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Abstract In this paper, we study Joule–Thomson effects
for charged AdS black holes. We obtain inversion tempera-
tures and curves. We investigate similarities and differences
between van der Waals fluids and charged AdS black holes
for the expansion. We obtain isenthalpic curves for both sys-
tems in the T –P plane and determine the cooling–heating
regions.

1 Introduction

It is well known that black holes as thermodynamic systems
have many interesting consequences. It sets deep and fun-
damental connections between the laws of classical general
relativity, thermodynamics, and quantum mechanics. Since it
has a key feature to understand quantum gravity, much atten-
tion has been paid to the topic. The properties of black hole
thermodynamics have been investigated since the first studies
of Bekenstein and Hawking [1–6]. When Hawking discov-
ered that black holes radiate, black holes are considered as
thermodynamic systems.

Black hole thermodynamics shares similarities with gen-
eral thermodynamics systems. Specifically, black holes in
AdS space have common properties with general systems.
The study of AdS black hole thermodynamics began with
the pioneering paper of Hawking and Page [7]. They found a
phase transition between the Schwarzschild AdS black hole
and thermal AdS space. Up to now, thermodynamic proper-
ties of AdS black holes have been widely studied in the lit-
erature [8–41]. In [8,9], authors studied the thermodynamics
of charged AdS black holes and they found analogy between
phase diagrams of black hole and van der Waals fluids. When
cosmological constant and its conjugate quantity are, respec-
tively, considered as a thermodynamic pressure,
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P = − �

8π
, (1)

and thermodynamic volume V = ( ∂M
∂P )S,Q,J , this analogy

gains more physical meaning. Particularly, in the extended
phase space (including P and V terms in the first law of
black hole thermodynamics), charged AdS black holes phase
transition is in remarkable coincidence with van der Waals
liquid–gas phase transition [16]. This type of transition is not
limited with charged AdS black holes, various kind of black
holes in AdS space show the same phase transitions [17–27].

It is also possible to consider heat cycle for AdS black
holes [33–40]. In [33,40], author suggested two kind of
heat cycles and obtained exact efficiency formula for black
holes.

Variable cosmological constant notion has some nice fea-
tures such as phase transition, heat cycles and compressibility
of black holes [41]. Applicabilities of these thermodynamic
phenomena to black holes encourage us to consider Joule–
Thomson expansion of charged AdS black holes. In this let-
ter, we study the Joule–Thompson expansion for chraged
AdS black holes. We find similarities and differences with
van der Waals fluids. In Joule–Thomson expansion, gas at a
high pressure passes through a porous plug to a section with
a low pressure and during the expansion enthalpy is con-
stant. With the Joule–Thomson expansion, one can consider
heating-cooling effect and inversion temperatures.

The paper is arranged as follows. In Sect. 2, we briefly
review the charged AdS black hole. In Sect. 3, we firstly
review Joule–Thompson expansion for van der Waals gases
and then we investigate Joule–Thomson expansion for
charged AdS black holes. Finally, we discuss our result in
Sect. 4. (Here we use the units GN = h̄ = kB = c = 1.)

2 The charged AdS black holes

In this section, we briefly review charged AdS black hole
and we present its thermodynamic properties. Charged
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black hole in four dimensional space is defined with the
metric

ds2 = − f (r)dt2 + f −1(r)dr2 + r2d�2, (2)

where d�2 = dθ2 + sin2(θ)dφ2 and f (r) is given by

f (r) = 1 − 2M

r
+ Q2

r2 + r2

l2
. (3)

In these equations, l, M , and Q are the AdS radius, mass,
and charge of the black hole, respectively. One can obtain the
black hole event horizon as the largest root of f (r+) = 0.
The mass of a black hole in Eq. (3) is given by

M = r+
2

(
1 + Q2

r2+
+ r2+

l2

)
, (4)

which satisfies the first law of black hole thermodynamics:

dM = T dS + �dQ + V dP, (5)

and the corresponding Smarr relation is given by

M = 2(T S − PV ) + �Q. (6)

One can derive the Smarr relation by a scaling argument [15].
The first law of black hole thermodynamic includes P and V ,
when the cosmological constant is considered as a thermo-
dynamic variable. The cosmological constant corresponds to
the pressure,

P = − 1

8π
� = 3

8π

1

l2
, (7)

and the cosmological constant’s conjugate quantity corre-
sponds to the thermodynamic volume. The expression for
entropy is given by

