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Abstract The discrepancy between observed virial and
baryonic mass in galaxy clusters have lead to the missing
mass problem. To resolve this, a new, non-baryonic mat-
ter field, known as dark matter, has been invoked. However,
till date no possible constituents of the dark matter compo-
nents are known. This has led to various models, by modi-
fying gravity at large distances to explain the missing mass
problem. The modification to gravity appears very naturally
when effective field theory on a lower-dimensional mani-
fold, embedded in a higher-dimensional spacetime is con-
sidered. It has been shown that in a scenario with two lower-
dimensional manifolds separated by a finite distance is capa-
ble to address the missing mass problem, which in turn deter-
mines the kinematics of the brane separation. Consequences
for galactic rotation curves are also described.

1 Introduction

Recent astrophysical observations strongly suggest the exis-
tence of non-baryonic dark matter at the galactic as well
as extra-galactic scales (if the dark matter is baryonic in
nature, the third peak in the Cosmic Microwave Background
power spectrum would have been lower compared to the
observed height of the spectrum [1]). These observations can
be divided into two branches – (a) behavior of galactic rota-
tion curves and (b) mass discrepancy in clusters of galaxies
[2].

The first one, i.e., rotation curves of spiral galaxies, shows
clear evidence of problems associated with Newtonian and
general relativity prescriptions [2–4]. In these galaxies neu-
tral hydrogen clouds are observed much beyond the extent
of luminous baryonic matter. In a Newtonian description,
the equilibrium of these clouds moving in a circular orbit of
radius r is obtained through equality of centrifugal and grav-

a e-mails: sumantac.physics@gmail.com; sumanta@iucaa.in
b e-mail: tpssg@iacs.res.in

itational force. For cloud velocity v(r), the centrifugal force
is given by v2/r and the gravitational force by GM(r)/r2,
where M(r) stands for total gravitational mass within radius
r . Equating these two will lead to the mass profile of the
galaxy: M(r) = rv2/G. This immediately posed serious
problem, for at large distances from the center of the galaxy,
the velocity remains nearly constant v ∼ 200 km/s, which
suggests that mass inside radius r should increase monotoni-
cally with r , even though at large distance very little luminous
matter can be detected [2–4].

The mass discrepancy of galaxy clusters also provides
direct hint for existence of dark matter. The mass of galaxy
clusters, which are the largest virialized structures in the uni-
verse, can be determined in two possible ways – (i) from
the knowledge about motion of the member galaxies one can
estimate the virial mass MV, second, (ii) estimating mass of
individual galaxies and then summing over them in order to
obtain total baryonic mass M . Almost without any exception
MV turns out to be much large compared to M , typically one
has MV/M ∼ 20 − 30 [2–4]. Recently, new methods have
been developed to determine the mass of galaxy clusters;
these are (i) dynamical analysis of hot X-ray emitting gas
[5] and (ii) gravitational lensing of background galaxies [6]
– these methods also lead to similar results. Thus dynamical
mass of galaxy clusters are always found to be in excess com-
pared to their visible or baryonic mass. This missing mass
issue can be explained through postulating that every galaxy
and galaxy cluster is embedded in a halo made up of dark mat-
ter. Thus the difference MV −M is originating from the mass
of the dark matter halo the galaxy cluster is embedded in.

The physical properties and possible candidates for dark
matter can be summarized as follows: dark matter is assumed
to be non-relativistic (hence cold and pressure-less), inter-
acting only through gravity. Among many others, the most
popular choice being weakly interacting massive particles.
Among different models, the one with sterile neutrinos (with
masses of several keV) has attracted much attention [7,8].
Despite some success it comes with its own limitations. In
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the sterile neutrino scenario the X-ray produced from their
decay can enhance production of molecular hydrogen and
thereby speeding up cooling of gas and early star formation
[9]. Even after a decade long experimental and observational
efforts no non-gravitational signature for the dark matter has
ever been found. Thus a priori the possibility of breaking
down of gravitational theories at galactic scale cannot be
excluded [10–17].

A possible and viable way to modify the behavior of grav-
ity in our four-dimensional spacetime is by introducing extra
spatial dimensions. The extra dimensions were first intro-
duced to explain the hierarchy problem (i.e., observed large
difference between the weak and Planck energy scales) [18–
20]. However, the initial works did not incorporate gravity,
but they used large extra dimensions (and hence a large vol-
ume factor) to reduce the Planck scale to TeV scale. The
introduction of gravity, i.e., warped extra dimensions, dras-
tically altered the situation. In [21] it was first shown that
an anti-de Sitter solution in higher-dimensional spacetime
(henceforth referred to as bulk) leads to exponential sup-
pression of the energy scales on the visible four-dimensional
embedded sub-manifold (called a brane) thereby solving the
hierarchy problem. Even though this scenario of a warped
geometry model solves the hierarchy problem, it also intro-
duces additional correction terms to the gravitational field
equations, leading to deviations from Einstein’s theory at
high energy, with interesting cosmological and black hole
physics applications [22–30]. This conclusion is not bound
to Einstein’s gravity alone but it holds in higher curvature
gravity theories1 as well [29,30,38]. Since the gravitational
field equations get modified due to the introduction of extra
dimensions it is legitimate to ask whether it can solve the
problem of missing mass in galaxy clusters. Several works
in this direction exist and can explain the velocity profile of
galaxy clusters. However, they emerge through the following
setup:

• Obtaining effective gravitational field equations on a
lower-dimensional hypersurface, starting from the full
bulk spacetime, which involves additional contributions
from the bulk Weyl tensor. The bulk Weyl tensor in spher-
ically symmetric systems leads to a component behav-
ing as mass and is known as “dark mass” (we should
emphasize that this notion extends beyond Einstein’s
gravity and holds for any arbitrary dimensional reduction

1 In addition to the introduction of extra dimensions we could also mod-
ify the gravity theory without invoking ghosts, which uniquely fixes the
gravitational Lagrangian to be Lanczos–Lovelock Lagrangian. These
Lagrangians have special thermodynamic properties and also modify
the behavior of four-dimensional gravity [31–37]. However, in this work
we shall confine ourselves exclusively within the framework of Einstein
gravity and shall try to explain the missing mass problem from kine-
matics of the radion field.

