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Abstract We study the dynamics of cosmological models
with a time dependent cosmological term. We consider five
classes of models; two with the non-covariant parametriza-
tion of the cosmological term �: �(H)CDM cosmolo-
gies, �(a)CDM cosmologies, and three with the covariant
parametrization of �: �(R)CDM cosmologies, where R(t)
is the Ricci scalar, �(φ)-cosmologies with diffusion, �(X)-
cosmologies, where X = 1

2g
αβ∇α∇βφ is a kinetic part of

the density of the scalar field. We also consider the case of an
emergent �(a) relation obtained from the behaviour of tra-
jectories in a neighbourhood of an invariant submanifold. In
the study of the dynamics we used dynamical system methods
for investigating how an evolutionary scenario can depend
on the choice of special initial conditions. We show that the
methods of dynamical systems allow one to investigate all
admissible solutions of a running � cosmology for all initial
conditions. We interpret Alcaniz and Lima’s approach as a
scaling cosmology. We formulate the idea of an emergent
cosmological term derived directly from an approximation
of the exact dynamics. We show that some non-covariant
parametrization of the cosmological term like �(a), �(H)

gives rise to the non-physical behaviour of trajectories in the
phase space. This behaviour disappears if the term �(a) is
emergent from the covariant parametrization.

1 Introduction

Our understanding of the properties of the current uni-
verse is based on the assumption that gravitational inter-
actions, which are extrapolated at the cosmological scales,
are described successfully by the Einstein general relativ-
ity theory with the cosmological term �. If we assume that
the geometry of the universe is described by the Robertson–
Walker metric, i.e., the universe is spatially homogeneous and
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isotropic, then we obtain the model of the current universe
in the form of standard cosmological model (the �CDM
model). From the methodological point of view this model
plays the role of an effective theory which describes well the
current universe in the present accelerating epoch.

If we compare the �CDM model with the observational
data, then we find that more than 70% of the energy budget
is in the form of dark energy and well modelled in terms of
an effective parameter of the cosmological constant term.

If we assume that the SCM (standard cosmological model)
is an effective field theory which is valid up to a certain
cutoff of mass M , and if we extrapolate of the SCM up to the
Planck scale then we should have � ∼ 1. On the other hand
from the observations we find that both density parameters
��,0 = �

3H2
0

and �m,0 = ρm,0

3H2
0

are order one, which implies

� ∝ H2
0 ∼ 10−120. We assume the natural units G = c =

h̄ = 1 here.
In consequence we obtain the huge discrepancy between

the expected and observed values of the term �. It is just
what is called the cosmological constant problem requiring
the explanation why the cosmological constant assumes such
a small value today.

In this context an idea of a running cosmological con-
stant term appears. It was developed in a series of papers
by Shapiro et al. [1–4]. Shapiro and Solà [5] showed neither
there is the rigorous proof indicating that the cosmological
constant is running, nor there are strong arguments for a non-
running one. Therefore one can study different theoretical
possibilities of the running � term given in a phenomeno-
logical form and investigate cosmological implications of
such an assumption. Such models are a simple generaliza-
tion of the standard cosmological model in which the term
� is constant.

The corresponding form of the �(t) dependence can be
motivated by quantum field theory [5–7] or by some theoret-
ical motivations [8,9]. Padmanabhan [10] and Vishwakarma
[11] also suggested that � ∝ H2 from the dimensional con-
siderations.
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The relation �(t) is not given directly but through a
function which describes the evolution of the universe. One
can consider two classes of models with the non-covariant
parametrizations of the � term:

– the cosmological models in which dependence on time is
hidden and �(t) = �(H(t)) or �(t) = �(a(t)) depends
on the time through the Hubble parameter H(t) or scale
factor a(t),

and three classes of models with covariant parametrizations
of the � term:

– the Ricci scalar of the dark energy model, i.e., � = �(R),
– the parametrization of the � term through the scalar field

φ(t) with a self-interacting potential V (φ),
– as the special case of the previous one, the � term can

be parametrized by a kinetic part of the energy density of
the scalar field X = 1

2g
αβ∇α∇βφ.

Note that some parametrizations of the � term can also
arise from another theory beyond general relativity. For
example Shapiro and Solà [5] suggested that a solution,
which is derived from the form of ρ�(H) = ρ0

� + α(H2 −
H2

0 ) +O(H4), can be a solution of the fundamental general
relativity equations.

Another problem, which is related to the standard cosmo-
logical problem, is the problem of coincidence [12]. From the
cosmological data such as measurements of distant SNIa,
CMB, BAO and other astronomical observations, we find
that we live in the very special age of the universe when
ρ� ∼ ρdm ∼ ρb. The appearance of any epoch with this
coincidence is puzzling and we should explain why we live
in such a special epoch.

The appearance of scaling solutions in the phase space
suggests that in this model the problem of cosmic coincidence
can be solved because during the whole evolution ρ� ∼ ρm.

The motivation for studying cosmology with the decay-
ing vacuum comes from the solution of the cosmological con-
stant problem as well as the cosmic coincidence problem – the
main problems which standard cosmological model strug-
gles. In this context, different propositions of parametriza-
tion of the � term are postulated. As mentioned above both
the covariant contributions to the general relativity action
and others violate this covariance. We study cosmological
implications of such choices. And the methods of dynami-
cal systems will be used to help us to understand better the
dynamical aspects of this problem.

We are looking for such parametrizations of the � term
for which in the phase space the de Sitter stationary state is a
global attractor and a generic class of initial conditions gives
rise in this attractor. It is a consequence of the fact that we are

going toward a solution of the standard cosmological model
without an idea of the fine tuning.

The main aim of this paper is to study dynamics of the
cosmological models with the running cosmological term
and dust matter. We apply dynamical systems methods to
investigate theoretically possible dynamics of these mod-
els. The main advantage of these methods is the possibility
of studying all solutions (cosmological evolutionary scenar-
ios) for admissible initial conditions. The phase space is a
geometrization of the dynamics whose structure informs us
how generic are solutions with desired properties. In this
approach we are looking for attractor solutions in the phase
space representing generic solutions for the problem which
gives such a parametrization of �(t) which explain how the
value of cosmological term achieves a small value for the cur-
rent universe. We search for such an evolutionary scenario
for which the �bare is an attractor in the phase space.

The dynamics of both the above mentioned subclasses of
the �(t)CDM cosmologies is investigated by dynamical sys-
tem methods. Bonanno and Carloni have recently used these
methods to study the qualitative behaviour of FRW cosmolo-
gies with time-dependent vacuum energy on cosmological
scales [6]. Of course, the methods of dynamical systems are
not a way to solve problems of the cosmological constant. It
is only a useful tool for the visualization of the dynamics in a
geometrical way which can help us to better understand the
term � during the cosmic evolution.

We also develop the idea of an emergent relation �(a)

obtained from the behaviour of the trajectories of the dynam-
ical system near the invariant submanifold Ḣ

H2 = 0. By the
emerging of a running parametrization �(a) we understand
its derivation directly from the true dynamics. Therefore, the
corresponding parametrization is obtained from the entry of
trajectories in a de Sitter state.

Measurements of the cosmic microwave background
anisotropy are considered in the background of the �CDM
model and indicates that the cosmological spatial hypersur-
face of the FRW geometry is very close to flat [13,14]. On
the other hand, under of the assumption of flatness, the data
favour rather the time-independent dark energy [15].

