
Eur. Phys. J. C (2016) 76:594
DOI 10.1140/epjc/s10052-016-4442-9

Regular Article - Theoretical Physics

Double shadow of a regular phantom black hole as photons couple
to the Weyl tensor

Yang Huang1,2,3, Songbai Chen1,2,3,a, Jiliang Jing1,2,3,b

1 Institute of Physics and Department of Physics, Hunan Normal University, Changsha 410081, Hunan, People’s Republic of China
2 Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University,

Changsha 410081, Hunan, People’s Republic of China
3 Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081,

Hunan, People’s Republic of China

Received: 16 June 2016 / Accepted: 14 October 2016 / Published online: 1 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We have studied the shadow of a regular phan-
tom black hole as photons couple to the Weyl tensor. We find
that due to the coupling photons with different polarization
directions propagate along different paths in the spacetime
so that there exists a double shadow for a black hole, which
is quite different from that in the non-coupling case where
only a single shadow emerges. The overlap region of the dou-
ble shadow, the umbra, of the black hole increases with the
phantom charge and decreases with the coupling strength.
The dependence of the penumbra on the phantom charge and
the coupling strength is converse to that of the umbra. Com-
bining with the supermassive central object in our Galaxy, we
estimated the shadow of the black hole as the photons couple
to the Weyl tensor. Our results show that the coupling brings
about richer behaviors of the propagation of coupled photon
and the shadow of the black hole in the regular phantom black
hole spacetime.

1 Introduction

Increasing evidence supports that there exist supermassive
black holes at the center of many galaxies. Thus, detecting
black hole parameters becomes very important since it can
help us to identify a black hole and to understand further
features of the black hole. Recent investigations show that
the shadow of the black hole carries information as regards
the black hole since the shape and size of the shadow are
determined by black hole parameters [1–3]. Compared with
relativistic images in strong gravitational lensing, it is widely
believed that the shadow of a black hole could easily be
observed since it is a two-dimensional dark zone on the
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observer’s sky. In general, the shadow for a static black hole
is a perfect circle [1]. For the rotating case, the shadow has
an elongated shape in the direction of the rotation axis due
to the dragging effect [2,3]. Motivated by that the investiga-
tion of the shadow is very useful for measuring the nature
of the black hole and the corresponding observations may
be obtained in the near future, a lot of attention have been
attracted on this subject in the last few years [4–20].

It is well known that the shadow of the black hole is deter-
mined by the propagation of light ray in the spacetime, which
depends on the parameters of background black hole, the
properties of light itself and the interactions between light
and other fields. Since light is actually a kind of electromag-
netic wave, it means that the interactions between Maxwell
tensor and Weyl tensor will affect the propagation of photons
in the black hole spacetime and result in some particular opti-
cal phenomena. The coupling between Maxwell tensor and
Weyl tensor was investigated first in [21] by considering the
effects of one-loop vacuum polarization on the photon effec-
tive action for quantum electrodynamics. Especially, the cou-
pling arising from quantum corrections changes both the path
and the maximum velocity of the photon propagation, which
could result in the “superluminal” phenomenon in some cases
[21–29]. However, as a quantum phenomenon, the strength
of the effects is immeasurably small in this low energy effec-
tive theory since the coupling constants are very small and are
of the order of the square of the Compton wave length of the
electron. Recently, the extended theoretical models without
the small coupling constant limit have been investigated for
some physical motivations [30–47]. The optical behaviors of
the coupled photons in the extended Weyl correction model
have been studied in the strong field region [48,49], which
shows that the measurement of relativistic images and time
delay in the strong field can provide a mechanism to detect
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the polarization direction of coupled photons. However, to
the best of my knowledge, effects of the coupling between
photon and Weyl tensor on the shadow of the black hole have
not been studied elsewhere, even for a Schwarzschild black
hole.

