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Abstract The effects of an external time-dependent mag-
netic field in the conversion probability of photon- to axion-
like particles are studied. Our findings show that for a certain
time regime, the amplitude of the produced axion-like field
can be enlarged with respect to the static case, thus enhancing
the probability of conversion.

1 Introduction

Particles beyond the Standard Model (SM) are frequently
invoked to solve some tensions or fine tuning issues of the
model. The most iconic example is the absence of a dark
matter candidate, where usually proposals like Weakly Inter-
acting Massive Particles (WIMPs) and Weakly Interacting
Slim Particles (WISPs) take the lead, but some other exotic
options have also been put forward (see for instance [1]).
Another good example where new particle content has been
invoked is to explain the absence of CP violation in strong
interactions a.k.a. the strong CP problem [2–4]. The most
accepted solution to this problem is the existence of a new
U(1) symmetry, the Peccei–Quinn symmetry, which is spon-
taneously broken at very high energies fa . The new Nambu–
Goldstone result emerging from the spontaneous breaking is
known as the axion particle. It acquires a very small mass
due to the explicit breaking of the Peccei–Quinn symmetry
when the QCD instanton effects are turned on. Thus, there
is a close relationship between fa and the mass of the axion
[5], namely mφ fφ ∼ mπ fπ , where mφ is the pion mass and
fπ its decay constant. Axions also develop a coupling to two
photons of the form

Laγ γ = gaγ γ aFμν F̃
μν, (1)
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via pion mixing. Here gaγ γ is the coupling strength of axions
to photons, a the axion field, and Fμν(F̃μν) the electromag-
netic (dual) tensor.

After the proposal of the axion mechanism to naturally
explain the absence of CP violation in the strong sector,
many efforts have been made to motivate the existence of new
scalar bosons with similar characteristics to the axion from a
bottom-up approach [6–9]. For instance in [6–9] it has been
shown that every string theory has at least one zero-mode or
axion-like particle (abbreviated ALP throughout) in the four-
dimensional reduction. These new (pseudo) scalar bosons (φ)
can also develop couplings such as the one in Eq. (1), but they
do not feature the a priori relationship between the coupling
and the mass (mφ).

Thus, new pseudoscalar bosons can be searched for
exploiting the coupling to two photons, specially via the Pri-
makoff effect: a photon beam is sent transversally to a region
with a strong electric or magnetic field (sea of virtual pho-
tons) so the conversion (oscillation) of photons into ALPs
can take place. For detection purposes, one needs to have
a second identical region, impermeable to photons, so the
re-conversion can take place and a photon is detected [10].
For such a configuration, the probability of conversion of a
photon into an ALP (φ) and then back into a photon in the
presence of a constant magnetic field strength B0, is given
by [11]

Pγ→φ→γ = 1
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where ω is the frequency of the incoming photon, L is

the length of the magnetic region, kφ =
√

ω2 − m2
φ and

q = ω − kφ ≈ m2
φ/(2ω) is the momentum transfer. We

have included the so-called finesse of the cavity (F) of the
production and regeneration side Fp,Fr , respectively for
completeness. The above formula assumes the spatial extent
of the photon beam transverse to its direction to be much
bigger than the wavelength, thus photons effectively propa-
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gate in one spatial dimension (say x̂) and the magnetic field
it is homogeneous and directed along the ẑ direction, thus
the created ALP propagates in the same direction as the pho-
ton. As can be seen from Eq. (2), the use of strong magnetic
fields and large optical paths enhances the probability of con-
version. Also, spatially inhomogeneous magnetic fields have
been considered as a way to enhance the oscillation [12–15].
The enlargement of the optical path of the incoming beam
of photons can be achieved by placing mirrors (Fabry–Pérot
cavities [16,17]) in both production and regeneration regions
or using shielded microwave cavities [18,19], thus imposing
boundary conditions for the incoming electric field. Some
experimental searches using the conversion technique dis-
cussed above are [20–27].

In this paper we are interested in studying the effects of
time-dependent magnetic fields on the conversion probability
of new scalars that share the coupling to two photons given
by Eq. (1) via Primakoff effect. So far, to the best of our
knowledge, time-dependent magnetic fields have not been
studied extensively in the literature [28], however, interesting
properties, such as new types of resonances, could appear
allowing one to amplify the conversion probability.

