θ23 = π/4, δCP = ±π/2) [16]. Supersymmetric models
based on A4 family symmetry, combined with the general-
ized CP symmetry [17], can also predict trimaximal (TM)
lepton mixing, (in which either only the first column or only
the second column of the lepton mixing matrix is assumed to
take the TBM form), together with either zero CP violation
or δCP = ±π/2. Also models based on S4 family symmetry
and generalized CP symmetry [18] predict trimaximal lepton
mixing and the Dirac CP is predicted to be either conserved
or maximally broken. In Ref. [19], a minimal extension of
the simplest A4 model has been considered, which not only
can induce non-zero θ13 value, consistent with the recent
observations, but also can correlate the CP violation in neu-
trino oscillation with the octant of the atmospheric mixing
angle θ23. In this paper, we would like to consider a model
based on A4 symmetry which gives co-bimaximal mixing in
neutrino sector at leading order. To accommodate deviations
in mixing angles to make them compatible with the experi-
mental results, we include a perturbation in neutrino sector
due to higher order corrections, which can be represented as
five-dimensional operators. The best-fit values and 3σ ranges
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Table 1 The best-fit values and the 3σ ranges of the neutrino oscillation
parameters from Ref. [20]

Mixing parameters Best fit values 3σ Range

sin2 θ12 0.323 0.278 → 0.375

sin2 θ23 (NH) 0.567 0.393 → 0.643

sin2 θ23 (IH) 0.573 0.403 → 0.640

sin2 θ13 (NH) 0.0226 0.0190 → 0.0262

sin2 θ13 (IH) 0.0229 0.0193 → 0.0265

δCP (NH) 1.41π (0 → 2π)

δCP (IH) 1.48π (0 → 2π)

�m2
21/10−5 eV2 7.60 7.11 → 8.18

�m2
31/10−3 eV2(NH) 2.48 2.30 → 2.65

�m2
31/10−3 eV2(IH) −2.38 −2.54 → −2.20

of neutrino oscillation parameters taken from Ref. [20] are
given in Table 1.

The paper is organized as follows. The details of our model
is presented in Sect. 2. In Sects. 3 and 4, we discuss the
vacuum alignment and lepton flavour violating muon decay
μ → eγ in the context of the model. In Sect. 5, we describe
the higher order corrections in neutrino sector and we con-
clude our discussion in Sect. 6.

2 The model

The model is based on A4 group [21], which is the group
of even permutation of four objects and is the smallest non-
Abelian discrete group with triplet irreducible representation.
It has four irreducible representations: 1, 1′, 1′′ and 3, with
the multiplication rule

3 × 3 = 1 + 1′ + 1′′ + 3 + 3. (2)

As we know, A4 allows the charged-lepton mass matrix to
be diagonalized by the Cabibbo–Wolfenstein matrix [22]

Uω = 1√
3

⎛
⎝

1 1 1
1 ω ω2

1 ω2 ω

⎞
⎠ , (3)

where ω = e2π i/3 = −1/2 + i
√

3/2.
In this work, our discussion is limited to the leptonic sec-

tor. The particle content of the model includes, in addition to
standard model fermions (i.e., the lepton doublets li L and
charged lepton singlets li R), three right-handed neutrinos
(νi R), four Higgs doublets (φi , φ0) and three Higgs singlets
(χi ). They belong to four irreducible representations of A4

as given in Table 2.
Here A4 symmetry is accompanied by an additional

U (1)X symmetry as discussed in Ref. [13], which prevents
the existence of Yukawa interactions of the form l̄i Lνi R φ̃i and