S = A

4
= πr2+, A = 4πr2+, (8)

and the corresponding Hawking temperature is

T =
(

∂M

∂S

)
P,Q

= l2(r2+ − Q2) + 3r4+
4πl2r3+

. (9)

On the other hand, the electric potential is given by � = Q
r+

and the equation of state P = P(V, T ) for a charged AdS
black hole is obtained from Eqs. (7) and (9) as

P = T

2r+
− 1

8πr2+
+ Q2

8πr4+
, r+ =

(
3V

4π

) 1
3

. (10)

The critical points [16] are obtained from

∂P

∂r+
= 0,

∂2P

∂r2+
= 0, (11)

which leads to

Tc =
√

6

18πQ
, rc = √

6Q, Pc = 1

96πQ2 . (12)

Other thermodynamic properties can be obtained by using
the above relations. For example, heat capacities at constant
pressure and constant volume are, respectively, given by

CP = T

(
∂S

∂T

)
P,Q

= 2πr2 3r4+ − l2Q2 + l2r2+
3r4+ + 3l2Q2 − l2r2+

(13)

and

CV = T

(
∂S

∂T

)
V,Q

= 0. (14)

In this section, we give the thermodynamic definitions for
a charged AdS black hole. In the next section, we will
review Joule–Thomson expansion for van der Waals fluids
and investigate Joule–Thomson expansion for charged AdS
black holes.

3 Joule–Thomson expansion

In this section, we review the well-known Joule–Thomson
expansion [42,43]. In Joule–Thomson expansion, a gas at a
high pressure passes through a porous plug or small valve to a
section with a low pressure in a thermally insulated tube and
enthalpy remains constant during the expansion process. One
can describe temperature change with respect to pressure and
this change is given by

μ =
(

∂T

∂P

)
H

. (15)

Here μ is called the Joule–Thomson coefficient. It is pos-
sible to determine whether cooling or heating will occur by
evaluating the sign of Eq. (15). In Joule–Thomson expansion,
pressure decreases so the change of pressure is negative but
the change of temperature may be positive or negative. If the
change of temperature is positive (negative) μ is negative
(positive) and so the gas warms (cools).

It is also possible to express Eq. (15) in terms of volume
and heat capacity at constant pressure. From the first law of
thermodynamics, one can write the fundamental relation for
constant particle number N ,

dU = T dS − PdV . (16)
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Using the relation H = U + PV , Eq. (16) is given by

dH = T dS + V dP. (17)

Since dH = 0, Eq. (17) is given by

0 = T

(
∂S

∂P

)
H

+ V . (18)

Since the entropy is a state function, the differential dS is
given by

dS =
(

∂S

∂P

)
T

dP +
(

∂S

∂T

)
P

dT, (19)

which can be rearranged to give

(
∂S

∂P

)
H

=
(

∂S

∂P

)
T

+
(

∂S

∂T

)
P

(
∂T

∂P

)
H

. (20)

If one can substitute this expression into Eq. (18), one can
obtain the following expression:

0 = T

[(
∂S

∂P

)
T

+
(

∂S

∂T

)
P

(
∂T

∂P

)
H

]
+ V . (21)

Substituting the Maxwell relation
(

∂S
∂P

)
T = − (

∂V
∂T

)
P and

CP = T
(

∂S
∂T

)
P into Eq. (21) gives

0 = −T

(
∂V

∂T

)
P

+ CP

(
∂T

∂P

)
H

+ V, (22)

and it can be rearranged to give the Joule–Thomson coeffi-
cient [42] as follows:

μ =
(

∂T

∂P

)
H

= 1

CP

[
T

(
∂V

∂T

)
P

− V

]
. (23)

At the inversion temperature, μ equals zero and inversion
temperature is given by

Ti = V

(
∂T

∂V

)
P

, (24)

which is useful to determine the heating and cooling regions
in the T –P plane.

3.1 van der Waals fluids

The van der Waals equation is a generalized form of ideal gas
equation, which usually describes the liquid–gas phase tran-
sition behaviors for real fluids [43,44]. It takes into account

the size of molecules and attraction between them. It is given
by

P = kBT

v − b
− a

v2 . (25)

Here v = V
N , P , T , and kB denote the specific volume, pres-

sure, temperature, and Boltzmann constant. a > 0 constant
is a measure of the attraction between the particles and b > 0
is a measure of the molecule volume. a and b constants are
determined from experimental data.

