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Abstract Within a superfield approach, we formulate a
simple quantum generating equation of the field–antifield
formalism. Then we derive the Schroedinger equation with
the Hamiltonian whose �-exact part serves as a generator
to the quantum master transformations. We show that these
generators do satisfy a nice composition law in terms of the
quantum antibrackets. We also present an Sp(2) symmet-
ric extension to the main construction, with specific features
caused by the principal fact that all basic equations become
Sp(2) vector-valued ones.

1 Introduction

From the early days of the field–antifield formalism, a fun-
damental idea was presented [1,2] as to how to formulate a
universal hyper-gauge theory whose gauge generators would,
by construction, be included naturally into the Hessian of the
original master action of the universal theory, defined so as to
satisfy the (classical) master equation formulated in terms of
the antibrackests [3,4]. Then the notion of a proper solution to
the master equation was defined by requiring that there were
no other gauge generators involved than the ones included
into the Hessian. The next step was made by formulating
the quantum master equations in terms of the odd Lapla-
cian operator. The quantum master equation was derived later
directly from the Hamiltonian formalism [5,6]. These basic
ideas were developed as a success [1,2], as applied to both
the irreducible and to the reducible gauge theories. In gen-
eral, the universal hyper-gauge theory was invented so as to
“be ready” to include into itself any possible particular model
with a gauge-invariant initial action.
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In the present paper, we develop further the profound idea
of the hyper-gauge theory at the quantum superfield level.
Firstly, within a superfield approach [7–9], we formulate a
simple quantum generating equation of the field–antifield
formalism as having its configuration space identified with
the antisymplectic phase space of fields and antifields. The
latter generating equation is presented in terms of a super-
field covariant derivative with respect to the two-dimensional
super-time whose boson component is the “ordinary” time,
purely formal in its origin, while its fermion component is
identified naturally with the BRST parameter. The covari-
ant derivative squared is just the “ordinary” time derivative.
Then we derive the standard Schroedinger equation by apply-
ing again the covariant derivative to the generating superfield
equation. We provide effectively for the Hamiltonian com-
muting with the odd Laplacian (the � operator). As usual,
the Hamiltonian consists of a singlet part and a �-exact
part. In particular, in the absence of a singlet component,
the Hamiltonian becomes purely �-exact. We show that the
�-exact part of the Hamiltonian serves as a generator to the
quantum master transformations. Classically, these transfor-
mations consist of two pieces: the first of them is just an
anticanonical transformation, while the second is caused by
the Jacobian of the transformation. Then we show that the
generators of the quantum master transformations do satisfy
a very nice composition law as formulated in terms of the
so-called quantum antibrackets [10,11]. We also present an
Sp(2) symmetric extension to the main construction, with
specific features caused by the principal fact that all basic
equations become Sp(2) vector-valued ones.

2 Superfield generating equation

It appears to be a remarkable feature that the generating equa-
tion of the field–antifield formalism takes the very simple
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form of a superfield Schroedinger equation,

(i h̄D − Q)� = 0, D =: ∂

∂τ
+ τ

∂

∂t
, Q =: � − F,

(2.1)

where D is a covariant super-time derivative, Q is a super-
charge whose kinetic part is the odd Laplacian, �, and F is
a super-potential depending on the momenta in general,

ε(D) = 1, D2 = 1

2
[D, D] = ∂

∂t
, (2.2)

ε(�) = 1, �2 = 1

2
[�,�] = 0, (2.3)

F =: F(Z , P), ε(F) = 1. (2.4)

Equation (2.1) is formulated for a superfield,

� =: �(t, τ, Z), ε(t) = 0, ε(τ ) = 1. (2.5)

We assume that the co-ordinate operators Z A are identified
with the standard full set of the field–antifield variables, and
PA are their respective canonically conjugate momenta oper-
ators,

[Z A, Z B] = 0, [Z A, PB] = i h̄δAB , [PA, PB] = 0. (2.6)

It follows from (2.1) that the standard Schroedinger equation
holds:

i h̄
∂

∂t
� = H�, (2.7)

with the Hamiltonian

H =: −(i h̄)−1 1

2
[Q, Q] = (i h̄)−1

[
(� − 1

2
F), F

]
. (2.8)

