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Abstract We make a comparison for ten typical, popular
dark energy models according to their capabilities of fitting
the current observational data. The observational data we
use in this work include the JLA sample of type Ia super-
novae observation, the Planck 2015 distance priors of cos-
mic microwave background observation, the baryon acous-
tic oscillations measurements, and the direct measurement
of the Hubble constant. Since the models have different
numbers of parameters, in order to make a fair comparison,
we employ the Akaike and Bayesian information criteria to
assess the worth of the models. The analysis results show
that, according to the capability of explaining observations,
the cosmological constant model is still the best one among
all the dark energy models. The generalized Chaplygin gas
model, the constant w model, and the α dark energy model
are worse than the cosmological constant model, but still
are good models compared to others. The holographic dark
energy model, the new generalized Chaplygin gas model,
and the Chevalliear–Polarski–Linder model can still fit the
current observations well, but from an economically feasible
perspective, they are not so good. The new agegraphic dark
energy model, the Dvali–Gabadadze–Porrati model, and the
Ricci dark energy model are excluded by the current obser-
vations.

1 Introduction

The current astronomical observations have indicated that
the universe is undergoing an accelerated expansion [1–5],
for which a natural explanation is that the universe is cur-
rently dominated by dark energy (DE) that has negative pres-
sure. The study of the nature of dark energy has become
one of the most important issues in the field of fundamental
physics [6–14]. But, hitherto, we still know little about the
physical nature of dark energy. The simplest candidate for
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dark energy is the Einstein’s cosmological constant, �, which
is physically equivalent to the quantum vacuum energy. For
�, one has the equation of state p� = −ρ�. The cosmo-
logical model with � and cold dark matter (CDM) is usu-
ally called the �CDM model, which can explain the current
various astronomical observations quite well. But the cos-
mological constant has always been facing the severe theo-
retical challenges, such as the fine-tuning and coincidence
problems.

There also exist many other possible theoretical candi-
dates for dark energy. For example, a spatially homogeneous,
slowly rolling scalar field can also provide a negative pres-
sure, driving the cosmic acceleration. Such a light scalar field
is usually called “quintessence” [15–18], which provides a
possible mechanism for dynamical dark energy. More gen-
erally, one can phenomenologically characterize the prop-
erty of dynamical dark energy through parametrizing w of
its equation of state (EoS) pde = wρde, where w is usually
called the EoS parameter of dark energy. For example, the
simplest parametrization model corresponds to the case of
w = constant, and this cosmological model is sometimes
called the wCDM model. A more physical and realistic situ-
ation is that w is time variable, which is often probed by the
so-called Chevalliear–Polarski–Linder (CPL) parametriza-
tion [19,20], w(a) = w0 + wa(1 − a). For other popular
parametrizations, see, e.g., [21–31].

Some dynamical dark energy models are built based
on deep theoretical considerations. For example, the holo-
graphic dark energy (HDE) model has a quantum gravity
origin, which is constructed by considering the holographic
principle of quantum gravity theory in a quantum effective
field theory [32,33]. The HDE model can naturally explain
the fine-tuning and coincidence problems [33] and can also fit
the observational data well [34–47]. Its theoretical variants,
the new agegraphic dark energy (NADE) model [48] and the
Ricci dark energy (RDE) model [49], have also attracted lots
of attention. In addition, the Chaplygin gas model [50] is
motivated by braneworld scenario, which is claimed to be a
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scheme for unifying dark energy and dark matter. To fit the
observational data in a better way, its theoretical variants, the
generalized Chaplygin gas (GCG) model [51] and the new
generalized Chaplygin gas (NGCG) model [52], have also
been put forward. Moreover, actually, the cosmic accelera-
tion can also be explained by the modified gravity (MG) the-
ory, i.e., the theory in which the gravity rule deviates from the
Einstein general relativity (GR) on the cosmological scales.
The MG theory can yield “effective dark energy” models
mimicking the real dark energy at the background cosmol-
ogy level.1 Thus, if we omit the issue of growth of structure,
we may also consider such effective dark energy models. A
typical example of this type is the Dvali–Gabadadze–Porrati
(DGP) model [53], which arises from a class of braneworld
theories in which the gravity leaks out into the bulk at large
distances, leading to the accelerated expansion of the uni-
verse. Also, its theoretical variant, the αDE model [54], can
fit the observational data much better.

Facing so many competing dark energy models, the most
important mission is to find which one on earth is the right
dark energy model. But this is too difficult. A more realis-
tic mission is to select which ones are better than others in
explaining the various observational data. Undoubtedly, the
right dark energy model can certainly fit all the astronomical
observations well. The Planck satellite mission has released
the most accurate data of cosmic microwave background
(CMB) anisotropies, which, combining with other astrophys-
ical observations, favor the base �CDM model [55,56]. But
it is still necessary to make a comparison for the various typ-
ical dark energy models by using the Planck 2015 data and
other astronomical data to select which ones are good models
in fitting the current data. Such a comparison can also help
us to discriminate which models are actually excluded by the
current observations.

