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Abstract We describe the anomaly structure of a compos-
ite Higgs model in which the SO(5)/SO(4) coset structure
of the minimal model is extended by an additional, non-
linearly realised U (1)η. In addition, we show that the effec-
tive Lagrangian admits a term that, like the Wess–Zumino–
Witten term in the chiral Lagrangian for QCD, is not invari-
ant under the non-linearly realised symmetries, but rather
changes by a total derivative. This term is unlike the Wess–
Zumino–Witten term in that it does not arise from anomalies.
If present, it may give rise to the rare decay η → hW +W −Z .
The phenomenology of the singlet in this model differs from
that in a model based on SO(6)/SO(5), in that couplings to
both gluons and photons, arising via anomalies, are present.
We show that while some tuning is needed to accommodate
flavour and electroweak precision constraints, the model is
no worse than the minimal model in this regard.
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1 Introduction

In recent years, theorists have devoted much attention to mod-
els in which the electroweak hierarchy problem is solved
by postulating that the Higgs boson arises as a compos-
ite pseudo-Goldstone boson of some new, TeV-scale strong
dynamics [1–3].

If this is really what happens in Nature, then it is inter-
esting to ask how we might go about figuring out what the
underlying UV dynamics is, given our current rather poor
theoretical understanding of strongly coupled dynamics.

One way in which may we may do so is via triangle anoma-
lies, which are not renormalised and so, if present in the UV,
must be reproduced in the IR, either by massless fermions
or by terms involving the pseudo-Goldstone bosons. Such
anomalies are not only not renormalised, but they are also
topological in nature. This means that by measuring them in
the IR, we may gain concrete information as regards the UV
dynamics. The classic example, of course, is in QCD, where
the measurement of the decay rate π0 → γ γ (which arises
via the electromagnetic anomaly [4,5]) enables us to infer
that Nc = 3.

In order to make such spectacular inferences, one must
be lucky enough to have a low-energy Lagrangian that
admits a non-trivial anomaly structure. The minimal, and
by far the most popular, composite Higgs model, based on
SO(5)/SO(4) [6] does not feature anomalies. However, the
‘next-to-minimal’ model based on SO(6)/SO(5) [7], which
is just as good from the phenomenological point of view,
does. Compared to the minimal model, it features only an
additional electroweak singlet scalar, which couples to elec-
troweak gauge bosons via a single SO(6)3 triangle anomaly.

Here we wish to describe yet another model, based
on SO(5) × U (1)/SO(4). It is just as minimal as the
SO(6)/SO(5) model, in the sense that it features only an
additional electroweak singlet scalar. But it turns out to have
a much richer anomaly structure, with several novel features.
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A first novel feature is that there are now three distinct
triangle anomalies, which give rise, at leading order, to cou-
plings of the singlet to both gluons and electroweak bosons.

A second novel feature is that the higher-order structure
of the anomalous effective action is not unique. Indeed, we
exhibit two solutions to the Wess–Zumino consistency con-
ditions. As far as we are aware, this phenomenon has not
been observed before in the literature on sigma models.

A third novel feature is that the effective Lagrangian
admits a term that is not invariant, but rather changes by a
total derivative, under the non-linearly realised symmetries.
Such a term is much like the Wess–Zumino–Witten (WZW)
term in the chiral Lagrangian of QCD, which allows pro-
cesses violating a putative internal symmetry under which
Goldstone bosons change sign, such as K + K → 3π [8,9].
But there is one noteworthy distinction between the WZW-
like term presented here and WZW term in QCD. In the
latter, the presence of the anomaly implies the presence of
the WZW term, in the sense that the low-energy effective
action reproducing the anomaly reduces to the WZW term
when the gauge fields vanish. In the model presented here,
this is not so. This phenomenon is also, we believe, unknown
in the sigma-model literature. The WZW-like term is also of
phenomenological interest, in that it may lead to a rare decay
of the singlet via η → hW +W −Z .

The outline is as follows. In the next section, we present
the pattern of symmetry breaking and sketch the concomitant
anomalies. We then present a full discussion of the anomaly
structure and the WZW-like term in Sect. 3. In Sect. 4, we
describe the couplings to fermions and the implications for
flavour physics. In Sect. 5, we discuss the form of the scalar
potential that is induced by the couplings to gauge fields
and fermions. We conclude in Sect. 6. Two more technical
discussions are relegated to appendices.

2 The model

We wish to consider composite Higgs models based on a
homogeneous space G/H that feature triangle anomalies.1

The minimal model [6], based on SO(5)/SO(4) (or
SO(5)/O(4) with custodial protection of Z → bb [11]),
features no triangle anomalies. The ‘next-to-minimal’ model
based on SO(6)/SO(5) [7] does, however, feature triangle
anomalies. Indeed the Goldstone bosons transform as the 5-d
irrep of SO(5), which, on restriction to the SO(4) subgroup,
yields both a 4-d irrep (viz. the Higgs field) and a singlet.
Moreover, since SO(6) is locally isomorphic to SU (4), we

1 See [7,10] for earlier discussions of anomalies in composite Higgs
models.

have the possibility of an SU (4)3 triangle anomaly.2 This
anomaly leads to an interaction, at leading order, of the form

1
16π2

η
f (g2

2 WμνW̃ μν − g2
1 Bμν B̃μν), with neither a coupling

to gluons nor to photons [12].
The absence of a coupling to photons in this model is

something of a group-theoretical accident, in that there are
couplings to Z Z , γ Z , and W W . But the absence of a cou-
pling to gluons looks, at first sight, to be a generic problem
in a composite Higgs model, given that the rôle of the new
strong dynamics is to break the electroweak symmetry, inde-
pendently of the SU (3)C dynamics. In fact, this is not so,
since a consequence of partial compositeness is that the new
strong sector must be charged under SU (3)C [13]. So it seems
quite plausible that the elementary fermions of the UV theory
could generate an anomaly involving SU (3)C .

One way to get couplings of the singlet to both electroweak
gauge bosons and to gluons via anomalies is to include both
SU (3)C and SU (2)L or U (1)Y in some simple subgroup of
G. But such a strategy will lead to additional coloured Gold-
stone bosons, with potentially dangerous phenomenological
implications.3 A safer, and simpler, strategy is to modify the
minimal model by adding a non-linearly realised U (1)η fac-
tor, such that the symmetry breaking pattern in the strong
sector becomes

G

H
= SU (3)C × SO(5) × U (1)X × U (1)η

SU (3)C × SO(4) × U (1)X
, (2.1)

where U (1)X denotes the usual U (1) needed in composite
Higgs models to give the correct hypercharge assignments to
SM fermions. This model features an additional SM singlet
compared to the minimal composite Higgs model. We remark
that, unlike the SO(6)/SO(5) model, this coset space allows
for two distinct decay constants, f and fη, associated with the
Higgs boson and the η, respectively. We assume henceforth
that these are generated by the same strong dynamics, and
hence are of the same order of magnitude.

Let us now consider the possible triangle anomalies in this
model. As we shall see in Sect. 3, triangle anomalies in G are
admissible only if they vanish on restriction to H . Thus, our
model admits three possible sources of triangle anomalies,
namely SU (3)2

C U (1)η and SO(5)2 U (1)η anomalies, and
anomalies involving U (1)η and U (1)X .

The leading contributions to the resulting low-energy
effective action arise at dimension-5, taking the form

Le f f = 1

16π2

η

fη
(c3 g2

3 Gμν G̃μν + c5(g
2
2 WμνW̃ μν

+ g2
1 Bμν B̃μν) + c1g2

1 Bμν B̃μν), (2.2)

2 Since H5
d R(SO(6)/SO(5)) = H5

d R(S5) = R, there is also a possible
WZW term. As explained in the next sections, H5

d R denotes the fifth de
Rham cohomology group.
3 Such states may also have desirable phenomenological implications,
however [14,15].
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where the coefficients are real, but otherwise arbitrary (cor-
responding to the freedom to arbitrarily choose the U (1)η
irreps of fermions in the UV theory that contribute to the
anomaly).

