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Abstract In this paper, we analyze the effects of thermal
fluctuations on a STU black hole. We observe that these ther-
mal fluctuations can affect the stability of a STU black hole.
We will also analyze the effects of these thermal fluctuations
on the thermodynamics of a STU black hole. Furthermore, in
the Jacobson formalism such a modification will produce a
deformation of the geometry of the STU black hole. Hence,
we use the AdS/CFT correspondence to analyze the effect of
such a deformation on the dual quark–gluon plasma. So, we
explicitly analyze the effect of thermal fluctuations on the
shear viscosity to entropy ratio in the quark–gluon plasma,
and we analyze the effects of thermal fluctuations on this
ratio.

1 Introduction

The AdS/CFT correspondence relates the supergravity solu-
tion in the AdS space to the conformal field theory (CFT) on
its boundary [1,2]. As the AdS/CFT correspondence relates
the AdS geometry to the ground state of a conformal field
theory, a deformation of the AdS solution in the bulk will
also modify the CFT dual to that AdS solution. In fact, such
a deformation will result in the excitation of the ground state
of the dual CFT solution. So, a black hole in AdS space
corresponds to heating up the system, and this in turn corre-
sponds to exciting the ground state of the CFT. In this paper,
we analyze an interesting non-extremal black hole solutions
which is motivated from results obtained using the string
theory, and it called the STU black hole solution [3,4]. The
STU black holes solution can be considered as the holo-
graphic dual of quark–gluon plasma (QGP), and it is possi-
ble to study QGP using STU/CFT correspondence [5]. The
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QGP is a phase in quantum chromodynamics (QCD) which
exists at extremely high temperature and density. There are
many important quantities in QGP such as the shear viscos-
ity, drag force and jet-quenching and they can be calculated
holographically from a STU black hole [6–8]. So, in this
paper, we will first analyze a deformation of the STU black
hole geometry. Then we will analyze the modification to the
QGP because of such a deformation of the STU geometry
using the STU/CFT correspondence. Specially, we correct
the shear viscosity to entropy ratio. It is conjectures that men-
tioned ratio has a universal value 1

4π
in natural units. In fact

it suggests a lower bound, so we have

η

s
≥ 1

4π
.

However, due to various effects this lower bound may be
violated [9–15].

In order to analyze the deformation of the STU black hole
geometry by thermal fluctuations, we need to first under-
stand the relation between geometry of a black hole and its
thermodynamics. In that case, the thermodynamics of STU
black holes have been studied originally by Refs. [16,17].
The area–entropy relation establishes a relation between the
geometry of space-time and thermodynamics of a black hole
[18,19]. According to the area–entropy relation the entropy
of a black holes scales with the area of its horizon [20–22]. It
may be noted that this observation has led to the development
of the holographic principle [23,24], and AdS/CFT corre-
spondence (which has motivated the STU/CFT or STU/QCD
correspondence [5–8]) is based on the holographic principle.
This is because the holographic principle related the degrees
of freedom in any region of space to the degrees of freedom on
the boundary surrounding that region of space. This relation
between the geometry of space-time and thermodynamics
is more evident in the Jacobson formalism where Einstein
equation is viewed as a thermodynamics relation [25,26]. In
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fact, the Einstein equation is derived in the Jacobson formal-
ism by requiring the Clausius relation to hold for all the local
Rindler causal horizons through each space-time point. As
the Jacobson formalism establishes a clear relation between
the geometry of space-time and thermodynamics, quantum
fluctuations in the geometry of space-time will produce ther-
mal fluctuations in the thermodynamics of black holes in the
Jacobson formalism. Thus, we expect the thermodynamics
of all black holes to get corrected because of the thermal
fluctuations in the Jacobson formalism.