We use the χ2 statistic to do the cosmological fits, but we
cannot fairly compare different models by comparing their
χ2

min values because they have different numbers of param-
eters. It is obvious that a model with more free parameters
would tend to have a lower χ2

min. Therefore, in this paper,
we use the information criteria (IC) including the Akaike
information criterion (AIC) [57] and the Bayesian informa-
tion criterion (BIC) [58] to make a comparison for different
dark energy models. The IC method has sufficiently taken
the factor of number of parameters into account. Of course,
we will use the uniform data combination of various astro-
nomical observations in the model comparison. In this work,
we choose ten typical, popular dark energy models to make
a uniform, fair comparison. We will find that, compared to
the early study [59], in the post-Planck era we are now truly
capable of discriminating different dark energy models.

1 Usually, the growth of linear matter perturbations in the MG models
is distinctly different from that in the DE models within GR.

The paper is organized as follows. In Sect. 2 we introduce
the method of information criteria and how it works in com-
paring competing models. In Sect. 3 we describe the current
observational data used in this paper. In Sect. 4 we describe
the ten typical, popular dark energy models chosen in this
work and give their fitting results. We discuss the results of
model comparison and give the conclusion in Sect. 5.

2 Methodology

We use the χ2 statistic to fit the cosmological models to
observational data. The χ2 function is given by

χ2
ξ = (ξth − ξobs)

2

σ 2
ξ

, (1)

where ξobs is the experimentally measured value, ξth is the
theoretically predicted value, andσξ is the standard deviation.
The total χ2 is the sum of all χ2

ξ ,

χ2 =
∑

ξ

χ2
ξ . (2)

In this paper, we use the observational data including the
type Ia supernova (SN) data from the “joint light-curve anal-
ysis” (JLA) compilation, the CMB data from the Planck 2015
mission, the baryon acoustic oscillation (BAO) data from the
6dFGS, SDSS-DR7, and BOSS-DR11 surveys, and the direct
measurement of the Hubble constant H0 from the Hubble
Space Telescope (HST). So the total χ2 is written as

χ2 = χ2
SN + χ2

CMB + χ2
BAO + χ2

H0
. (3)

We cannot make a fair comparison for different dark
energy models by directly comparing their values of χ2,
because they have different numbers of parameters. Obvi-
ously, a model with more parameters is more prone to have a
lower value of χ2. Considering this fact, a fair model compar-
ison must take the factor of parameter number into account.
In this work, we apply the IC method to do the analysis. We
employ the AIC [57] and BIC [58] to do the model compari-
son, which are rather popular among the information criteria.

The AIC [57] is defined as

AIC = −2 lnLmax + 2k, (4)

where Lmax is the maximum likelihood and k is the number
of parameters. It should be noted that, for Gaussian errors,
χ2

min = −2 lnLmax. In practice, we do not care about the
absolute value of the criterion, and we actually pay more
attention to the relative values between different models, i.e.,
�AIC = �χ2

min + 2�k. A model with a lower AIC value is
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more favored by data. Among many models, one can choose
the model with minimal value of AIC as a reference model.
Roughly speaking, the models with 0 < �AIC < 2 have
substantial support, the models with 4 < �AIC < 7 have
considerably less support, and the models with �AIC > 10
have essentially no support, with respect to the reference
model.

The BIC [58], also known as the Schwarz information
criterion, is given by

BIC = −2 lnLmax + k ln N , (5)

where N is the number of data points used in the fit. The
same as AIC, the relative value between different models
can be written as �BIC = �χ2

min + �k ln N . A difference
in �BIC of 2 is considerable positive evidence against the
model with higher BIC, while a �BIC of 6 is considered to
be strong evidence. The model comparison needs to choose a
well justified single model, so in our work, the same as Refs.
[59–61], we use the �CDM model to play this role. Thus,
the values of �AIC and �BIC are measured with respect to
the �CDM model.

The AIC only considers the factor of parameter number
but does not consider the factor of data point number. Thus,
once the data point number is large, the result would be in
favor of the model with more parameters. In order to further
penalize models with more parameters, the BIC also takes the
number of data points into account. Considering both AIC
and BIC could provide us with more reasonable perspective
to the model comparison.

3 The observational data

We use the combination of current various observational data
to constrain the dark energy models chosen in this paper.
Using the fitting results, we make a comparison for these dark
energy models and select the good ones among the models.
In this section, we describe the cosmological observations
used in this paper. Since the smooth dark energy affects the
growth of structure only through the expansion history of the
universe, different smooth dark energy models yield almost
the same growth history of structure. Thus, in this paper, we
only consider the observational data of expansion history, i.e.,
those describing the distance-redshift relations. Specifically,
we use the JLA SN data, the Planck CMB distance prior data,
the BAO data, and the H0 measurement.

3.1 The SN data

We use the JLA compilation of type Ia supernovae [62]. The
JLA compilation is from a joint analysis of type Ia super-
nova observations in the redshift range of z ∈ [0.01, 1.30].

