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Abstract We explore the recently introduced modified
Gauss—Bonnet gravity (Sharif and Ikram in Eur Phys J C
76:640,2016), f(G, T) pragmatic with G, the Gauss—Bonnet
term, and 7, the trace of the energy-momentum tensor.
Noether symmetry approach has been used to develop some
cosmologically viable f (G, T) gravity models. The Noether
equations of modified gravity are reported for flat FRW uni-
verse. Two specific models have been studied to determine
the conserved quantities and exact solutions. In particular,
the well known deSitter solution is reconstructed for some
specific choice of f(G, T) gravity model.

1 Introduction

The cosmological aspect of research has proven to be the
main resource of modern diverse theories of gravity. No
doubt, the onset of General relativity (GR) being a physical
theory has been a great success of the last century. However
GR alone does not provide us with the sufficient fundamental
platform to solve the problems like initial singularity, flat-
ness issues, dark energy and dark matter problems. It also
fails when one is interested to express this wide universe as
a whole, particularly at the extreme conditions for the ultra-
violet scales and for the expression of the quantum structure
of space-time. Few years back, the significant outcomes of
the researchers have confirmed that the universe is expanding
itself [2-9]. A gigantic portion of this accelerating universe
consists of mysterious substance, known as the dark energy
and is believed to be the main cause of the acceleration of this
expansion. Recent developments in cosmology have revealed
new ideas to introduce the critical and observational innova-
tions for this accelerated expanding universe.

Modified theories of gravity have provided the researchers
with different aspects and directions to unveil the hidden real-
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ities behind the expansion of the universe. After being moti-
vated and having started with the original theory, a num-
ber of theories have been structured by building intricate
Lagrangians. For example, theories of gravity like f(R),
f(R,T), f(G)and f(R, G) have been developed by combin-
ing curvature scalars, topological invariants and their deriva-
tives. These modified theories address the purpose of solving
the complexities related to the quantum gravity and provide
with the conditions through which the accelerated expansion
of universe is argued. Nojiri and Odintsov [10] were the pio-
neers to present the idea of implicit and explicit coupling of
the curvature with the matter in f(R) gravity. Some reviews
[11-13] were established about the f(R) gravity by different
researchers and the consistency of its different cosmologi-
cal models were also studied [14]. The equivalence between
metric and Palatini formalisms in f(R) gravity is shown to
be achieved using divergence free current [15]. Harko et al.
[16] introduced a gravitational theory by including both the
matter and curvature terms and is well known today as the
f(R, T) gravity, where R is the scalar curvature and 7 is
the trace of energy-momentum tensor. The evolution of the
universe through energy conditions along with the criteria
of stability were discussed by Sharif and Zubair [17]. They
also re-established a variety of dark energy models, inves-
tigated the thermodynamical aspect and exactly solved the
anisotropic universe in f (R, T') gravity [18].

Inrecent years, the researchers have considered a new gen-
eralized approach of the Gauss—Bonnet (GB) theory named
as f(G) gravity [19-23]. The GB invariant is defined as

G = R* = 4Rup R + Rupys RP7?, (1

where Rypy5 is the Reimann tensor, Ryp is the Ricci ten-
sor and R is the Ricci scalar. The interesting feature of the
theory is that involvement of GB term may avoid ghost con-
tributions and regularize the gravitational action [24]. Fur-
ther modification of the theory by involving scalar curvature
along with GB invariant has been presented which is named
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as f(R,G) gravity [25]. A reasonable amount of work has
been published so far in these theories [26-35]. In a recent
paper [1], Sharif and Ikram presented a new modified the-
ory named as f(G, T') gravity by involving the trace of the
energy-momentum tensor in the function. They investigated
energy conditions for Friedmann—Robertson—Walker (FRW)
universe and concluded that the massive test particles fol-
lowed non-geodesic lines of geometry due to the presence
of extra force. It is expected that this theory may describe
the late-time cosmic acceleration for some specific choices
of f(G, T) gravity models.