It has been demonstrated that the area–entropy relation
gets modified due to thermal fluctuations [27,28]. These cor-
rections to the area–entropy relation have been studied using
both analyzing the fluctuations in the energy of the system,
and relating this system to a conformal field theory. However,
the quantum fluctuations become important when the geome-
try is probed at very small scales, and the thermal fluctuations
also become important when the temperature of the black
hole is very large, and this corresponds to a very small size
of the black hole. So, when the black hole is reduced in size
due to Hawking radiation, the effects of thermal fluctuations
cannot be neglected. Thus, when the size of the black hole
becomes of the order of the Planck scale, the temperature of
the black hole becomes very large, and the contribution from
thermal fluctuations also becomes very important for such
black holes. The effects of thermal fluctuations on a black
hole in an anti-de Sitter space-time have been studied, and
the correction to thermodynamics of such a black hole has
also been obtained [29]. The corrected thermodynamics of
such a black hole has been used for analyzing the phase tran-
sition in that system. The corrections to the thermodynamics
of a black Saturn have also been studied, and it was observed
that the entropy of both the black hole and the black ring gets
corrected due to thermal fluctuations [30]. The black Saturn
are thermodynamically stable because of the rotation of the
black ring. However, it is possible for charged dilatonic black
Saturn to remain stable because of background fields, and
the thermodynamics of a charged dilatonic black Saturn has
been discussed [31]. The corrections to the thermodynamics
of such a charged dilatonic black Saturn have also been ana-
lyzed using the relation between this system and a conformal
field theory [32]. The corrections to the thermodynamics of a
modified Hayward black hole have also been discussed, and
it has been demonstrated that the modified Hayward black
hole is stable even after the thermal fluctuations are taken
into account, as long as the event horizon is larger than a
certain critical value [33]. It has been demonstrated that for
all these systems the correction due to thermal fluctuations
is a logarithmic correction. It may be noted that such cor-
rection terms have also been obtained from non-perturbative
quantum general relativity [34], the Cardy formula [35], the
exact partition function for a BTZ black hole [36], and matter
fields in the backgrounds of a black hole [37–39]. In fact, even

corrections obtained from string theory are logarithmic cor-
rections [40–47]. All above studies indicated that logarithmic
corrected thermodynamics of black objects is an important
field of study in theoretical physics. So, in this paper, we will
analyze the effect of such logarithmic corrections for a STU
black hole. The logarithmic corrections to the thermodynam-
ics of STU black hole will deform the geometry of the STU
black hole in the Jacobson formalism, this will directly affect
the properties of QGP inspired by the AdS/CFT correspon-
dence. So, in this paper, we will analyze the effect of such a
deformation on the shear viscosity to entropy ratio of QGP.

This paper is organized as follows. In the next section we
review some important properties of STU black hole from
thermodynamical point of view. In Sect. 3 we introduce log-
arithmic correction, and in Sect. 4 we study its effect on the
shear viscosity to entropy ratio. Finally in Sect. 5 we give
our conclusion.

2 STU black hole

In this section we recall STU model in five dimension includ-
ing electric charge and write thermodynamical properties
which is useful in the context of AdS/CFT correspondence.
The metric for the 5D STU model with three electrical
charges can be written as

ds2 = − fk

H 2
3

dt2 + H 1
3

(
dr2

fk
+ r2

R2 d�2
3,k

)
, (1)

where

fk = k − μ

r2 + r2

R2 H,

H =
3∏

i=1

Hi ,

Hi = 1 + qi
r2 , i = 1, 2, 3, . (2)

Here, R is the radius of the AdS space and it is related to
the coupling constant as R = 1/g. The coupling constant
is also related to the cosmological constant as � = −6g2.
Furthermore, r is the radial coordinate of the black hole, and
the three electrical charges of black hole, corresponding to

the three scalar field Xi = H 1
3 /Hi , are denoted by qi , with

X1X2X3 = 1 (STU = 1). The non-extremality parameter
is denoted by μ. The closed universe has k = 1, the flat
universe has k = 0, and the open universe has k = −1. The
metric for these universes can be written as

d�2
3,k ≡

⎧⎪⎨
⎪⎩

R2(dρ2 + sin2 ρdθ2 + sin2 ρ sin2 θdφ2)

dx2 + dy2 + dz2

R2(dρ2 + sinh2 ρdθ2 + sinh2 ρ sin2 θdφ2)