It consists of 740 Ia supernovae, which collects several low-
redshift samples, obtained from three seasons from SDSS-II,
three years from SNLS, and a few high-redshift samples from
the HST. According to the observational point of view, we
can get the distance modulus of a SN Ia from its light curve
through the empirical linear relation [62],

μ̂ = m∗
B − (MB − α × X1 + β × C), (6)

where m∗
B is the observed peak magnitude in the rest frame

B band, MB is the absolute magnitude which depends on the
host galaxy properties complexly, X1 is the time stretching
of the light curve, and C is the supernova color at maximum
brightness. For the JLA sample, the luminosity distance dL

of a supernova can be given by

dL(zhel, zcmb) = 1 + zhel

H0

∫ zcmb

0

dz′

E(z′)
, (7)

where zcmb and zhel denote the CMB frame and heliocen-
tric redshifts, respectively, H0 = 100h km s−1 Mpc−1 is the
Hubble constant, E(z) = H(z)/H0 is given by a specific cos-
mological model. The χ2 function for JLA SN observation
is written as

χ2
SN = (μ̂ − μth)

†C−1
SN(μ̂ − μth), (8)

where CSN is the covariance matrix of the JLA SN observa-
tion and μth denotes the theoretical distance modulus,

μth = 5 log10
dL

10pc
. (9)

3.2 The CMB data

The CMB data alone cannot constrain dark energy well,
because the main effects constraining dark energy in the
CMB anisotropy spectrum come from a angular diameter
distance to the decoupling epoch z � 1100 and the late inte-
grated Sachs–Wolfe (ISW) effect. The late ISW effect cannot
be accurately measured currently, and so the only important
information for constraining dark energy in the CMB data
actually comes from the angular diameter distance to the
last scattering surface, which is important because it pro-
vides a unique high-redshift (z � 1100) measurement in the
multiple-redshift joint constraint. In this work, we focus on
the smooth dark energy models, in which dark energy mainly
affects the expansion history of the universe. Thus, for an
economical reason, we do not use the full data of the CMB
anisotropies, but decide to use the compressed information
of CMB, i.e., the CMB distance priors.

We use the “Planck distance priors” from the Planck 2015
data [63]. The distance priors contain the shift parameter R,
the “acoustic scale” 
A, and the baryon density ωb ≡ �bh2,
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R ≡
√

�mH2
0 (1 + z∗)DA(z∗), (10)

and


A ≡ (1 + z∗)
πDA(z∗)
rs(z∗)

, (11)

where �m is the present-day fractional energy density of
matter, DA(z∗) is the proper angular diameter distance at the
redshift of the decoupling epoch of photons z∗. Because we
consider a flat universe, DA can be expressed as

DA(z) = 1

H0(1 + z)

∫ z

0

dz′

E(z′)
. (12)

In Eq. (11), rs(z) is the comoving sound horizon at z,

rs(z) = H−1
0

∫ a

0

da′

a′E(a′)
√

3(1 + Rba′)
, (13)

where Rba = 3ρb/(4ργ ). It should be noted that ρb is the
baryon energy density, ργ is the photon energy density, and
both of them are the present-day energy densities. Thus we
have Rb = 31,500�bh2(Tcmb/2.7K)−4. We take Tcmb =
2.7255 K. z∗ is given by the fitting formula [64],

z∗ = 1048[1 + 0.00124(�bh
2)−0.738][1 + g1(�mh

2)g2 ],
(14)

where

g1 = 0.0783(�bh2)−0.238

1 + 39.5(�bh2)−0.76 , g2 = 0.560

1 + 21.1(�bh2)1.81 .

(15)

Using the Planck TT+LowP data, the three quantities are
obtained: R = 1.7488 ± 0.0074, 
A = 301.76 ± 0.14, and
�bh2 = 0.02228 ± 0.00023. The inverse covariance matrix
for them, Cov−1

CMB, can be found in Ref. [63]. The χ2 function
for CMB is

χ2
CMB = �pi [Cov−1

CMB(pi , p j )]�p j , �pi = pth
i − pobs

i ,

(16)

where p1 = 
A, p2 = R, and p3 = ωb.

3.3 The BAO data

The BAO signals can be used to measure not only the angular
diameter distance DA(z) through the clustering perpendic-
ular to the line of sight, but also the expansion rate of the
universe H(z) by the clustering along the line of sight. We

can use the BAO measurements to get the ratio of the effec-
tive distance measure DV(z) and the comoving sound horizon
size rs(zd). The spherical average gives us the expression of
DV(z),

DV(z) ≡
[
(1 + z)2D2

A(z)
z

H(z)

]1/3

. (17)

The comoving sound horizon size rs(zd) is given by Eq. (11),
where zd is the redshift of the drag epoch, and its fitting
formula is given by [65]

zd = 1291(�mh2)0.251

1 + 0.659(�mh2)0.828 [1 + b1(�bh
2)b2 ], (18)

where

b1 = 0.313(�mh
2)−0.419[1 + 0.607(�mh

2)0.674],
b2 = 0.238(�mh

2)0.223. (19)

We use four BAO data points: rs(zd)/DV(0.106) = 0.336 ±
0.015 from the 6dF Galaxy Survey [66], DV(0.15) = (664±
25Mpc)(rd/rd,fid) from the SDSS-DR7 [67], DV(0.32) =
(1264 ± 25Mpc)(rd/rd,fid) and DV(0.57) = (2056 ±
20Mpc)(rd/rd,fid) from the BOSS-DR11 [68]. Note that in
this paper we do not use the WiggleZ data because the Wig-
gleZ volume partially overlaps with the BOSS-CMASS sam-
ple, and the WiggleZ data are correlated with each other but
we could not quantify this correlation [69]. The χ2 function
for BAO is

χ2
BAO = �pi [Cov−1

BAO(pi , p j )]�p j , �pi = pth
i − pobs

i .