The symmetry methods of approximations have played a
pivotal role to work out the exact solutions of differential
equations. These approximations smartly reduce the com-
plexity involved in a system of non-linear equations by find-
ing the unknown parameters of equations. In particular, the
Noether symmetries are not just a tool to deal with the solu-
tion of the dynamics, but also their existence provides favor-
able conditions so that we can choose physically and ana-
lytically the universe models according to our calculated
observations. Sharif and Waheed [36] re-scaled the energy
of stringy charged black hole solutions using approximate
symmetries. Kucukakca [37] determined the exact solutions
of Bianchi type-/ model, using Noether symmetries. Jamil
et al. [38] used the Noether symmetry approach to find out
f(7T) explicitly for the phantom and quintessence models,
where 7 is the torsion scalar. Sharif and Shafique [39] dis-
cussed Noether symmetries in a modified scalar-tensor grav-
ity. The exact solutions in f(R) gravity were also explored
using Noether symmetries methods for FRW spacetime [42].
Similarly many authors have used Noether symmetries to
investigate the cosmology in different contexts [43-51].

In this paper, we are interested to investigate f (G, T') grav-
ity using Noether symmetries. For this purpose, we consider
the flat FRW universe model. The arrangement for the paper
isas follows. In Sect. 2, we provide the preliminary formalism
for f(G, T) gravity. Section 3 gives the Noether equations of
FRW universe model for f (G, T') gravity. Reconstruction of
cosmological solutions is presented in Sect. 4. Last section
provides a brief outlook of the paper.

2 f(G, T) gravity with field equations

In 4-dimensions the general action for f(G, T) gravity is
given by [1],

1
A= _f YxV/—gIR+ f (G, T)]+/d4x«/—gﬁM, )

22
where L), stands for the matter Lagrangian, R is the Ricci

Scalar, G is the Gauss—Bonnet term, T is the trace of the
energy-momentum tensor, g is the metric determinant, and
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is the coupling constant. The energy-momentum tensor 7z
can be calculated using the following equation:

2 8(v/—8Lm)
VAT LU

However if the distribution of the matter is dependent on the
metric tensor g¢, only then Eq. (3) takes the form

Toy = — 3)

0Ly
3g§ﬂ ’

Ty = 8enly —2 4

Now varying the action Eq. (2) with respect to the metric

tensor and using Eq. (4), we obtain the following field equa-

tions:

Gen = —[2RgeyV? — 2RV, YV, — 48y R*'V,, V,
—4R;) V2 + 4RIV, V), + 4RIV, Y,

1
4Ry VH*VP1fg(G, T) + Eg{nf(g, 7)
— [Ty + Oryl fr(G, T) with respect to them
—[2RR;y — 4R2‘RM — 4Ry iy R

+2REY Ryyuns1 fg(G. T) + k2T, ©)

where G, = Ry — %ng is the Einstein tensor, [ =
V,VE = V2 represents the d’Alembertian operator and

Ofy = g“”g—‘;:. Also, fg(G,T)) and fr(G, T)) represent
the partial derivatives of the function f(G, T') with respect
to G and T respectively. It is to be noted that if we take
f(G,T) = f(G) in Eq. (5), then the resulting equation rep-
resents the field equations of f(G) gravity. Moreover, by
putting (G, T) = 0, one can recover the usual Einstein field
equations. The trace of Eq. (5) yields

R+1>T —(T+©)fr(G. T) +2f(G.T) +2G fg(G.T)
—2RV?fg(G, T) + 4RV, V, fg(G,T) = 0. (6)
This is an important equation as it can be used to find the

corresponding f (G, T) models. The covariant divergence of
Eq. (5) is given as

VT, = %[(m + O VE Infr (G, T))
+Vie., - g%vfr], %)

The theory might be plagued by divergences, e.g. at astro-
physical scales, due to the presence of higher-order deriva-
tives of the stress-energy tensor that are naturally present in
the field equations. This seems to be an issue with higher
order derivative theories that include higher order terms of
stress-energy tensor. Modification of Einstein’s theory by
adding auxiliary fields does not compromise the weak equiv-
alence principle and admits a covariant Lagrangian formula-
tion [41]. However one can put some constraints to Eq. (7)
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to obtain standard conservation equation for stress-energy
tensor [1].