[29,30,38]). It has been shown in [39] that the introduc-
tion of the “dark mass” term is capable to yield an effect
similar to the dark matter. Some related aspects were also
explored in [40–43], keeping the conclusions unchanged.

• In the second approach, the bulk spacetime is always
taken to be anti-de Sitter such that bulk Weyl tensor van-
ishes. Unlike the previous case, which required S1/Z2

orbifold symmetry, arbitrary embedding has been con-
sidered in [44] following [45]. This again introduces
additional corrections to the gravitational field equations.
These additional correction terms in turn lead to the
observed virial mass for galaxy clusters.

However, all these approaches are valid for a single brane
system. In this work we generalize previous results for a two
brane system. This approach not only gives a handle on the
hierarchy problem at the level of Planck scale but is also
capable of explaining the missing mass problem at the scale
of galaxy clusters. Moreover, in this setup the additional cor-
rections will depend on the radion field (for a comprehensive
discussion see [26]), which represents the separation between
the two branes. Hence in our setup the missing mass problem
for galaxy clusters can also shed some light on the kinematics
of the separation between the two branes.

Further the same setup is also shown to explain the
observed rotation curves of galaxies as well. Hence both
problems associated with dark matter, namely the missing
mass problem for galaxy clusters and the rotation curves for
galaxies, can be explained by the two brane system intro-
duced in this work via the kinematics of the radion field.

The paper is organized as follows – in Sect. 2, after pro-
viding a brief review of the setup we have derived effec-
tive gravitational field equations on the visible brane which
will involve additional correction terms originating from the
radion field to modify the gravitational field equations. In
Sect. 3 we have explored the connection between the radion
field, dark matter, and the mass profile of galaxy clusters
using relativistic Boltzmann equations along with Sect. 4
describing possible applications. Then in Sect. 5 we have
discussed the effect of our model on the rotation curve of
galaxies while Sect. 6 deals with a few applications of our
result in various contexts. Finally, we conclude with a dis-
cussion of our results.

Throughout our analysis, we have set the fundamental
constant c to unity. All the Greek indices μ, ν, α, . . . run
over the brane coordinates. We will also use the standard
signature (− + + · · · ) for the spacetime metric.

2 Effective gravitational field equations on the brane

The most promising candidate for getting effective gravita-
tional field equations on the brane originates from the Gauss–
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Codazzi equation. However, these equations are valid on a
lower-dimensional hypersurface (i.e., on the brane) embed-
ded in a higher-dimensional bulk. Hence this works only for
a single brane system. But the brane world model, addressing
the hierarchy problem, requires the existence of two branes,
where the above method is not applicable. To tackle the prob-
lem of a two brane system we need to invoke the radion field
(i.e., the separation between two branes), which has signif-
icant role in the effective gravitational field equations. The
bulk metric ansatz incorporating the above features takes the
following form:

ds2 = e2φ(y,x)dy2 + qμν(y, x)dx
μdxν . (1)

The positive and negative tension branes are located at
y = 0 and y = y0, respectively, such that the proper
distance between the two branes being given by d0(x) =∫ y0

0 dy exp φ(x, y) and qμν stands for the induced met-
ric on y = constant hypersurfaces. The effective field
equations on the brane depend on the extrinsic curvature,
Kμν = (1/2)£nqμν , where the normal to the surface is
n = exp(−φ)∂y but it also inherits a non-local bulk con-
tribution through Eμν = (5)Cμανβnαnβ , (5)Cμανβ being
the bulk Weyl tensor. At first glance it seems that due to
non-local bulk effects the effective field equations cannot be
solved in closed form, but, as we will briefly describe, it
can be achieved through radion dynamics and at low energy
scales [46].

We will now proceed to derive low energy gravitational
field equations. As we have already stressed, unless one
solves for the non-local effects from the bulk the system of
equations would not close. Further it will be assumed that
curvature scale on the brane, L , is much larger than that
of bulk, �. Then we can expand all the relevant geometri-
cal quantities in terms of the small, dimensionless parameter
ε = (�/L)2. At zeroth order of this expansion, one recovers
(0)qμν(y, x) = hμν(x) exp(−2d(y, x)/�), while at the first
order one has [46]

(4)Gμ
ν = −2

�

(
(1)Kμ

ν − δμ
ν

(1)K
)

− (1)Eμ
ν , (2)

e−φ∂(1)
y Eμν = 2

�

(1)Eμν, (3)

e−φ∂(1)
y Kμ

ν = − (
DμDνφ+DμφDνφ

)+ 2

�

(1)Kμ
ν −(1) Eμ

ν .

(4)

The evolution equations for (1)Eμ
ν and (1)Kμ

ν can be solved,

(1)Eμ
ν = exp(4d(y, x)/�)êμ

ν (x), (5)

(1)Kμ
ν (y, x) = exp(2d(y, x)/�) (1)Kμ

ν (0, x)

− �

2

[
1 − exp(−2d(y, x)/�)

](1)
Eμ

ν (y, x)

−
[

DμDνd(y, x) − 1

�

(

DμdDνd − 1

2
δμ
ν (Dd)2

)]

,

(6)

where êμ
ν = hμαeαν(x), with eαν(x) being the integration

constant of Eq. (3), which can be fixed using the junction
conditions [46],

�

2

[
1 − exp(−2d0/�)

]
exp(4d0/�)ê

μ
ν (x)

= −κ2

2

[
exp(2d0/�)T

(hid)μ
ν + T (vis)μ

ν

]