Before more proceeding to the Joule–Thomson expansion,
it is useful to give some thermodynamic properties of the
van der Waals equation. Following [16,45], the free energy
is given by

F(T, v) = −kBT

(
1 + ln

[
(v − b)T

3
2

�

])
− a

v
. (26)

Here φ is a constant characterizing the gas. Now, the entropy
can be obtained from Eq. (26),

S(T, v) = −
(

∂F

∂T

)
v

= kB

(
5

2
+ ln

[
(v − b)T

3
2

�

])
.

(27)

Using Eqs. (26) and (27), we can calculate the internal energy

U (T, v) = F + T S = 3kBT

2
− a

v
(28)

and from Eqs. (25) and (28), the enthalpy is

H(T, v) = U + PV = 3kBT

2
+ kBT v

v − b
− 2a

v
. (29)

Now, let us calculate the inversion temperature for van der
Waals equation. Using Eq. (24), inversion temperature is
given by

Ti = 1

kB

(
Piv − a

v2 (v − 2b)
)

(30)

where Pi denotes the inversion pressure. From Eq. (25), one
can get

Ti = 1

kB

(
Pi + a

v2

)
(v − b). (31)

Subtracting Eqs. (30) from (31) yields

bPiv
2 − 2av + 3ab = 0 (32)
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Fig. 1 Lower (dashedblue line) and upper (solid orange line) inversion
curves. We fix a = b = kB = 1

and, solving this equation for v(Pi), one can obtain two roots

v = a ± √
a2 − 3ab2Pi

bPi
. (33)

Substituting these roots into Eq. (31), one can obtain

T lower
i =

2
(

5a − 3b2Pi − 4
√
a2 − 3ab2Pi

)
9bk

, (34)

T upper
i =

2
(

5a − 3b2Pi + 4
√
a2 − 3ab2Pi

)
9bk

, (35)

which give lower and upper inversion curves, respectively.
In Fig. 1, lower and upper inversion curves are presented. At
the point Pi = 0, we can obtain the minimum and maximum
inversion temperatures

Tmin
i = 2a

9bk
, Tmax

i = 2a

bk
. (36)

The critical temperature for van der Waals fluids is given by
Tc = 8a

27bk and hence

Tmin
i

Tc
= 3

4
,

Tmax
i

Tc
= 27

4
. (37)

Using Eqs. (25) and (29), we can obtain the isenthalpic
curves in the T –P plane. In Fig. 2, isenthalpic and inver-
sion curves are presented. When the isenthalpic curves cross
inversion curves, their slopes change sign. Isenthalpic curves
have positive slopes inside the inversion curves, otherwise
their slopes are negative. As a result the Joule–Thomson
coefficient is positive inside the inversion curves and cooling
occurs inside this region.

Fig. 2 Dashed blue line and orange line are inversion curves.Red lines
are isenthalpic curves. The enthalpies of isenthalpic curves increase
from bottom to top and correspond to H = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
We fix a = b = kB = 1

3.2 Charged AdS black holes

In this section, we will consider Joule–Thomson expansion
for charged AdS black holes. In [15], authors suggested that
black hole mass is considered as the enthalphy in AdS space.
It means that our isenthalpic curves are actually constant
mass curves in AdS space. We can consider the black hole
mass not to change during the Joule–Thomson expansion.
For a fixed charge, similar steps in the previous section can
be used to obtain the Joule–Thomson coefficient. Hence

μ =
(

∂T

∂P

)
M

= 1

CP

[
T

(
∂V

∂T

)
P

− V

]
. (38)

The charged AdS black hole equation of state can be given
in terms of the thermodynamic volume,

T=1

3

(
3

4π

) 2
3

V
1
3

[
8π

(
3

4π

) 2
3

P+ 1

V
2
3

−
(

4π

3

) 2
3 Q2

V
4
3

]
,

(39)

and evaluating this in the right hand side of Eq. (38), the
inversion temperature is given by

Ti = 1

3

(
6

π

) 1
3

V
1
3

[(π

6

) 1
3 Q2

V
4
3

−
(

6

π

) 1
3 1

12V
2
3

+ Pi

]

= Q2

4πr3+
− 1

12πr+
+ 2Pir+

3
. (40)