(20)

Since we do not include the WiggleZ data in the analysis,
the inverse covariant matrix Cov−1

CMB is a unit matrix in this
case.

3.4 The H0 measurement

We use the result of direct measurement of the Hubble con-
stant, given by Efstathiou [70], H0 = 70.6 ± 3.3 km s−1

Mpc−1, which is derived from a re-analysis of Cepheid data
of Riess et al. [71] by using the revised geometric maser dis-
tance to NGC 4258. The χ2 function for the H0 measurement
is

χ2
H0

=
(
h − 0.706

0.033

)2

. (21)

Note that the various observations used in this paper are
consistent with each other. More recently, Riess et al. [72]
obtained a very accurate measurement of the Hubble constant
(a 2.4% determination), H0 = 73.00 ± 1.75 km s−1 Mpc−1.
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But this measurement is in tension with the Planck data. To
relieve the tension, one might need to consider the extra rel-
ativistic degrees of freedom, i.e., the additional parameter
Neff . In addition, the measurements from the growth of struc-
ture, such as the weak lensing, the galaxy cluster counts, and
the redshift space distortions, also seem to be in tension with
the Planck data [55]. Considering massive neutrinos as a hot
dark matter component might help to relieve this type of ten-
sion. Synthetically, the consideration of light sterile neutrinos
is likely to be a key to a new concordance model of cosmol-
ogy [73,74]. But this is not the issue of this paper. In this
work, we mainly consider the smooth dark energy models,
and thus the combination of the SN, CMB, BAO, and H0

data is sufficient for our mission. The various observations
described in this paper are consistent.

4 Dark energy models

In this section, we briefly describe the dark energy models
that we choose to analyze in this paper and discuss the basic
characteristics of these models. At the same time, we give
the fitting results of these models by using the observational
data given in the above section.

In a spatially flat FRW universe (�k = 0), the Friedmann
equation can be written as

3M2
plH

2 = ρm(1 + z)3 + ρr(1 + z)4 + ρde(0) f (z), (22)

where Mpl ≡ 1√
8πG

is the reduced Planck mass, ρm, ρr, and

ρde(0) are the present-day densities of dust matter, radiation,
and dark energy, respectively. It should be noted that f (z) ≡
ρde(z)
ρde(0)

, which is given by the specific dark energy models.
From Eq. (22), we have

E(z)2 ≡
(
H(z)

H0

)2

= �m(1 + z)3 + �r(1 + z)4

+ (1 − �m − �r) f (z). (23)

Here in our work the radiation density parameter �r is given
by

�r = �m/(1 + zeq), (24)

where zeq = 2.5 × 104�mh2(Tcmb/2.7 K)−4.
In this paper, we choose ten typical, popular dark energy

models to analyze. We constrain these models with the same
observational data, and then we make a comparison for them.
From the analysis, we will know which model is the best one
in fitting the current data and which models are excluded by
the current data. We divide these models into five classes:

(a) Cosmological constant model.

(b) Dark energy models with equation of state parameterized.
(c) Chaplygin gas models.
(d) Holographic dark energy models.
(e) Dvali–Gabadadze–Porrati (DGP) braneworld and related

models.

Here we ignore the exiguous difference between DE and MG
models because we only consider the aspect of acceleration of
the background universe, i.e., the expansion history. We thus
regard the DGP model as a “dark energy model”. The main
difference between DE and MG models usually comes from
the aspect of growth of structure (see, e.g., Refs. [75,76]),
but we do not discuss this aspect in this paper. Note also
that when we count the number of parameters of dark energy
models, k, we include the dimensionless Hubble constant h.

The constraint results for these dark energy models using
the current observational data are given in Table 1. The results
of the model comparison using the information criteria are
summarized in Table 2.

4.1 Cosmological constant model

The cosmological constant � has nowadays become the most
promising candidate for dark energy responsible for the cur-
rent acceleration of the universe, because it can explain the
various observations quite well, although it has been suffer-
ing the severe theoretical puzzles. The cosmological model
with � and CDM is called the �CDM model. Since the EoS
of the vacuum energy (or �) is w = −1, we have

E(z) =
[
�m(1 + z)3 + �r(1 + z)4 + (1 − �m − �r)

]1/2
.

(25)

By using the observational data described in the above
section, we can obtain the best-fit values of parameters and
the corresponding χ2

min,

�m = 0.324, h = 0.667, χ2
min = 699.375. (26)

We also show the 1–2σ posterior distribution contours in the
�m–h plane for the �CDM model in Fig. 1.