(3)
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Fig. 1 Black hole event horizon in terms of the black hole charge with
R = μ = 1 and k = 1 (dashed line), k = 0 (solid line), and k = −1
(dotted line)

for k = 1, 0,−1, respectively. We will only consider the
case where there is only one-charge for the black hole (q1 =
q, q2 = q3 = 0), and where H = H = 1 + q

r2 . So, the only
free parameter of the model will be q. Now, the temperature
and the entropy of this black hole can be written as [50],

T = rh
2πR2

2 + q+kR2

r2
h√

1 + q
r2
h

(4)

and

s =
r3
h

√
1 − q

r2
h

4GR3 , (5)

where G is Newton’s constant and it is related to the AdS
curvature as G = πR3

2N2 . Here, N is the number of colors. We

should note that there is a coefficient k2 in denominator of
Eq. (5) for the cases of open and closed universes. Hence,
Eq. (5) is valid in its present form for all cases of k = 0,±1.

It may be noted that rh is given by the root of fk = 0,

rh = 1

2

√
2
√
k2R4 + 2kqR2 + q2 + 4μR2 − 2kR2 − 2q.

(6)

The black hole horizon is a decreasing function of the black
hole charge as illustrated by Fig. 1 for different k. The size
of the black hole will be small for large electrical charge.
However, for a large value of the black hole charge there is
no way to distinguish between event horizons of a black hole
in open, closed, and flat universe.

Using Eqs. (4), (5), and (6), the temperature and entropy
of the black hole can be expressed in terms of the black hole
charge. In Fig. 2a, we demonstrate that the temperature is a
decreasing function of charge for small values of q. There is a
critical qc, where the black hole has a minimum temperature.
Then for q > qc the black hole temperature increases with q .

In Fig. 2b, we observe that by increasing the charge of the
black hole, its entropy decreases. This is also expected from
Fig. 1, because the entropy of the black hole is proportional
to the radius of the event horizon rh .

The specific heat can be written as

c = T

(
∂T

∂q

)−1 (
∂s

∂q

)
. (7)

In Fig. 3, we plot the specific heat and observe that for the
large value of the black hole charge, there is an instability.
Thus, by increasing the charge of the black hole, the black
hole become smaller and warmer and it enters an unstable
phase. However, we do not expect such instabilities and we
can remove them. The thermal fluctuations are important
when the size of the black hole is small. In the next sec-
tion, we will analyze the effects of the logarithmic correc-
tion, due to the thermal fluctuation, on the specific heat. We
will observe that we can remove such instabilities by using
such corrections.

We can use the following expression for the shear viscosity
η [50]:

η =
r3
h

√
1 + q

r2
h

16πGR3 , (8)

to investigate famous ratio η
S , where S is corrected entropy

which will define in the next section. Thus, the conjectured
universal relation η

s = 1
4π

hold for the STU model. So, using
Eqs. (5) and (8), we can verify the universal behavior. How-
ever, there are some examples [48,49] where the mentioned
ratio deviates below 1

4π
. It should be noted that the calcula-

tion of η
s in the STU background was first performed by the

Refs. [50,51].