123



Eur. Phys. J. C (2017) 77 :24 Page 5 of 7 24

From Eq. (39), one can get

Ti = 1

3

(
3

4π

) 2
3

V
1
3

[
8π

(
3

4π

) 2
3

Pi+ 1

V
2
3

−
(

4π

3

) 2
3 Q2

V
4
3

]

= − Q2

4πr3+
+ 1

4πr+
+ 2Pir+. (41)

Subtracting Eqs. (40) from (41) we can obtain

8π Pir
4+ + 2r2+ − 3Q2 = 0 (42)

and solving this equation for r+ gives us four roots but only
one root is physically meaningful, other roots are complex

Fig. 3 Inversion curves for charged AdS black hole. From bottom to
top, the curves correspond to Q = 1, 2, 10, 20

or negative. A positive and real root is

r+ = 1

2
√

2

√√
1 + 24PiπQ2

Piπ
− 1

Piπ
. (43)

If we substitute this root into Eq. (41), the inversion temper-
ature is given by

Ti =
√
Pi√
2π

(
1 + 16π PiQ2 − √

1 + 24π PiQ2
)

(
−1 + √

1 + 24π PiQ2
) 3

2

. (44)

When Pi is zero, we have Tmin
i

Tmin
i = 1

6
√

6πQ
(45)

and the ratio between minimum inversion and critical tem-
peratures is

Tmin
i

Tc
= 1

2
. (46)

In Fig. 3, inversion curves are presented for various values
of the charge Q. There is only a lower inversion curve. In
contrast to van der Waals fluids, the expression inside the
square root in Eq. (44) is always positive, so this curve does
not terminate at any point.

Fig. 4 Inversion and isenthalpic curves for charged AdS black hole.
From bottom to top, the isenthalpic curves correspond to increas-
ing values of M . Red and black lines are isenthalpic and inversion

curves, respectively. a Q = 1 and M = 1.5, 2, 2.5, 3. b Q = 2 and
M = 2.5, 3, 3.5, 4. c Q = 10 and M = 10.5, 11, 11.5, 12. d Q = 20
and M = 20.5, 21, 21.5, 22
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Fig. 5 Event horizon of the charged AdS black hole. a Q = 1, b Q = 2, c Q = 10, d Q = 20

Now, we can plot isenthalpic, i.e. constant mass, curves in
theT –P plane. From Eq. (4), one can obtain the event horizon
and substituting event horizon into Eq. (10) gives isenthalpic
curves in the T –P plane. In Fig. 4, inversion curves and isen-
thalpic curves are presented. Isenthalpic curves have positive
slope above the inversion curves so cooling occurs above the
inversion curves. The sign of the slope changes under the
inversion curves and heating occurs in this region. It is also
interesting to talk about naked singularities for charged AdS
black holes. In Fig. 5, we plot event horizon versus mass
and pressure. We introduce four graphics, which correspond
to Q = 1, 2, 10, 20. The regions can be seen that denote
the naked singularities in Fig. 5. One cannot consider Joule–
Thomson expansion due to the lack of an event horizon for
a naked singularity. For example, we cannot define event
horizon for Q = 20 and M ≤ 20. For these values, event
horizon is imaginary and it corresponds to naked singularity
so isenthalpic curves in the T –P plane are imaginary.

4 Conclusion

In this paper, we studied the well-known Joule–Thomson
expansion for charged AdS black hole. The black hole mass
in AdS space is identified with the enthalpy due to the variable

cosmological constant notion, so one can consider that mass
does not change during the expansion. First, we reviewed
Joule–Thomson expansion for van der Waals fluids and then
we investigated Joule–Thomson expansion for charged AdS
black holes. We only found one inversion curve that corre-
sponds to the lower curve. It means that black holes always
cool above the inversion curve during the Joule–Thomson
expansion. Cooling and heating regions were shown for var-
ious values of the charge Q and mass M . We also denoted the
naked singularity which is not sensible for Joule–Thomson
expansion due to the lack of an event horizon.

Both systems are not well behaved for low temperatures.
Unfortunately, isenthalpic curves have positive slopes under
the lower inversion curves for both systems. It is also known
that van der Waals equation does not too well agree with
experiments. Thus Joule–Thomson expansion have been
investigated for various equations of state. In charged AdS
case, it needs further investigation.
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