3 Anomalies and WZW-like terms

We now discuss the anomaly structure of the model in more
detail, together with the phenomenological consequences.
Let us begin with a general discussion. A theory with internal
global symmetry group G may be anomalous, in the sense4

that there is no way to regularise the theory such that the
divergences of 3-point functions of conserved currents are
all vanishing. Such anomalies are not renormalised and must
be reproduced at all energies, with consequences for low-
energy physics.

One consequence is a consistency condition on the possi-
ble pattern of symmetry breaking at low energy: if a subgroup
H ⊂ G is linearly realised at low energy, then H must be
anomaly free. The reason [16] is that we could perturb the
theory in an arbitrarily small way by gauging the whole of
G, but choosing the gauge coupling to be arbitrarily small.
If there were anomalies in H , the gauge bosons in H could
get masses via a loop diagram formed out of two anomalous
vertices, implying that H could not be linearly realised.

Once this restriction has been taken into account, it can be
shown that the remaining anomalies can be reproduced sat-
isfactorily at low-energies by Goldstone boson contributions
[17] and an explicit formula for the anomalous contribution
to the low-energy effective action for a reductive homoge-
neous space G/H can be found (see also [18]). As in [17],
in this Section we employ the langauge of differential forms
and omit normalisation factors, giving the result only for the
special case of a symmetric space, which is sufficient for our
needs. The formula is most conveniently written in the fully
gauged case; the result for gauging a subset F ⊂ G can be
obtained by setting the corresponding gauge fields to zero in
the formula.5 Let g and h be the Lie algebras of G and H .
Since G/H is reductive and symmetric, there exists a split,
g = h + k, such that [h, k] ⊆ k and [k, k] ⊆ h, together with
an ‘internal parity’ automorphism of g given by h → h and
k → −k. Letting A be a g-valued 1-form representing the
gauge fields and letting the coset representative be eξ , with
ξ ∈ k, we have

W [ξ, A] =
∑

±

∫ 1

0
dt
∫

d4xc±tr[ξG±[At ]], (3.1)

4 We consider only triangle anomalies here.
5 We caution the reader that the symmetry group of the resulting theory
is not G, even at the classical level, but rather it is the normaliser of F
in G [19].

where At = etξ (A + d)e−tξ �⇒ Ft = etξ Fe−tξ , c± are
arbitrary coefficients and

G+[A] = 3F2
h + F2

k − 4(A2
k Fh + Ak Fh Ak + Fh A2

k) + 8A4
k,

(3.2)

G−[A] = 3

2
(Fh Fk + Fk Fh − Fk A2

k − Ak Fk Ak − A2
k Fk).

(3.3)

Here, G± are the positive/negative eigenstates with respect
to the internal parity and the subscripts h and k denote pro-
jections onto the corresponding subspaces, such that Fh =
d Ah + A2

h + A2
k, Fk = d Ak + Ah Ak + Ak Ah .

The action (3.1) is unique in the sense that it is the only
action which vanishes when the Goldstone bosons vanish and
whose anomaly is given by δα	 = ∑

± c±trαG±[A] [18].
But it is not unique in the sense that the anomaly can take
many forms, corresponding to the addition of local countert-
erms to the effective action. (For a counterexample, it suffices
to choose H = 0, for which any form G[A] for the anomaly is
reproduced by the effective action 	 = ∫ 1

0 dt
∫

x trξG[At ].)
The action (3.1) is the one obtained by starting from the
canonical form of the anomaly (which is symmetric with
respect to G) and subtracting a counterterm that enforces the
vanishing of the anomaly on H [17]. Hadronic data suggest
that this is the option chosen by the strong interactions, but
we are unaware of an argument that it is the only consistent
option.

Even though its raison d’être is to reproduce anomalies
that arise due to gauging, (3.1) may not vanish in the limit
that gauge fields vanish. In that limit, we obtain

W [ξ, 0] =
∫ 1

0
dt
∫

d4xc+tr[ξ(etξ de−tξ )4
k]. (3.4)

Such a term, which contains an undifferentiated Goldstone
boson at leading order is not invariant under a G transfor-
mation, but rather changes by a total derivative. We will call
such non-invariant Lagrangian terms ‘WZW terms’, in hon-
our of their prototype in the chiral Lagrangian. It was shown
in [20] that, for compact G in d = 4, and for field configura-
tions in the trivial fourth homotopy class,6 such terms are in
1-1 correspondence with the generators of the fifth de Rham
cohomology group of G/H .

We caution the reader that not all such terms can arise
from effective actions reproducing triangle anomalies. By
way of a counterexample, consider the homogeneous space
SU (2)× SU (2)/U (1), where the U (1) is included in one of
the SU (2)s. This space is equivalent as a smooth manifold to
S3×S2 and a straightforward generalisation of the arguments
presented below shows that H5

d R(S3 × S2) = R. Thus, there

6 As usual, we identify spacetime, with fields thereon tending to a con-
stant value at infinity, with S4.
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is a WZW term in this case, but since SU (2) has no triangle
anomalies, it cannot arise from reproducing them.7

Composite Higgs model anomalies

For the SO(5) × SU (3) × U (1) × U (1)/SO(4) × SU (3) ×
U (1) model, it is straightforward to show that the effec-
tive action (3.1) reduces, at leading order, to (2.2). For
SU (3)2U (1) and the anomalies involving U (1)s, there are
no higher-order corrections to the effective action. There
are, however, higher-order corrections for the SO(5)2U (1)

anomaly, the detailed calculation of which we relegate to
Appendix 1. The next-to-leading order corrections arise at
dimension 7, up to which order the effective action is given,
in the operator basis of [21], by
∫

c5η(W i W i + B2 − 16

9 f 2 (H† H(W i W i + B2)

+ 2H†σ i H W i B)) + · · · , (3.5)

where W i and B are the field strength 2-forms and f is the
non-linear scale.

These corrections to the leading-order action appear to
constitute a definite prediction of the model, once c5 has
been determined from measurements at leading order. Unfor-
tunately, the issue of non-uniqueness discussed above now
rears its ugly head. Indeed, it is easy to check that the
leading-order action (2.2) alone also provides a solution of
the Wess–Zumino consistency conditions that vanishes on
SO(4) and so is, ceteris paribus, just as good a candidate
for the anomalous action. It corresponds to a regularisation
of the SO(5)2U (1) anomaly such that it is appears entirely
in the U (1) symmetry, whereas our action corresponds to an
anomaly that is symmetric with respect to the broken gen-
erators in U (1) and SO(5). Whether there exist yet more
consistent effective actions is an open question.

The two anomalous effective actions that we have found
differ structurally only in their higher-order terms. But this
does not mean that the non-uniqueness is phenomenologi-
cally inconsequential. Indeed, different choices of regulator
for the anomaly lead to different values of the coefficient
of the leading-order term. In particular, the coefficient that
corresponds to an anomaly that is symmetrised amongst all
three currents is 1

3 that of the coefficient that corresponds to
the anomaly that is contained wholly in a single current. So
the resolution of the non-uniqueness issue will be crucial, if
we want to make inferences about the UV structure of the the-
ory (in particular its fermionic representation content), using
experimental data.

Even if this non-uniqueness can be resolved, one should
also bear in mind that the couplings of the Goldstone bosons

7 Moreover, since π4(S3 × S2) = Z/2, one cannot use Witten’s trick
to write the WZW term as an integral over a 5-disk in this case.

to SM fermions will also generate loop contributions to the
couplings in the anomalous effective action.