On the other hand, phantom dark energy is an exotic kind
of theoretical models with the negative kinetic energy [50].
Though it can interpret the accelerating expansion of the cur-
rent Universe [51–61], it is still a big challenge for physics
to under the strange effects caused by phantom dark energy
including the violation of the null energy condition, the big
rip of the Universe dominated by phantom, the valid of the
cosmic censorship conjecture, and so on. Especially, phan-
tom dark energy models are still favored by many recent
precise observational data [62,63]. Thus, it is necessary to
investigate further phantom field in various fields of physics.
Recently, Bronnikov et al. [64] obtained a kind of solutions
with phantom scalar hair, which has the properties of both
black holes and wormholes. Some other black hole solutions
describing gravity coupled to phantom scalar fields or phan-
tom Maxwell fields have been found and the corresponding
geometric structure and thermodynamic properties are also
studied in [65–73]. The strong gravitational lensing of such
a kind of black holes with phantom hair has been investi-
gated in [74–78]. In this paper, we are going to study shadow
of a regular phantom black hole [64] as photons couple to
the Weyl tensor and then probe what effects of the phantom
charge of the black hole, the photon polarization directions
and the coupling between photon and Weyl tensor on the
properties of the shadow. Moreover, we can obtain the such
kind of effects on Schwarzschild black hole through setting
phantom charge equal to zero since the usual Schwarzschild
black hole is only a special case of the phantom black hole
without phantom charge, which is another reason why we
here chose such a kind of phantom black holes as a back-
ground.

The paper is organized as follows: In Sect. 2, we present
equation of motion for the photons coupled to the Weyl tensor
in the regular phantom black hole spacetime and study the
effects of the coupling on the inner circular orbit radius of the
photon around the black hole. In Sect. 3, we will investigate
the dependence of the double shadow on the phantom charge
of the black hole, the photon polarization directions and the
coupling between photon and Weyl tensor. Finally, we end
the paper with a summary.

2 Equation of motion for the photons coupled
to the Weyl tensor and inner circular orbit radius

Let us now review in brief the regular and static phantom
black hole obtained by Bronnikov et al. [64]. The action with
a phantom scalar field � in curved spacetime is

S =
∫ √−gd4x

[
R − 1

2
gμν∂μ�∂ν� + V (�)

]
. (1)

It is found that this action admits a solution describing the
gravity of a regular and static spacetime with phantom scalar
hair, whose metric has the form [64]

ds2 = − f (r)dt2 + 1

f (r)
dr2 + (r2 + b2)

× (dθ2 + r2 sin2 θdφ2), (2)

with

f (r) = 1 − 3M

b

[(π

2
− arctan

r

b

)(
1 + r2

b2

)
− r

b

]
. (3)

The scalar field and the potential are � ≡ √
2ψ =√

2 arctan r
b and V = 3M

b3 [(π
2 − ψ)(3 − 2 cos2 ψ) −

3 sin ψ cos ψ], respectively. Here M is the Schwarzschild
mass defined in the usual way and b is a positive constant
related to the charge of phantom scalar field. The presence
of phantom hair brings about richer properties for the space-
time (2). The radius of the event horizon rH is in the range
0 < rH < 2M as 0 < b < 3πM

2 and becomes rH = 0 as
b = 3πM

2 . When b > 3πM
2 , there does not exist any event

horizon since the value of rH becomes negative, and then a
throat appears like in wormholes. Thus, this regular phantom
solution has the properties of both black holes and wormholes
[64,76]. Moreover, it is shown that as 0 < b < 3πM

2 , instead
of a singularity, an expanding and asymptotically de Sitter–
Kantowski–Sachs cosmology occurs in its internal region
r < rH [64,72]. This particular type of the black holes have
also been named “black Universes”, which have an interest-
ing cosmological behavior in their internal region [79]. When
b tends to zero, it is easy to find that the phantom scalar field

� becomes a constant
√

2π
2 and the corresponding poten-

tial V approaches zero, which shows that the action turns
to the usual action without any material field and then the
corresponding black hole metric (2) reduces that of the usual
Schwarzschild black hole one.