Table 2 Particle content of the model along with their quantum num-
bers

SU (2)L U (1)Y A4

li L 2 −1 3

l1R
l2R
l3R

1 −2
1
1′
1′′

νi R 1 0 3

φi 2 1 3

φ0 2 1 1

χi (real gauge singlet) 1 0 3

l̄i L li Rφ0 as li L , li R , φ̃0 have quantum number X = 1, and
all other fields have X = 0. The phenomenologically disal-
lowed Nambu-Goldstone boson does not arise in this case as
U (1)X symmetry does not break spontaneously but explic-
itly. Thus, the Yukawa Lagrangian for the leptonic sector is
given as [23]

L = −
{[

λ1
(
l̄i Lφi

)
l1R
]+

[
λ2
(
l̄i Lφi

)′′
l2R
]

+
[
λ3
(
l̄i Lφi

)′
l3R
]}

−
{
λ0

[(
l̄i Lνi R

)
φ̃0

]
+ 1

2

[
M
(
ν̄i R ν̂i R

)]+ λχ

[(
ν̄i R ν̂i R

)
3 χi

]}

+ h.c., (4)

where ν̂i R are antiparticles of νi R and (l̄i Lφi )
′, (l̄i Lφi )

′′ and(
ν̄i R ν̂i R

)
3 are 1′, 1′′ and triplet representations of A4 respec-

tively. As the scalars φi , φ0 and χi get vacuum expecta-
tion values vi , v0 and ωi respectively, the above Lagrangian
becomes

L = −l̄L MllR − ν̄LMDνR − 1

2
ν̄RMR ν̂R + h.c, (5)

where Ml , MD and MR are charged-lepton, Dirac neutrino
and right-handed neutrino mass matrices and have the forms

Ml =
⎛
⎝

λ1v1 λ2v1 λ3v1

λ1v2 λ2v2ω
2 λ3v2ω

λ1v3 λ2v3ω λ3v3ω
2

⎞
⎠ , (6)

MD = λ0v0 I, (7)

where I is the identity matrix, and

MR =
⎛
⎝

M λχω3 λχω2

λχω3 M λχω1

λχω2 λχω1 M

⎞
⎠ . (8)

For the vacuum alignment vi = v, the charged lepton sector
can be diagonalized by the transformation:

Uω · Ml · I =
⎛
⎝

√
3vλ1 0 0
0

√
3vλ2 0

0 0
√

3vλ3

⎞
⎠ , (9)
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Fig. 1 Variation of sin2 θ13 with θ (left panel) and the correlation plots between sin2 θ12 and sin2 θ13 (right panel). The black dashed line in the
left panel denotes the central value of sin2 θ13 and the red dot-dashed lines represent the corresponding 3σ values

where Uω is the Cabibbo–Wolfenstein matrix given in Eq.
(3). The light neutrino mass is given by the type-I seesaw
formula

Mν = −MT
D · M−1

R · MD. (10)

Since MD is proportional to an identity matrix, the neutrino
mixing matrix will be the one which diagonalizes the right-
handed neutrino mass matrix MR . The Majorana mass matrix
MR can be parameterized as

MR =
⎛
⎝

A C D
C A B
D B A

⎞
⎠ , (11)

in a basis where charged-lepton mass matrix is not diagonal.
However, in the charged lepton mass diagonal basis Md

R =
U †

ω·MR ·U∗
ω and can be diagonalized by tri-bimaximal (TBM)

mixing matrix for D = C = 0, which we don’t need as it
gives vanishing θ13. Even if these conditions are not satisfied
some of the off-diagonal elements of MR become zero in
TBM basis and one can go to the TBM basis through the
transformation

M ′
R = U †

T · MR ·U∗
T

=
⎛
⎜⎝

A + B 1√
2
(D + C) 0

1√
2
(D + C) A i√

2
(D − C)

0 i√
2
(D − C) B − A

⎞
⎟⎠ , (12)

where

UT =
⎛
⎜⎝

0 1 0
1√
2

0 i√
2

1√
2

0 −i√
2

⎞
⎟⎠ . (13)