The superfield (2.5) has the component form

�(t, τ, Z) =
(

1 + τ(i h̄)−1Q
)

�0(t, Z), (2.9)

where the zero-component �0(t, Z) satisfies by itself Eq.
(2.7) with the Hamiltonian (2.8). As for an arbitrary F , the
Hamiltonian (2.8) does not commute with the �. However,
it follows from (2.8) that

[Q,H] = 0. (2.10)

Thus, we arrive at the implication

[�,H] = 0 ⇒ [H, F] = 0, (2.11)

or more explicitly

[[�, F], F] =
[
�,

1

2
[F, F]

]
= 0. (2.12)

Due to the Poincaré lemma, we have

1

2
[F, F] = −i h̄HS − [�,G], (2.13)

where HS is a boson singlet component,

[�,HS] = 0, HS �= [�, anything], (2.14)

G is an arbitrary fermion operator. By inserting (2.13) into
(2.8), we get

H = HS + H�, (2.15)

where the �-exact � component is defined as

H� =: (i h̄)−1[�,�], � =: F + G. (2.16)

As the G in the second equation in (2.16) is an arbitrary
fermion operator, the respective natural arbitrariness is inher-
ited in (2.15), as well, with having the implicit G dependence
taken into account in the F , via Eq. (2.13) with the singlet
component HS being kept fixed. In its turn, Eq. (2.13) can
be rewritten in the equivalent form

1

2
(i h̄)−1([G,G] − [�,�]) = HS + (i h̄)−1[Q,G]. (2.17)

Once the � operator commutes with the Hamiltonian H, it
follows from Eq. (2.7) for the zero-component �0

i h̄
∂

∂t
��0 = H��0, (2.18)

��0|t=0 = 0 ⇒ ��0|any t = 0. (2.19)

The implication (2.19) shows that the arbitrariness of a solu-
tion to the quantum master equation,

��0 = 0, ε(�0) = 0, �0 =: exp

{
i

h̄
W

}
, (2.20)

is measured by the evolution operator,

�0|t=0 → �0|any t = exp

{
− i

h̄
H t

}
�0|t=0. (2.21)

3 Quantum master transformations and their
composition law

Now, consider a family of operators

HF =: (i h̄)−1[�, F], (3.1)

with F(Z , P) being an arbitrary fermion operator. By defi-
nition, Eq. (3.1) is a generator of a quantum master transfor-
mation [12]. Notice that the operator (3.1) can be rewritten
naturally in terms of both the free-acting operators PA and
the adjoint-acting ones P ′

A,

i h̄HF = (�′F) − ad′(F), (3.2)

where we have used the definitions

ad′(F) =: (F
←−
P ′

A)E AB PB(−1)εB , (3.3)

� =: 1

2
PAE

AB PB(−1)εB , E AB = const,

�′ =: �
∣∣
P→P ′ , (3.4)

PA =: −i h̄∂A(−1)εA ,
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P ′
A =: ad(PA) = [PA, · ], ←−

P ′
A =: −[ · , PA]. (3.5)

Due to the Jacobi identity for (super)commutators, the fol-
lowing relations hold for arbitrary operators A, B,

ad(A) =: [A, · ] ⇒ [ad(A), ad(B)] = ad([A, B]). (3.6)

From the classical point of view, in the right-hand side in
(3.2), the second term describes an anticanonical transforma-
tion with F being a generator, while the first term is caused
by the Jacobian of the latter transformation.

A solution to the Schroedinger equation (2.7) with the
Hamiltonian (3.2) has the form of a quantum anticanonical
transformation,

� = exp
{
−(i h̄)−2 t ad′(F)

}
�J , (3.7)

where the “Jacobian wave function”, �J , does satisfy the
equation

∂t�J = exp
{
(i h̄)−2 t ad′(F)

}
(i h̄)−2(�′F)

× exp
{
−(i h̄)−2 t ad′(F)

}
�J . (3.8)

In the case of F being a function of Z only, Eqs. (3.7) and
(3.8) do provide for the exact solution [12–16],

�(Z , t) = exp
{
t
(
E(−(i h̄)−2 t ad′(F))(i h̄)−2(�′F)

)
(Z)

}

× exp
{
−(i h̄)−2 t ad′(F)

}
�0(Z), (3.9)

where we have denoted

F =: F(Z), E(X) =: exp{X} − 1

X
, (3.10)

and �0(Z) is an initial wave function. Provided the first equa-
tion of (3.10) holds, the Z P symbol for the whole operator
(3.2) corresponds to the Weyl symbol for the second term
alone in the latter operator [17].