Among the models discussed in this paper, the �CDM
model has the lowest AIC and BIC values, which shows that
this model is still the most favored cosmological model by
current data nowadays. We thus choose the �CDM model as
the reference model in the model comparison, i.e., the values
of �AIC and �BIC of other models are measured relative to
this model.
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Table 1 Fit results for the dark
energy models by using the
current data

Model Parameter

�CDM h = 0.667+0.006
−0.005 �m = 0.324+0.007

−0.008

DGP h = 0.601+0.004
−0.006 �m = 0.367+0.004

−0.006

NADE h = 0.629+0.004
−0.004 n = 2.455+0.034

−0.033

wCDM h = 0.662+0.008
−0.007 �m = 0.326+0.009

−0.008 w = −0.964+0.030
−0.036

HDE h = 0.655+0.007
−0.007 �m = 0.326+0.009

−0.008 c = 0.733+0.040
−0.039

RDE h = 0.664+0.005
−0.005 �m = 0.350+0.007

−0.006 γ = 0.325+0.009
−0.010

αDE h = 0.663+0.007
−0.008 �m = 0.326+0.008

−0.008 α = 0.106+0.140
−0.111

GCG h = 0.663+0.008
−0.007 As = 0.695+0.024

−0.023 β = −0.03+0.067
−0.057

CPL h = 0.663+0.007
−0.008 �m = 0.326+0.009

−0.007 w0 = −0.969+0.098
−0.094 wa = 0.007+0.366

−0.431

NGCG h = 0.662+0.015
−0.014 �de = 0.673+0.008

−0.007 w = −0.969+0.031
−0.041 η = 1.004+0.013

−0.010

Table 2 Summary of the information criteria results

Model χ2
min �AIC �BIC

�CDM 699.375 0 0

GCG 698.381 1.006 5.623

wCDM 698.524 1.149 5.766

αDE 698.574 1.199 5.816

HDE 704.022 6.647 11.264

NGCG 698.331 2.956 12.191

CPL 698.543 3.199 12.401

NADE 750.229 50.854 50.854

DGP 786.326 86.951 86.951

RDE 987.752 290.337 294.994

0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345
0.655

0.660

0.665

0.670

0.675

0.680

h

Ωm

ΛCDM

Fig. 1 The cosmological constant model: 68.3 and 95.4% confidence
level contours in the �m–h plane

4.2 Dark energy models with equation of state
parameterized

In this class, we consider two models: the constant w

parametrization (wCDM) model and the Chevallier–Polarski–
Linder (CPL) parametrization model.

4.2.1 Constant w parametrization

In this model, one assumes that the EoS of dark energy is
w = constant. This is the simplest case for a dynamical dark
energy. It is hard to believe that this model would correspond
to the real physical situation, but it can describe dynamical
dark energy in a simply way. This model is also called the
wCDM model. In this model, we have

E(z)2 = �m(1 + z)3 + �r(1 + z)4

+ (1 − �m − �r)(1 + z)3(1+w), (27)

According to the observations, the best-fit parameters and
the corresponding χ2

min are

�m = 0.326, h = 0.662, w = −0.964, χ2
min = 698.524.

(28)

The 1–2σ posterior possibility contours in the �m–w and
�m–h planes for the wCDM model are plotted in Fig. 2.
We find that the constraint result of w is consistent with the
cosmological constant at about the 1σ level. Compared to the
�CDM model, this model yields a lower χ2, due to the fact
that it has one more parameter, and this has been punished by
the information criteria, �AIC = 1.149 and �BIC = 5.766.

4.2.2 Chevallier–Porlarski–Linder parametrization

To probe the evolution of w phenomenologically, the most
widely used parametrization model is the CPL model [19,
20], sometimes called w0waCDM model. For this model,
the form of w(z) is written as

w(z) = w0 + wa
z

1 + z
, (29)

where w0 and wa are free parameters. This parametrization
has some advantages such as high accuracy in reconstructing
scalar field equation of state and has simple physical inter-
pretation. Detailed description can be found in Ref. [20]. For
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this model, we have

E(z)2 = �m(1 + z)3 + �r(1 + z)4

+ (1−�m−�r)(1+z)3(1+w0+wa) exp

(
− 3waz

1 + z

)
.

(30)

The joint observational constraints give the best-fit param-
eters and the corresponding χ2

min:

�m = 0.326, w0 = −0.969, wa = 0.007,

h = 0.663, χ2
min = 698.543.

(31)

The 1–2σ likelihood contours for the CPL model in the w0–
wa and �m–h planes are shown in Fig. 3.

We find that the constraint result of the CPL model is
consistent with the �CDM model, i.e., the point of �CDM
(w0 = −1 and wa = 0) still lies in the 1σ region (on the
edge of 1σ ). The CPL model has two more parameters than
�CDM, so that it yields a lower χ2, but the difference �χ2 =
−0.832 is rather small. The AIC punishes the CPL model on
the number of parameters, leading to �AIC = 3.199, and

furthermore the BIC punishes it on the number of data points,
leading to �BIC = 12.401.

4.3 Chaplygin gas models

The Chaplygin gas model [50], which is commonly viewed
as arising from the d-brane theory, can describe the cosmic
acceleration, and it provides a unification scheme for vac-
uum energy and cold dark matter. The original Chaplygin gas
model has been excluded by observations [54], thus here we
only consider the generalized Chaplygin gas (GCG) model
[51] and the new generalized Chaplygin gas (NGCG) model
[52]. These models can be viewed as interacting dark energy
models with the interaction term Q ∝ ρdeρc

ρde+ρc
, where ρde

and ρc are the energy densities of dark energy and cold dark
matter [77].