With the condition D = −C , M ′
R becomes

⎛
⎝

A + B 0 0
0 A i

√
2D

0 i
√

2D B − A

⎞
⎠ , (14)

which can be diagonalized by UR , having the form

UR =
⎛
⎝

1 0 0
0 c is
0 is c

⎞
⎠ , (15)

where s and c stand for sin θ and cos θ respectively and satisfy
the relation

cs

c2 − s2 =
√

2D

B
=

√
2ω2

ω1
. (16)

It should be noted that, this ratio should be real, since ω1,2 are
VEV of real scalar fields χi . The condition C = −D can be
realized with the vacuum alignment 〈χi 〉 = (ω1, ω2,−ω2)

[24]. Thus, the lepton mixing matrix becomes

U = Uω ·UT ·UR, (17)

which basically known as co-bimaximal mixing matrix and
predicts the mixing angles and CP violating Dirac phase as
θ13 �= 0, θ23 = π/4 and δCP = ±π/2. Also, the mixing
angles θ12 and θ13 are not independent and one can express
sin2 θ12 in terms of sin2 θ13 as

sin2 θ12 = 1 − 3 sin2 θ13

3(1 − sin2 θ13)
, with sin θ13 = s√

3
. (18)

To illustrate these results, we show in Fig. 1 the variation of
sin2 θ13 with θ (left panel) and the correlation plot between
sin2 θ13 and sin2 θ12 (right panel). From the figure it can be
seen that the observed values of solar (θ12) and reactor (θ13)
mixing angles can be accommodated in this model.

3 Vacuum alignment

The complete scalar potential is given by

V = V (φi ) + V (χi ) + V (φ0) + V (φiχi ) + V (φiφ0) (19)
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with

V (φi ) = μ2
φi

∑
j

φ
†
jφ j + λ

φi
1
2

⎛
⎝∑

j

φ
†
jφ j

⎞
⎠

2

+λ
φi
2 (φ

†
1φ1 + ωφ

†
2φ2 + ω2φ

†
3φ3)(φ

†
1φ1

+ω2φ
†
2φ2 + ωφ

†
3φ3) + λ

φi
3 [(φ†

2φ3)(φ
†
3φ2)

+(φ
†
3φ1)(φ

†
1φ3) + (φ

†
1φ2)(φ

†
2φ1)]

+
{

λ
φi
4
2

[(
φ

†
2φ3

)2 +
(
φ

†
3φ1

)2 +
(
φ

†
1φ2

)2
]

+ h.c.

}
,

V (χi ) = μ2
χi

∑
j

χ jχ j + δχi χ1χ2χ3 + λ
χi
1

⎛
⎝∑

j

χ jχ j

⎞
⎠

2

+λ
χi
2 (χ1χ1 + ωχ2χ2 + ω2χ3χ3)(χ1χ1 + ω2χ2χ2

+ωχ3χ3) + λ
χi
3 [(χ2χ3)2 + (χ3χ1)2 + (χ1χ2)2],

V (φ0) = μ2
φ0

φ
†
0φ0 + λ

φ0
1

(
φ

†
0φ0

)2
,

V (φiχi ) = δφiχi (φ
†
2φ3χ1 + φ

†
3φ1χ2 + φ

†
1φ2χ3)

+λ
φiχi
1

∑
j,k

φ
†
jφ jχkχk + λ

φiχi
2 (φ

†
1φ1 + ωφ

†
2φ2

+ω2φ
†
3φ3)(χ1χ1 + ω2χ2χ2 + ωχ3χ3)

+λ
φiχi
3 (φ

†
2φ3χ2χ3 + φ

†
3φ1χ3χ1 + φ

†
1φ2χ1χ2)

+h.c., (20)

V (φiφ0) = λ
φiφ0
1

⎛
⎝∑

j

φ
†
jφ j

⎞
⎠φ

†
0φ0 + λ

φiφ0
2

⎛
⎝∑

j

φ
†
jφ0 φ

†
0φ j

⎞
⎠

+[λφiφ0
3 (φ

†
1φ0φ

†
2φ3 + φ

†
2φ0φ

†
3φ1 + φ

†
3φ0φ

†
1φ2)