It is a remarkable feature that the generators of the form
(3.1) satisfy the following composition law:

(i h̄)−1[HF ,HF ′ ] = HF◦F ′, (3.11)

where

F ◦ F ′ =: (i h̄)−2(F, F ′)�, (3.12)

with (A, B)� being the so-called quantum�-antibracket [10,
11,18,19],

(A, B)� =: 1

2
([A, [�, B]]

−(A ↔ B)(−1)(εA+1)(εB+1)). (3.13)

Their main property,

[�, (A, B)�] = [[�, A], [�, B]], (3.14)

yields Eq. (3.11) immediately. The quantum 2-antibracket
(3.13) does satisfy the modified Jacobi relations,

(A, (B,C)�)�(−1)(εA+1)(εC+1) + cyclic perm.(A, B,C)

= 1

2
[(A, B,C)�(−1)(εA+1)(εC+1),�], (3.15)

where the (A, B,C)� is the so-called quantum 3-antibracket,
and so on [10,11].

4 Sp(2) symmetric construction

In its Sp(2) symmetric version [20–23], a superfield
Schroedinger equation becomes Sp(2) vector valued,

(i h̄Da − Qa)� = 0, (4.1)

where the following conventions 1 hold for the required Sp(2)

vector-valued operators:

Da =: ∂

∂τa
+ gabτb

∂

∂t
, [Da, Db] = 2gab

∂

∂t
, (4.2)

Qa =: �a+ − Fa, �a± =: �a ± i

h̄
V a,

Fa =: gabεbc(i h̄)−1[�c+, B], (4.3)

[�a,�b] = 0, [�a±,�b±] = 0, (4.4)

Z A =: (�α,�αa;
�∗

αa,�
∗∗
α ), PA =: (Pα, Pαa; Pαa∗ , Pα∗∗), (4.5)

�a =: 1

2
PAE

ABa PB(−1)εB , E ABa = const, (4.6)

V a =: −i h̄ εab�∗
αb P

α∗∗(−1)εα , (4.7)

a boson operator B is restricted so as to satisfy the specific
“master equation”,

[�a+, (B, B)b�+] + (a ↔ b) = 0, ε(B) = 0, (4.8)

with

(A, B)a�± =: 1

2

([A, [�a±, B]]
−(A ↔ B)(−1)(εA+1)(εB+1)

)
, (4.9)

being the Sp(2) vector-valued quantum antibracket [11]. The
main property of the quantum 2-antibracket holds, (4.9),

[�a±, (A, B)b�±] + (a ↔ b)

= [[�a±, A], [�b±, B]] + (a ↔ b). (4.10)

1 For the sake of uniformity, henceforth we make use of the notation
�αa for the former field variable παa [20]. Also, as for the boson metric
gab, we assume it symmetric, constant, and invertible, so that gab is its
inverse.
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Also, the quantum 2-antibracket (4.9) does satisfy the mod-
ified Jacobi relation,
(
(A, (B,C)a�±)b�±(−1)(εA+1)(εC+1)

+cyclic perm.(A, B,C)
) + (a ↔ b)

= 1

2

(
[(A, B,C)a�±(−1)(εA+1)(εC+1),�b±] + (a ↔ b)

)
,

(4.11)

where the (A, B,C)a�± is the so-called quantum 3-
antibracket, and so on. In the Sp(2) case, Eqs. (4.9), (4.10),
and (4.11) are natural counterparts to Eqs. (3.13), (3.14), and
(3.15), respectively, in the Sp(1) case.