3 Thermal fluctuations

It is possible to analyze the effects of thermal fluctuations
on the black objects thermodynamics [27]. The entropy of
any black objects gets corrected by a logarithmic term due
to these thermal fluctuations. Thus, if we assume β−1

κ = T
as a temperature close to the equilibrium, and β−1

0 = T0 as
the equilibrium temperature, then the corrected entropy can
be written as [45]

S = s − ln s′′

2
, (9)
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(a) (b)

Fig. 2 Black hole temperature (a) and entropy (b) in terms of the black hole charge with R = G = μ = 1 and k = 1 (dashed line), k = 0 (solid
line), and k = −1 (dotted line)

Fig. 3 Specific heat in terms of the black hole charge with R = G =
μ = 1 and k = 1 (dashed line), k = 0 (solid line), and k = −1 (dotted
line)

where

s′′ = (∂2s/∂β2
κ )|βκ=β0 . (10)

It is also possible to express the second derivative of the
entropy in terms of the fluctuations of the energy near the
equilibrium. Thus, the corrected entropy can be written as
[27,30,54]

S = s − α

2
ln |cT 2| + · · · , (11)

where s is the original entropy and c is the original specific
heat of the system. Furthermore, as almost all approaches
to quantum gravity generate such a logarithmic correction,

however, the coefficient of such a correction term depends
on the exact model of quantum gravity that has been used.
Thus, such a coefficient can be used as a parameter than
can test different model of quantum gravity. This is because
different approaches to quantum gravity would generate dif-
ferent values of the coefficient of the logarithmic term. So, in
this paper, we will keep this analysis general and introduce a
general parameter α, which will be the coefficient of the loga-
rithmic correction term. Now when α = 1, the usual thermal
fluctuations taken into account, which is corresponding to a
very small black object. On the other hand for α = 0, ther-
mal fluctuations ignored, which is corresponding to the large
black objects. Finally dots denote higher order corrections,
which may be considered in future work.

It is also possible to relate the microscopic degrees of
freedom of a black hole with a conformal field theory [32].
Thus, using the modular invariance of the partition function
of the conformal field theory, corrected entropy can be written
as [27,32]

S = s − α

2
ln |sT 2| + · · · . (12)

It may be noted that, for the charged STU, there is an impor-
tant difference between results obtained from Eqs. (11) and
(12); however, both are the same at q = 0. So, there is a
difference between the corrections generated from a con-
formal field theory, and the corrections generated from the
fluctuations in the energy of the system. So, we observe that
the effect of thermal fluctuations for the STU black holes is
different from the effect of thermal fluctuation on most other
black hole solutions. This is because the correction from both
these approaches generated the same effects for all the other
black holes that have been analyzed using this formalism
[27,29,30,32,33,45].
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Fig. 4 Corrected specific heat in terms of α with R = G = μ = 1 and
k = 0. Dashed line denotes the case of q < qc and solid line denotes
the case of q ≥ qc

Now using the logarithmic corrected entropy (11), we can
obtain the corrected specific heat as

C = T

(
∂T

∂q

)−1 (
∂S

∂q

)
. (13)

In Fig. 4, we can observe the behavior of corrected specific
heat for one-charged STU black hole, in terms of α for flat
universes. For the reason we explain later, we only consider
the case of k = 0. However, we have the same situation for
the open and closed universes. As we see already, some insta-
bility happened for the large black hole charge. We show that
there is a critical temperature qc so for the case of q > qc
the black hole is unstable, while in the presence of a loga-
rithmic correction (α �= 0) with appropriate choice of αc the
black hole is stable. For the selected values of the parameters
(R = G = μ = 1) we can see that qc ≈ 1.16 and αc ≈ 0.39.
A solid line of Fig. 4 shows the black hole specific heat for
large electric charge. It is clear that the black hole is unstable
for α = 0 as has become clear already by Fig. 3. We can
see that for the appropriate choice such as α = 1 we have
a totally stable black hole. Therefore we find that the loga-
rithmic correction help to gain stability of black hole at high
temperature.

4 Shear viscosity to entropy ratio

In this section, we are going to study the effect of the loga-
rithmic correction on the shear viscosity to entropy ratio. We
will consider three different cases corresponding to thermal
fluctuation effects.