In this paper, we restrict ourselves to flat Friedmann—
Robertson—Walker (FRW) spacetime,

ds? = dr? — a*(1)(dx? + dy? + dz?). (8)

The standard matter energy-momentum tensor is defined as

Ty = (o + pluyty — pguv, 9)
satisfying the EoS
p = wp, (10)

where u, = ,/go0(1,0,0,0) is the four-velocity in co-
moving coordinates and p and p denote energy density and
pressure of the fluid respectively. The scheme of our paper
can be mainly divided into two points as follows:

e Equation (5) are highly non-linear differential equations
and its not an easy task to solve them analytically. It
is mentioned here that fiat FRW modified field equa-
tions are fourth-order differential equations involving
unknowns like f(G, T). Here we are interested to find
the Noether symmetries of f (G, T) gravity with fiat FRW
background.

e The advantage of exact solutions in modified gravity
have gained much importance, particularly in the study of
phase transitions and recent phenomenon of accelerated
expansion of universe. The viable cosmological models
can be found using Noether symmetries and hence some
physically important solutions can be reconstructed.

3 Noether symmetries and f (G, T') gravity

Noether symmetries have become an important tool to solve
the system of non-linear equations. We apply Noether sym-
metry approach to investigate the f (G, T) gravity. The exis-
tence of this approach confirms the uniqueness of the vector
field in the tangent space. In this situation, the vector field
acts like symmetry generator which produces further the con-
served quantities. The expression for the vector field and its
first prolongation are given respectively as [52]

W=c(t uf')i + £ uj)—a (11)
Y T oud’
1] _ i i J i Y
w _W+<S,,+S,ju i u 5,,/uu>—auj.
(12)

where ¢ and & are the coefficients of the generator, u’ pro-
vides the n number of positions, and the dot gives the deriva-
tive with respect to time ¢. The vector field W produces
Noether gauge symmetry provided the condition

wlle + (DoYL = DG (1, ub) (13)

is preserved, where G (¢, u') denotes gauge term and D is an
operator defined as

3 .0

o T

The Euler—Lagrange equations are given by

oL d /oL
-~ _ _<_) =0, (14)
du’ dr \ ou!

Contraction of Eq. (14) with some unknown function ¢' =
@' (ul) yields

¢i<8£ d(8£)>=0‘ (15)

dui  dr \oul

It is easy to verify that

i( i%) (i ,~>£_ ii(ﬁ) (16)
a \P ) " \&? ) e =@ \aa )

Putting this value in Eq. (15) provides us with

e =¢84 (L) 28 2 4 (08 (17)
WE=P 0w T\ ar” ) ot ~ dar \” aud )

where L stands for the Lie derivative along the vector field.

The Noether symmetries would exist only if the Lie derivative
of the Lagrangian becomes zero, i.e. the condition

LwL =0.
Since the Lagrangian £ is invariant along the vector field W,

consequently the definition for Noether current turns out to
be [53]

;0L
j'= (d)’—), (18)

ol

and for the Noether current to be a conserved quantity, we
must have

jt=o. (19)

Now we write again the action (2) for the case of perfect fluid
as

A=/ di/=g[R+£(G, T)=p1(G—G) — 2T =T)+Ly].
(20)
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Here T is the trace of energy-momentum tensor, /—g =
a’(1),G and T stand for dynamical constraints, while
and w», are the multipliers, worked out as

= f6(G,T), wo= frG,T), T = p(a)—3p(a).