The WZW term

There is a possible WZW term in the model, as we can
see by computing H5

d R(SO(5) × U (1)/SO(4)). Recalling
that SO(n + 1)/SO(n) and Sn are equivalent as smooth
manifolds, we thus have H5

d R(SO(5) × U (1)/SO(4)) =
H5

d R(S4 ×S1) = H4
d R(S4)⊗ H1

d R(S1) 	 R⊗R 	 R (where
we used the Künneth formula and the fact that Hi

d R(Sn) van-
ishes unless i = 0 or i = n, in which case it is isomorphic to
R). Thus, the theory admits a WZW term.

We may easily find the form of the WZW term, at least
for field configurations that correspond to the trivial class of
the fourth homotopy group. These may be written [20] as
the integral over a 5-ball, whose boundary is the spacetime
S4, of a G-invariant 5-form, whose existence is guaranteed
by the non-vanishing fifth de Rham cohomology group.8 For
G/H 	 S4 × S1 it is just the product of the usual volume
forms on the hyperspheres. At leading order in the fields, we
can integrate over the 5-ball to get
∫

S4
εi jklηdhi dh j dhkdhl , (3.6)

where hi are co-ordinates in the neighbourhood of the iden-
tity on S4.9 In SU (2) × U (1) language, the LO WZW term
is ηd H†σ i d Hd H†σ i d H .

As expected, the leading-order term is invariant under
the linearly realised subgroup SO(4) and changes by a total
derivative under a shift of the Goldstone bosons, correspond-
ing to an infinitesimal SO(5) × U (1) transformation.

As we see in Appendix 1, the WZW term does not arise
from (3.1), which vanishes when the gauge fields vanish.
Thus, unlike in QCD, the WZW term and the anomaly are
independent, at least for this choice of regularisation of the
anomaly.

The WZW term is in fact the leading-order term cou-
pling all 5 Goldstone bosons to each other. This can be
seen by forming Lagrangian invariants of the sigma model
in the usual way out of the objects dη and eξ de−ξ , which
transform as adjoints under H . By Lorentz invariance, all
terms involve an even number of derivatives. Terms with
no derivatives are forbidden by the non-linearly realised
symmetry, while terms with two derivatives are forbidden,
because such a term must take the form ∂μη tr eξ ∂μe−ξ =
0. A possible term with 4 derivatives takes the form
∂μη tr (eξ ∂νe−ξ )(eξ ∂σ e−ξ )(eξ ∂ρe−ξ ). Since SO(5) is free

8 Unfortunately, this trick does not work for a general field configura-
tion, because the fourth homotopy is π4(S4×S1) 	 π4(S4)⊕π4(S1) 	
Z ⊕ {e} 	 Z �= 0.
9 This term was also singled out in [22], but for different reasons.
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of triangle anomalies, the trace term must be antisymmetric
in its three entries and so a non-vanishing Lorentz invari-
ant can be obtained only by contracting with εμνσρ , such
that we can revert to the language of differential forms. We
have eξ de−ξ = dξ + 1

2 [ξ, dξ ] + · · · , such that the leading-
order term involving all Goldstone bosons takes the form
3
2 dηtrdξdξ [ξ, dξ ]. We need this to be non-vanishing when
each ξ corresponds to a distinct Goldstone boson and one
easily check using the basis in (B.11) that this is not so.

To explore the physics of the WZW term, we first gauge the
SM subgroup. Since this is a subgroup of H , under which the
WZW term transforms linearly, we may follow the usual pre-
scription of promoting derivatives to covariant derivatives,
obtaining ηDH†σ i DH DH†σ i DH .

Being of high dimension, the WZW leads to small con-
tributions to low-energy physics. They may, nevertheless, be
observable at a future high-precision collider, if sufficiently
exotic. As an example, by the Goldstone boson equivalence
theorem and by the antisymmetry in the fields, the WZW
term leads, after electroweak-symmetry breaking, to a cou-
pling involving η, h, W +, W −, and Z and hence a possible
decay mode η → hW +W −Z .

We remark that, whilst the WZW term is the leading-order
term coupling all five Goldstone bosons to one another, this
does not necessarily imply that it gives the dominant con-
tribution to this decay mode. Indeed, once we switch on the
gauging and other symmetry-breaking couplings, we may
well get contributions to this decay at lower orders, albeit pay-
ing the price of small, symmetry breaking couplings instead.

Discrete symmetries and Z → bb

As we have already remarked, the fact that SO(5) ×
U (1)/SO(4) is a symmetric space means that the Lie algebra
possesses the ‘internal parity’ automorphism h → h, k →
−k. The terms in the effective action giving rise to produc-
tion and decay of the η are odd under this automorphism,
so it could only be a symmetry of the dynamics if it were
accompanied by a spatial inversion. In any case, the internal
parity is broken in the vacuum by the Higgs VEV.

A more desirable symmetry to have, perhaps, is one that
protects the decay rate for Z → bb [11]. In the minimal
model based on G = SO(5), this is achieved by enlarging the
linearly realised subgroup from SO(4) to O(4).10 The same
enlargement could, of course, be carried out in the model

10 In fact, if we wish to include matter fields in the theory in spinor
representations, then we should consider not SO(5) but rather its
universal cover Sp(2). As described in [23], the relevant homoge-
neous spaces without and with custodial protection of Z → bb are
Sp(2)/(Sp(1) × Sp(1)) and Sp(2)/(Sp(1) × Sp(1) � Z2), where the
homomorphism in the semi-direct product maps the non-trivial ele-
ment in Z2 to the outer automorphism of Sp(1) × Sp(1) that inter-
changes the two Sp(1)s. The homogeneous spaces are homeomorphic

described here, but it has the consequence that the WZW
term is forced to vanish. Indeed, the usual action of SO(5)

on R
5 gives rise to transitive actions on both S4 (included

in R
5 as the set of points equidistant from the origin) and

RP4 (given as the set of lines through the origin in R
5 and

which we may also think of as the sphere with antipodal
points identified). The stability subgroup in the former case is
isomorphic to SO(4), while in the latter case it is O(4). Thus
SO(5)/SO(4) is homeomorphic to S4, while SO(5)/O(4)

is homeomorphic to RP4. Now, H4
d R(RP4) vanishes,11 as do

its other de-Rham cohomology groups (excepting of course
H0

d R), and so the Künneth formula tells us that with O(4)

included in this way, H5
d R(SO(5)×SO(2)/O(4)) = 0, such

that there can be no WZW term.
The WZW term may, however, be resurrected by chang-

ing the inclusion of the custodial O(4) in G. To understand
this, it is useful to see more explicitly why the leading-
order WZW term is forbidden in the standard implemen-
tation. To this end, choose co-ordinates (h, 1) on the unit
4-sphere included in R

5 in the neighbourhood of the sta-
bility point (0, 1). The stability group of the sphere is then

{(O+ 0
0 +1

)}, where O+ is any 4x4 orthogonal matrix of deter-
minant +1, and hence is isomorphic to SO(4). But if we
identify antipodal points, (−h,−1) ∼ (h, 1), then the stabil-

ity subgroup is enhanced to {(O± 0
0 ±1

)}, where O− is any 4x4
orthogonal matrix of determinant ±1, and hence is indeed
isomorphic to O(4), as we claimed earlier. Now, under the
action of an element of O(4) that is disconnected from the
identity, (h, 1) → (O−h,−1) ∼ (−O−h,+1). Thus the
putative leading-order WZW term, which is proportional to
εi jklhi h j hkhl is sent to (−1)4detO− = −1 times itself, and
is not invariant under such transformations. But the leading-
order WZW term should be invariant under O(4) and so must
vanish.