It is well known that if a spatially curved time variable
dark energy model is used to analyse the CMB anisotropy
measurements then there is a degeneracy between the spatial
curvature and the parameters which govern the dark energy
time variability. For this reason it seems that an in-depth
analysis should be performed of the influence of curvature
effects on the dynamical scenarios of different cosmological
models.

For this aim we consider the following issues.

– We explore idea of the reducing dynamics to the form of
the 2D dynamical system of the Newtonian type as soon
as possible. In this system, the energy integral is related
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with the curvature index (or density parameter for the
curvature fluid) and therefore energy levels will deter-
mine evolutional paths in the configuration space. All
information, which is concerning these types of evolu-
tion, can be directly taken from the geometry of potential
function V (a) because the curvature effect of new types
of evolution emerges. For example we can obtain oscil-
lating models, models with bounce, oscillating models
without the initial and final singularity etc.

– From the cosmological point of view, it is interesting to
find in the phase space attractors, which position is caused
by curvature effects. In the generic case these attractors
lie on the invariant submanifold, which represents the
surface of the flat model. However, our dynamical analy-
sis gives us an opportunity to detect curvature attractors
beyond the invariant submanifold, which represents the
evolution of the flat models, which are studied in detail
by the phase portraits of the lower dimension.

2 �(H)CDM cosmologies as dynamical systems

From the theoretical point of view if we do not know the
exact form of the �(t) relation we study the dynamical prop-
erties of cosmological models in which the �-dependence
on the cosmological time t is through the Hubble parameter
or scale factor, i.e. �(t) = �(H(t)) or �(t) = �(a(t)). The
connection of such models with the mentioned ones in the
previous section will be demonstrated, in which the choice of
a �(t) form was motivated by physics. Cosmological models
with a quadratic �-dependence on the cosmological time are
revealed as a special solution in the phase space.

In the investigation of the dynamics of �(H) cosmologies
we apply the dynamical system methods [16]. We investigate
all solutions which are admissible for all physically admitted
initial conditions. The global characteristics of the dynam-
ics are given in the form of phase portraits, which reflect
the phase space structure of all solutions of the problem.
The phase space structure contains all information as regards
dependence of solutions on initial conditions, its stability,
genericity, etc. Then we can distinguish some generic (typ-
ical) cases as well as non-generic (fine-tuned) ones, which
physical realizations require a tuning of the initial conditions.
The methods of dynamical systems allow us to study the sta-
bility of the solutions in a simple way by investigation of te
linearization of the system around the non-degenerate critical
points of the system.

If the dynamical system is in the form ẋ ≡ dx
dt = f (x),

where x ∈ R
n and f is of class C∞, then the solution of this

system is a vector field x(t; x0) where x(t0) is a vector of
initial conditions. Beyond this regular solution there are sin-
gular ones. They are special and obtained from the condition
of vanishing of its right-hand sides.

The �(H)CDM cosmological models have recently been
investigated intensively in the contemporary cosmology [8,
17–19]. Among these class of models there is one with a
particular form of �(t) = � + αH2. It was studied in detail
in [17]. Its generalization to the relation of �(H) given in
the form of a Taylor series of the Hubble parameter can be
found in [20].

It is also interesting that motivations for studying such
a class of models can be taken from Urbanowski’s expan-
sion formula for decaying false vacuum energy, which can
be identified with the cosmological constant term [7]. It is
sufficient to interpret the time t in terms of the Hubble time
scale t = tH ≡ 1

H . Therefore, �(H)CDM cosmologies can
be understood as some kind of effective theories of the influ-
ence of vacuum decay in the universe [21]. This approach is
interesting especially in the context of both the dark energy
and the dark matter problem because the problem of cosmo-
logical constant cannot be investigated in isolation from the
problem of dark matter.

In �(H) cosmologies, in general, a scaling relation on
matter is modified and differs from the canonical relation
ρm=ρm,0a−3 in the �CDM model. The deviation from the
canonical relation here is characterized by a positive constant
ε such that ρm = ρm,0a−3+ε [22].

FRW cosmologies with a running cosmological term �(t)
such that ρvac = �(t) and pvac = −�(t) can be formulated
in the form of a non-autonomous dynamical system,

dH

dt
≡ Ḣ = −H2 − 1

6
(ρm + 3pm) + 1

3
�(t) (1)

dρm

dt
≡ ρ̇m = −3H(ρm + pm) − �̇, (2)

where ρm and pm are the energy density and the pressure of
matter, respectively, and a dot denotes differentiation with
respect to the cosmological time t . In this paper, we assume
that 8πG = c = 1. In this model the energy-momentum ten-
sor is not conserved because of the presence of an interaction
in both matter and dark energy sector. System (1)–(2) has a
first integral called the conservation condition in the form

ρm − 3H2 = −�(t). (3)

Note that the solution ρm = 0 is a solution of (2) only if
� = const. Of course system (1)–(2) does not form a closed
dynamical system, while a concrete form of the �(t) relation
is not postulated. Therefore, this cosmology belongs to a
more general class of models in which the energy-momentum
tensor of matter is not conserved.

Let us consider that both visible matter and dark matter
are given in the form of dust, i.e. pm = 0 and

�(t) = �(H(t)). (4)
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Due to the above simplifying assumption (4), system (1)–
(2) with the first integral in the form (3) assumes the form of
a two-dimensional closed dynamical system,

Ḣ = −H2 − 1

6
ρm + 1

3
�(t), (5)

ρ̇m = −3Hρm − �′(H)

(
−H2 − 1

6
ρm + �(H)

3

)
, (6)

where �′(H) = d�
dH and ρm − 3H2 = −�(H) are the first

integrals of system (5)–(6).
Let us consider �(H) given in the form of a Taylor series

with respect to the Hubble parameter H , i.e.

�(H) =
∞∑
n=1

1

n!
dn

dHn
�(H)|0Hn . (7)

We assume additionally that the model dynamics has a
reflection symmetry, H → −H , i.e., a(t) is a solution of the
system and a(−t) is also its solution. Therefore, only even
terms of type H2n are present in the expansion series (7).
Finally, we assume the following form of the energy density
parametrization through the Hubble parameter H [1]:

ρ�(H) = �bare + α2H
2 + α4H

4 + · · · . (8)

There are also some physical motivations for such a choice
of the �(H) parametrization (see [19]).

It would be useful for the further dynamical analysis of
the system under consideration to re-parametrize the time
variable

τ 
−→ τ = ln a (9)

and to rewrite the dynamical system (5)–(6) in the new vari-
ables

x = H2, y = ρm. (10)

Then we obtain the following dynamical system:

x ′ ≡ dx

d ln a
= 2

[
−x − 1

6
y + 1

3
(� + α2x + α4x

2 + · · · )
]

,

(11)

y′ ≡ dy

d ln a
= −3y − 1

3
(α2 + 2α4x + · · · )

×
[
−x − 1

6
y + 1

3
(� + α2x + α4 + · · · )

]

(12)

and

y − 3x = −(� + α2x + α4x
2 + · · · ) (13)

where instead of �bare we write simply �, which represents
a constant contribution to the �(H) given by the expansion
in the Taylor series (7).

Now, with the help of the first integral (13) we rewrite
system (11)–(12) to the new form

x ′ = 2

(
−x − 1

6
y + 3x − y

3

)
= −y, (14)

y′ = −3y − (α2 + 2α4x + · · · )3x − y

9
. (15)

Therefore, all trajectories of the system on the plane (x, y)
are determined by the first integral (13).