4.3.1 Generalized Chaplygin gas model

The GCG has an exotic equation of state,

pgcg = − A

ρ
β
gcg

, (32)
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where A is a positive constant and β is a free parameter. Thus,
the energy density of GCG can be derived,

ρgcg(a) = ρgcg0

(
As + 1 − As

a3(1+β)

) 1
1+β

, (33)

where As ≡ A/ρ
1+β
gcg0. It is obvious that the GCG behaves

as a dust-like matter at the early times and behaves like a
cosmological constant at the late stage. In this model, we
have

E(z)2 = �b(1 + z)3 + �r(1 + z)4

+ (1 − �b − �r)
(
As + (1 − As)(1 + z)3(1+β)

) 1
1+β

.

(34)

It should be noted that the cosmological constant model is
recovered for β = 0 and �m = 1 − �r − As(1 − �r − �b).

Through the joint data analysis, we get the best-fit param-
eters and the corresponding χ2

min:

As = 0.695, β = −0.03, h = 0.663, χ2
min = 698.381.

(35)

We show the likelihood contours for the GCG model in the
As–β and As–h planes in Fig. 4.

From the constraint results, we can see that the value of β

is close to zero, which implies that the �CDM limit of this
model is favored. For the GCG model, we have �AIC =
1.006 and �BIC = 5.623.

4.3.2 New generalized Chaplygin gas model

The GCG model actually can be viewed as an interacting
model of vacuum energy with cold dark matter. If one wishes
to further extend the model, a natural idea is that the vacuum
energy is replace with a dynamical dark energy. Thus, the
NGCG model was proposed [52], in which the dark energy

with constant w interacts with cold dark matter through
the interaction term Q = −3βwH ρdeρc

ρde+ρc
. That is to say,

this model is actually a type of interacting wCDM model.
Such an interacting dark energy model is a large-scale stable
model, naturally avoiding the usual super-horizon instability
problem existing in the interacting dark energy models [77].
(The large-scale instability problem in the interacting dark
energy models has been systematically solved by establishing
a parameterized post-Friedmann framework for interacting
dark energy [78–80].) The model has recently been investi-
gated in detail in Ref. [77].

The equation of state of the NGCG fluid [52] is given by

pngcg = − Ã(a)

ρ
β
ngcg

, (36)

where Ã(a) is a function of the scale factor a and β is a free
parameter. The energy density of the NGCG can be expressed
as

ρngcg =
[
Aa−3(1+w)(1+β) + Ba−3(1+β)

] 1
1+β

, (37)

where A and B are positive constant. The form of the function
Ã(a) can be determined to be

Ã(a) = −wAa−3(1+w)(1+β). (38)

Considering a universe with NGCG, baryon, and radiation,
we can get

E(z)2 = �b(1 + z)3 + �r(1 + z)4 + (1 − �b − �r)(1 + z)3

×
[

1 − �de

1 − �b − �r

(
1 − (1 + z)3w(1+β)

)] 1
1+β

.

(39)

The joint observational constraints give the best-fit param-
eters and the corresponding χ2

min:

�de = 0.673, w = −0.969, β = 0.004,

h = 0.662, χ2
min = 698.331.

(40)
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We show the likelihood contours for the NGCG model in the
w–η and �de–h planes in Fig. 5, where the parameter η is
defined as η = 1 + β in [52].

The NGCG will reduce to GCG when w = −1, reduce to
wCDM when η = 1, and reduce to �CDM when w = −1
and η = 1. From Fig. 5, we see that the constraint results
are consistent with GCG and wCDM within 1σ range, and
consistent with �CDM on the edge of 1σ region. Though
with more parameters, the NGCG model only yields a little
bit lower χ2

min than the above sub-models, which is punished
by the information criteria. For the NGCG model, we have
�AIC = 2.956 and �BIC = 12.191.

4.4 Holographic dark energy models

Within the framework of quantum field theory, the evaluated
vacuum energy density will diverge; even though a reason-
able ultraviolet (UV) cutoff is taken, the theoretical value of
the vacuum energy density will still be larger than its observa-
tional value by several tens orders of magnitude. The root of
this difficulty comes from the fact that a full theory of quan-
tum gravity is absent. The holographic dark energy model
was proposed under such circumstances, in which the effects
of gravity is taken into account in the effective quantum field
theory through the consideration of the holographic princi-
ple. When the gravity is considered, the number of degrees
of freedom in a spatial region should be limited due to the
fact that too many degrees of freedom would lead to the for-
mation of a black hole [32], which leads to the holographic
dark energy model with the density of dark energy given by

ρde ∝ M2
plL

−2, (41)

where L is the infrared (IR) cutoff length scale in the effective
quantum field theory. Thus, in this sense, the UV problem
of the calculation of vacuum energy density is converted to
an IR problem. Different choices of the IR cutoff L lead to

different holographic dark energy models. In this paper, we
consider three popular models in this setting: the HDE model
[33], the NADE model [48], and the RDE model [49].