Clearly, we can resurrect the WZW term, at least at lead-
ing order, by arranging for the O(4) custodial group to be
included in G in such a way that the action of elements in
O(4) disconnected from the identity also sends η → −η.
To achieve this, set G = SO(5) × O(2) and let H be the
subgroup
{((

O+ 0
0 +1

)
,

(
1 0
0 1

))
,

((
O− 0
0 −1

)
,

(
1 0
0 −1

))}
(3.7)

H is still isomorphic to O(4), but now the action of elements
in O(4) disconnected from the identity sends η → −η. We

to SO(5)/SO(4) and SO(5)/O(4), respectively, and the discussion
given here can be carried over straightforwardly.
11 The reason for this is that the volume form on S4, which is given
by the pull-back to S4 via the inclusion map i : S4 → R

5 of the form
Footnote 11 continued∑4

i=1(−1)i x i dx1 . . . dx4 (where in the ellipsis we omit dxi ), is not
identical at antipodal points; this is consistent with the non-orientability
of RP4.
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Mixing Parameter Value
q
1 = λ3 q

3 1.15 × 10−2 q
3

q
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3

u
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vgρ

1
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5.48 × 10−4/(gρ

q
3)

u
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vgρ

1
λ2 q

3
5.96 × 10−2/(gρ

q
3)

u
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vgρ

1
q
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q
3)

d
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vgρ

1
λ3 q
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q
3)

d
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vgρ

1
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q
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1
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3)
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1/2
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gρv

1/2
2.43 × 10−2/g

1/2
ρ

3 = e
3 = mτ

gρv

1/2
0.101/g

1/2
ρ

Fig. 1 Partial compositeness mixing parameters and values. The input
running masses of the SM particles are taken at the renormalisation
scale of 1 TeV, with v = 174 GeV

conjecture therefore that H5
d R �= 0 in this case, such that

there is a WZW term.

4 Couplings to fermions and flavour violation

We now discuss the couplings of the η singlet to SM fermions.
We postulate that the SM fermion Yukawa couplings are gen-
erated via the paradigm of partial compositeness (PC) [24].
The basic assumption is that elementary states f i (where
f ∈ {QL , u R, dR, L L , eR} and i is the family index) couple

linearly to fermionic operators O f
i of the strong sector:

LPC = gρε
q
i Oq

i Qi
L + gρεu

i Ou
i ui

R + gρεd
i O

d
i di

R

+gρε�
i O

�

i Li
L + gρεe

i O
e
i ei

R + h.c.

We simplify the description of the strong sector as in [25],
assuming a single strong coupling gρ , and a single mass scale
mρ . The linear mixing parameters εa

i are taken to be hierar-
chical in order to reproduce the pattern of masses and mixing
of the SM fermions. In particular, it can be shown that the
Yukawa couplings of up and down quarks and of charged
leptons are given by

Y U
i j ∼ gρε

q
i εu

j , Y D
i j ∼ gρε

q
i εd

j and Y E
i j ∼ gρε�

i εe
j .

(4.1)

Throughout this section, we use the symbol ∼ to indicate a
relation that holds up to an unknown O(1) complex coef-
ficient whose value is determined by the unknown strong-
sector dynamics. As in [15,26], a viable choice of the mixing
parameters is given in Fig. 1.

We remark that we have tacitly assumed, for simplicity,
that every elementary field f a

i couples to a single operator of

the strong sector. In that case, it is easy to derive the coupling
of the goldstone boson η to the fermions f i . Indeed, it is

enough to replace f i → f i exp
(

i
√

2
fη

η Z fi

)
in the EFT of

the usual composite Higgs model based on SO(5)×U (1)X ,
where Z fi is the U (1)η charge. As we shall see in Sect. 5,
there is a price to be paid for this assumption, namely that one
then requires an additional source of explicit U (1)η breaking
in the model in order to generate a potential for the singlet.
We expect, however, that relaxing this assumption will lead
to comparable bounds.

Without specifying the details and quantum numbers of
the composite operators under SO(5) × U (1)X , integrating
away the heavy sector at the scale mρ and keeping the leading
term in H/ f and η/ fη, we get (in complete generality) that

Lyuk = −Y U
i j H Q

i
Lu j

R

[
1 + i

√
2

fη
η
(

Z Qi
L

− Z
u j

R

)]
+ h.c.

(4.2)

− Y D
i j Hc Q

i
Ld j

R

[
1 + i

√
2

fη
η
(

Z Qi
L

− Z
d j

R

)]
+ h.c.

(4.3)

− Y E
i j Hc L

i
Le j

R

[
1 + i

√
2

fη
η
(

ZLi
L

− Z
e j

R

)]
+ h.c.

(4.4)

The Yukawa couplings are specified in a basis where the
SM fields have specific charge assignments under U (1)η. The
Yukawa matrices are diagonalised by bi-unitary transforma-
tions:

Ŷ U = LU Y U R†
U = 1

v
diag(mu, mc, mt ), (4.5)

Ŷ D = L DY D R†
D = 1

v
diag(md , ms, mb), (4.6)

Ŷ E = L E Y E R†
E = 1

v
diag(me, mμ, mτ ). (4.7)

The expected size of the entries of these unitary matrices are
linked to the mixing parameters in the following way:

(LU )i j ∼ (L D)i j ∼ min

(
ε

q
i

ε
q
j

,
ε

q
j

ε
q
i

)

(RU )i j ∼ min

(
εu

i

εu
j
,
εu

j

εu
i

)

(RD)i j ∼ min

(
εd

i

εd
j

,
εd

j

εd
i

)
(4.8)

and similarly for the leptonic sector.
Rewriting the Lagrangian in the mass basis and replacing

the Higgs doublet with its VEV, one may deduce the flavour-
and CP-violating couplings of the η to SM fermions:
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Lyuk ⊃ −
∑

ui ,u j =u,c,t

Yui u j η ūi PRu j

−
∑

d,d j =d,s,b

Ydi d j η d̄i PRd j

−
∑

�i ,� j =e,μ,τ

Y�i � j η �̄i PR� j + h.c.

The typical size of the induced flavour violating Yukawa cou-
plings depends on the structure dictated by partial compos-
iteness and by the U (1)η charge assignment of the different
fields. It is easy to show that

Yui u j = i

√
2 v

fη

[
LU Ẑ QL L†

U ŶU + ŶU RU ẐUR R†
U

]

i j
, (4.9)

Ydi d j = i

√
2 v

fη

[
L D Ẑ QL L†

DŶD + ŶD RD Ẑ DR R†
D

]

i j
, (4.10)

Yei e j = i

√
2 v

fη

[
L E ẐL L L†

E ŶE + ŶE RE Ẑ ER R†
E

]

i j
. (4.11)

The Ẑ matrices are diagonal and contain the Z -charges of the
fields; in particular we have defined Ẑ f ≡ diag(Z f 1, Z f 2 ,

Z f 3).
With these expressions in hand, let us consider to what

extent the suppression provided by the partial composite-
ness ansatz is sufficient to protect the model from dangerous
flavour- and CP-violating contributions to physical observ-
ables.

If we assume the ‘worst-case scenario’ of an anarchic
charge assignment (Z f i = O(Z) for every field f i =
{Qi

L , ui
R, di

R, Li
L , E j

R}), we obtain couplings of the follow-
ing sizes:

(Y U
η )i j ≡ Yui u j ∼ gρε

q
i εu

j

√
2v

fη
Z =

√
2v

fη
Z

×
⎛

⎝
6.3 × 10−6 6.8 × 10−4 9.9 × 10−3

2.8 × 10−5 3.0 × 10−3 4.4 × 10−2

5.4 × 10−4 6.0 × 10−2 0.87

⎞

⎠ ,

(4.12)

(Y D
η )i j ≡ Ydi d j ∼ gρε

q
i εd

j

√
2v

fη
Z =

√
2v

fη
Z

×
⎛

⎝
1.4 × 10−5 6.1 × 10−5 1.6 × 10−4

6.3 × 10−5 2.7 × 10−4 7.1 × 10−4

1.2 × 10−3 5.3 × 10−3 1.4 × 10−2

⎞

⎠ ,

(4.13)

(Y E
η )i j ≡ Yei e j ∼ gρε�

i εe
j

√
2v

fη
Z =

√
2v

fη
Z

×
⎛

⎝
2.8 × 10−6 4.1 × 10−5 1.7 × 10−4

4.1 × 10−5 5.9 × 10−4 2.5 × 10−3

1.7 × 10−4 2.5 × 10−3 1.0 × 10−2

⎞

⎠

(4.14)

These couplings are subject to phenomenological con-
straints. Bounds derived from flavour- and CP-violating pro-
cesses induced by the exchange of the η boson can be found
in the model independent analysis of [27]. We translate these
into bounds on the combination Z

fη
, as reported in Fig. 2.