Since there does not exist any unique definition of matter
Lagrangian, so we consider £); = —p(a) and after an inte-
gration by parts, the point-like Lagrangian takes the follow-
ing form
L(a,R,G,T,a,R,G,T)
=d’[R+f—Gfg— friT -
—84°G fgg — 8a°T fgr,
where f = f(G), fg = fg(G, T) etc. Using Eq. (21), the
Euler-Lagrangian equations turn out to be
Y[R+ f = Gfg — friT = (p(@) = 3p(@)} — p(a)]
—fr{=3p.a(@) + pa(@)} = p.a(@)] - [G° fogg
+26T fgrG fog + T° fagr + Tfgr]

(p(a) =3p(a))} — pla)]
2D

2a ( - .

= 3(gfgg + ngr)’ (22)

() (5) = ~segel-or0 == st

a a __24fgg[_ fgg— fg_ng{
—(p(a) = 3p(a)}]. (23)

a\*(i

(;) <;)= 24f [fr—Gfor — frrip(a)
—3p(a)} — fr]. (24)

Also the corresponding vector field takes the form
W—ai—i-ﬂ——i- i+5i+ i—i—ﬂ + i+5i
oG TR AT
(25)

where «, B, y and § are functions of a, R, G and T. Now
using Lagrangian (21) and Noether equation (13), an over-
determined system of partial differential equations (PDE’s)
is obtained:

ay a4
8o fog — 8 5 fgr=0

(26)
—8yfggg — 88fggr — 24—fgg - 8 fgg
—8—ng 27
—8y fogr — 8 fgrr — 24a_ang
—S—fgg - S—ng (28)

@ Springer

dy 38
—8- fog =8 fgr=0

(29)
—24— ng 24—fgg =0, (30)
_24_ = for = (31)
—24—fgg =0, (32)
—24—fgg (33)
—24—ng = (34

3a’a[R+ f — G fg — friT — (p(a) — 3p(@)} — p(a)]
—a*a fr{=3p.a(@) + pa@)} — p.a(@)] +a’p
+ya’ (=G fog — for x {T — (p(a) — 3p(a)}]
+8a°[—G fgr — Tfrr + frr(p(a) —3p(a)] = 0. (35)

It is mentioned here that for the sake of simplicity, we have
considered the gauge term zero. Using Eq. (19), conservation
equation for Noether charge takes the form

d D .3 A
o [a{£(8a3gfgg + 8a3ngT)}

3 d
+y8—g-(8a3gfgg) - 53—T(a3ngT)] =
(36)

Now we solve the system of PDE’s (26-35) for different
cases.

Case(i):

Let us assume that fgg = 0. Manipulating the Egs. (26-35),
we obtainae =0, 8 =0,y =0,and § = 0, hence providing
us with a trivial solution. Moreover, the conservation Eq.
(36) is also satisfied in this case. Thus, we have to consider
fgg # 0 to obtain a non-trivial solution.

Case(ii):

Now let us assume that fgr = 0 and fgg # 0. Therefore,
the cosmological model takes the form f(G,T) = aoG* +
boT?, where ag and b are the arbitrary constants. Here the
manipulation of Noether equations provides « = 0 = y,
6 = c1and B = c1T + ¢. Thus the symmetry generator
becomes

0
= (a1 T+ 02)— + 1

o (37)

Now the conservation Eq. (36) referring to the Noether cur-
rent gives

@ for = s, (38)
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where c3 is an integration constant. It is mentioned here that
this case satisfies the conservation Eq. (38) when we choose
the integration constant equal to zero. The corresponding
Lagrangian becomes

L =a’[R—ayG* — boT* + 2byT{p(a)

—3p@)} — p(@)] — 164’ ayG. (39)
The corresponding Euler—Lagrangian equations are calcu-
lated as

a*(R — apG? — boT* + 2bo{p(a)
—3p(@)}T — p) + 32apaiG + 16apa*G = 0,
a*(R = 2a0G) + 48apa’i = 0,
—2a’bo(T — {p(a) — 3p(a)}) = 0. (40)

Using Eq. (40), it follows that

—24
a=c4/2t+cs5, G P — (41)

T QR+t

where ¢4 and c5 are the constants of integration.