+λ
φiφ0
4 (φ

†
1φ0φ

†
3φ2 + φ

†
2φ0φ

†
1φ3 + φ

†
3φ0φ

†
2φ1)

+h.c.], (21)

V (χiφ0) = λφ0χi

⎛
⎝∑

j

χ jχ j

⎞
⎠φ

†
0φ0. (22)

The last term in Eq. (21) breaks U (1)X symmetry explic-
itly and removes Goldstone boson which occurs due to the
spontaneous breaking of U (1)X symmetry. In this model,
we have the vacuum alignment 〈φ0〉 = u, 〈φi 〉 = (v, v, v),
and 〈χi 〉 = (w1, w2,−w2) which is a possible minimum of
scalar potential for V (φiχi ) = 0. A vanishing V (φiχi ) can

be achieved in the limit χi decouples from rest of the field
as mentioned in Ref. [13]. The decoupling of χi requires
λχ → 0, λφ0χi → 0. To generate an acceptable neutrino
mass spectrum λχ has to be nonzero but can be small. A small
but nonzero λχ will generate a sufficiently small V (φiχi )

which will be too small to alter vacuum alignment consider-
ably. In this limit the minimization condition on u is given
by

μ2
φ0
u + 2λ

φ0
1 (u∗u)u + λ

φiφ0
1 (| v1 |2 + | v2 |2 + | v3 |2)u

+λ
φiφ0
2

⎛
⎝∑

j,k

v∗
j vk

⎞
⎠ u

+λ
φiφ0
3

∗[v1v2v
∗
3 + v2v3v

∗
1 + v3v1v

∗
2 ]

+λ
φiφ0
4

∗[v1v3v
∗
2 + v2v1v

∗
3 + v3v2v

∗
1 ] = 0

The above equation has a solution

u = λ
φiφ0
3

∗[v1v2v
∗
3 + v2v3v

∗
1 + v3v1v

∗
2 ] + λ

φiφ0
4

∗[v1v3v
∗
2 + v2v1v

∗
3 + v3v2v

∗
1 ]

μ2
φ0

+ (λ
φiφ0
1 + λ

φiφ0
2 )(

∑
j |v j |2)

(23)

for |u|2 	 |vi |2.

(a) Thus, for this case, i.e., for |u|2 	 |vi |2 minimization
conditions on vi are given as

∂V

∂v∗
i

= μ2
φi

vi + λ
φi
1 vi

∑
j

|v j |2 + λ
φi
2 vi

⎛
⎝2|vi |2 −

∑
j �=i

|v j |2
⎞
⎠

+λ
φi
3 vi

⎛
⎝∑

j �=i

|v j |2
⎞
⎠+ λ

φi
4 v∗

i

∑
j �=i

v2
j = 0. (24)

Considering λ
φi
4 as real, one can get the solution

vi = v =
√√√√√

−μ2
φi

3λ
φi
1 + 2

(
λ

φi
3 + λ

φi
4

) , (25)

which is allowed.
(b) Minimization conditions on wi is given by

∂V

∂w1
= 2

[
μ2

χi
+ λ

χi
2

′ (
w2

2 + w2
3

)]
w1 + δχi w2w3

+ 4λ
χi
1

′
w3

1 = 0, (26)
∂V

∂w2
= 2

[
μ2

χi
+ λ

χi
2

′ (
w2

1 + w2
3

)]
w2 + δχi w1w3

+ 4λ
χi
1

′
w3

2 = 0, (27)

123
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∂V

∂w3
= 2

[
μ2

χi
+ λ

χi
2

′ (
w2

2 + w2
1

)]
w3 + δχi w2w1

+ 4λ
χi
1

′
w3

3 = 0, (28)

one of the solutions of above set of equations is w1 �= 0,
w3 = −w2 �= 0, which is the vacuum alignment condi-
tion for 〈χi 〉.