The dynamical system (11)–(12) in a finite domain has a
critical point of the one type: a stationary solution x = x0,
y = y0 = 0 representing a de Sitter universe. In the original
variables (H, ρm) we have two solutions: the stable expand-
ing de Sitter universe and the unstable contracting de Sitter
universe, both lying on the H axis. Note that if stationary
solutions exist then they always lie on the intersection of the
x axis (y = 0) with the trajectory of the flat model repre-
sented by the first integral (13), i.e., they are solutions of the
following polynomial equation:

x − 1

3
(� + α2x + α4x

2 + · · · ) = 0 (16)

and y = 0 (empty universe).
Note that the static critical point which represents the

static Einstein universe does not satisfy the first integral (13)
because both y and � are positive. Let us notice that if we
substitute y into (11) then the dynamics is reduced to a form
of a one-dimensional dynamical system,

dx

dτ
= −(3x − � − α2x − α4x

2 − · · · ). (17)

y = 3x − (� + α2x + α4x
2 + · · · ). (18)

Following the Hartmann–Grobman theorem [16] a system
in the neighbourhood of critical points is well approximated
by its linear part obtained by its linearization around this
critical point.

On the other hand, a linear part dominates for small x
in a right-hand side. Let us consider the dynamical system
(17) truncated on this linear contribution, then the Hartman–
Grobman theorem [16] guarantees us that the dynamical sys-
tem in a neighbourhood of the critical point is a good approx-
imation of the behaviour near the critical points. This system
has the simple form

dx

dτ
= x(α2 − 3) + �, (19)

y = (3 − α2)x − �. (20)

System (19)–(20) has the single critical point of the form

x0 = �

3 − α2
, y = 0. (21)
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It represents an empty de Sitter universe.
Let us now shift the position of this critical point to the

origin by introducing the new variable x → X = x − x0.
Then we obtain

dX

dτ
= (α2 − 3)X, (22)

which possesses the exact solution of the form

X = X0e
τ(α2−3) = X0a

−3+α2 , (23)

where α2 is constant. Of course this critical point is asymp-
totically stable if α2 < 3. The trajectories approaching this
critical point at τ = ln a → ∞ has the attractor solution
X = X0aα2−3 or x = X + x0, where x0 = �

3−α2
or X = 0

(see Fig. 1). This attractor solution is crucial for the construc-
tion of a new model of a decaying Lambda effect strictly
connected with the dark matter problem [9,21].

The solution (23) has a natural interpretation: in a neigh-
bourhood of a global attractor of system (17), trajecto-
ries behave as the universal solution, which motivates the
Alcaniz–Lima approach in which

x = H2 = ρ̃m,0

3
a−3+α2 + ρ�,0

3
, (24)

where ρ̃m,0 = 3
3−α2

ρm,0.
We can rewrite Eq. (1) as the Newtonian equation of

motion for a particle of unit mass moving in the potential
V (a)

ä = −∂V (a)

∂a
. (25)

In our case the potential V (a) is given in the following form:

V (a) = 1

2
(

�

3 − α2
− H2

0 )a−1+α2 − 1

2

�

3 − α2
a2. (26)

The first integral of (25) can be expressed by

ȧ2

2
+ V (a) = E = const, (27)

where E is the value of the energy level (for the positive
curvature E = −1/2, for the negative curvature E = 1/2 and
for the flat universe E = 0). Figure 2 presents the evolution
of V (a) for α2 = 0.1 and for α2 = 1.

In our case if we consider the curvature in the dynamical
analysis then we get new solutions for the positive curvature

1

X

Fig. 1 A one-dimensional phase portrait of the FRW model with � =
�(H). Note the existence of universal behaviour of the H2(a) relation
near the stable critical point (1) of the type of stable node. In a neighbour-
hood of this attractor we have the solution X = H2 − �

3−α2
= X0aα2−3

and ρm = (3−α2)H2 −� = X0aα2−3. Therefore both ρm and ρ� −�

are proportional (scaling solution)

0 1 2 3 4
a

1

0

1

2
Veff

0 1 2 3 4
a

1

0

1

2
Veff

Fig. 2 The potential Veff(a) for α2 = 0.1 (top diagram) and α2 = 1
(bottom diagram). The top dashed lines (Veff = 1/2) represent the
energy level, which corresponds with the negative curvature. The bot-
tom dashed lines (Veff = −1/2) represent the energy level, which corre-
sponds with the positive curvature. The middle dashed lines (Veff = 0)
represent the energy level, which corresponds with the flat universe. The
forbidden domain for the motion is colored. The maximum of the poten-
tial is corresponding to a static Einstein universe in the phase space. Note
that, for the case of positive curvature, the universe can oscillate with
the initial singularity (the left bottom part of the top diagram) or be a
universe with a bounce (the right bottom part of both diagrams)

such as the oscillating universe with the initial singularity
and the universe with the bounce. But if we perturb solutions
for the flat universe by a small spatial curvature then these
solutions do not change qualitatively (see Fig. 2).

3 �(a(t))CDM cosmologies as a dynamical system

In their construction many cosmological models of a decay-
ing � make the ansatz �(t) = �(a(t)). For a review of
different approaches in which ansatzes of this type appear,
see Table 1.

In this section, we would like to discuss some general
properties of the corresponding dynamical systems which
model a decaying � term. It would be convenient to introduce
the dynamical system in the state variables (H, ρ),
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Table 1 Different choices of the �(a) parametrization for different
cosmological models appearing in the literature

�(a) Parametrization References

� ∼ a−m [23,24]

� = M4
pl

( rpl
R

)n
[25]

� = c5

h̄G2

(
l pl
a

)n
[26]

ρ� = ρ̃v,0 + ερm,0
3−ε

a−3+ε [9]

ρde = a−(4+ 2
α

), α = 2(1 − �m,0 − ��,0) [27]

ρ� = 3α2M2
pa

−2
(

1+ 1
c

)
[28]

� = �pl

(a/ lpl)2 ∝ a−2 [29]

� = �1 + �2a−m [30]

Ḣ = −H2 − 1

6
ρm + �bare

3
+ �(a)

3
, (28)

ρ̇m = −3Hρm − d�

da
(Ha) (29)

or

dH2

d ln a
= 2

(
−H2 − 1

6
ρm + 1

3
�bare + 1

3
�(a)

)
, (30)

dρm

dτ
= dρm

d ln a
= −3ρm − a

d�

da
(31)

with the first integral of the form

ρm = 3H2 − �bare − �(a). (32)

As we have prescribed the form of the �(a) relation, we
can start the dynamical analysis with Eq. (28). It would be
convenient to rewrite it to the form of the acceleration equa-
tion, i.e.,

ä

a
= −1

6
ρm(a) + �bare

3
+ �(a)

3
, (33)

where ρm(a) is determined by Eq. (31) which is a linear
non-homogeneous differential equation which can be solved
analytically

dρm

dτ
= −3ρm − d�

dτ
(a) (34)

and

ρm = −
(∫ a

a3d�(a) + C

)
a−3 (35)

Equation (33) can be rewritten in an analogous form to
the Newtonian equation of motion for a particle of unit mass
moving in the potential V (a) (Eq. (25)), where

V (a) = 1

6
a−1

(∫ a

a3 d�

da
da + C

)
− �bare

6
a2 − 1

6
a2�(a).

(36)

The integration of the above function gives the form of
the potential.