It is clear from these results that, in order to pass the bounds
imposed by observables involving the first two families of

quarks, we need Z
(

fη
700 GeV

)−1 ( Mη

750 GeV

)−1
� 10−2. The

values of Z and fη are unknown and depend on the details
of the strongly coupled sector. However, the most natural
expectation is that fη ∼ f and Z ∼ 1, because the compos-
ite Higgs and the composite η are generated from the same
strong dynamics. If this is the case, an extra source of flavour
protection is required. An easy fix to this problem is to assume
that the η PNGB couples to flavour in a universal way. More
specifically, we can impose Z f i = Z f for i = {1, 2, 3}. In
this case the η and the Higgs boson couplings to fermions
are aligned in each sector, such that

(Y U
η )i j = iδi j

mU
i

fη

(
Z QL − Zu R

)
mU

i = {mu, mc, mt },
(4.15)

(Y D
η )i j = iδi j

m D
i

fη

(
Z QL − ZdR

)
m D

i = {md , ms, mb},
(4.16)

(Y E
η )i j = iδi j

m E
i

fη

(
ZL L − ZeR

)
m E

i = {me, mμ, mτ }
(4.17)

All the flavour and CP problems are solved, since this pat-
tern is flavour diagonal.12 It is, moreover, rather predictive.
Indeed the η, like the Higgs, couples predominantly to the
third generation. This could have important implications for
the production and decay mechanisms of the singlet, as we
now discuss.

In the narrow width approximation the prompt η produc-
tion at the LHC can be expressed in terms of the relevant
decay widths

σ(pp → η) = 1

Mη s

∑

P

CP P (Mη, s) 	P P , (4.18)

where
√

s is the center of mass energy of the collider and
CP P (Mη, s) parametrise the relevant parton luminosities. In
our framework the relevant partons to be taken into account
are expected to be the gluons [if the associated anomalous
term in Eq. (2.2) is present] and the bottom quarks. The
explicit expressions for the partial widths are given by

12 There remain, however, sub-dominant flavour-violating contribu-
tions from possible derivative operators, analogous to those described
in [28].
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Fig. 2 Constraints on η

couplings to SM fermions (first
column) derived from low
energy precision observables
(second column). The limits on

Z
fη Mη

are presented in the third

column

Bound on Yf,f Observable Z
fη

700 GeV

−1 Mη

750 GeV

−1

Re[(Ysd)2], Re[(Yds)2] < 1.3 × 10−4 Mη

750 GeV ΔmK < 5.9

Re[(YsdY
∗
ds] < 4.6 × 10−5 Mη

750 GeV ΔmK < 2.1

Im[(Ysd)2], Im[(Yds)2] < 3.4 × 10−6 Mη

750 GeV K < 0.15

Im[(YsdY
∗
ds] < 1.6 × 10−5 Mη

750 GeV K < 5.2 × 10−2

Re[(Ycu)2], Re[(Yuc)2] < 3.3 × 10−4 Mη

750 GeV xD < 1.4

Re[YcuY ∗
uc] < 3.9 × 10−5 Mη

750 GeV xD < 0.17

Im[(Ycu)2], Im[(Yuc)2] < 4.0 × 10−5 Mη

750 GeV (q/p)D, φD < 0.17

Im[YcuY ∗
uc] < 4.0 × 10−5 Mη

750 GeV (q/p)D, φD < 2.0 × 10−2

Re[(Ybd)2], Re[(Ybd)2] < 4.1 × 10−4 Mη

750 GeV Δmd < 7.3

Re[YbdY
∗
db], Re[(Ybd)2] < 1.4 × 10−4 Mη

750 GeV Δmd < 2.4

Im[(Ybd)2], Im[(Ybd)2] < 2.3 × 10−4 Mη

750 GeV sin 2β < 4.1

Im[(Ybd)Y ∗
db] < 7.6 × 10−5 Mη

750 GeV sin 2β < 1.4

|(Ybs)|, |(Ysb)| < 1.7 × 10−3 Mη

750 GeV Δms < 0.91

|YbsY
∗
sb| < 5.7 × 10−4 Mη

750 GeV Δms < 0.31

	(η → gg) = c2
3

α2
s

8π3

M3
η

f 2
η

, (4.19)

	(η → bb̄) = 3Mη

8π
(Y D

η )2
33. (4.20)

The mechanism of partial compositeness also allows one to
predict the dominant decay mode to be into top-quarks if
mη > 2 mt . Depending on the value of the mass of the PNGB,
phase space could be important and the expression for the
decay width in this channel is given by

	(η → t t̄) = 3Mη

8π
(Y U

η )2
33

(
1 − 4m2

t

m2
η

)3/2

. (4.21)

The large coupling of η with the heaviest fermion allows
for its production at LHC in association with top quarks. A
recent analysis from the ATLAS collaboration [29], using
data at

√
s = 13 TeV, leads to the following bound:

σ(pp → η + t t) × Br(η → t t) � O(10−1) pb (4.22)

for a mass of the PNGB mη < 1 TeV.
We conclude this section noticing that the simple flavour

structure that we have just described, while guaranteeing
immunity from flavour problems, does not allow one to gen-
erate a scalar potential (and hence a mass) for the singlet from
fermionic couplings. As we discuss in the next Section, to do
so requires that at least one of the elementary fermions in the
partial compositeness scenario mixes with multiple strong-
sector operators. Even if one tries to do so in a way that is as
safe as possible (for example by allowing the right-handed up
quarks to couple to strong-sector operators with just two val-
ues of the U (1)η charge), one ends up re-introducing flavour
violation in the right-handed up sector at a level comparable

to that obtained with anarchic charge assignments in Fig. 2,
which is itself comparable to that obtained in the minimal
composite Higgs model. Thus, if one wishes to generate the
scalar potential from fermionic couplings, it would seem that
either a mild tuning or some kind of flavour-alignment mech-
anism (such as those advanced in [30]) is required.

5 The scalar potential

Since the η singlet is protected by a shift symmetry, its
mass and non-derivative interactions must be proportional
to U (1)η-breaking couplings. The elementary fermion cou-
plings to the strong sector are the main source of such global
symmetry violations, and the η singlet then obtains a poten-
tial via the same Coleman–Weinberg mechanism that radia-
tively generates the pseudo-Goldstone Higgs potential at one
loop. This must originate from fermion couplings, since no
potential is generated by gauge couplings in the absence of
anomalies, because U (1)η commutes with the rest of G.13

The particular form of the symmetry breaking from Yukawa
couplings is, in general, model-dependent.

To illustrate the mechanism in a minimal phenomenolog-
ical model, we take an elementary top-right coupling to two
strong-sector operators with different U (1)η charges such
that the symmetry is explicitly broken by a collective mech-
anism.14 The doubling of the top-right operator is necessary

13 In the presence of anomalies and without other sources of U (1)η-
breaking, the η plays the role of an electroweak axion. The resulting
contributions to its mass are thus completely negligible compared to
those considered here.
14 This is in contrast to various composite Higgs models where the top
right is a fully composite state.
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to break the U (1)η symmetry, since with only one operator,
we can restore it by assigning a suitable U (1)η charge to the
elementary fermion.