4 Effect of additional higgs doublets on lepton flavour
violating decay μ → eγ

Since | u |2	 v2 one can neglect the mixing between φi and
φ0 and the mass-squared matrices in the Re[φ0

i ], Im[φ0
i ], and

φ±
i bases have the same form [25].

M2 =
⎛
⎝
a b b
b a b
b b a

⎞
⎠ , (29)

where a = 2(λ
φi
1 +2λ

φi
2 )v2, −4λ

φi
4 v2, −2(λ

φi
3 +λ

φi
4 )v2, and

b = 2(λ
φi
1 − λ

φi
2 + λ

φi
3 + λ

φi
4 )v2, 2λ

φi
4 v2, (λ

φi
3 + λ

φi
4 )v2 for

Re[φ0
i ], Im[φ0

i ], and φ±
i respectively. Hence, there are three

linear combinations of φi s, φ = 1√
3

(φ1 + φ2 + φ3), φ′ =
1√
3

(
φ1 + ωφ2 + ω2φ3

)
, and φ′′ = 1√

3

(
φ1 + ω2φ2 + ωφ3

)

with vacuum expectation values
√

3v, 0, and 0 respec-
tively. The Higgs doublet φ with mass-squared eigenvalues
(3λ

φi
1 + 2λ

φi
3 + 2λ

φi
4 )v2, 0, 0 for Re[φ0], Im[φ0] and φ± can

be identified as standard model Higgs doublet which gives
masses to charged leptons. One can see this by expressing
Yukawa interactions of φi s with leptons in charged lepton
mass diagonal basis

L =
(

me√
3v

(νe, e)LeR + mμ√
3v

(νμ, μ)LμR + mτ√
3v

(ντ , τ )LτR

)
φ

+
(

me√
3v

(νμ, μ)LeR + mμ√
3v

(ντ , τ )LμR + mτ√
3v

(νe, e)LτR

)
φ′

+
(

me√
3v

(ντ , τ )LeR + mμ√
3v

(νe, e)LμR + mτ√
3v

(νμ, μ)LτR

)
φ′′

(30)

The Higgs doublets φ′ and φ′′ contributes to flavour violating
decays such as μ → eγ . The prominent contribution comes
from φ′ and the branching ratio is given by [25],

Br(μ → eγ ) = 9

32π2 m
4
τ

(
M2

R − M2
I

M2
RM

2
I

)2 (
v2

0

3v2

)2

(31)

where M2
R = 2(3λ

φi
2 − λ

φi
3 − λ

φi
4 )v2, M2

I = −6λ
φi
4 v2

are mass-squared eigenvalues of 1√
3
(Re[φ1] + ωRe[φ2] +

ω2Re[φ3]) and 1√
3
(Im[φ1] + ωIm[φ2] + ω2Im[φ3]) respec-

tively and v2
0 = (1/2

√
2GF ). The predicted branching ratio

will be below the experimental upper limit Br(μ → eγ ) <

4.2 × 10−13 [26] for

(
M2

R − M2
I

M2
RM

2
I

) 1
2

< 1.56 × 10−3 GeV−1. (32)

5 Perturbation in neutrino sector

In this section, we will consider the perturbations to mass
matrices due to higher order corrections. Prominent correc-
tions come from five-dimensional operator λi j ν̄i R ν̂ j Rχiχ j

which modifies right-handed neutrino mass matrix. Charged
lepton and Dirac neutrino masses also receive corrections
from λ′

jk l̄ilφi l j Rχi and λ′
jk l̄il φ̃0ν j Rχi respectively, and here

we are neglecting those corrections since they allow the mix-
ing of χi with other fields.