Of course, Eq. (25) can be rewritten as the Newtonian
two-dimensional dynamical system

ȧ = p, ṗ = −∂V

∂a
, (37)

where the first integral has the form of Eq. (27). The integral
of energy (27) should be consistent with the first integral (32),
i.e.,

ρm + ρ� = 3H2, (38)

a−3
∫

a3�′(a)da + 3
ȧ2

a2 = �bare + �(a). (39)

Because the system under consideration is a conservative
system, centres or saddles can appear in the phase space. If
the potential function V (a) possesses a maximum, then in the
phase space we obtain a saddle type critical point. If V (a)

has a minimum, this point is a centre.
As an example of adopting the method of the effec-

tive potential, which is presented here, let us consider the
parametrization of �(a) like in the Alcaniz–Lima model of
decaying vacuum [9]. They assumed that energy density of
vacuum is of the form (see Table 1)

ρ� = ρv,0 + ερm,0

3 − ε
a−3+ε, (40)

where ρv,0 is vacuum energy ρm,0 is the energy density of
matter at the present moment for which we choose a = 1 =
a0. Because ρ̇vac < 0, i.e., the energy of vacuum is decaying,
from the conservation condition

ρ̇m = −3Hρm − ρ̇vac (41)

we obtain

ρ̇vac = −ρ̇m − 3Hρm = −ρm

(
ρ̇m

ρm
+ 3H

)
(42)

and the vacuum is decaying if

d ln ρm

d ln a
> −3. (43)

Let us notice that ρm = 0 is a solution of the system (41)
only if � is constant. It is a source of some difficulties in
the phase space because the trajectories can pass through the
line ρm = 0. As a consequence of decaying vacuum energy
density of matter will dilute more slowly compared to the
corresponding canonical relation in the �CDM model, i.e.,
the energy density of matter is scaling following the rule

ρm = ρm,0a
−3+ε, (44)

where ε > 0.
The dynamical system obtained from Eqs. (30)–(31) with

the parametrization (40) has the following form:

x ′ = −3x + (y − �)(3 − ε), (45)
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Fig. 3 A phase portrait for the dynamical system (45)–(46). The crit-
ical point (1) at x = 0, y = � is a stable node. It represents a de
Sitter universe. The red line represents the solutions of scaling type
y = ε

3−ε
x + �. The grey region represents a non-physical domain

excluded by the condition ρm = x > 0, ρ� = y > 0. Note that tra-
jectories approach the attractor along a straight line. Let us note the
existence of trajectories coming to the physical region from the non-
physical one. We treated this type of behaviour as a difficulty related
to an appearance of ghost trajectories, which emerges from the non-
physical region

y′ = −(y − �)(3 − ε), (46)

z′ = −z − x

6
+ y

3
, (47)

with the condition y = � + ε
3−ε

x , where x = ρm, y = ρ�,

z = H2 and ′ ≡ d
dτ

. The above dynamical system contains
the autonomous two-dimensional dynamical system (45)–
(46). Therefore this system has an invariant two-dimensional
submanifold. A phase portrait with this invariant submanifold
is demonstrated in Fig. 3.

For a deeper analysis of the system, the investigation of
trajectories at the circle x2 + y2 = ∞ at infinity is required.
For this aim the dynamical system (45)–(46) is rewritten in
projective coordinates. Two maps (X,Y ) and (X̃ , Ỹ ) cover
the circle at infinity. In the first map we use the following
projective coordinates: X = 1

x , Y = y
x and in the second one

X̃ = x
y , Ỹ = 1

y . System (45)–(46) rewritten in coordinates
X and Y has the following form:

X ′ = X ((Y − �X)(−3 + ε) + 3) , (48)

Y ′ = (Y + 1)(Y − �X)(−3 + ε) + 3Y (49)

and for variables X̃ , Ỹ , we obtain
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0.5

0

0.5
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2

Fig. 4 A phase portrait for the dynamical system (48)–(49). Both the
critical point (2) at the origin X = 0, Y = 0 and the critical point
(3) at X = 0, Y = ε

3−ε
present nodes. The red line represents the

solutions of a scaling type Y = ε
3−ε

+ �X . The grey region represents
a non-physical domain excluded by the condition X > 0, Y > 0

Table 2 Critical points for autonomous dynamical systems (45)–(46),
(48)–(49), (50)–(51), their eigenvalues and cosmological interpretation

No. Critical point Eigenvalues Type of
critical
point

Type of
universe

1 x = 0, y = � −3,−3 + ε Stable node de Sitter

2 X = 0, Y = 0 3, ε Unstable node Einstein–de
Sitter

3 X = 0, Y = ε
3−ε

3 − ε, −ε Saddle Scaling
universe

ρm Is
proportional
to ρ�

X̃ ′ = (1 + X̃)(1 − �Ỹ )(3 − ε) − 3X̃ , (50)

Ỹ ′ = Ỹ (1 − �Ỹ )(3 − ε). (51)

The phase portraits for dynamical systems (48)–(49) and
(50)–(51) are demonstrated in Figs. 4 and 5. The critical
points for the above dynamical system are presented in
Table 2 (Fig. 3, 4).

The reduction of the dynamics to the particle-like descrip-
tion with the effective potential enables us to treat the evolu-
tion of the universe in manners of classical mechanics. One
treats the scale factor as a positional variable and

Veff(a) = −ρeff(a)a2

6

= −1

6
a2

(
ρma

−3+ε + ρv,0 + ερm,0a−3+ε

3 − ε

)
, (52)
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Fig. 5 A phase portrait for the dynamical system (50)–(51). The criti-
cal point (1) at X̃ = 0, Ỹ = 1/� presents a stable node and the critical
point (3) is at X̃ = 3−ε

ε
, Ỹ = 0 presents a saddle type point. The red line

represents the solutions of a scaling type Ỹ =
(

1 − ε
3−ε

X̃
)

/�. The

grey region represents non-physical domain excluded by the condition
X̃ > 0, Ỹ > 0

where ρeff = ρm + ρvac(a) and

ȧ2

2
+ Veff = −k

2
. (53)

The motion of a particle (the universe, that is; it mimics a
unit-mass particle in that description) is restricted to the zero
energy level E = 0 (because we considered a flat model). The
evolutionary paths of the model can be directly determined
from the diagram of the effective potential Veff(a).

Figure 6 demonstrates the diagram Veff(a) for values
ε = 0.1 and 1. In general, for the phase portrait in the plane
(a, ȧ) the maximum of V (a) corresponds to the static Ein-
stein universe. This critical point is situated on the a-axis and
it is always of the saddle type. Of course, it is only admissible
for closed universes. In that case a minimum corresponds to
a critical point of a centre type. If we include the curvature
in the dynamical analysis then we get new solutions for the
positive curvature such as the oscillating universe with an
initial singularity and the universe with a bounce. But if we
perturb solutions for the flat universe by a small spatial cur-
vature then these solutions do not change qualitatively (see
Fig. 6).

The Alcaniz–Lima model behaves in the phase space
(a, ȧ) like the �CDM one [9]. Trajectories start from
(a, ȧ) = (0,∞) (corresponding to the big bang singularity),
approach the static universe and then evolve to infinity. Note
that if 0 < ε < 1 then dynamics is qualitatively equivalent
to the �CDM model.