−
(
DμDνd0 − δμ

ν D
2d0

)

+ 1

�

(

Dμd0Dνd0 + 1

2
δμ
ν (Dd0)

2
)

(7)

where κ2 stands for the bulk gravitational constant, T (hid)μ
ν

stands for energy-momentum tensor on the hidden (positive
tension) brane, and T (vis)μ

ν for the visible (negative tension)
brane, respectively. Use of the expressions for (1)Eμ

ν and
(1)Kμ

ν in Eq. (2) leads to the effective field equations on the
visible brane (i.e., the brane on which the Planck scale is
exponentially suppressed) in this scenario as [46]

(4)Gμ
ν = κ2

�

1

�
T (vis)μ

ν + κ2

�

(1 + �)2

�
T (hid)μ

ν

+ 1

�

(
DμDν� − δμ

ν D
2�

)

+ ω(�)

�2

[

Dμ�Dν� − 1

2
δμ
ν (D�)2

]

(8)

where the scalar field �(x) appearing in the above effective
equation is directly connected to the radion field d0(x) (rep-
resenting the proper distance between the branes) such that
ω(�) and � obey the following expressions [46]:

� = exp

(
2d0

�

)

− 1; ω(�) = −3

2

�

1 + �
. (9)

We will assume d0(x), the brane separation to be finite
and everywhere non-zero. This suggests that �(x) should
always be greater than zero and shall never diverge. Finally
we also have a differential equation satisfied by � from the
trace of Eq. (7), which can be written as [46]

DμD
μ� = κ2

�

1

2ω + 3

(
T (vis) + T (hid)

)

− 1

2ω + 3

dω

d�
Dμ�Dμ� (10)
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where ω(�) has been defined in Eq. (9) and T vis and T hid

stands for the trace of the energy-momentum tensor on the
hidden and visible branes, respectively. In the above expres-
sions Dμ stands for the four-dimensional covariant deriva-
tive, also D2� stands for DμDμ� and (D�)2 = Dμ�Dμ�.

The above effective field equations for gravity have been
obtained following [46], where no stabilization mechanism
for the radion field was proposed. In this work as well we
would like to emphasize that we are working with the radion
field in the absence of any stabilization mechanism. However,
as already emphasized in [46], in order to provide a possible
resolution to the gauge hierarchy problem one requires stabi-
lization of the radion field. Even though we will not explicitly
invoke a stabilization mechanism, we will outline how stabi-
lization can be achieved and argue that it will not drastically
alter the results.

In such a situation with a stabilized radion field, the field
�(x) appearing in the above equations can be thought of as
fluctuations of the radion field around its stabilized value
[47]. In particular stabilization of the radion field can be
achieved by first introducing a bulk scalar field following
[48] and then solving for it. Substitution of the solution in
the action and subsequent integration over the extra spa-
tial dimension lead to a potential for �. The same will
appear in the above equations through the projection of the
bulk energy-momentum tensor, which would involve the
bulk scalar field and shall lead to an additional potential
on the right hand side of the above equations, whose min-
ima would be the stabilized value for � = �c. Choosing
� = �c + �(x), where �(x) represents small fluctuations
around the stabilized value, one ends up with similar equa-
tions as above with bulk terms having contributions simi-
lar to T (vis) and T (hid), respectively. Thus the final results,
to leading order, will remain unaffected by the introduction
of a stabilization mechanism. Even though the fact that the
virial mass of galaxy clusters scale with r will hold, the sub-
leading correction terms in the case of galactic motion will
change due to the presence of a stabilization mechanism due
to the appearance of extra bulk inherited terms in the above
equations. It would be an interesting exercise to work out
the above steps explicitly and obtain the relevant corrections
due to the stabilization mechanism, which we will pursue
elsewhere.

As illustrated above for the two brane system the non-
local terms get mapped to the radion field, the separation
between the two branes. Hence ultimately one arrives at a
system of closed field equations for a two brane system. The
field equations as presented in Eq. (8) are closed since the
radion field � satisfies its own field equation Eq. (10). Hence
the problematic non-local terms in a single brane approach
get converted to the radion field in a two brane approach
and make the system of gravitational field equations at low
energy closed.

We are mainly interested in spherically symmetric space-
time, in which generically the line element takes the follow-
ing form:

ds2 = −eνdt2 + eλdr2 + r2d�2. (11)

This particular form of the metric is used extensively in
various physical contexts, for example in obtaining a black
hole solution, particle orbit, perihelion precession of plane-
tary orbits, bending of light and in various other astrophys-
ical phenomena [49–51]. Given this metric ansatz we can
compute all the derivatives of the scalar field and being in
a static situation, the brane separation is assumed to depend
on the radial coordinate only. Thus we will only have terms
involving a derivative with respect to r (denoted by a prime).
First we can rewrite the scalar field equation, which will
be a differential equation for �. We will also assume that
there is no matter on the hidden brane, but only on the vis-
ible brane, which is assumed to be a perfect fluid. Thus
on the visible brane we have an energy-momentum tensor
T ν(vis)

μ = diag(−ρ, p, p⊥, p⊥), with the trace being given
by T = −ρ + p + 2p⊥. From now on we will remove the
label ‘vis’ from the energy-momentum tensor, since only on
the visible brane the energy-momentum tensor is non-zero.
With these inputs and the above spherically symmetric metric
ansatz we obtain the scalar field equation as,

∂2
r � + 2

r
∂r� +

(
ν′ − λ′

2

)

∂r� = κ2

�

1 + �

3
T (vis)eλ

+ 1

2(1 + �)
(∂r�)2

(12)

Having derived the scalar field equation, next we need to
obtain the field equations for gravity with the metric ansatz
given by Eq. (11). These will be differential equations for
ν(r) and μ(r), respectively. We can separate out the time-
time component, the radial component, and the transverse
components leading to