All elements of Majorana mass matrix MR receive cor-
rections which is proportional to ω2

1 + ω2
2 for diagonal ele-

ments and ω1ω2 for off diagonal elements. Since 0.04 <

(ω2/ω1) < 0.22, obtained from Eq. (16), using the allowed
value of s = √

3 sin θ13, we neglect corrections to off- diag-
onal elements.

δMR 

⎛
⎝

λ11ω
2
1 0 0

0 λ22ω
2
1 0

0 0 λ33ω
2
1

⎞
⎠ . (33)

These corrections will modify the light neutrino mass matrix
and the inverse of modified light neutrino mass matrix in
TBM basis can be parameterized as

M−1
ν =

⎛
⎝

B + A 0 0
0 A i

√
2D

0 i
√

2D B − A

⎞
⎠

+
⎛
⎝

1
2 (λ22 + λ33) 0 i

2 (λ33 − λ22)

0 λ11 0
i
2 (λ33 − λ22) 0 −1

2 (λ33 + λ22)

⎞
⎠ω2

1. (34)

Hence, in the charged lepton diagonal basis light neutrino
mass matrix can be diagonalized by

U = Uω ·UT ·UR ·U13, (35)

where

U13 =
⎛
⎝

c′ 0 s′e−iφ

0 1 0
−s′eiφ 0 c′

⎞
⎠ . (36)

with s′ = sin θ ′ and c′ = cos θ ′.
To obtain mixing angles we compare lepton mixing matrix

U (35) with PMNS matrix (1), i.e.,

U = UPMNS. (37)
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Fig. 2 Allowed parameter space in θ ′ − θ (left panel), θ − φ (right panel) and θ ′ − φ planes compatible with the observed data

The mixing angles sin2 θ12, sin2 θ23 and sin2 θ13 are related
to the elements of U as

sin2 θ12 = |U12|2
1 − |U13|2 , sin2 θ23 = |U23|2

1 − |U13|2 ,

sin2 θ13 = |U13|2, (38)

where Ui j is the i j th element of the lepton mixing matrix U .
Now using Eqs. (3), (13), (35) and (38), we obtain

sin2 θ13 = 1

3
[2s′2 − 2

√
2sc′s′ sin φ + s2c′2], (39)

sin2 θ12 = 1 − s2

3 − (2s′2 − 2
√

2sc′s′ sin φ + s2c′2)
, (40)

sin2 θ23 = 1

2
+

√
3cc′s′ cos φ

3 − (2s′2 − 2
√

2sc′s′ sin φ + s2c′2)
, (41)

Another important parameter is JCP, the Jarlskog invari-
ant, which is a measure of CP violation, is found to have the
value in this model as

JCP = Im[U11U22U
∗
21U

∗
12]

= c

6
√

3
[√2sc′2 − (1 + c2)c′s′ sin φ − √

2ss′2]. (42)

In standard parametrization, the value of JCP is

JCP = 1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δCP. (43)

Comparing Eqs. (42) and (43), we obtain

sin δCP =
√

2s(c′2 − s′2) − c′s′(1 + c2) sin φ√
X ′(2 − X ′ + s2)

(
1 − Y ′2

(3−X ′)2

) , (44)

where

X ′ =
[
2s′2 − 2

√
2sc′s′ sin φ + s2c′2] ,

Y ′ = 2
√

3cc′s′ cos φ. (45)

To show that the model predicts the mixing angles compat-
ible with the observed data,we obtain the allowed parameter
space compatible with the 3σ range of the observed data
by varying the parameters s between [−1, 1], s′ between
[−0.1, 0.1] and φ between [−π, π ], we show the allowed
parameter space in various planes in Fig. 2. Using these
allowed values of different parameters, we show the correla-
tion plots between sin2 θ13 and sin2 θ23 (left panel), sin2 θ13

and sin2 θ12 (right panel) and between sin2 θ13 and δCP/JCP

(bottom panel) in Fig. 3. From these plots it can be seen that
by including higher order correction to right handed neutrino
mass matrix, it is possible to accommodate the observed data.