The Lagrangian density of the electromagnetic field cou-
pling to the Weyl tensor Cμνρσ can be expressed as [80]

Lem = −1

4
FμνF

μν + αCμνρσ FμνFρσ , (4)

where Fμν and α are the usual electromagnetic tensor and the
coupling constant with dimension of length-squared, respec-
tively. In a four-dimensional spacetime with metric gμν ,
the Weyl tensor Cμνρσ is defined as Cμνρσ = Rμνρσ −
(gμ[ρRσ ]ν − gν[ρRσ ]μ) + 1

3 Rgμ[ρgσ ]ν , where the brackets
around indices refers to the antisymmetric part. The Maxwell
equation is modified as

∇μ

(
Fμν − 4αCμνρσ Fρσ

)
= 0. (5)
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From the above corrected Maxwell equation (5), one can
obtain the equation of motion of the coupled photons by the
geometric optics approximation in which the wavelength λ

of photon is much smaller than a typical curvature scale L ,
but is larger than the electron Compton wavelength λc, i.e.,
λc < λ < L . In this approximation, the electromagnetic field
strength can be written as

Fμν = fμνe
iθ , (6)

where fμν is a slowly varying amplitude so that the derivative
term fμν;λ can be neglected in this approximation [21–29].
The quantity θ is a rapidly varying phase and the wave vector
is defined as kμ = ∂μθ , which can be treated as the coupled
photon momentum as in the usual theory of quantum particle.
According to the Bianchi identity, one can find that the ampli-
tude fμν has the form fμν = kμaν − kνaμ, where aμ is the
polarization vector satisfying the condition that kμaμ = 0.
Substituting Eq. (6) into Eq. (5) and using the relationship
above, we can get the equation of motion of photon coupling
to the Weyl tensor

kμk
μaν + 8αCμνρσ kσ kμaρ = 0. (7)

As expected, the coupling between Weyl tensor and electro-
magnetic field changes the propagation of the coupled photon
in the background spacetime.

For a regular phantom black hole spacetime (2), introduc-
ing the vierbein fields

eaμ = diag

(√
f ,

1√
f
,

√
r2 + b2,

√
r2 + b2 sin θ

)
, (8)

the metric gμν can be rewritten as gμν = ηabeaμe
b
ν , where

ηab is the Minkowski metric. With the antisymmetric com-
bination of vierbeins defined in [21,27–29]

Uab
μν = eaμe

b
ν − eaνe

b
μ, (9)

the Weyl tensor can be simplified as

Cμνρσ = A
(

2U 01
μνU

01
ρσ −U 02

μνU
02
ρσ −U 03

μνU
03
ρσ

+U 12
μνU

12
ρσ +U 13

μνU
13
ρσ − 2U 23

μνU
23
ρσ

)
, (10)

with

A = − 3Mr + b2

3(r2 + b2)2 . (11)

Introducing three linear combinations of momentum compo-
nents [21,27–29],

lν = kμU 01
μν, nν = kμU 02

μν, mν = kμU 23
μν, (12)

together with the dependent combinations

pν = kμU 12
μν = 1

k0

(
k1nν − k2lν

)
,

rν = kμU 03
μν = 1

k2

(
k0mν + k3lν

)
,

qν = kμU 13
μν = k1

k0 mν + k1k3

k2k0 nν − k3

k0 lν, (13)

the equation of motion of the coupled photon (7) can be
simplified further as a set of equations for three independent
polarization components a · l, a · n, and a · m,
⎛
⎝ K11 0 0

K21 K22 K23

0 0 K33

⎞
⎠

⎛
⎝ a · l

a · n
a · m

⎞
⎠ = 0, (14)

with the coefficients

K11 = (1 + 16αA)(g00k0k0 + g11k1k1)

+ (1 − 8αA)(g22k2k2 + g33k3k3),

K22 = (1 − 8αA)(g00k0k0 + g11k1k1

+ g22k2k2 + g33k3k3),

K21 = 24αA
√
g11g22k1k2,

K23 = 24αA
√

−g00g33k0k3,

K33 = (1 − 8αA)(g00k0k0 + g11k1k1)

+ (1 + 16αA)(g22k2k2 + g33k3k3). (15)

The non-zero solution of Eq. (14) satisfies the condition
K11K22K33 = 0. The first root K11 = 0 leads to the modified
light cone

(1 + 16αA)(g00k0k0 + g11k1k1)

+ (1 − 8αA)(g22k2k2 + g33k3k3) = 0, (16)

which corresponds to the case the polarization vector aμ

is proportional to lμ. The second root corresponds to an
unphysical polarization and should be neglected. The third
root is K33 = 0, i.e.,