Due to the Sp(2) symmetric version of the Poincaré
lemma, we have from (4.8)

1

2
(B, B)a�+ = (i h̄)2Xa + i h̄[�a+,Y ], (4.12)

where Xa is an Sp(2) vector-valued singlet fermion operator,

[�a+, Xb] + (a ↔ b) = 0, Xa �= [�a+, anything], (4.13)

Y is an arbitrary Sp(2) invariant boson operator, “anything”
is an arbitrary Sp(2) invariant boson operator. In the Sp(2)

case, Eqs. (4.8) and (4.12) are natural counterparts to the
respective equations (2.12), (2.13) in the Sp(1) case.

Due to the property (4.2), it follows from the generating
Eq. (4.1),

i h̄
∂

∂t
� = H�, (4.14)

where the Hamiltonian has the well-known form commuting
certainly with the operators �a+,

H =: −1

4
gab(i h̄)−1[Qa, Qb]

= 1

2
(i h̄)−2[�a+, εab[�b+, B]]. (4.15)

The terms quadratic in B in the H drop out as follows:

−1

4
gab(i h̄)−1[Fa, Fb]

= −1

4
gabεacεbd(i h̄)−3[[�c+, B], [�d+, B]]

= −1

8
gabεacεbd(i h̄)−3([�c+, (B, B)d�+]+(c ↔ d)) = 0.

(4.16)

Here in Eq. (4.16), in the last equality, we have used (4.10)
and then Eq. (4.8). The superfield � has the component form

�(t, τ, Z) = exp
{
τa(i h̄)−1Qa

}
�0(t, Z), (4.17)

where the zero-component satisfies by itself the Schroedinger
equation (4.14) with the Hamiltonian (4.15). The same as in

the Sp(1) case, the arbitrariness in a solution to the quantum
master equations

�a+�0 = 0, ε(�0) = 0, �0 = exp

{
i

h̄
W

}
, (4.18)

is measured by the evolution operator with the Hamiltonian
(4.15).

It seems a bit strange that the boson B is restricted so as
to satisfy Eq. (4.8), although the standard expression in the
right-hand side of the second equality in (4.15) does commute
with the �a+ as for an arbitrary B. The reason is just the
second equality (4.15) by itself. In order to clarify the matter,
let us consider the definition of the HamiltonianH in a natural
basis,

gab = gab =:
(

0 1
1 0

)
, εab = −εab =:

(
0 1
−1 0

)
, (4.19)

so that

D1 = ∂

∂τ1
+ τ2

∂

∂t
, D2 = ∂

∂τ2
+ τ1

∂

∂t
,

gabεbc =
(

1 0
0 −1

)
. (4.20)

First of all, we have, for the HamiltonianH, the first equation
in (4.15),

H = −1

2
(i h̄)−1[Q1, Q2], (4.21)

where

Q1 = �1+ − F1, Q2 = �2+ − F2, (4.22)

F1 = (i h̄)−1[�1+, B], F2 = −(i h̄)−1[�2+, B], (4.23)

so that

H = −1

2
(i h̄)−2([�1+, [�2+, B]] − (1 ↔ 2)

−(i h̄)−1[[�1+, B], [�2+, B]]). (4.24)

In order to provide for the operators Q1 and Q2, (4.22), to
commute with the HamiltonianH, (4.21), both charges (4.22)
should be nilpotent,

[[�1+, B], [�1+, B]] = 0, [[�2+, B], [�2+, B]] = 0. (4.25)

The first and the second equations in (4.25) are exactly Eq.
(4.8) at a = b = 1 and at a = b = 2, respectively. Now,
in the first line in the right-hand side in (4.24) we recognize
exactly the standard expression in the right-hand side in the
second equality in (4.15). In turn, Eq. (4.8) at a = 1, b = 2,
or vice versa, cancels the expression in the second line in
(4.24). Thus, we have explained in detail how Eq. (4.8) for the
boson operator B do come from the general structure (4.21)
of the Hamiltonian H as constructed for the two nilpotent
supercharges Q1 and Q2. In contrast to the Sp(1) case, in
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the Sp(2) symmetric superfield formalism, Eq. (4.8) are just
the price of the higher supersymmetry.