4 Reconstruction of cosmological solutions

In this section, we provide the cosmological solutions by
considering (G, T) = GKTI=k where k is an arbitrary real
number. We reconstruct the solutions for the case k = 2. The
Lagrangian takes the shape

G2{p(a) — 3p(a)} 1663 /. T
‘”3[’?‘ r "’“‘)]‘T(g‘%)'

(42)
Euler—Lagrangian equations here take the form
2 -3
3a2[R g {/O(a)T2 p@} p(a)}
-3 p 2
_4 [{p(a) Tf(a)}, g p’a(a)}
48(a%G — 2adG)  48Ta*G  48(a*T + 2Tad)
+ J— —
T 72 7>
9617
= 0, (43)
Glp(a) — 3p(a)} — 24Ta%i + 84°T =0, (44)
a>GHp(a) — 3p(a)} — 8Ta>G + 24Ta%i = 0. (45)

Using Eq. (45) and by putting the corresponding values for
G and T, we get

40ai’a® + 8ad’d — 24a% — a*ida® = 0. (46)

This equation admits a solution of exponential form
a=e", 47

where m is an arbitrary constant. It is mentioned here that
exponential solution is satisfied with the constraint equation

24m® —m* =0 (48)
yielding the real solutions
m=0, m=0451801, m ~ —0.451801. (49)

Also, using Eq. (44) the value of trace of energy momentum
tensor turns out to be

T = cseit=a)), (50)

where c5 is constant of integration. Using Eqgs. (43) and (44),
we obtain

3
p@).a+ —pla) =L, (51)

where

x [ —3a*G*T + a>G?T, + 964T (4G — @)

+484>(GT — GT+T) — (52)

96(Ta)?

T }
It is evident that Eq. (51) is a non-homogeneous linear dif-
ferential equation and one can solve it to find the pressure
and consequently the energy density of the universe. Thus in
this case the solution metric takes the form

ds? = dr? — ¥ [dx? + dy? + dz?]. (53)

This corresponds to the well-known deSitter spacetime in
GR. Here we have constructed a physical cosmological solu-
tion with a particular f (G, T) gravity model. Similarly, more
solutions with some other cosmological models can be recon-
structed.

5 Outlook

In this paper, we have discussed in detail about the Noether
symmetries of the flat FRW universe model in f (G, T) grav-
ity. Noether symmetries are not just a tool to deal with the
solution of the dynamics, but also their existence provides
favorable conditions so that we can choose physically and
analytically the universe models according to our calculated

@ Springer
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observations. Lagrangian multipliers perform a big part to
shape the Lagrangian into its canonical form and so as to
reduce the dynamics to determine the exact solutions. We
have worked out the Lagrangian for FRW universe model in
f(G, T) theory. The existence of Noether charges is consid-
ered important in the literature and equation for conservation
of charge plays an important role to investigate the Noether
symmetries. The conservation equation for Noether charge
has been developed. The exact solutions of Noether equa-
tions have been discussed for two cases of f(G, T) gravity
models. The first case when fgg = 0 yields trivial symmet-
tries while we obtain non-trivial symmetries for the second
case when fgr = Oand fgg # 0. Thus we have also worked
out the corresponding f (G, T) gravity model and the solu-
tion metric. It is concluded that the second case provides
F(G.T) = apG* + boT? gravity model, where ag and by
are arbitrary constants. Furthermore, solutions in both cases
satisfy the conservation equation for Noether charge.

We have also reconstructed an important cosmological
solution by considering f(G, T) = G¥T'k, where k is an
arbitrary real number. This model yields the well-known
deSitter solution already available in GR. It is mentioned here
that many other cosmologically physical solutions may be
reconstructed for some other choice of f (G, T) gravity mod-
els. We have discussed the exact solutions with only three
cases. Many other solutions can be explored by assuming
some other forms of (G, T).
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