(1 − 8αA)(g00k0k0 + g11k1k1)

+ (1 + 16αA)(g22k2k2 + g33k3k3) = 0, (17)

which means that the vector aμ = λmμ. It is easy to find from
Eqs. (16) and (17) that the effects of the Weyl tensor on the
photon propagation are different for the coupled photons with
different polarizations, which leads to a phenomenon of bire-
fringence. Moreover, the light cone conditions (16) and (17)
imply that the motion of the coupled photons is non-geodesic
in the original metric (2). However, these photons follow null
geodesics of the effective metric γμν , i.e., γ μνkμkν = 0 [42].
The effective metric for the coupled photon can be expressed
as
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Fig. 1 Variation of the inner circular orbit radius rph with the coupling
constant α in the regular phantom black hole spacetime for fixed b. The
left and the right are for the photons PPL and PPM, respectively. Here
we set 2M = 1

ds2 = −A(r)dt2 + B(r)dr2

+C(r)W (r)−1(dθ2 + sin2 θdφ2), (18)

where A(r) = B(r)−1 = 1 − 3M
b

[ (
π
2 − arctan r

b

) (
1 + r2

b2

)

− r
b

]
and C(r) = r2 + b2. The quantity W (r) is

W (r) = 3(r2 + b2)2 − 8α(b2 + 3Mr)

3(r2 + b2)2 + 16α(b2 + 3Mr)
, (19)

for photon with the polarization along lμ (PPL) and is

W (r) = 3(r2 + b2)2 + 16α(b2 + 3Mr)

3(r2 + b2)2 − 8α(b2 + 3Mr)
, (20)

for photon with the polarization along mμ (PPM).
For the spherically symmetric metric (2), we may consider

only that the whole trajectory of the photon is limited on
the equatorial plane θ = π

2 . Due to the existence of cyclic
coordinates t and φ in spacetime (18), one can obtain the
energy E and angular momentum L of the coupled photon
as follows:

E = A(r)ṫ, L = C(r)W (r)−1φ̇, (21)

where a dot represents a derivative with respect to affine
parameter λ along the geodesics. Making use of the relation-
ship kμ = dxμ

dλ
, one can find that the equations of motion of

coupled photon can be simplified further as
(

dr

dλ

)2

= 1

B(r)

[
E2

A(r)
− W (r)

L2

C(r)

]
. (22)

The inner circular orbit radius rph in the equatorial plane
satisfied the conditions

W (r)[A′(r)C(r) − A(r)C ′(r)] + A(r)C(r)W ′(r) = 0.

(23)

Here we set E = 1. The changes of rph with the coupling
factor α and phantom charge b for PPL and PPM are plotted
in Figs. 1 and 2, respectively.

It is shown that with the increase of the coupling parameter
α the inner circular orbit radius rph for different b increases

Fig. 2 Variation of the inner circular orbit radius rph with the phantom
charge b in the regular phantom black hole spacetime for fixed α. The
left and the right are for the photons PPL and PPM, respectively. Here
we set 2M = 1

for PPL and decreases for PPM, which is similar to that in the
Schwarzschild black hole spacetime. With the increase of the
phantom charge b, rph for the PPL increases for the negative
α and decreases for positive one. For the case of PPM, the
change of rph with b is converse to those of PPL. Thus, the
inner circular orbit radius rph depends on the coupling param-
eter α, the phantom charge b, and the polarization, which is
quite different from that in the case without the coupling in
which the inner circular orbit radius rph is independent of the
phantom charge b and the polarization of photon. In other
words, the presence of the coupling brings about a richer
behavior for the inner circular orbit radius rph of the photon.