4.4.1 Holographic dark energy model

The HDE model [33] is defined by choosing the event horizon
size of the universe as the IR cutoff in the holographic setting.
The energy density of HDE is thus given by

ρde = 3c2M2
plR

−2
h , (42)

where c is a dimensionless parameter which plays an impor-
tant role in determining properties of the holographic dark
energy and Rh is the future event horizon, defined as

Rh(t) = armax(t) = a(t)
∫ ∞

t

dt ′

a(t ′)
. (43)

The evolution of the HDE is governed by the following dif-
ferential equations:

1

E(z)

dE(z)

dz
= −�de(z)

1 + z

(
1

2
+

√
�de(z)

c
− �r(z) + 3

2�de(z)

)
,

(44)

d�de(z)

dz
= −2�de(z)(1 − �de(z))

1 + z

×
(

1

2
+

√
�de(z)

c
+ �r(z)

2(1 − �de(z))

)
, (45)

where the fractional density of radiation is defined as �r(z) =
�r(1 + z)4/E(z)2.

For this model, from the joint observational data analysis,
we get the best-fit parameters and the corresponding χ2

min:

�m = 0.326, c = 0.733, h = 0.655, χ2
min = 704.022. (46)
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We plot the likelihood contours for the HDE model in the
�m–c and �m–h planes in Fig. 6.

The HDE model does not involve �CDM as a sub-model.
Though it has one more parameter, it still yields a larger
χ2

min than �CDM, showing that facing the current accurate
data the HDE model behaves explicitly worse than �CDM.
For the HDE model, we have �AIC = 6.647 and �BIC =
11.264.

4.4.2 New agegraphic dark energy model

The NADE model [48] chooses the conformal time of the
universe τ as the IR cutoff in the holographic setting,

τ =
∫ t

0

dt ′

a
=

∫ a

0

da′

Ha′ , (47)

so that the energy density of NADE is expressed as

ρde = 3n2M2
plτ

−2, (48)

where n is a constant playing the same role as c in the HDE
model. In this model, the evolution of �de(z) is governed by
the following differential equation:

d�de(z)

dz
= −2�de(z)(1 − �de(z))

1 + z

×
(

3

2
− (1 + z)

√
�de(z)

n
+ �r(1 + z)

2(�m + �r(1 + z))

)
. (49)

Then E(z) can be derived,

E(z) =
[
�m(1 + z)3 + �r(1 + z)4

1 − �de(z)

]1/2

. (50)

The NADE model has the same number of parameters as
�CDM. The only free parameter in NADE is the parameter
n, and �m is actually a derived parameter in this model. This
is because in this model one can use the initial condition

2.38 2.40 2.42 2.44 2.46 2.48 2.50 2.52

0.620

0.622

0.624

0.626

0.628

0.630

0.632

0.634

0.636

0.638

h

n

NADE

Fig. 7 The new agegraphic dark energy model: 68.3 and 95.4% con-
fidence level contours in the n–h plane

�de(zini) = n2(1+zini)
−2

4 (1 + √
F(zini))

2 at zini = 2000, with

F(z) ≡ �r(1+z)
�m+�r(1+z) , to solve Eq. (49). Once Eq. (49) is

solved, one can then use �m = 1 − �de(0) − �r to get the
value of �m (for detailed discussions, we refer the reader to
Refs. [81–83]).

From the joint observational constraints, we get the best-fit
parameters and the corresponding χ2

min:

n = 2.455, h = 0.629, χ2
min = 750.229. (51)

Based on the best-fit value of n, we can derive �m = 0.336.
The likelihood contours for the NADE model in then–h plane
is shown in Fig. 7.

We notice that the NADE model yields a large χ2
min, much

larger than that of �CDM. Since NADE and �CDM have the
same number of parameters, the data-fitting capability can
be directly compared through χ2

min. For the NADE model,
we have �AIC = �BIC = 50.854. The constraint results
show that, facing the precision cosmological observations,
the NADE model cannot fit the current data well.
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4.4.3 Ricci dark energy model

The RDE model [49] chooses the average radius of the Ricci
scalar curvature as the IR cutoff length scale in the holo-
graphic setting (see also Refs. [84,85]). In this model, the
energy density of RDE can be expressed as

ρde = 3γ M2
pl(Ḣ + 2H2), (52)

where γ is a positive constant. The cosmological evolution in
this model is determined by the following differential equa-
tion:

E2 = �me
−3x + �re

−4x + γ

(
1

2

dE2

dx
+ 2E2

)
, (53)

where the x = ln a. Solving this equation, we obtain

E(z)2 = 2�m

2 − γ
(1 + z)3 + �r(1 + z)4

+
(

1 − �r − 2�m

2 − γ

)
(1 + z)(4− 2

γ
)
. (54)

From the joint observational constraints, we get the best-fit
parameters and the corresponding χ2

min:

�m = 0.350, γ = 0.325, h = 0.664, χ2
min = 987.752.

(55)

The likelihood contours for the RDE model in the �m–γ and
�m–h planes are shown in Fig. 8.