Our study is intended to stay in a simplified one-
dimensional scenario, as the case described above. Nonethe-
less our findings could drive the attention to, in the future,
performing a detailed analysis of the use of time-dependent
magnetic fields in laboratory-based searches.

The manuscript is organized as follows: in Sect. 2 we
give explain the setup in the production region, where the
conversion photon–ALP (and vice versa) takes place and we
set the equations of motion. We solve them using proper
initial and boundary conditions and find the probability to
regenerate a photon in the second cavity. Finally in Sect. 3
we comment on the validity of our results and possible future
applications.

2 Photon–ALP conversion in a time-dependent
magnetic field

The action to be considered is given by

S =
∫

d4x

[

−1

4
FμνF

μν + 1

4
gφFμν F̃

μν .

+1

2
(∂μφ)2 − V (φ)

]

, (3)

where Fμν is the electromagnetic field strength, F̃μν its dual,
φ is the ALP field, g the coupling strength to photons, and
V (φ) the ALP potential, which is usually parametrized as

V (φ) = m2
φ f 2
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(4)

Here fφ is the decay constant of the scalar field and is related
with the coupling to photons by g = α/(2π fφ), where α is
the fine structure constant.

In the present setup we consider the situation where pho-
tons are enclosed in a region (production) with two infinite
non-ideal parallel plates, positioned at x = 0 and x = L ,
respectively. They will impose boundary conditions for the
vector potential given by A(0, t) = A(L , t) = 0 (it could
be, for instance, a Fabry–Pérot cavity). We assume that once
a standing wave is formed inside the cavity, suddenly, in
t = 0, an external time-dependent magnetic field, Bext ẑ, is
turned on with a periodic dependence on time, such that
Bext = B0 cos(λt).1 There is an identical second region
(regeneration), between x = L and x = 2L where the re-
conversion can take place.

In the Coulomb gauge we have the following equations of
motion:
(

∂2
t − ∂2

x

)

A(x, t) = −gBext(t)∂tφ(x, t), (5)
(

∂2
t − ∂2

x + m2
φ

)

φ(x, t) = gBext(t)∂t A(x, t), (6)

where A corresponds to ẑ component of Aμ.
Our strategy to solve the coupled equations (5) and (6)

is to consider that first a standing wave is formed inside the
production region,

A(0)
n (x, t) = a sin ωnt sin ωnx, (7)

where ωn = nπ/L is the resonant frequency mode (n ∈ Z)
and a is the amplitude of electromagnetic standing wave,
which is related with the power stored (or emitted) by the
cavity, P ,

P = |a|2
4

Sω3
n L

Q
, (8)

where Q is the quality factor of the cavity and S is the
cross sectional area of the cavity mode. The quality fac-
tor is related to the finesse of the cavity (in vacuum) as
F = πQ/(Lω). We assume the frequency of the excited
mode in both production and regeneration regions are the
same, and tuned such that the frequency of the incoming
photon, ω, matches the frequency of the resonant mode ωn

inside the cavities.
Second, at first order in g, this standing wave will act

as a source for the ALP field, φ1
n(x, t), in the production

region. The scalar field propagates undamped to the second
regeneration region (identical to the production region) and
analogously, acts as a source to regenerate the photon field
Ar (x, t). Finally the probability to re-convert a photon in the

1 We will not consider the effects of the induced electric field, which
will produce the time-dependent magnetic field, assuming that their
effect can be attenuated with respect to the magnetic field.
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second cavity can be computed using the power stored in
each production (Pp) and regeneration (Pr ) cavities

Pγ→φ→γ = Pr

Pp
. (9)

So we put Eq. (7) back into Eq. (6),
(

∂2
t − ∂2

x + m2
φ

)

φ(1)
n (x, t) = fn(t)
(x)
(L − x)

× sin(ωnx), (10)

where

fn(t) = gB0ωna

2

(

cos(�nt) + cos(�̄nt)
)

, (11)

and �n = ωn + λ, �̄n = ωn − λ. The function 
(y) is the
Heaviside step function, defined as 
(y) = 1 for y > 0 and

(y) = 0 for y < 0. Let us note that we have considered
only the first term of the ALP potential given in Eq. (4), thus
retaining only the linear contribution. We shall discuss later
the effects of non-linear terms.