The simplest realisation of the model is to extend the min-
imal composite Higgs with the elementary fermions qL , u R,

and dR uplifted to a spinorial representation of SO(5), under
which the corresponding composite operators Oq ,Ou1 ,Ou2

and Od transform. Summing implicitly over three flavours,
the relevant Lagrangian terms may be written as

L ⊃ gρεqq LOq + gρεu1 u ROu1 + gρεu2 u ROu2

+gρεdd ROd + h.c.. (5.1)

We see that if one of the two top-right couplings is set to
zero then a U (1)η symmetry may be restored. The dou-
bling of the corresponding u R operator thereby provides a
collective mechanism for breaking the symmetry. The ele-
mentary fermions embedded in complete spinorial represen-
tations of SO(5) decompose as 4 = (2, 1) + (1, 2) under
SU (2)L × SU (2)R . By completing the representation with
spurious fermions they can be represented by fields trans-
forming under this symmetry as

�q =
(

qL

0

)Zq

1
6

, �u1 =
⎛

⎝
0(

u R

0

)
⎞

⎠
Zu1

1
6

,

�u2 =
⎛

⎝
0(

u R

0

)
⎞

⎠
Zu2

1
6

, �d =
⎛

⎝
0(
0

dR

)
⎞

⎠
Zd

1
6

,

where the superscript Z represents the U (1)η charges and
the subscript is the U (1)X charge assigned by requiring Y =
T 3

R + X . We have set to zero the non-dynamical spurions that
complete the SU (2)L (SU (2)R) representation in the upper
(lower) two components of the multiplet, though they are
formally required to restore the global SO(5) symmetry.

The Coleman–Weinberg effective potential may be derived
by writing the most general SO(5) × U (1)X × U (1)η-
invariant effective action then setting the spurions to zero to
recover the effective Lagrangian, as detailed in Appendix 1.
The quadratic terms in the background of the Higgs and sin-
glet are then responsible for the one-loop effective action.
Assuming real CP-conserving form factors, we obtain for
the third-generation qL = (tL , bL), tR sector, in momentum
space,

L = q L /p
[
�

q
0(p) + �

q
1(p)ch

]
qL

+ t R /p
[
�12

0 (p) + �
u12
0 (p)c12

η

−
(
�12

1 (p) + �
u12
1 (p)c12

η

)
ch

]
tR + h.c.

+ q L
[
Mu1

1 (p)Uq1 + Mu2
1 (p)Uq2

]
sh HctR + h.c.,

(5.2)

where Hc ≡ iσ 2 H with H the usual complex Higgs doublet
and

Urs ≡ e
i

√
2

fη
(Zr −Zs )η = crs

η + isrs
η .

We have also defined ch ≡ cos (h/ f ), sh ≡ sin (h/ f ), crs
η ≡

cos
(√

2(Zr − Zs)η/ fη
)

, and srs
η ≡ sin

(√
2(Zr − Zs)η/ fη

)
,

with h ≡ √
haha , a = 1, 2, 3, 4. The �0,1, M1 functions are

form factors that encapsulate effects from strong dynamics.
The resulting potential is detailed in Appendix 1 with the
leading-order approximation found to be of the form

V (h, η) 	
(
α + α12c12

η

)
ch −

(
β + β12c12

η

)
s2

h , (5.3)

where α, β, α12, and β12 are coefficients related to momen-
tum integrals of the π0,1, M1 form factors. Thus, the result-
ing potential is almost identical to that obtained in the min-
imal model in [6], but with the coefficients replaced by
α, β → α + α12c12

η , β + β12c12
η .

The potential has extrema occurring at s12
η = 0 �⇒

c12
η = ±115 and ch = − 1

2
α±α12
β±β12

. As is usual in composite
Higgs models, we find that with O(1) values for the coeffi-
cients, v ∼ f is expected and so a slight tuning is needed to
obtain the required suppression of the weak scale for com-
patibility with electroweak precision tests.

There is no mixing between the Higgs and η, so there is
no risk of running into bounds from existing observations in
the Higgs sector. The non-vanishing second derivatives are
given by

∂V

∂η2 = ∓ 1

f 2
η

(α12ch + β12s2
h), (5.4)

∂V

∂h2 = − 1

f 2 [(α ± α12)ch − 2(β ± β12)c2h]

= 2

f 2 (β ± β12)s
2
h = 2

f 2

v2

f 2 (β ± β12) (5.5)

Thus, once we have tuned the electroweak vev to be small
compared to f , we will also obtain a corresponding suppres-
sion of the Higgs mass-squared, exactly as one finds in [6].
The mass of η, however, is unsuppressed, so we obtain a hier-
archy of scales, of parametric size v/ f (assuming fη ∼ f )
between the η mass and either the electroweak scale or the
mass of the Higgs boson.

An identical conclusion is reached if we instead embed
the elementary fermions in the fundamental, 5-d represen-
tation of SO(5), as we describe in Appendix 1. (In this
case, as we discuss in Appendix 3, we can also protect the

15 We remark that a vacuum with c12
η = −1 does not imply spontaneous

violation of C P , because C P sends η → −η and because physics is
periodic in the argument of the cosine.
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ZbL bL coupling by a custodial symmetry.) The hierarchy
of scales is, in fact, generic and follows from the fact that
the scalar potential is an even function of h. Indeed, with
V (h, η) = f (h2, η), we obtain ∂V ∂h2 = 4v2∂ f /∂h2|v , at
an electroweak-symmetry-breaking minimum. One can also
see that any mixing between the mass eigenstates of the sin-
glet and the Higgs will also be v/ f suppressed.

Although this hierarchy of scales is generic, it may be
affected by the well-known difficulty (see e.g. [31] for a com-
prehensive discussion) of accommodating a Higgs mass as
low as 125 GeV in composite Higgs models, given the size of
contributions to the Higgs potential from top quark loops. If
the required additional suppression is an accidental tuning,
then we expect no corresponding suppression in the η mass.
But if it is achieved by the presence of light top partners
that cut off all contributions to the scalar potential, then one
should find a corresponding suppression of the η mass.

6 Conclusion

Composite Higgs models remain viable possibilities for solv-
ing the electroweak hierarchy problem. Here we introduced
the most minimal extension of the coset structure allowing a
non-trivial anomaly structure and discussed the details of the
low-energy action reproducing the anomalies. We showed
that there can be higher-order corrections, beyond dimen-
sion 5, to the action reproducing the SO(5)2U (1) anomaly,
but also pointed out that the effective action is not unique.
We also showed that the structure of the coset space admits
a possible Wess–Zumino–Witten term, by which we mean a
term in the effective Lagrangian which is not invariant under
the non-linearly realised symmetries, but rather shifts by a
total derivative. Unlike in QCD, this term is not contained in
the anomalous effective action that we consider. If present,
the term leads to an exotic phenomenological signature in
the form of the singlet decay η → hW +W −Z .

The discussion of the anomaly structure in this specific
model highlights three questions that it would be interesting
to resolve in models based on a general coset space, G/H .
Firstly: is there a way to resolve the non-uniqueness issue
of the low-energy anomalous effective action? Secondly: do
Wess–Zumino–Witten terms that are not required to repro-
duce triangle anomalies have some other purpose? Thirdly,
is there an elegant way to write the Wess–Zumino–Witten
term for coset spaces whose fourth homotopy group is non-
vanishing?

The anomaly-induced production and decays of the singlet
may induce flavour violation of its couplings to fermions and
we have shown how they can be kept under control without
fine-tuning if the η couples in a flavour-universal way through
the mechanism of partial compositeness. For natural O(1)

charge assignments, this pattern of coupling predicts a large
decay width through the t t final state.