The Eq. (29) can be written as

ρ̇m = −3Hρm − 3Hρmδ(t), (54)

0 1 2 3 4
a

1

0

1

2
Veff

0 1 2 3 4
a

1

0

1

2
Veff

Fig. 6 The potential Veff(a) for ε = 0.1 (top diagram) and for ε = 1
(bottom diagram). The top dashed lines (Veff = 1/2) represent the
energy level, which corresponds with the negative curvature. The bot-
tom dashed lines (Veff = −1/2) represent the energy level, which corre-
sponds with the positive curvature. The middle dashed lines (Veff = 0)
represent the energy level, which corresponds with the flat universe. The
colored region represents a forbidden domain for the motion. The shape
of diagram of the potential determines the phase space structure. The
maximum of the potential is corresponding to a static Einstein universe
in the phase space. Note that the universe with the positive curvature is
an oscillating universe with the initial singularity (the left bottom part
of the top diagram) or is a universe with a bounce (the right bottom part
of both diagrams)

where δ(t) = − 1
3ρm

d�
da a. Therefore,

ρ̇m = −3Hρm(1 + δ(t)), (55)

where −3Hρmδ(t) = d�
da Ha, i.e., δ(t) = − d�

da a
3ρm

∝ −ρ�

ρm
. If

δ(t) is a slowly changing function of time, i.e., δ(t) � δ then
(55) has the solution ρm = ρm,0a−3+δ .

4 �(R)CDM cosmologies as a dynamical system

The Ricci scalar dark energy idea has been recently consid-
ered in the context of the holographic principle [31]. In this
case dark energy can depend on time t through the Ricci
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Fig. 7 A phase portrait for dynamical system (59)–(60) with α = 2/3.

The critical point (1), which is located on a-axis, (a =
√

3ρm,0
2ρ�−ρm,0

,
x = 0), is a saddle point and represents a static Einstein universe. The
red lines represent the trajectories of the flat universe. They separate the
regions in which closed and open models lie. In the region, at the right
from the critical point (1), bounded by the incoming separatrix from
above and the outgoing separatrix from below, trajectories are going
out from the contracting Milne solution, reaching the amin and coming
into the expanding Milne solution

scalar R(t), i.e., �(t) = �(R(t)). Such a choice does not
violate covariance of general relativity. A special case is the
parametrization ρ� = −α

2 R = 3α(Ḣ + 2H2 + k
a2 ) [27].

Then the cosmological equations are also formulated in the
form of a two-dimensional dynamical system,

Ḣ = −H2 − 1

6
(ρm + ρ�), (56)

ρ̇ = −3Hρm (57)

with the first integral of the form

H2 = 1

3

(
−3k

a2 + 2

2 − α
ρm,0a

−3 + f0a
2 1−2α

α

)
, (58)

where f0 is an integration constant.
From the above equations, we can obtain a dynamical

system in the state variables a, x = ȧ,

ȧ = x, (59)

ẋ = −�m,0
1

2 − α
a−2

+
(

1

α
− 1

) (
��,0 − �m,0

α

2 − α

)
a

2
α
−3. (60)

The phase portrait on the plane (a, x) is shown in Fig. 7.
In order to analyze the trajectories behaviour at infinity

we use the following sets of projective coordinates: A = 1
a ,

X = x
a .

The dynamical system for variables A and X is expressed
by

Ȧ = −X A, (61)

Ẋ = A3
[

− �m,0
1

2 − α

+
(

1 − α

α

)(
��,0 − �m,0

α

2 − α

)
A

α−2
α

]
− X2. (62)

We can use also the Poincaré sphere to identify the critical
points at infinity. We introduce the following new variables:
B = a√

1+a2+x2 , Y = x√
1+a2+x2 . In the variables (B, Y ), we

obtain a dynamical system of the form

B ′ = Y B2(1 − B2)

− BY
[

− �m,0
1

2 − α
(1 − B2 − Y 2)3/2

+
(

1 − α

α

) (
��,0 − �m,0

α

2 − α

)
B−1+2/α

× (1 − B2 − Y 2)2−1/α
]
, (63)

Y ′ =
[

− �m,0
1

2 − α
(1 − B2 − Y 2)3/2

+
(

1 − α

α

) (
��,0 − �m,0

α

2 − α

)
B−1+2/α

× (1 − B2 − Y 2)2−1/α
]
(1 − Y 2) − Y 2B3, (64)

where ′ ≡ B2 d
dt .

The phase portraits for the dynamical systems (61)–(62)
and (63)–(64) are demonstrated in Figs. 8 and 9, respectively.
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Fig. 8 A phase portrait for dynamical system (61)–(62) with α = 2/3.

The critical point (1) on the A-axis, (A =
√

2ρ�−ρm,0
3ρm,0

, X = 0), is a

saddle and represents a static Einstein universe. The red lines represent
the trajectories of a flat universe and they separate the regions in which
closed and open models lie. The critical point (2) is a degenerate point
at which the expanding and contracting Milne solutions are glued
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Fig. 9 A phase portrait for dynamical system (63)–(64) with α = 2/3.

The critical point (1) is at (B = 1/

√(
2ρ�−ρm,0

3ρm,0

)2 + 1, Y = 0) is a

saddle and represents a static Einstein universe. The critical point (2)
at the B-axis, Y = 0 is a stable node and represents a Milne universe.
The critical points (3) and (4) at (B = 0, Y = 1) and (B = 0, Y = −1)
are nodes and represent Einstein–de Sitter universes. The blue region
represents a physical domain restricted to B2 +Y 2 ≤ 0, B ≥ 0. The red
lines represent the flat universe and they separate the regions in which
closed and open models lie

If we include the curvature in the dynamical analysis then
we get new types of universes. In the phase space in the pos-
itive curvature domain, new trajectories appear which rep-
resent the oscillating universe with an initial singularity and
the universe with a bounce. For this model, the universe with
the bounce start from the Milne universe and is the universe
without the initial singularity. A similar situation holds for
many f (R) models, where the de Sitter universe is at the
infinite past. Non-singular solutions of this type were found
by Starobinsky [32].

5 Cosmology with emergent �(a) relation from exact
dynamics

In order to illustrate the idea of an emergent �(a) relation
let us consider cosmology with a scalar field which is non-
minimal coupled to gravity. For simplicity, without loss of
generality of our consideration, we assume that the non-
minimal coupling ξ is constant like the conformal coupling.
It is also assumed that dust matter, present in the model, does
not interact with the scalar field. Since we would like to nest
the �CDM model in our model we postulate that the potential
of the scalar field is constant. We also assume a flat geometry
with the R-W metric. The action for our model assumes the
following form:

S = Sg + Sφ + Sm, (65)

where

Sg + Sφ = 1

2

∫ √
g
(
R + gμν∂μφ∂νφ − ξ Rφ2

− 2V (φ)
)
d4x, (66)

Sm =
∫ √

gLmd4x, (67)

where the metric signature is (−,+,+,+), R = 6
(
ä
a + ȧ2

a2

)
is the Ricci scalar and the dot denotes the differentiation
with respect to the cosmological time t , i.e.,˙≡ d

dt and Lm =
−ρm

(
1 + ∫ pm(ρm)

ρ2
m

dρm

)
.

After skipping the full derivatives with respect to the time,
the equation of motion for the scalar field is obtained after
the variation over the scalar field and metric,

δS

δφ
= 0 ⇔ φ̈ + 3H φ̇ + ξ Rφ + V ′(φ) = 0, (68)

where ′ ≡ d
dφ

and

δS

δg
= 0 ⇔ E = 1

2
φ̇2 + 3ξH2φ2 + 6ξHφφ̇

+V (φ) − 3H2 ≡ 0. (69)

Additionally, from the conservation condition of the equa-
tion of state pm = pm(ρm) for the barotropic matter we have

ρ̇m = −3H(ρm + pm(ρm)). (70)

Because we assume dust matter (pm=0), Eq. (70) has a
simple scaling solution of the form

ρm = ρm,0a
−3, (71)

where a = a(t) is the scale factor from the R-W metric
ds2 = dt2 − a2(t)(dx2 + dy2 + dz2).