In order to solve for φ
(1)
n (x, t) we perform a Laplace trans-

form to Eq. (10) with initial conditions φ
(1)
n (x, 0) = 0 and

φ̇
(1)
n (x, 0) = 0. We define

�(1)
n (x, s) =

∫ ∞

0
dt e−stφ(1)

n (x, t), (12)

and

Fn(s) =
∫ ∞

0
dt e−st fn(t), (13)

the Laplace transforms of φ
(1)
n (x, t) and fn(t), respectively,

and now Eq. (10) takes the form
[

∂2
x − η2(s)

]

�(1)
n (x, s) = −Fn(s)
(x)
(L − x)

× sin(ωnx), (14)

where we have defined η(s) =
√

s2 + m2
φ ≡ ηs .

This equation can be solved by the Green method,

�(1)
n (x, s) = −Fn(s)

∫ ∞

−∞
dx ′G(x, x ′; s)

×
(x ′)
(L − x ′) sin(ωnx
′), (15)

where G(x, x ′; s) is the Green function given by

G(x, x ′; s) = − 1

2ηs
e−ηs |x−x ′|. (16)

The complete solution for �
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(17)

where κn =
√

ω2
n + m2

φ .

To obtain the solution for the ALP field in the time space,
we apply the inverse Laplace transform L−1[�(1)

n (x, s)],

φ(1)
n (x, t) =
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(18)

where the function Jn(x, t) is defined as

Jn(x, t) =
∫ t

0
dt ′ξn(t − t ′)
(t ′ − x)J0

(

mφ

√

t ′2 − x2
)

,

(19)

with J0(x) the Bessel function of first kind, and

ξn(t) = cos(�nt) − cos(knt)

k2
n − �2

n
+ cos(�̄nt) − cos(knt)

k2
n − �̄2

n

.

(20)

From the above equation, there is a resonance for the ALP
field if the parameter κn takes the values �n or �̄n . Let us
choose κn = �n and indeed we find

ξn(t) = t sin(�nt)

2�n
+ sin (λt) sin(ωnt)

2λωn
. (21)

Note that the first term on the right-hand side has its amplitude
enhanced by t . Therefore, in order to have such enhancement
the frequency of the external magnetic field should be tuned
so as to match the momentum transfer (assuming ωn � mφ)

λ =
√

ω2
n + m2

φ − ωn ≈ m2
φ

2ωn
. (22)
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For operating times of the magnetic field that satisfy t �
1/λ (which seems a plausible assumption) the first term in
Eq. (21), will dominate. Retaining only this term, Eq. (19)
becomes

Jn(x, t) = 1

2�n

∫ t

0
dt ′(t − t ′) sin(�n(t − t ′))
(t ′ − x)J0

×
(

mφ

√

t ′2 − x2
)

. (23)

To get an analytical expression for φ
(1)
n (x, t), we can

integrate the above equation for small masses of the ALP
field, namely mφ � �n . In this case, the Bessel function

J0

(

mφ

√
t ′2 − x2

)

has a slower oscillation frequency than

the term (t−t ′) sin(�n(t−t ′)) in the integration range [x, t].
Therefore, we integrate as follows:
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,

≈ − 1

2�2
n

(t − x)(t − x) cos(�n(t − x)).

(24)

Here we have retained only the resonant term.
Now the ALP field can leave the first region and propagate

into the second one, where x ≥ L . By replacing Eq. (24) into
the first relation of (18) we find

φ(1)
source(x, t) = −gB0ω

2
nat

4�2
n

sin

(
λL

2

)

× sin

(

�n(t − x) + λL

2

)

, (25)

where we have assumed t � x .
Now in the region L ≤ x ≤ 2L we expect the ALP field

to source a photon field, Ar (x, t). Because of the boundary
conditions, we give the following ansatz:

Ar (x, t) =
∞
∑

n′=1

A′
n′(t) sin ωn′x (26)

where ω′
n = n′π/L . We substitute it into Eq. (5), where we

also consider a factor that takes into account the quality of
the optical resonator in the regeneration region,

(

∂2
t + γ ′∂t + ω2

n

)

A′
n(t) = (gB0ωn)

2λLa

16�n

×
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2

λL
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(
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2

))2

t [sin(ωnt) + sin(�n + λ)t] . (27)

Note that in the last equation we have only considered the
resonant mode n = ωL/π . Here γ ′ = ωn/Qr and Qr is
the quality factor in the regeneration side. Neglecting non-
resonant terms we finally find the regenerate photon field in
the second region, given by

Ar (x, t) = − (gB0)
2QrλLa

16�n

(
2
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2

))2

t cos (ωnt) sin (ωnx) .