Fig. 5 Shear viscosity to entropy ratio in terms of α with R = G =
μ = 1 and k = 0

So, first of all we can make a simple assumption, i.e.,
we can assume that the thermal fluctuations do not affect
the shear viscosity, hence, we can obtain shear viscosity to
entropy ratio using corrected entropy. So, we can use the
corrected entropy given by Eqs. (8) and (11), to obtain the
corrected shear viscosity to entropy ratio. In the case of α =
0, we have η

s = 1
4π

. However, in the presence of a logarithmic
correction, we obtain

η

S
=

r3
h

√
1 + q

r2
h

4πr3
h

√
1 + q

r2
h

− 8πGR3α ln cT 2
. (14)

So, from Fig. 5, we can observe the effect of α on the shear
viscosity to entropy ratio. Thus, we observe that lower bound
( 1

4π
= 0.08) decreased due to the logarithmic correction. It

may be noted that, using the AdS/CFT correspondence, these
corrections in the bulk correspond to 1/N 2 corrections in the
dual boundary theory. It is clear that α = 0 yields the conjec-
tured universal lower bound ( η

s = 1
4π

= 0.08) while α = 1
yields η

s = 0.01−0.03, which means universal lower bound
violated. It should be noted that shear viscosity is typically
defined in flat space (k = 0) hence in this section we only
consider the case of k = 0. As we mentioned, the loga-
rithmic correction is correspond to 1/N 2 correction, hence
GR3α should be a small number proportional to 1/N 2 and
small-alpha region of Fig. 5 is in any way reliable. Hence,
we can rewrite Eq. (14) as follows:

η

S
= 1

4π
+ γ

N 2

ln cT 2

r2
h

√
q + r2

h

, (15)
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where γ is a small positive constant. It is clear that the shear
viscosity to entropy ratio is a decreasing function of γ , hence
the lower bound is violated.

It is possible to obtain another result by using a better
and more physical approximation. In such a calculation the
thermal fluctuations also correct the shear viscosity. In fact,
as the corrections to the entropy are 1

N2 correction in the bulk,
we expect such corrections to also correct the shear viscosity.
It is possible to suggest the corrected value of shear viscosity,
and this corrected value of the shear viscosity can correct
the shear viscosity to entropy ratio. In that case, the shear
viscosity to entropy ratio may be given by

η

S
=

r3
h

4GR3

√
1 + q

r2
h

+ O(α)

4π

(
r3
h

4GR3

√
1 + q

r2
h

− α
2 ln cT 2

) . (16)

It is clear that the above ratio may be an increasing or a
decreasing function of α and also may be constant for a suit-
able choice of O(α), hence the lower bound for this ratio
may hold. However, for the appropriate value of O(α), lower
bound may violated and the shear viscosity to entropy ratio
yields zero.

The best way to calculateO(α) is the Kubo formula, which
relates the shear viscosity to the correlation function of the
stress-energy tensor at zero spatial momentum by using the
retarded Green function [51].

It is also possible to obtain an expression for the corrected
shear viscosity, such that the ratio of the correct viscosity
and corrected entropy is still does not violate conjectured
universal minimum bound. This can be used to understand
the behavior of shear viscosity in this limiting case. Thus, we
can assume that the universal value η

S = 1/4π holds for the
corrected case, and we obtain

η

S
= η

r3
h

√
1+ q

r2
h

4GR3 − α
2 ln cT 2

= 1

4π
. (17)

Therefore, we can obtain the corrected shear viscosity as

η =
r3
h

√
1 + q

r2
h

16πGR3 − 1

8π
α ln cT 2. (18)

It may be noted that, like all gauge theories with Einstein
gravity dual, a lower bound hold for all values of α. How-
ever, by study perfect quark–gluon liquid [52], it has been
found enhanced viscosity to entropy ratio 5

8π
. It has also been

found that higher curvature corrections in the dual gravita-
tional theory modify this ratio [14], hence the higher deriva-
tive corrected STU black hole [53] is an interesting issue
to investigate under logarithmic correction. It has also been

argued that for certain corrected theories the lower bound is
violated. Just like the logarithmic corrected case we show that
the lower bound may be violated due to thermal fluctuations.