− e−λ

(
1

r2 − λ′

r

)

+ 1

r2 = κ2

�

ρ + ρ0

�
+ e−λ ν′

2

�′

�

+ κ2

�

1 + �

3�
T − e−λ�′2

4�(1 + �)
, (13)

e−λ

(
ν′

r
+ 1

r2

)

− 1

r2 = κ2

�

p − ρ0

�
− 2

r
e−λ �′

�

− e−λ ν′

2

�′

�
− 3

4

�′2

�(1 + �)
e−λ, (14)
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e−λ

(

ν′′ + ν′2

2
+ ν′ − λ′

r
− ν′λ′

2

)

= κ2

��
2 (p⊥ − ρ0)

+ 2

r
e−λ �′

�
− 2κ2

3�

1 + �

�
T + 1

2

e−λ�′2

�(1 + �)
, (15)

where the primes denote derivatives with respect to the radial
coordinate. In the above field equations along with the per-
fect fluid, we have contributions from the brane cosmological
constant. Here we have inserted a brane energy density ρ0,
where ρ0 and the brane cosmological constant are related via
ρ0 = �/8πG. Here G is the four-dimensional gravitational
constant. Finally, we have contribution from the radion field
itself, since it appears on the right hand side of the gravita-
tional field equations. Having derived the field equations we
will now proceed to determine the effect of the radion field on
the kinematics of galaxy clusters and hence its implications
for the missing mass problem.

3 Virial theorem in galaxy clusters, kinematics of the
radion field and dark matter

It is well known that the galaxy clusters are the largest viri-
alized systems in the universe [2]. We will further assume
them to be isolated, spherically symmetric systems such that
the spacetime metric near them can be presented by the
ansatz in Eq. (11). Galaxies within the galaxy cluster are
treated as identical, point particles satisfying general rela-
tivistic collision-less Boltzmann equation.

The Boltzmann equation requires setting up appropriate
phase space for a multi-particle system along with the corre-
sponding distribution function f (x, p), where x is the posi-
tion of the particles in the spacetime manifold with its four-
momentum p ∈ Tx , where Tx is the tangent space at x . Fur-
ther the distribution function is assumed to be continuous,
non-negative and describing a state of the system. The dis-
tribution function is defined on the phase space, yielding the
number dN of the particles of the system, within a volume
dV located at x and have four-momentum p within a three
surface elementd−→p in momentum space. All the observables
can be constructed out of various moments of the distribution
function. Further details can be found in [39].

For the static and spherically symmetric line element as
in Eq. (11) the distribution function can depend on the radial
coordinate only and hence the relativistic Boltzmann equa-
tion reduces to the following form [39]:

ur
∂ f

∂r
−

(
1

2
u2
t
∂ν

∂r
− u2

θ +u2
φ

r

)
∂ f

∂ur
− 1

r
ur

(

uθ

∂ f

∂uθ

+uφ

∂ f

∂uφ

)

− 1

r
eλ/2uφ cot θ

(

uθ

∂ f

∂uφ

− uφ

∂ f

∂uθ

)

= 0. (16)

The spherical symmetry of the problem requires the coef-
ficient of cot θ to identically vanish. Hence the distribution
function can be a function of r , ur , and u2

θ + u2
φ only. Multi-

plying the above equation by murdu, where m stands for the
galaxy mass and du is the velocity space element, we find
after integrating over the cluster [39]

−
∫ R

0
4πρ

[
〈u2

r 〉 + 〈u2
θ 〉 + 〈u2

φ〉
]
r2dr

+ 1

2

∫ R

0
4πr3ρ

[
〈u2

t 〉 + 〈u2
r 〉

] ∂ν

∂r
dr = 0 (17)

where R stands for the radius of the galaxy cluster. Using the
distribution function, the energy-momentum tensor of the
matter becomes

Tab =
∫

f muaubdu, (18)

which leads to the following expressions for the energy den-
sity and pressure:

ρeff = ρ〈u2
t 〉; p(r)

eff = ρ〈u2
r 〉; p(⊥)

eff = ρ〈u2
θ 〉 = ρ〈u2

φ〉.
(19)

Using these expressions for the energy density and pres-
sure in the gravitational field equations presented in Eqs.
(13), (14) and (15) and finally adding all of them together we
arrive at

e−λ

(

ν′′+2
ν′

r
+ ν′2

2
− ν′λ′

2

)

= κ2

��

(
ρeff + p(r)

eff + 2p(⊥)
eff

)

− 1

2

e−λ�′2

�(1 + �)
− κ2

3�

1 + �

�

×
(
−ρeff + p(r)

eff + p(⊥)
eff − 4ρ0

)
− κ2

��
ρ0. (20)

To obtain Eq. (20), we have used the expression for the
trace of the energy-momentum tensor. We also recall that
ρ0 stands for the vacuum energy density. At this stage it
is useful to introduce certain assumptions, since actually
we are interested in a post-Newtonian formulation of the
effective gravitational field equations. The two assumptions
are: (a) ν and λ are small so that any quadratic expressions
constructed out of them can be neglected in comparison to
the linear one. Second, (b) the velocity of the galaxies is
assumed to be much smaller compared to the velocity of
light, which suggests 〈u2

r 〉, 〈u2
θ 〉, 〈u2

φ〉 	 〈u2
t 〉. This in turn

implies ρeff 
 p(r)
eff , p

(⊥)
eff such that all the pressure terms can

be neglected in comparison to the energy density. Applying
all these approximation schemes, Eq. (20) can be rewritten
as
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1

2r2

∂

∂r

(
r2ν′) = κ2

6�
ρ + 2κ2

3�
ρ0 − 1

4

�′2

�(1 + �)

+ 2κ2ρ

3��
− κ2ρ0

3��
. (21)

We can also perform the same schemes of approximation
to Eq. (17), which leads to