(28)

Now we are able to compute the probability that a photon
in the first production cavity will be regenerated in the second
one with the setup described. Using Eq. (9) we find

Pγ→φ→γ = 1
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(ωt)2 . (29)

Here we have dropped the subindex in the frequency because
in resonance ω = ωn . As we can see, the probability shows an
enhancement over time when considering a time-dependent
magnetic field. Although the initial conditions in the common
light-shining-through-walls-like setup are a bit different, it
seems instructive to compare both results. As explained in
the introduction, the probability that a photon traveling into
a region of extent L , where a static, constant magnetic field,
B0, is present, can be converted into an ALP and then re-
converted again in a second identical region is given by

Pstatic
γ→φ→γ = 1
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.

(30)

In the limit mφ � ω, and recalling that in resonance λ ≈
m2

φ/(2ω) = q, we see that the potential gain in probability
would be

P res
γ→φ→γ

Pstatic
γ→φ→γ

= (qt)2

= 7.4 × 1012
[( mφ

10−6 eV

)2 ·
(

t

3600 s

)]2

. (31)

This enhancement translates into a gain in sensitivity of three
orders of magnitude for the coupling constant g, keeping in
mind that a measuring time of 1 h is a conservative estimate,
according to the upgrades envisaged for these kinds of exper-
iments [29].

3 Discussion and outlook

Now it seems timely to discuss the range of validity of our
result, because it could seem that the probability of conver-
sion between photons and ALPs violates unitarity. In order
to find Eq. (29) we have made the following assumptions:

(i) The frequency of the external magnetic field (tuned to
the momentum transfer) should satisfy 1 � λt , where
t is the measuring time. By Eq. (31) we see that, in the
mass range that can be interesting to probe with such
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techniques (10−8–10−4) eV, the approximation seems
to hold safely.

(ii) In our perturbative approach we have only considered
the quadratic term in the expression for the ALP poten-
tial (4). It is expected that including the non-linearity in
the equations of motion the probability would appear
correctly bounded. However, for the purposes of the
present work, the approximated result found in Eq. (29)
seems to suffice. Therefore, our result is valid as soon
as φ/ fφ � 1 is satisfied.

Therefore, by the arguments raised above, we see that the two
conditions that should be mutually satisfied are λt � 1 and
φ/ fφ � 1. The second condition, by taking the amplitude
of the ALP in the regeneration side can be cast into the form

φ
fφ

≈ g2B0π t
2α

|a|
∼ 10−12

(
g

10−10 GeV−1

)2 (
B0

10 T · t
100 h · 1 eV

ω

)

·
[( Pp

1 W

) (Fp

104

) (
10−7 m2

S

)]1/2
, (32)

where we have used Eq. (8). Therefore our assumptions are
safe.

As a last note on the validity of our result, let us com-
ment about neglecting the electric field sourced by currents
in the walls of the cavity (conductor) in our analysis. This
electric field could potentially interfere with our resonant
mode, if enhanced by the cavity. Therefore, it seems neces-
sary to impose the condition λ � π/L , which sets a further
constraint on the mass range that could be probed with the
present setup: mφ � 10−6eV

√
n

[ 1 m
L

]

.

To summarize, we have explored the effects of a time-
dependent magnetic field on the conversion between pho-
tons and new light pseudoscalars such as axions and axion-
like particles. We have found that under appropriate initial
conditions of the photon field inside the cavity, it is possi-
ble to find an enhancement on the regeneration probability,
which grows linearly in time. The resonant condition for this
enhancement is to tune the external magnetic field to the ALP
momentum transfer λ ∼ m2

φ/(2ω). For ALP masses within
the scope of the cavity experiments, this frequency is of the
order of GHz. Let us note that the enhancement found here
can be added to existent enhancement methods, such as the
use of resonant cavities [17].

It seems worth to explore further the potential of time-
dependent electromagnetic fields to enhance the conversion
probability between photons and ALPs, such as the study
of the full three-dimensional problem and take into account
experimental details of the setup. However, the feasibility of

such a modification in an experimental design is beyond the
scope of this work.
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