In this model, light neutrinos acquire Majorana masses
through Type-I seesaw which indicates neutrinos are of
Majorana type. Majorana nature of neutrinos predicts the
existence of neutrino-less double beta decay (0νββ), which
is a process where two neutrons inside a nucleus convert
into two protons without emitting neutrinos, i.e., (A, Z) →
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Fig. 3 Correlation plots between sin2 θ13 and sin2 θ23 (left panel), and sin2 θ13 and sin2 θ12 (right panel) and between sin2 θ13 and δCP/JCP (bottom
panel) including the corrections

(A, Z + 2) + 2e. Several experiments like KamLAND-Ze
[27], EXO [28] and GERDA [29] are searching for the
neutrino-less double beta decay. These experiments put upper
bound on |Mee|, the (1, 1) element of neutrino mass matrix,
since the half-life of 0νββ decay is proportional to |Mee|2.
The expression for |Mee| in the flavor basis is

|Mee| = |U 2
11m1 +U 2

12m2 +U 2
13m3|, (46)

wherem1,m2, andm3 are light neutrino masses andU1 j ’s are
elements of first row of the lepton mixing matrix U , which
are given as

U11 = 2√
6
c′ − i√

3
ss′eiφ,

U12 = 1√
3
c,

U13 = 2√
6
s′e−iφ + i√

3
sc′ . (47)

The lowest upper bound on |Mee| is 0.22 eV came from
GERDA phase-I data. Here we study the variation of |Mee|
with the lightest neutrino massm1 (m3), in the case of normal
(inverted) hierarchy as shown in Fig. 4. In our calculation we
have used the relations

m2 =
√
m2

1 + �m2
21,

m3 =
√
m2

1 + �m2
31, (48)

for normal hierarchy and

m1 =
√
m2

3 + �m2
13,

m2 =
√
m2

3 + �m2
13 + �m2

21, (49)

for inverted hierarchy, and obtained upper limit onm1 (m3) as
0.071 (0.065) eV taking into account the cosmological upper
bound on �imi as 0.23 eV [30]. Another observable is the
kinetic electron neutrino mass in beta decay (me), which is
probed in direct search for neutrino masses, can be expressed
as

me =
√

|U11|2m2
1 + |U12|2m2

2 + |U13|2m2
3. (50)

In the right panel of Fig. 4, we show the variation of me

with the lightest neutrino mass m1 (m3) for normal hierarchy
(inverted hierarchy) case, and the upper limit on me is found
to be 0.07 (0.08) eV.

6 Conclusions

We consider a model based on A4 symmetry, which gives
co-bimaximal form (θ23 = π/4, δCP = ±π/2 and θ13 �= 0)
for the leading order neutrino mixing matrix. There are four
Higgs doublets φ0, and φi , for i = 1, 2, 3 in this model. One
of the three linear combinations (φ) of φi behaves exactly as
standard model Higgs doublet while neutral component of
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Fig. 4 Variation of |Mee| with the lightest neutrino mass m1 (m3) (left panel) and me vs. m1 (m3) in the right panel for the normal mass hierarchy
(inverted mass hierarchy) case

the other two (φ′, φ′′) contribute to the lepton flavour violat-
ing decays such as μ → eγ . We have considered higher order
corrections in neutrino sector coming from five-dimensional
operators after spontaneous breaking of A4 symmetry. The
mixing angles, thus obtained are found to be within the 3σ

ranges of their experimental values. The CP violating phase
δCP is found to be around the region ±π/2, and the upper
limit on the Jarlskog invariant is O(10−2). We also stud-
ied the variation of the effective neutrino mass |Mee| with
the lightest neutrino mass m1 (m3) in the case of normal
(inverted) hierarchy and found its value to be lower than the
experimental upper limit for all allowed values of m1 (m3).
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