Analogously, the effects of the homogeneous scalar field
satisfy the conservation condition

ρ̇φ = −3H(ρφ + pφ), (72)

where

ρφ = 1

2
φ̇2 + V (φ) + 6ξHφφ̇ + 3ξH2φ2, (73)

pφ = 1

2
(1 − 4ξ)φ̇2 − V (φ) + 2ξHφφ̇ − 2ξ(1 − 6ξ)Ḣφ2

−3ξ(1 − 8ξ)H2φ2 + 2ξφV ′(φ). (74)

In the investigation of the dynamics it would be convenient
to introduce the so-called energetic state variables [33]

x ≡ φ̇√
6H

, y ≡
√
V (φ)√
3H

, z ≡ φ√
6
. (75)

The choice of such state variables (75) is suggested by the
energy constraint E = 0 (69).
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The energy constraint condition can be rewritten in terms
of dimensionless density parameters

�m + �φ = 1 (76)

then

�φ = 1 − �m = (1 − 6ξ)x2 + y2 + 6ξ(x + z)2

= 1 − �m,0a
−3 (77)

and the formula H(x, y, z, a) rewritten in the terms of state
variables x , y, z assumes the following form:

(
H

H0

)2

= �φ + �m

= (1 − 6ξ)x2 + y2 + 6ξ(x + z)2 + �m,0a
−3.

(78)

Equation (78) is crucial for the model testing and estima-
tion of the model parameters using astronomical data.

Because we try to generalize the�CDM model it is natural
to interpret the additional contribution beyond �bare as a
running � term in (78). In our further analysis we will called
this term ‘emergent � term’. Therefore,

��,emergent = (1 − 6ξ)x2 + y2 + 6ξ(x + z)2. (79)

Of course, state variables satisfy a set of the differential
equations in the consequence of Einstein equations. We try to
organize them in the form of autonomous differential equa-
tions, i.e., some dynamical system.

For this aim let us start from the acceleration equation,

Ḣ = −1

2
(ρeff + peff) = −3

2
H2(1 + weff), (80)

where ρeff and peff are the effective energy density and the
pressure, while weff = peff

ρeff
is an effective coefficient of equa-

tion of state. Moreover, ρeff = ρm + ρφ and peff = 0 + pφ .
The coefficient equation of state weff is given by the for-

mula

weff = 1

1 − 6ξ(1 − 6ξ)z2

×
[
(1 − 4ξ)x2 − y2(1 + 2ξλz) + 4ξ xz + 12ξ2z2

]
,

(81)

where λ ≡ −√
6 V ′(φ)
V (φ)

is related to geometry of the potential,

where ′ ≡ d
dφ

.
The dynamical system which describes the evolution in

the phase space is in the form

dx

d(ln a)
= dx

dτ
= −3x − 12ξ z + 1

2
λy2 − (x + 6ξ z)

Ḣ

H2 ,

(82)

dy

d(ln a)
= dy

dτ
= −1

2
λxy − y

Ḣ

H2 , (83)

dz

d(ln a)
= dz

dτ
= x, (84)

dλ

d(ln a)
= dλ

dτ
= −λ2(�(λ) − 1)x, (85)

where � = V ′′(φ)V (φ)

V ′2(φ)
and

Ḣ

H2 = 1

H2

[
−1

2
(ρφ + pφ) − 1

2
ρm,0a

−3
]

= 1

6ξ z2(1 − 6ξ) − 1

[
−12ξ(1 − 6ξ)z2 − 3ξλy2z

+3

2
(1 − 6ξ)x2 + 3ξ(x + z)2 + 3

2
− 3

2
y2

]
. (86)

Let us notice that the dynamical system (82)–(85) is closed
if we only we assume that � = �(λ).

From the form of system (82)–(85) one can observe that

it admits the invariant submanifold
{

Ḣ
H2 = 0

}
for which the

equation in the phase space is of the form

− 12ξ(1 − 6ξ)z2 − 3ξλy2z + 3

2
(1 − 6ξ)x2

+3ξ(x + z)2 + 3

2
− 3

2
y2 = 0. (87)

Therefore, there are no trajectories which intersect this
invariant surface in the phase space. From the physical point
of view the trajectories are stationary solutions and on this
invariant submanifold they satisfy the condition

Ḣ

H2 = 0 ⇔ −1

2
(ρφ + pφ) − 1

2
ρm,0a

−3 = 0. (88)

If we look at the trajectories in the whole phase in the
neighbourhood of this invariant submanifold, then we can
observe that they will be asymptotically reached at an infinite
value of time τ = ln a. They are tangent asymptotically
to this surface. Note that in many cases the system on this
invariant submanifolds can be solved and the exact solutions
can be obtained.

As an illustration of the idea of the emergent �(a) relation
we consider two cases of cosmologies for which we derive
� = �(a) formulae. Such parametrizations of �(a) arise if
we consider the behaviour of trajectories near the invariant
submanifold of dynamical systems

1. V = const or λ = 0, the case of minimal coupling,
ξ = 0;

2. V = const, the case of conformal coupling, ξ = 1
6 .
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In these cases the dynamical system (82)–(85) reduces to

dx

d(ln a)
= dx

dτ
= −3x − x

Ḣ

H2 , (89)

dy

d(ln a)
= dy

dτ
= −y

Ḣ

H2 , (90)

dz

d(ln a)
= dz

dτ
= x, (91)

where

Ḣ

H2 = −3

2
x2 − 3

2
+ 3

2
y2. (92)

and

dx

dτ
= −3x − 2z − Ḣ

H2 (x + z), (93)

dy

dτ
= −y

Ḣ

H2 , (94)

dz

dτ
= x, (95)

where

Ḣ

H2 = −1

2
(x + z)2 − 3

2
+ 3

2
y2. (96)

The dynamical system (93)–(95) can be rewritten using
the variables X = x + z, Y = y and Z = z. Then we get

dX

dτ
= −2X − Ḣ

H2 X, (97)

dY

dτ
= −Y

Ḣ

H2 , (98)

dZ

dτ
= X − Z , (99)

where

Ḣ

H2 = −1

2
X2 − 3

2
+ 3

2
Y 2. (100)

The next step in a realization of our idea of the emergent
� is to solve the dynamical system on invariant submanifold
and then to substitute this solution into Eq. (79).

For the first case (ξ = 0, V = const), the dynamical
system (89)–(91) has the following form:

dx

d(ln a)
= dx

dτ
= −3x, (101)

dy

d(ln a)
= dy

dτ
= 0, (102)

dz

d(ln a)
= dz

dτ
= x, (103)

with the condition

0 = x2 − y2 + 1. (104)

The solution of the dynamical system (101)–(103) is x =
C1a−3, y = const and z = − 1

3C1a−3 + C2.
The phase portraits and a list of critical points for the

dynamical system (89)–(91) is presented in Figs. 10, 11 and
Table 3, respectively. The critical point (1) represents the
matter dominating universe – an Einstein–de Sitter universe.