−2K + 1

2

∫ R

0
4πr3ρν′dr = 0 (22)

where K stands for the total kinetic energy of the galaxies
within the galaxy cluster and obeys the following expression:

K =
∫ R

0
dr 4πr2ρ

[
1

2

{
〈u2

r 〉 + 〈u2
θ 〉 + 〈u2

φ〉
}]

. (23)

The mass within a small volume of radial extent dr has the
expression dM(r) = 4πr2ρdr , where in this and subsequent
expressions ρ will indicate ρ(r). Thus the total mass of the
system can be given by the integral of dM(r) over the full
size of the galaxy. The main contribution comes from the
mass of intra-cluster gas and stars along with other particles,
e.g., massive neutrinos. We can also define the gravitational
potential energy � of the cluster as

� = −
∫ R

0

GM(r)

r
dM(r). (24)

Finally multiplying Eq. (21) by r2 and integrating from 0
to r , we arrive at

1

2
r2 ∂ν

∂r
= κ2

6�

∫ r

0
r2ρ(r)dr+ 2κ2ρ0

3�

∫ r

0
r2dr+ κ2

4π�
M�(r),

(25)

where we have defined

M�(r) =
∫ r

0
dr4πr2

(

− �

4κ2

�′2

�(1 + �)
+ 2ρ

3�
− ρ0

3�

)

.

(26)

This object captures all the effect of the radion field on
the gravitational mass distribution of galaxy clusters and thus
may be called the “radion mass”. Note that the “radion mass”
defined in this work is a completely different construct com-
pared to the “dark mass” used in the literature. The dark
mass appears from non-local effects of the bulk, specifically
through the bulk Weyl tensor in the effective field equation
formalism. However, in this work, we have used the effective
equation formalism for a two brane system as developed in
[46], where the correction to the gravitational field equations
originates from the radion dynamics. Pursuing these effec-
tive equations further, through the virial theorem we have

shown that the effect of radion dynamics can be summarized
by introducing a radion mass as in Eq. (26). Hence concep-
tually and structurally the dark mass of [39] is completely
different from our “radion mass”.

Further, the total baryonic mass of the galaxy cluster
within a radius r can be obtained by integrating the energy
density over the size of the galaxy cluster, which leads to
M(r) = 4π

∫ r
0 r2ρ(r)dr , using which we finally arrive at

the following form for Eq. (25):

1

2
r2 ∂ν

∂r
= κ2

6�

M(r)

4π
+ 2κ2�

3�

r3

3
+ κ2

4π�
M�(r). (27)

Earlier we have defined the gravitational potential associ-
ated with M , the baryonic mass. We can define an identical
object using the radion mass as well, leading to a poten-
tial term ��. Given the potentials we can introduce three
radii: (a) RV, the virial radius, obtained using the total bary-
onic potential and baryonic mass, (b) RI, the inertial radius,
obtained from the moment of inertia of the galaxy cluster,
and finally (c) R�, the radion radius obtained from the radion
mass. Using these expressions and the definition for the virial
mass, MV = √

2K RV /G, yields the following expression:

MV

M
=

√
κ2

24πG�
+ 2κ2ρ0

9�G

RVR2
I

M
+ κ2

4πG�

RV

R�

M2
�

M2 . (28)

For most of the clusters, the virial mass MV is three times
compared to the baryonic mass M and thus for all practi-
cal purposes the first term inside the square root, which is
of order unity can be neglected with respect to the other
two. The second term yields the contribution from the brane
cosmological constant, which is several orders of magnitude
smaller compared to the observed mass and thus can also be
neglected. Finally, the virial mass turns out to be

MV

M
≈ M�

M

√
κ2

4πG�

RV

R�

. (29)

Among the various terms in the above expression, the
virial mass MV is determined from the study of the velocity
dispersion of galaxies within the cluster and is much larger
than the visible mass. The above expression shows that if the
radion field kinematics is such that Mtot is equal to M�, then
that in turn will lead to the correct virial mass of the galaxy
clusters. The effect of the radion field and hence of the extra
dimension can also be probed through gravitational lensing.

To see that, let us explore the differential equation for �,
which has not yet been considered. Solving that will lead to
some leading order behavior of the radion field �, which in
turn would affect M�. Thus, the crucial thing is whether M�

behaves as r at large distance from the core of the cluster.
In this case, from the above equation, we readily observe
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that the galaxy virial mass would also scale as MV ∼ r ,
explaining the issue of dark matter and the galaxy rotation
curve. To answer all these questions let us start by using the
differential equation for �. There we will work under the
same approximation schemes, i.e., we will neglect all the
quadratic terms, e.g., ν′�′, �′2, will set eλ ∼ 1, and shall
neglect the vacuum energy contribution ρ0 to obtain

�′′ + 2

r
�′ = −κ2

3�
(1 + �) ρ. (30)

Multiplying both sides by r2 and integrating twice we
obtain (noting that �′2 should not contribute)

� = − κ2

12π�

∫
dr

M(r)

r2 . (31)

Here M(r) stands for the mass of the baryonic matter
within radius r and we know from the observations that the
density of the baryonic matter falls as ρc(rc/r)β , where 3 >

β > 2 and rc stand for the core radius of the cluster. Thus it
is straightforward to compute the mass profile, which goes
as ∼ r3−β , except for some constant contribution. Hence
finally after integration we find the radion field to vary with
the radial distance as r2−β . However, note that the mass of
the radion field, i.e., M�, under these approximations (matter
is non-relativistic and the field is weak) can be obtained:

M�(r) =
∫ r

0
dr4πr2 2ρ

3�
= 8π(β − 2)(3 − β)

�

κ2 r. (32)

Thus the radion mass indeed scales linearly with radial dis-
tance, which would correctly reproduce the observed virial
mass of the galaxy cluster. Due to the linear nature of the
virial mass, the velocity profile does not die out at large r
as expected. Hence the radion field kinematics can explain
the kinematics of the galaxy cluster very well and thus the
missing mass problem can be described without invoking any
additional matter component.