We find that the RDE model yields a huge χ2
min, much

larger than those of other models considered in this model.
For the RDE model, we have �AIC = 290.337 and �BIC =
294.994. The results of the observational constraints explic-
itly show that the RDE model has been excluded by the cur-
rent observations.

4.5 Dvali–Gabadadze–Porrati braneworld model and its
phenomenological extension

The DGP model [53] is a well-known example of MG,
in which a braneworld setting yields a self-acceleration of
the universe without introducing dark energy. Inspired by
the DGP model, a phenomenological model, called α dark
energy model, was proposed in [54], which is much better
than the DGP model in fitting the observational data.

4.5.1 Dvali–Gabadadze–Porrati model

In the DGP model [53], the Friedmann equation is modified
as

3M2
pl

(
H2 − H

rc

)
= ρm(1 + z)3 + ρr(1 + z)4, (56)

where rc = [H0(1 − �m − �r)]−1 is the crossover scale.
Thus, E(z) is given by

E(z) =
[√

�m(1 + z)3 + �r(1 + z)4 + �rc + √
�rc

]
,

(57)

where �rc = (1 − �m − �r)
2/4.

From the joint observational constraints, we get the best-fit
parameters and the corresponding χ2

min:

�m = 0.367, h = 0.601, χ2
min = 786.326. (58)

The likelihood contours for the DGP model in the �m–h is
shown in Fig. 9.

The DGP model has the same number of parameters as
�CDM. Compared to �CDM, the DGP model yields a
much larger χ2

min, indicating that the DGP model cannot fit
the actual observations well. For the DGP model, we have
�AIC = �BIC = 86.951.
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4.5.2 α dark energy model

The αDE model [54] is a phenomenological extension of the
DGP model, in which the Friedmann equation is modified as

3M2
pl

(
H2 − Hα

r2−α
c

)
= ρm(1 + z)3 + ρr(1 + z)4, (59)

where α is a phenomenological parameter and rc = (1 −
�m − �r)

1/(α−2)H−1
0 . In this model, E(z) is given by the

equation

E(z)2 = �m(1 + z)3 + �r(1 + z)4 + E(z)α(1 − �m − �r).

(60)

The αDE model with α = 1 reduces to the DGP model and
with α = 0 reduces to the �CDM model.

From the joint observational constraints, we get the best-fit
parameters and the corresponding χ2

min:

�m = 0.326, α = 0.106, h = 0.663, χ2
min = 698.574.

(61)

The likelihood contours for the αDE model in the �m–α and
�m–h planes are shown in Fig. 10.

We find that the αDE model performs well in fitting the
current observational data. From Fig. 10, we explicitly see
that the DGP limit (α = 1) is excluded by the current obser-
vations at high statistical significance, and the �CDM limit
(α = 0) is well consistent with the current data within the
1σ range. For the αDE model, we have �AIC = 1.199 and
�BIC = 5.816.

5 Discussion and conclusion

We have considered ten typical, popular dark energy models
in this paper, which are the �CDM, wCDM, CPL, GCG,
NGCG, HDE, NADE, RDE, DGP, and αDE models. To
investigate the capability of fitting observational data of these
models, we first constrain these models using the current
observations and then make a comparison for them using
the information criteria. The current observations used in
this paper include the JLA sample of SN Ia observation, the
Planck 2015 distance priors of CMB observation, the BAO
measurements, and the H0 direct measurement.

The models have different numbers of parameters. We
take the �CDM model as a reference. The NADE and DGP
models have the same number of parameters as �CDM. The
wCDM, GCG, HDE, RDE, and αDE models have one more
parameter than �CDM. The CPL and NGCG models have
two more parameters than �CDM. To make a fair compar-
ison for these models, we employ AIC and BIC as model-
comparison tools.
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The results of observational constraints for these models
are given in Table 1 and the results of the model comparison
using the information criteria are summarized in Table 2. To
visually display the model-comparison result, we also show
the results of �AIC and �BIC of these model in Fig. 11. In
Table 2 and Fig. 11, the values of �AIC and �BIC are given
by taking �CDM as a reference. The order of these models
in Table 2 and Fig. 11 is arranged according to the values of
�BIC.

These results show that, according to the capability of fit-
ting the current observational data, the �CDM model is still
the best one among all the dark energy models. The GCG,
wCDM, and αDE models are still relatively good models in
the sense of explaining observations. The HDE, NGCG, and
CPL models are relatively not good from the perspective of
fitting the current observational data in an economical way.
We can confirm that, in the sense of explaining observations,
according to our analysis results, the NADE, DGP, and RDE
models are excluded by current observations. In the mod-
els considered in this paper, only the HDE, NADE, RDE,
and DGP models cannot reduce to �CDM, and among these
models the HDE model is still the best one. Compared to
the previous study [59], the basic conclusion is not changed;
the only subtle difference comes from the concrete orders of
models in each group of the above three groups.

In conclusion, according to the capability of explaining the
current observations, the �CDM model is still the best one
among all the dark energy models. The GCG, wCDM, and
αDE models are worse than �CDM, but still are good models
compared to others. The HDE, NGCG, and CPL models can
still fit the current observations well, but from the perspective
of providing an economically feasible way, they are not so
good. The NADE, DGP, and RDE models are excluded by
the current observations.
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