Finally, for first case ��,emergent is given as

��,emergent = ��,emergent,0a
−6 + ��,0. (105)

Now, let us concentrate on the second case (ξ = 1/6, V =
const). The system (93)–(95) assumes the following form:

dx

dτ
= −3x − 2z, (106)

dy

dτ
= 0 ⇒ y = const, (107)

dz

dτ
= x (108)

with the condition

0 = (x + z)2 − 3y2 + 3. (109)

The dynamical system (106)–(108) is linear and can be
simply integrated. The solution of the above equations are
x = −2C1a−2−C2a−1, y = const and z = C1a−2+C2a−1.

The phase portrait and critical points for the dynamical
system (93)–(95) are presented in Figs. 12, 13 and Table 4.
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Fig. 10 The phase portrait for autonomous dynamical system (89)–
(90). The critical point (1) represents a Einstein–de Sitter universe. The
critical points (4) and (5) represent a Zeldovich stiff matter universe. The
critical point (2) represents a contracting de Sitter universe. The critical
point (3) represents stable de Sitter universe. The de Sitter universe is

located on the invariant submanifold Ḣ
H2 = 0. The blue region presents

the physical region restricted by the condition x2 + y2 ≤ 1, which is a
consequence of �m ≥ 0
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Fig. 11 The phase portrait for dynamical system (89)–(91). The criti-
cal point (1) represents the Einstein–de Sitter universe. Note that time
dt = Hdτ is measured along trajectories, therefore in the region H < 0
(contracting model) time τ is reversed to the original time t . Hence, the
critical point (2) represents an unstable de Sitter universe. Point (3) is
opposite to the critical point (2) which represents a contracting de Sitter
universe. The de Sitter universe is located on the invariant submanifold
Ḣ
H2 = 0, which is an element of a cylinder and is presented by green
lines. The surface of the cylinder presents a boundary of the physical
region restricted by the condition x2 + y2 ≤ 1, which is a consequence
of �m ≥ 0

To illustrate the trajectories’ behaviour close to the invariant
submanifold (represented by the green lines) in the phase
portrait (13) we construct two-dimensional phase portraits;
see Fig. 14. In the latter trajectories reach the stationary states
along tangential vertical lines (green lines).

On invariant submanifold (109) the dynamical system
(106)–(108) reduces to

dx

dτ
= −x, (110)

dz

dτ
= −z. (111)

The solutions of (110)–(111) are x = C1a−1 and z = C2a−1.
Finally, we have

��,emergent = ��,0 + ��,emergent,0a
−4, (112)

i.e., the relation �(a) ∝ a−4 appears if we consider the
behaviour of trajectories in the neighbourhood of an unstable
de Sitter state Ḣ

H2 = 0. Therefore, the emergent term is of the
type ‘radiation’. In the scalar field cosmology there is a phase
of evolution during each effective coefficient e.o.s. is 1/3 like
for radiation. If we find a trajectory in a neighbourhood of a
saddle point then such a type of behaviour appears [33] (Fig.
14).

We can rewrite Eq. (86) as the Newtonian equation of
motion for a particle of unit mass moving in the potential
V (a) (Eq. (25)). On the invariant submanifold { Ḣ

H2 = 0} the
above equation gives the following form of the potential:

V (a) = −1

2
H2

0 a
2. (113)

Figure 15 presents the evolution of V (a). For the positive
curvature we get new solution which is the universe with the
bounce. If we perturb solutions for the flat universe by a small
negative spatial curvature then these solutions do not change
qualitatively (see Fig. 15). But for the positive curvature, we
always get the solutions, which represents the universe with
bounce.

6 How to constrain emergent running �(a)
cosmologies?

Dark energy can be divided into two classes: with or without
early dark energy [34]. Models without early dark energy
behave like the �CDM model in the early time universe.
For models with early dark energy, dark energy plays an
important role in evolution of early universe. The second type
models should have a scaling or attractor solution where the
fraction of dark energy follows the fraction of the dominant
matter or radiation component. In this case, we use the frac-
tional early dark energy parameter �e

d to measure a ratio of
dark energy to matter or radiation.

The model with ξ = 1/6 (conformal coupling) and
V = const belongs to a class of models with early con-
stant ratio dark energy in which �de=const during the radia-
tion dominated stage. In this case we can use the fractional

Table 3 The complete list of
critical points of the
autonomous dynamical system
(89)–(90) which are shown in
Figs. 10 and 11

Critical point Coordinates Eigenvalues Type of critical point Type of universe

1 x = 0, y = 0 3 −3 Saddle Einstein–de Sitter

2 x = 0, y = −1 −3,−3 Stable node Contracting de Sitter

3 x = 0, y = 1 −3,−3 Stable node de Sitter

4 x = 1, y = 0 3, 3 Unstable node Zeldovich stiff

Matter dominating

5 x = −1, y = 0 3, 3 Unstable node Zeldovich stiff

Matter dominating

Coordinates, eigenvalues of the critical point as well as its type and cosmological interpretation are given
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Fig. 12 The phase portrait for dynamical system (97)–(98). The criti-
cal point (1) represents a Einstein–de Sitter universe. The critical point
(4) and (5) represent Zeldovich stiff matter universes. The critical points
(2) represents a contracting de Sitter universe. The critical point (3) rep-
resents a stable de Sitter universe. The de Sitter universe is located on the
invariant submanifold Ḣ

H2 = 0. The blue region presents the physical

region restricted by the condition X2 +Y 2 ≤ 1, which is a consequence
of �m ≥ 0
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Fig. 13 The phase portrait for dynamical system (97)–(99). The crit-
ical point (1) represents an Einstein–de Sitter universe. Note that time
dτ = Hdt is measured along trajectories, therefore in the region H < 0
(contracting model) time τ is reversed to the original time t . Hence, the
critical point (2) represents an unstable de Sitter universe. Point (3) is
opposite to critical points (2) which represents a contracting de Sitter
universe. The de Sitter universe is located on the invariant submanifold
Ḣ
H2 = 0, which is the element of a cylinder and is presented by green
lines. The surface of the cylinder presents a boundary of the physical
region restricted by the condition X2 +Y 2 ≤ 1, which is a consequence
of �m ≥ 0

early dark energy parameter �e
d [34,35] which is constant

for models with constant dark energy in the early universe.
The fractional density of early dark energy is defined by the
expression �e

d = 1 − �m
�tot

, where �tot is the sum of dimen-
sionless density of matter and dark energy. In this case, there
exist strong observational upper limits on this quantity [14].

For this aim let us notice that during the ‘radiation’ epoch
we can apply this limit �e

d < 0.0036 [14] and

1 − �e
d = �m,0a−3 + �r,0a−4

�m,0a−3 + �r,0a−4 + ��,0 + �emergent,0a−4 .

(114)

Let us consider a radiation dominating phase a(t) ∝ t
1
2

(peff = 1
3ρeff) [33],

1 − �e
d = �m,0t−

3
2 + �r,0t−2

�m,0t−
3
2 + �r,0t−2 + ��,0 + �emergent,0t−2

at early universe� �r,0

�r,0 + �emergent,0
. (115)

�e
d at the early universe is constant and

�e
d = 1 − �r,0

�r,0 + �emergent,0
< 0.0036. (116)

From the above formula we get
�emergent,0

�r,0
< 0.003613. In

consequence we have a strict limit on a strength of the running
� parameter in the present epoch, �emergent,0 < 3.19×10−7.