Before concluding the section, let us briefly mention the
connection of the above formalism with the gauge hierarchy
problem. The separation between the two branes is denoted
by d, which varies with the radion field �, logarithmically
[see Eq. (9)]. The radion field except for a constant contri-
bution varies weakly with radial distance and hence leads to
very small corrections to the distance d between the branes.
Thus the graviton mass scale for the visible brane will be
suppressed by a similar exponential factor as in the origi-
nal scenario of Randall and Sundrum [21,52], leading to a
possible resolution of the gauge hierarchy problem. Thus, as
advertised earlier, the existence of an extra spatial dimen-
sion leads to a radion field, producing a possible explanation
for the dark matter in galaxy clusters along with solving the
gauge hierarchy problem.

4 Application: cluster mass profiles

In the previous section we have discussed galaxy clusters
by assuming them to be bound gravitational systems, with
approximate spherical symmetry and being virialized, i.e.,
in hydrostatic equilibrium. With these reasonable set of
assumptions we have shown that the mass of clusters receives
an additional contribution from the kinematics of the radion
field and provides an alternative to the missing mass problem.
In this section we will discuss one application of the above
formalism, namely the mass profile of galaxy clusters and
possible experimental consequences. We again start from a
collision-less Boltzmann equation with spherical symmetry
and in hydrostatic equilibrium to read

d

dr

[
ρgas(r)σ

2
r

]
+ 2ρgas(r)

r

(
σ 2

r −σ 2
θ,φ

)
= −ρgas(r)

dV (r)

dr
.

(33)

Here V (r) stands for the gravitational potential of the
cluster, σr and σθ,φ are the mass weighted velocity disper-
sions in the radial and tangential directions, respectively,
with ρgas being the gas density. For spherically symmet-
ric systems, σr = σθ,φ and the pressure profile becomes
P(r) = σ 2

r ρgas(r). Further if the velocity dispersion is
assumed to have originated from thermal fluctuations, for
a gas sphere with temperature profile T (r), the velocity dis-
persion becomes σ 2

r = kBT (r)/μmp, where kB is the Boltz-
mann constant, μ 
 0.609 is the mean mass, and mp the
proton mass. Thus Eq. (33) can be rewritten as

d

dr

[
kBT (r)

μmp
ρgas(r)

]

= −ρgas(r)
dV (r)

dr
. (34)

The potential can be divided into two parts: the Newto-
nian potential and the potential due to the radion field. As
multiplied by (4/3)r2/G, the Newtonian potential leads to
the Newtonian mass MN, which includes the mass of gas and
galaxies, and in particular of the CD galaxies. Thus finally
we obtain the mass profile of a virialized galaxy cluster to be

MN(r) + 4

3G
r2 dV�

dr
= −4

3

(
kBT (r)

μmpG

)

r

×
(

d ln ρgas(r)

d ln r
+ d ln T (r)

d ln r

)

.

(35)

Thus one needs two experimental inputs, the observed
gas density profile, ρgas and the observed temperature profile
T (r). The gas density can be obtained from the characteris-
tic properties of the observed X-ray surface brightness pro-
files, similarly from an X-ray spectral analysis one obtains
the radial profile of the temperature. Thus from the X-ray
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analysis one can model the galaxy distribution and obtain
the baryonic contribution to the mass of the galaxy cluster.
From the difference between virial mass and the above esti-
mate one can obtain the contribution due to the radion field.
At the leading order the radion mass scales linearly with the
radial distance with its coefficients being O(�/κ2). Thus an
estimate of the radion mass will lead to a possible value for
�/κ2. Assuming the bulk gravitational constant to be at the
Planck scale one can possibly constrain the bulk curvature
scale.

5 Effect on galaxy rotation curves

Having described a possible resolution of the missing mass
problem in connection with galaxy clusters, let us now con-
centrate on the rotation curves of galaxies. To perform the
same we would invoke some general Lie groups of transfor-
mation on a vacuum brane spacetime. In particular we will
assume the metric to be static and spherically symmetric [i.e.,
expressed as in Eq. (11)], such that £ξ gμν = ψ(r)gμν , where
the vector field ξμ can be time dependent. These are known
as conformally symmetric vacuum brane model and we con-
sider angular velocity of a test particle in a visible (i.e., neg-
ative tension) brane, which can be determined in terms of
the conformal factor ψ(r). The above essentially amounts to
the assumption that each brane is conformally mapped onto
itself along the vector field ξμ [53–55]. It turns out that the
metric and the vector field ξμ obey the following expressions
upon solving the relation £ξ gμν = ψ(r)gμν :

ξμ =
(

1

2

k

B
t,
rψ(r)

2
, 0, 0

)

, (36)

e−λ = ψ2/B2; eν = C2r2 exp

(

−2
k

B

∫
dr

rψ

)

, (37)

where k is a separation constant and B and C are integra-
tion constants. Substitution of these metric functions in the
gravitational field equations presented in Eq. (8) leads to

− ψ2

B2

(
1

r2 + 2

r

ψ ′

ψ

)

+ 1

r2 = − e−λ�′2

4�(1 + �)
, (38)

ψ2

B2

(
3

r2 − 2
k

B

1

r2ψ

)

− 1

r2 = −3

4

�′2

�(1 + �)
e−λ, (39)

ψ2

B2

(

2
ψ ′

rψ
− 2

k

B

1

r2ψ
+ k2

B2

1

r2ψ2 + 1

r2

)

= 1

4

e−λ�′2

�(1 + �)
,

(40)

where a prime denotes differentiation by the radial coordinate
r . Multiplying Eq. (40) by 2 and adding it to Eq. (39) one
can readily equate it to Eq. (38), resulting in the following
differential equation satisfied by ψ(r):