5 Conclusion

In this paper, we have analyzed a special case of STU black
hole in five dimensions with an electric charge. We have
used the AdS/CFT correspondence to investigate the effect
of thermal fluctuations on the properties of QGP, specially the
shear viscosity to entropy ratio. First of all we used the log-
arithmic corrected entropy and studied the thermodynamics
of one-charged STU black hole. We found that the logarith-
mic corrections affect the black hole stability. For instance,
instability of the black hole at high temperature changes to
stable phase in the presence of a logarithmic correction. We
demonstrated that the viscosity to entropy ratio of QGP dual
of the STU background is reduced due to thermal fluctua-
tions with an appropriate choice of the correction parameter.
Our study was based on three different assumptions. First,
we assumed that the shear viscosity not changed due to log-
arithmic correction and only used logarithmic correction of
the entropy and found that positive value of α yields a viola-
tion of the lower bound. In the second assumption we write
the general form of the corrected shear viscosity and claim
that the appropriate value of α gives the lower bound vio-
lation. Finally we assumed a universal value and calculated
the corrected shear viscosity. The corrections to the thermo-
dynamics can be obtained by analyzing the fluctuations in
the energy of the system. They can also be analyzed using
the relation of the black hole microstates with a conformal
field theory. It has been observed that the effects of thermal
fluctuations from both of these approaches are the same for
all black hole solutions that have been previously analyzed
using this formalism [27,29,30,32,33,45]. However, in this
paper, it was observed that the effects of thermal fluctuations
for a charged STU black hole from the energy fluctuations are
different from the effects of thermal fluctuations for a STU
black hole obtained from conformal field theory. However,
these effects are the same when the charge vanishes. It might
be interesting to investigate the reason for this further.

It may be noted that a U-duality invariant expression for
the area–entropy relation has been obtained for a station-
ary, asymptotically flat, non-extremal STU black holes [55].
It was demonstrated that this expression can be written in
terms of asymptotic charges of this stationary, asymptotically
flat, non-extremal STU black holes. This involves the scalar
charges of the black hole which can be solved in terms of the
dyonic charges and the mass of the black hole. It might also be
possible to express the corrections to the area–entropy rela-
tion in such a stationary, asymptotically flat, non-extremal
STU black holes using asymptotic charges. It would thus
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be interesting to analyze thermal fluctuations of such a STU
black hole and discuss these corrections to the entropy using
asymptotic charges. Testing quantum gravity using black
objects [56] like the STU black hole is also an interesting
research field.

The extended thermodynamics of a STU black hole has
also been studied [57]. This was done by viewing the cos-
mological constant as a thermodynamic variable of the STU
black hole. A fixed charge ensemble was used to perform this
analysis. It was demonstrated that the phase structure asso-
ciated with this black hole was conjectured to be a dual RG-
flow on the space of field theories. It was also observed that
the phase structure of this system resembles a Van der Waals
gas for certain charge configurations. Thus, for this system
a family of first order phase transitions exist. Furthermore,
at a critical temperature, these first order phase transitions
ended in a second order phase transition. The holographic
entanglement entropy for such charge configurations was
also obtained. It was observed that this entanglement entropy
also predicted a transition at the critical temperature. So, the
entanglement entropy can be used for analyzing the system
in an extended phase structure. In this analysis, holographic
heat engines dual to STU black holes were also studied. It
would be interesting to analyze the effect of thermal fluctua-
tions on such a system. Thus, we could analyze the effects of
thermal fluctuations on both Van der Waals gas and the holo-
graphic entanglement entropy of black holes. It would also
be interesting to analyze the effects of thermal fluctuations
on the holographic heat engines dual to STU black holes.
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