3 Double shadows of a regular phantom black hole as
photons couple to the Weyl tensor

In the regular phantom black hole spacetime (2), the light rays
from the source can be divided into two classes: the first class
can reach the observer at radius coordinate rO after being
deflected by the black hole. The other class go toward the
horizon of the black hole and are not detected by the observer
at rO . It yields a dark region on the observer’s sky called
the shadow of the black hole. In the spherically symmetric
spacetime, the shadow of the black hole is a dark circular
disk and its boundary is determined by light rays that spiral
asymptotically toward a circular light orbit at radius rph. After
some operations, one can find that the angular radius of the
shadow αsh in the regular phantom black hole spacetime (2)
can be modified as

sin2 αsh = A(rO)C(rph)W (rO)

A(rph)C(rO)W (rrh)
. (24)

The mass of the central object of our Galaxy is evaluated
to be 4.4 × 106 M� and its distance from the earth is
around 8.5 kpc [81], which means the ratio GM/rO ≈
2.4734 × 10−11. Combining with Eq. (24), we can estimate
the values of the angular radius of the shadow yielded by
the photon coupling with the Weyl tensor in a regular phan-
tom spacetime. We present the dependence of the angular
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Fig. 3 Variation of the angular radius of the shadow αsh with the cou-
pling constant α in the regular phantom black hole spacetime for fixed
b. The left and the right are for the photons PPL and PPM, respectively.
Here we set 2M = 1

Fig. 4 Variation of the angular radius of the shadow αsh with the phan-
tom charge b in the regular phantom black hole spacetime for fixed α.
The left and the right are for the photons PPL and PPM, respectively.
Here we set 2M = 1

radius αsh on the coupling constant α and phantom charge
b in Figs. 3 and 4. With the increase of the coupling con-
stant α, the angular radius of the shadow αsh increases for
the photon PPL and decrease for the photon PPM. Moreover,
with the increase of the phantom charge b, αsh increases for
two different coupled photons. This means that the size of
the shadow of black hole increases with the phantom charge
in this case.

Considering that the light radiated from the source could
be white light which can be separated into two kinds of lin-
early polarized light beams, it is naturally expected that there
exists a double shadow of a regular phantom black hole as
photons couple to the Weyl tensor. The overlap region of the
double shadow is called an umbra. From Fig. 3, we find that
the region of umbra is determined by PPL as α is negative
and by PPM as α is positive. Moreover, one can find that the
umbra of the black hole increases with the phantom charge
and decreases with the coupling strength. In Fig. 5, we show
the dependence of the penumbra of the black hole on the
phantom charge b and the coupling parameter α. It is shown
that the angular radius of penumbra of the black hole �αsh

decreases with the phantom charge and increases with the
coupling strength, which is converse to that of the umbra. As
the coupling vanishes, we find that �αsh = 0, which means
that the boundary of shadow caused by PPM is overlapped
with that by PPL and then the double shadow of the black

Fig. 5 Dependence of the penumbra of the black hole on the phantom
charge b and the coupling parameter α in the regular phantom black
hole spacetime

hole is reduced to a single shadow in this case. Therefore, the
presence of the coupling brings about richer behaviors for the
shadow of the black hole in the regular phantom black hole
spacetime.

4 Summary

In summary, we have studied the shadow of a regular phan-
tom black hole by photon coupling to the Weyl tensor. We
find that the propagation of coupled photon and the shadow
of the black hole depend sharply on the phantom charge of the
black hole, the photon polarization directions and the cou-
pling between photon and Weyl tensor. The presence of the
coupling has the result that the inner circular orbit radius of
the coupled photons around black hole depends on the phan-
tom charge and the polarization of photon itself, which is dif-
ferent from that in the non-coupling case in which the inner
circular orbit radius is independent of the phantom charge
and the polarization of photon. With the increase of the phan-
tom charge b, the inner circular orbit radius rph for the PPL
increases for the negative α and decreases for positive one.
For the case of PPM, the change of rph with b is converse to
those of PPL.

We also studied the double shadow of the black hole as
photons couple to the Weyl tensor, which does not appear in
the non-coupling case where only a single shadow emerges.
We find that the umbra of the black hole increases with the
phantom charge and decreases with the coupling strength.
The dependence of the penumbra on the phantom charge and
the coupling strength is converse to that of the umbra. Com-
bining with the supermassive central object in our Galaxy, we
estimated the shadow of the black hole as the photons couple
to the Weyl tensor. It would be of interest to generalize our
study to other black hole spacetimes, such as the Kerr black
hole [82] etc. Work in this direction will be reported in the
future.
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