3rψψ ′ + 3ψ2 − 3
k

B
ψ + k2

B2 − B2 = 0. (41)

The above differential equation can be readily solved,
yielding r = r(ψ) [53–55]. However, the solution depends
on the mutual dependence of k on B. We will use galaxy
rotation curves as the benchmark to determine the region of
interest in the (k, B) plane. In connection to rotation curves,
the motion of a particle on a circular orbit and its tangen-
tial velocity is of importance. For the static and spherically
symmetric spacetime the tangential velocity of a particle in
circular orbit corresponds to

v2
tg = rν′

2
= 1 − k

B

1

ψ
, (42)

where the last equality follows from Eq. (37). The above
relation further shows the fact that the rotational veloc-
ity is determined by the grr component alone. Since vtg

is determined by ψ , it is possible to write all the expres-
sions derived earlier in terms of the tangential velocity, e.g.,
exp(λ) = (B4/k2)(1 − v2

tg)
2. From Eq. (42) it is clear that

asymptotic limits exist only if k ∈ (−2B2, 2B2) [55]. In this
case the solution to Eq. (41) corresponds to

r2 = R2
0

( |ψ−ψ2|
|ψ−ψ1|

)m

|3ψ2 − 3 k
Bψ + k2

B2 − B2|
;

ψ1,2 =
3 k
B ±

√
12B2 − 3 k2

B2

6
; (43)

m = 3k

B
√

12B2 − 3 k2

B2

.

Use of this solution leads to the following asymptotic expres-
sion for the tangential velocity:

vtg,∞ =
√

1 − 6k

3k + √
12B4 − 3k2

. (44)

Note that, for the choices B = 1.00000034 and k =
0.9, the limiting tangential velocity is given by vtg,∞ ∼
216.3 km/s, which is of the same order as the observed galac-
tic rotational velocities. Thus the behavior of all the metric
coefficients in the solutions depend on two arbitrary con-
stants of integration, namely, k and B. In order to obtain a
numerical estimate for these parameters we assume that there
exists some radius r0 beyond which the baryonic matter den-
sity ρB is negligible. Requiring exp(λ) = 1 − (2GMB/r0),
with MB = 4π

∫ r0
0 drr2ρB, we readily obtain

k2

B4 =
(

1 − 2GMB

r0

) [
1 − v2

tg(r0)
]2

. (45)

123



Eur. Phys. J. C (2016) 76 :648 Page 9 of 13 648

Hence the ratio k2/B4 can be determined observationally
through the tangential velocity. It follows that around and
outside r0 the radion field will dominate and hence one can
introduce a “radion mass” in an identical manner. This, using
the conformal symmetry and the ratio k2/B4 from the above
equation, immediately reads

M�(r) =
∫

dr4πr2
(

�

κ2

) [
1

r2 − e−λ

(
1

r2 − λ′

r

)]

= 4π
�

κ2

[

r −
∫

drr2 ψ2(r)

B2

(
1

r2 − λ′

r

)]

= 4π�r

κ2

[

1 −
(

1 − 2GMB

r0

) 1 − v2
tg(r0)

1 − v2
tg(r)

]

. (46)

However, the tangential velocity vtg is non-relativistic, i.e.,
much smaller than unity (in c = 1 units) and hence the radion
mass turns out to obey the scaling relation

M�(r) = 8πG�

κ2 MB
r

r0
. (47)

The above result explicitly shows that the “radion mass”
will scale linearly with the radial distance, which stops the
velocity profile from dying out at large r . However, note that
the linear behavior of the radion mass is only the leading
order behavior. If we had kept higher order terms, we would
have corrections over and above the linear term, leading to

M�(r) = 8πG�

κ2 MB
r

r0
+ C1r

�1 + C2r
�2 (48)

whereC1 andC2 are constants depending on κ2/� and �1, �2,
and both are strictly less than unity. Given the mass pro-
file, the corresponding velocity profile can be obtained by
dividing the mass profile by r and some suitable numerical
factor. The coefficients and powers of the velocity profile
(and hence the mass profile) can be determined by fitting the
velocity profile with the observed one. We should emphasize
that the linear term alone cannot lead to a good fit; its effect
is to make the velocity profile flat at large distances. Thus at
smaller distances the additional correction terms in Eq. (48)
are absolutely essential. Hence the effect of the radion field
can only be felt at large distances, preventing the velocity
profile from decaying and the sub-leading factors in Eq. (48)
are important for matching with the experimental data. In
particular, from Fig. 1 it turns out that all the four curves are
consistent with the following choices of the power law behav-
ior: �1 
 0.1 and �2 
 0.4, respectively. The coefficients C1

and C2 turn out to have the following numerical estimates:
C1 = −25.56±4.3 andC2 = 1.75±0.08, respectively. Thus
at small enough values of r the dominant contribution comes
from the term C1r�1 , while for somewhat larger values of r ,
C2r�2 dominates. Finally at large values of r the linear term,

i.e., the contribution from the radion field, becomes dominat-
ing, leading to a flat velocity profile for the galaxies. Hence
the correction terms are quite significant as regards obtaining
a good fit with the observational data.

6 Application to other scenarios

In this work we have used a two brane model with the brane
separation being represented by the radion field �. We have
also assumed that our universe corresponds to the visible
brane. In such a setup the effective gravitational field equa-
tions on the brane, written in a spherically symmetric context,
depends on the radion field and its derivatives. The use of a
collision-less Boltzmann equation leads to the result that the
virial mass of the galaxy clusters scales linearly with radial
distance. Thus without any dark matter we can reproduce the
virial mass of galaxy clusters by invoking extra dimensions.

However, in order to become a realistic model we should
apply our results to other situations and look for consistency.
There are mainly three issues which we want to address:
(i) the advantage over other modified gravity models, (ii)
reproducing the correct cosmology, and (iii) the connection
with local gravity tests, in particular the fifth force proposal.
We address all these issues below.