We also showed how the potential for the PNGB Higgs and
singlet can be generated by elementary fermion couplings to
the strong sector that break the global symmetry, though this
requires a slight departure from the flavour-universal pattern
of couplings, because of the need for a collective breaking
mechanism to give mass to the singlet. We find that the singlet
mass is naturally unsuppressed relative to the Higgs mass
and electroweak scale, thus requiring no additional tuning
beyond the usual ones needed for a small electroweak scale
and light Higgs mass in composite models. Since the form of
the potential contains no mixing between the Higgs and the
singlet there are no further bounds from the Higgs sector.

Should the Higgs arise as a pseudo-Nambu–Goldstone
boson, it will be imperative to determine the new strong sector
responsible for it. Given our current limited understanding of
strongly coupled theories, the anomaly structure, if present,
may be crucial in gaining some insight as to the nature of the
underlying UV dynamics. We hope that the model described
here, or some variant thereof, may be useful in this regard.
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Appendix A: Scalar potential computations

Higgs-singlet potential in the extension of the MCHM4

The elementary fermions are uplifted to a 4 of SO(5), which
decomposes as 4 = (2, 1)+(1, 2) under SU (2)L × SU (2)R .
The most general SO(5)×U (1)X ×U (1)η-invariant effective
action up to quadratic order can then be written in momentum
space as

L =
∑

r=q,u1,u2,d

�r /p
[
�r

0(p) + �r
1(p)	i�i

]
�r

+
{
�u1 /p

[
�

u12
0 (p) + �

u12
1 (p)	i�i

]
U12�u2 + h.c.

}

+
∑

r=u1,u2,d

{
�q

[
Mr

0(p) + Mr
1(p)	i�i

]
Uqr�r + h.c.

}
,

(A.1)

where the pseudo-Goldstone singlet η and Higgs doublet
ha = (h1, h2, h3, h4) are given here by
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�i = sh

h

(
h1, h2, h3, h4, h

ch

sh

)

Urs = e
i

√
2

fη
(Zr −Zs )η = crs

η + isrs
η , (A.2)

We recall the definitions h ≡ √
haha , ch ≡ cos (h/ f ),

sh ≡ sin (h/ f ), crs
η ≡ cos

(√
2(Zr − Zs)η/ fη

)
, and

srs
η ≡ sin

(√
2(Zr − Zs)η/ fη

)
. Explicit expressions for

the SO(5) gamma matrices 	i can be found in Ref. [6].
The �(p), M(p) functions are form factors that encapsulate
information from the strong sector.

Setting to zero the non-dynamical spurions that complete
the � representation, we obtain the quadratic terms in the
Lagrangian for the third-generation qL = (tL , bL), tR sector,

L = q L /p
[
�

q
0(p) + �

q
1(p)ch

]
qL

+ t R /p
[
�

u1
0 + �

u2
0 − (�u1

1 + �
u2
1

)
ch
]

tR

+ t R /p
[
�

u12
0 − �

u12
1 ch

]
UZ1−Z2 tR + h.c.

+ q L
(
Mu1

1 UZq−Zq + Mu2
1 UZq−Z2

)
sh Ĥ ctR + h.c.,

(A.3)

where Hc ≡ iσ 2 H and H is the complex Higgs doublet.
Assuming real CP-conserving form factors, this becomes

L = q L /p
[
�

q
0(p) + �

q
1(p)ch

]
qL

+ t R /p
[
�12

0 (p) + �
u12
0 (p)c12

η

−
(
�12

1 (p) + �
u12
1 (p)c12

η

)
ch

]
tR + h.c.

+ q L
[
Mu1

1 (p)Uq1 + Mu2
1 (p)Uq2

]
sh HctR + h.c.,

(A.4)

where �12
0,1 ≡ �

u1
0,1 + �

u2
0,1. Including the SU (2)L gauge

field contributions with form factors �0 and �1 as defined
in Ref. [6], the resulting Coleman–Weinberg potential gen-
erated at one loop is given by

V (h, η) = −2Nc

∫
d4 p

(2π)4

{
2 log

(
1 + �

q
1

�
q
0

ch

)
+ log

(
1 − �12

1 + �
u12
1 c12

η

�12
0 + �

u12
0 c12

η

ch

)

+ log

⎛

⎝1 − |Mu1
1 Uq1 + Mu2

1 Uq2|2
p2
(
�

q
0 + �

q
1ch
) [(

�12
0 − �12

1 ch
)+ (�u12

0 − �
u12
1 ch

)
c12
η

] s2
h

⎞

⎠

⎫
⎬

⎭+ 9

2

∫
d4 p

(2π)4 log

(
1 + 1

4

�1

�0
s2

h

)
.

(A.5)

Assuming the form factors decrease fast enough with increas-
ing momentum, the logarithm may be expanded to give the
leading-order approximation for the potential,

V (h, η) 	
(
α + α12c12

η

)
ch −

(
β + β12c12

η

)
s2

h . (A.6)

The coefficients are related to the form factor integrals as

α = 2Nc

∫
d4 p

(2π)4

(
�12

1

�12
0 + �

u12
0

− 2
�

q
1

�
q
0

)
,

α12 = 2Nc

∫
d4 p

(2π)4

(
�

u12
1

�12
0 + �

u12
0

)
,

βV = −
∫

d4 p

(2π)4

9

8

�1

�0
,

β1,2 = 2Nc

∫
d4 p

(2π)4

⎛

⎜⎝

(
M

u1,2
1

)2

(−p2
) (

�
q
0 + �

q
1

) (
�12

0 + �
u12
0 − �12

1 − �
u12
1

)

⎞

⎟⎠ ,

β12 = 2Nc

∫
d4 p

(2π)4

(
2Mu1

1 Mu2
1(−p2

) (
�

q
0 + �

q
1

) (
�12

0 + �
u12
0 − �12

1 − �
u12
1

)
)

,

with β ≡ βV + β1 + β2.

Higgs-singlet potential in the extension of the MCHM5

The elementary fermions may instead be embedded in the
fundamental representation of SO(5). Such a setup can also
be extended to protect the ZbL bL coupling by a custodial
symmetry if we assume that qL is embedded such that it
couples to two operators with different U (1)X charges. The
resulting Lagrangian of the effective coupling to the com-
posite operators can be written as

L = gρεq1q LOq1 + gρεq2q LOq2 + gρεu1 u ROu1

+ gρεu2 u ROu2 + gρεdd ROd + h.c..

The fields transforming under the 5 of SO(5) with non-
dynamical spurions completing the representation (which we
again set here to zero) are chosen to be

123



28 Page 12 of 14 Eur. Phys. J. C (2017) 77 :28

�1L = 1√
2

⎛

⎜⎜⎜⎜⎝

−bL

ibL

tL

−i tL

0

⎞

⎟⎟⎟⎟⎠

Zq1

2
3

, �2L = 1√
2

⎛

⎜⎜⎜⎜⎝

tL

−i tL

bL

−ibL

0

⎞

⎟⎟⎟⎟⎠

Zq2

− 1
3

,

�1,2R =

⎛

⎜⎜⎜⎜⎝

0
0
0
0

u R

⎞

⎟⎟⎟⎟⎠

Z1,2

2
3

, �dR =

⎛

⎜⎜⎜⎜⎝

0
0
0
0

dR

⎞

⎟⎟⎟⎟⎠

Zd

− 2
3

.

The superscripts and subscripts denote the U (1)η and U (1)X

charges, respectively. It might initially seem that an explicit
breaking of U (1)η from qL coupling to two different opera-
tors will generate a potential for the singlet, thus making the
doubling of the top-right couplings redundant, but it turns out
that the unbroken U (1)X symmetry forbids the necessary η

coupling in the effective action. For this reason we minimally
extend the top-right sector as in the previous model and fix
Zq1 = Zq2 = Zq .