Finally, consider, in the Sp(2) case, the composition law
similar to the one of (3.11) and (3.12), as for the Hamiltonian
(4.15) rewritten as

HF2 = (i h̄)−1[�1+, F2], (4.26)

where F2 is given by the second in (4.23). Then the compo-
sition law has just the form (3.11), (3.12), with the �1+ and
the F2 standing for the � and the F , respectively. Vice versa,
we could make use of the �2+ and the F1 as to stand for the �

and the F , respectively, when having the Hamiltonian (4.15)
rewritten equivalently as

HF1 = (i h̄)−1[�2+, F1], (4.27)

where F1 is given by the first in (4.23).

5 General nilpotency

Here, we present in both the Sp(1) and the Sp(2) cases, in
parallel, the simplest class of solutions for the Hamiltonian.
In the Sp(1) case, we strengthen Eq. (2.13) to the nilpotency
condition for the fermion F ,

HS = 0, G = 0,⇒ [F, F] = 0. (5.1)

Then we have for the Hamiltonian

H = (i h̄)−1[�, F]. (5.2)

In the case of F being a function of Z A only, the condi-
tion (5.1) is satisfied automatically. In the Sp(2) case, we
strengthen Eq. (4.12) to the “nilpotency” condition for the
boson B,

Xa = 0, Y = 0,⇒ (B, B)a�+ = 0. (5.3)

Then we have for the Hamiltonian

H = 1

2
(i h̄)−2[�a+, εab[�b+, B]]. (5.4)

In the case of the B being a function of the fields only, Eq.
(5.3) is satisfied automatically.

6 Heisenberg equations of motion in terms of quantum
antibrackets

Here, we present in both the Sp(1) and the Sp(2) cases,
in parallel, the Heisenberg equations of motion in terms
of the quantum antibrackets. Denote by � the full set of
Schroedinger canonical variable operators,

� =: (Z A; PA), (6.1)

and let �̃(t, τ ) be the respective superfield Heisenberg canon-
ical variable operators.

In the Sp(1) case, the superfield Heisenberg equations of
motion have the form

i h̄D�̃ = [Q̃, �̃], i h̄DQ̃ = [Q̃, Q̃]. (6.2)

It follows from these equations that [11]

(i h̄)2 ∂

∂t
�̃ = −1

2
[�̃, [Q̃, Q̃]] = −2

3
(�̃, Q̃)Q̃,

(6.3)

where the quantum 2-antibracket, (A, B)Q , is defined by Eq.
(3.13), with Q, the third in Eq. (2.1), standing for the �.

In the Sp(2) case, the respective superfield Heisenberg
equations of motion have the form

i h̄Da�̃ = [Q̃a, �̃], i h̄Da Q̃b = [Q̃a, Q̃b]. (6.4)

It follows from these equations that

(i h̄)2 ∂

∂t
�̃ = −1

4
gab[�̃, [Q̃b, Q̃a]] = −1

3
gab(�̃, Q̃b)a

Q̃
,

(6.5)

where the Sp(2) vector-valued quantum 2-antibracket,
(A, B)aQ , is defined by Eq. (4.9), with Qa , the first in Eq.
(4.3), standing for the �a±.

7 Conclusion

In the present paper, within the superfield approach, we have
proposed the new quantum generating equation (2.1) for the
general field–antifield formalism. The three basic fermion
objects, the super-time covariant derivative D, the odd Lapla-
cian �, and the hyper-gauge fermion F , enter that linear
homogeneous generating equation, in a quite symmetric way.
Then, from the generating equation, we have derived the
Schroedinger equation (2.7) with the Hamiltonian H, (2.8),
commuting with the supercharge Q, the third in (2.1). It fol-
lows from the latter property (2.10) that the Hamiltonian H
commutes with the �, provided the H commutes with the
F , as well. Thus, we have determined the general structure
(2.15) of the Hamiltonian (2.8). As usual, the Hamiltonian
consists of a singlet component and a �-exact component.
We have shown that the �-exact components (3.1) serve as
generators to the quantum master transformations. In turn,
we have shown that these generators (3.2) do satisfy the nice
composition law (3.11) given by (3.12) in terms of the quan-
tum antibrackets (3.13). We have also presented an Sp(2)

symmetric extension to the main construction, with specific
features caused by the principal fact that all basic equations
become Sp(2) vector-valued ones.
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