• In present day particle physics an important and long
standing problem is the gauge hierarchy problem, which
originates due to the large energy separation between the
weak scale and the Planck scale. In our model the branes
are separated by a distanced, such that the energy scale on
our universe gets suppressed by Mvis ∼ MPle−2kd , with
k being related to brane tension. Thus a proper choice of
k (such that kd ∼ 10 ) leads to Mvis ∼ Mweak and hence
solves the hierarchy problem. Along with the missing
mass problem, i.e., producing a linear virial mass our
model has the potential of resolving the gauge hierarchy
problem as well. This is a major advantage over modified
gravity models, where the modifications in gravitational
field equations are due to modifying the action for grav-
ity. These models, though able to explain the missing
mass problem, usually ds not address the gauge hierar-
chy problem.

• The next hurdle comes from local gravity tests. This
should place some constraints on the behavior of the
radion field. The analysis using a spherically symmet-
ric metric ansatz has been performed in [58] assuming
dark matter to be a perfect fluid which is a perturbation
over the Schwarzschild solution. We can repeat the same
analysis with our radion field mass function, which is
a perturbation over the vacuum Schwarzschild solution.
We then can compute the correction to the perihelion
precession of mercury due to dark matter which leads
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Fig. 1 Best fit curves for four chosen low surface brightness galaxies,
NGC 959, NGC 7137, UGC 11820, UGC 477, respectively [56,57].
On the vertical axis we have plotted the observed velocity in km/s and
the horizontal axis illustrates the radius measured in arc second. The

good fit shows that the assumption of spherical symmetry is a good one,
also the fact that baryonic matter plus radion field explains the galactic
rotation curves fairly well. It also depicts the need for the sub-leading
terms in Eq. (48)

to the following constraint on the bulk curvature radius
[58–60]:

2�(3 − β)(β − 2)

κ2M�
a(1 − e2) ≤ 10−5

362π

TM

TE
�δφ (49)

where �δφ = 0.004 ± 0.0006 arc second per century
corresponds to an excess in the perihelion precession of
Mercury [61].a is the semi-major axis, e stands for eccen-
tricity, and TM and TE are the periods of revolution of
Mercury and Earth, respectively.

• Let us now briefly comment on the relation between the
existence of a fifth force and dark matter. In all these
models the generic feature corresponds to the existence
of a scalar field which couples to dark matter and in turn
couples weakly (or strongly) to standard model parti-
cles [62–64]. In our model this feature comes quite natu-
rally, since the radion field �, which plays the role of
dark matter, can also be thought of as a scalar field,

coupled to standard model particles through the mat-
ter energy-momentum tensor with coupling parameter
∼ κ2/�(3 + 2ω)−1. Thus effectively we require a fifth
force to accommodate modifications of gravity at small
scales. There exist stringent constraints on the fifth force
from various experimental and observational results (see
for example [65–67]). We can apply these constraints
on the fifth force for scalar tensor theories of gravity and
that leads to the following bound on the composite object:
(κ2/12πG�)(1 + �) < 2.5 × 10−5. Hence for compati-
bility of the radion field presented in this work with fifth
force constraints, the bulk curvature �, the bulk gravita-
tional constant κ2, and the radion field must satisfy the
above mentioned inequality.

• Finally we address some cosmological implications of
our work. In cosmology one averages over all the matter
contributions at the scale of galaxy clusters and assumes
all the matter components to be perfect fluids. The same
applies to our model as well, in which the effect of a
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radion field � at the galactic scale is to generate an effec-
tive dark matter density profile, with a given mass func-
tion. Since the mass function obeys the observed dark
matter profile, therefore on average in the cosmological
scale it reproduces the standard dark matter content and
hence the standard cosmological models.

Thus the radion field model proposed in this work not only
matches with the virial mass profile of galaxy clusters but
also fits well into other scenarios. The model has the advan-
tage over other alternative gravity models, since it can also
address the hierarchy problem by exponentially suppressing
Planck scale on our universe. Second, local gravity tests and
fifth force phenomenology provides constraints on the bulk
curvature radius consistent with the virial mass profile. Still,
the results can change depending on the stabilization mecha-
nism for the radion field, which would be an interesting future
avenue to explore.

7 Discussion

Brane world models can address some of the long stand-
ing puzzles in theoretical physics, namely: (a) the hierar-
chy problem and (b) the cosmological constant problem. To
solve the hierarchy problem we need two branes, with warped
five-dimensional geometry such that the energy scale on the
visible brane gets suppressed exponentially leading to TeV
scale physics. For the cosmological constant the brane ten-
sion plays a crucial role. Two brane models naturally inherit
an additional field, the separation between the branes (known
as the radion field). The radion field is also very important in
both macroscopic and microscopic physics, for it can have
possible signatures in inflationary scenarios [24–26], black
hole physics [68,69], collider searches [70], etc. Along with
the gauge hierarchy and the cosmological constant problem,
another very important problem in physics is the missing
mass problem. This appears since the baryonic and the virial
mass of a galaxy cluster do not coincide. In this work using
a two brane setup we have shown that, along with the gauge
hierarchy and cosmological constant problem, this model is
also capable of addressing the missing mass problem through
the kinematics of the brane separation, i.e., the radion field.
Due to the presence of this additional field, the gravitational
field equations on the brane get modified and yield additional
correction terms on top of Einstein’s field equations. By con-
sidering the relativistic Boltzmann equation we have derived
the virial mass of galaxy clusters, which depends on an effec-
tive additional mass constructed out of the radion field. More-
over, these correction terms modify the structure of gravity
and hence the motion under its influence at large distance,
thereby producing a linear increase in the virial mass of the
galaxy clusters. This in turn leads to the appropriate velocity

law for galaxies within a galaxy cluster, solving the missing
mass problem.
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