The most general effective action under SO(5)×U (1)X ×
U (1)η is then

L =
∑

r=1,2

�
i
rL /p

(
δi j �̂

rL
0 + �i� j�̂

rL
1

)
�

j
rL

+
∑

r=1,2,d

ψ
i
rR /p

(
δi j �̂

rR
0 + �i� j �̂

rR
1

)
�

j
rR

+
⎡

⎣
∑

r=1,2

�
i
1L

(
δi j M̂1r L

0 + �i�
j M̂1r L

1

)
Uqr�

j
rR

+ �
i
2L

(
δi j M̂2bL

0 + �i� j M̂2bL
1

)
Uqb�

j
dR

+ �
i
1R /p

(
δi j �̂12R

0 + �i� j �̂12R
1

)
U12�

j
2R

+ h.c.

]
.

(A.7)

Setting the non-dynamical spurions to zero to keep the rel-
evant terms for computing the Coleman–Weinberg effective
potential, omitting the bottom contributions, we find

L = q L /p

[
�

q
0 + 1

2
s2

h

(
�

q1
1 Ĥ c Ĥ c† + �

q2
1 Ĥ Ĥ†

)]
qL

+ u R /p

[
�u

0 + 1

2
s2

h�u
1

]
u R

+
[

1√
2

chsh

(
Mqu1

1 Uq1 + Mqu2
1 Uq2

)
q L Ĥcu R + h.c.

]

+ u R /pRe

{(
�uu

0 + 1

2
s2

h�uu
1

)
U12

}
u R, (A.8)

where

�
q
0 ≡ �̂1L

0 + �̂2L
0 , �

q1,q2
1 ≡ �̂

1L ,2L
1 ,

�u
1 ≡ −2

(
�̂1R

1 + �̂2R
1

)
, �uu

1 ≡ −2�̂12R
1 ,

�u
0 ≡ �̂1R

0 + �̂2R
0 + �̂1R

1 + �̂2R
1 ,

Mqu1,qu2
1 ≡ M̂11L ,12L

1 , �uu
0 ≡ �̂12R

0 + �̂12R
1 . (A.9)

Assuming real form factors with CP conservation, in the uni-
tary gauge this gives for the top quark sector the quadratic
Lagrangian

L = t L /p

[
�

q
0 + 1

2
s2

h�
q1
1

]
tL

+ t R /p

[
�u

0 + �uu
0 + 1

2
s2

h

(
�u

1 + �uu
1 c12

η

)]
tR

+
[

1√
2

(
Mqu1

1 Uq1 + Mqu2
1 Uq2

)
chsht L tR + h.c.

]
.

(A.10)

The resulting Coleman–Weinberg potential is

V (h, η) = 9

2

∫
d4 p

(2π)4 log

(
1 + 1

4

�1

�0
s2

h

)

− 2Nc

∫
d4 p

(2π)4

⎧
⎪⎨

⎪⎩
log

(
1 + 1

2

�
q1
1

�
q
0

s2
h

)
+ log
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1 + 1

2

�
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1
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q
0

s2
h

)
+ log

⎛

⎝1 + 1

2

(
�u

1 + �uu
1 c12

η

)
s2

h

�u
0 + �uu

0

⎞

⎠

+ log

⎛

⎜⎝1 −
1
2

∣∣∣Mqu1
1 Uq1 + Mqu2

1 Uq2

∣∣∣
2

c2
hs2

h

p2
[
�u

0 + �uu
0 + 1

2 s2
h

(
�u

1 + �uu
1 c12

η

)] [
�

q
0 + 1

2 s2
h�

q1
1

]

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
, (A.11)
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which may be simplified to the form

V (h, η) 	
(
α + α12c12

η

)
s2

h −
(
β + β12c12

η

)
c2

hs2
h . (A.12)

Appendix B: Higher-order contributions to the anoma-
lous effective action

To compute higher-order contributions to the anomalous
effective action (3.1) for the SO(5) × U (1)/SO(4) model,
it is useful to consider what happens if we start from some
G/H and add an additional, broken, ungauged, U (1) factor,
along with a G2U (1) triangle anomaly. We thus need to add
a Goldstone boson η to the existing Goldstone bosons, ξ ,
and to make the replacements At → At − tdη �⇒ Ft →
Ft , A2

t → A2
t .

We observe that η can appear in G± in (3.1) only
in the terms (At )k(Ft )h,k(At )k → (At )k(Ft )h,k(At )k −
tdη[(Ft )h,k, (At )k]. Since we must take the trace of this with
a Goldstone boson ξ in G/H in order to get a non-vanishing
contribution via the anomaly, and since the generators in g

are orthogonal, the sole such contribution to the action is
given by

	 ⊃ 4c+
∫

tdηtrξ [(Ft )h, (At )k]. (B.1)

In addition, we get contributions where we take terms in G±
not involving η, of the form

	 ⊃
∑

±
c±
∫

ηtrG±[At ]. (B.2)

These simplify dramatically. Indeed, orthogonality of gener-
ators, together with tr(A2

k Fk+Ak Fk Ak+Fk A2
k) = tr A2

k Fk =
0, implies that G− = 0. Moreover, since tr(At )

4
k = 0, we see

that there can be no WZW term arising from our anomalous
effective action in the ungauged limit.

All in all, we find that the anomalous action can be sim-
plified to

	 = c+
∫ (

ηtr[3(Ft )
2
h + (Ft )

2
k − 4(At )

2
k(Ft )h]

+4tdηtrξ [(Ft )h, (At )k]) . (B.3)

We now consider the contributions of each of the trian-
gle anomalies in turn. For SU (3)2U (1) and the anomalies
involving U (1)s, the effective action just reduces to
∫

c3ηtrGG + c1ηB B (B.4)

to all orders.
Things are somewhat more complicated for the SO(5)2U (1)

anomaly. Let us content ourselves with computing the action
at the next-to-leading order. Evidently, we have

Fk = t[ξ, F] + · · · , (B.5)

Fh = F + t2

2
[ξ, [ξ, F]] + · · · , (B.6)

Ak = −t (dξ − [ξ, A]) + · · · ≡ −t (Dξ) + · · · . (B.7)

From which it is clear that the first corrections arise not at
dimension 6, but at dimension 7. Explicitly, we find16

∫
c5

3
ηtr(3F2 + 1

2
(F[ξ, [ξ, F]] + [ξ, [ξ, F]]F

+ 2[ξ, F]2) − 4

3
(Dξ)2 F) + 4

3
dηtrξ [F, Dξ ] + · · ·

(B.8)

The last term may be integrated by parts, to get
∫

4

3
dηtrξ [F, Dξ ] =

∫
4

3
ηtr(2(Dξ)2 F − ξ [F, [F, ξ ]]).

(B.9)

Finally, we obtain
∫

c5

3
ηtr

(
3F2 + 1

2
(F[ξ, [ξ, F]] + [ξ, [ξ, F]]F

+ 2[ξ, F]2) + 4

3
(Dξ)2 F

)
− 4

3
ξ [F, [F, ξ ]] + · · ·

(B.10)

To convert this into an explicit formula in terms of SU (2) ×
U (1) invariant operators in the basis of [21], we use the basis
for so(5) 	 sp(2) [7], wherein17

F = 1

2

(
W iσ i 0

0 Bσ 3

)
, ξ =

(
0 (Hc H)

(Hc H)† 0

)
. (B.11)

The only non-vanishing term at next-to-leading order is the
last one, for which

trξ [F, [F, ξ ]] = H† H(W i W i + B2) + 2H†σ i H W i B,

(B.12)

where W i and B are the field strength 2-forms.
Putting everything together, we obtain the expression in

Eq. (3.5).
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