7 Cosmology with non-canonical scalar field

The dark energy can also be parameterized in a covariant
way by a non-canonical scalar field φ [36]. The main dif-
ference between canonical and non-canonical description of
the scalar field is in the generalized form of the pressure pφ

of the scalar field. For the canonical scalar field, the pres-

sure pφ is expressed by the formula pφ = φ̇2

2 −V (φ), where
˙ ≡ d

dt and V (φ) is the potential of the scalar field. In the non-
canonical case, the pressure is described by the expression

pφ =
(

φ̇2

2

)α − V (φ), where α is an additional parameter.

If α is equal 1 then the pressure of the non-canonical scalar
field represents the canonical case.

The theory of the non-canonical scalar field is of course
a covariant formulation because this theory can be obtained
from the action, which is described by the following formula:

S =
∫ √−g

(
R +

(
φ̇2

2

)α

− V (φ) + Lm

)
d4x, (117)

where Lm is the Lagrangian for the matter. Note that if V (φ)

is constant then the model is equivalent to the model which
is filled with an ideal fluid with the equation of state p = wρ

(where w is determined by α) and the cosmological constant.
After variation of the LagrangianLwith respect to the metric
we get the Friedmann equations in the following form:

3H2 = ρm + (2α − 1)

(
φ̇2

2

)α

+ V (φ) − 3k

a2 , (118)
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Table 4 The list of critical
points for the autonomous
dynamical system (97)–(98)
which are shown in Fig. 12 and
13

Critical point Coordinates Eigenvalues Type of critical point Type of universe

1 X = 0, Y = 0 3/2, −1/2 Saddle Einstein–de Sitter

2 X = 0, Y = −1 −3,−2 Stable node Contracting de Sitter

3 X = 0, Y = 1 −3,−2 Stable node de Sitter

4 X = 1, Y = 0 1, 2 Unstable node Zeldovich stiff

Matter dominating

5 X = −1, Y = 0 1, 2 Unstable node Zeldovich stiff

Matter dominating

Coordinates, eigenvalues of the critical point as well as its type and cosmological interpretation are given
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Fig. 14 The phase portrait of the invariant submanifold X = 0 of the
dynamical system (97)–(99). The critical point (1) represents a Einstein–
de Sitter universe. The critical points (3) represents a stable de Sitter
universe. The critical point (2) represents a contracting de Sitter uni-
verse. Note that because of time parametrization dt = Hdτ in the
region X < 0, the cosmological time t is reversed. In consequence, the
critical point (2) is unstable. The de Sitter universe is located on the

invariant submanifold { Ḣ
H2 = 0}, which is represented by green verti-

cal lines. By identification of green lines of the phase portrait one can
represent the dynamics on the cylinder. The boundary of the physical
region is restricted by the condition Y 2 ≤ 1, which is a consequence
�m ≥ 0. Note that trajectories reach the de Sitter states along tangential
vertical lines

− 3
ä

a
= ρm

2
+ (α + 1)

(
φ̇2

2

)α

− V (φ). (119)

We obtain an additional equation of motion for a scalar
field after the variation of the Lagrangian L with respect to
the scalar field φ,

φ̈ + 3H φ̇

2α − 1
+

(
V ′(φ)

α(2α − 1)

) (
2

φ̇2

)α−1

= 0, (120)

where ′ ≡ d
dφ

.
For α = 1, Eqs. (118), (119) and (120) reduce to the case

of the canonical scalar field. For α = 0 we have the case

0 1 2 3 4
a

1

0

1

2
Veff

Fig. 15 The figure presents a potential Veff(a). Thetop dashed lines
(Veff = 1/2) represent the energy level, which corresponds with the
negative curvature. The bottom dashed lines (Veff = −1/2) represent
the energy level, which corresponds with the positive curvature. The
middle dashed lines (Veff = 0) represent the energy level, which corre-
sponds with the flat universe. The forbidden domain for the motion is
colored. Note that, for the case of the positive curvature, the universe is
with the bounce (the right bottom part of the diagram)

with the constant scalar field. The case α = 2 with the con-
stant potential V is interesting since the scalar field imitates
radiation because φ2α ∝ a−4 in the Friedmann equation.

For the constant potential V = �, Eq. (120) reduces to

φ̈ + 3H φ̇

2α − 1
= 0. (121)

Equation (121) has the following solution:

φ̇ = φ0a
−3

2α−1 . (122)

We can obtain from (118), (119) and (120) the dynamical
system for the non-canonical scalar field with the constant
potential in the variables a and x = ȧ,

a′ = xa2, (123)

x ′ = −ρm,0

6
− α + 1

3
a

3
1−2α + �

3
a3, (124)
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Fig. 16 A phase portrait for the dynamical system (123)–(124) for
example with α = 1/8. The red lines represent the flat universe and
these trajectories separates the regions in which closed and open models
lie. Note that all models independence on curvature are oscillating
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Fig. 17 A phase portrait for the dynamical system (125)–(126) with
α = 1/8 as an example. The red lines represent the flat universe and
these trajectories separates the regions in which closed and open models
lie

where ′ ≡ a2 d
dt . The phase portrait for the dynamical system

(123)–(124) is presented in Figs. 16 and 17.
The system (123)–(124) possesses critical points which

belong to two types:

1. static critical points x0 = 0,
2. non-static critical points a0 = 0 (Big Bang singularity).

If we assume the matter in the form of dust (p = 0) then
non-static critical points cannot exist at a finite domain of
the phase space. The Big Bang singularity corresponds to a
critical point at infinity.

Note that, if α > 1
2 , then the eigenvalues for the critical

point (a0, 0) are real and correspond to a saddle type of criti-
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Fig. 18 A phase portrait for the dynamical system (127)–(128) with
α = 1/8 as an example. The critical point (1) at the origin B = 0, Y = 0
presents a stable node and Einstein–de Sitter universe. The grey region
represents a non-physical domain excluded by the condition X̃ Ỹ > 0.
The red lines represent the flat universe and these trajectories separate
the regions in which closed and open models lie
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Fig. 19 A phase portrait for the dynamical system (123)–(124) with
α = 50 as an example. The critical point (1) is a saddle and represents
a static Einstein universe. The red lines represent the flat universe and
these trajectories separates the regions in which closed and open mod-
els lie. Note that all models have independence on curvature and are
oscillating

cal point. Therefore, for α > 1
2 the qualitative structure of the

phase space is topologically equivalent (by homeomorphism)
to the �CDM model. Hence, the phase space portrait is struc-
turally stable, i.e., it is not disturbed under small changes of
the right-hand side of the system.

For the analysis of the behaviour of trajectories at infinity
we use the following sets of projective coordinates:
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Fig. 20 A phase portrait for the dynamical system (125)–(126) with
α = 50 as an example. The critical point (1) is a saddle and represents
a static Einstein universe. The critical point (2) represents a stable de
Sitter universe. The critical point (3) represents a contracting de Sitter
universe. The red lines represent the flat universe and these trajectories
separate the regions in which closed and open models lie
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Fig. 21 A phase portrait for dynamical system (127)–(128) for exam-
ple with α = 50. The critical point (4) at the origin (B = 0, Y = 0)
is an unstable node and represents an Einstein–de Sitter universe. The
red lines represent the flat universe and these trajectories separate the
regions in which closed and open models lie

1. A = 1
a , X = x

a ,
2. B = a

x , Y = 1
x .

Two maps cover the behaviour of trajectories at the circle at
infinity.

The dynamical system for variables A and X is expressed
by

A′ = −X A2, (125)

X ′ = A4
(

−ρm,0

6
− α + 1

3
A

3
2α−1

)
+ A

(
�

3
− X2

)
,

(126)

where ′ ≡ A d
dt . The dynamical system for variables B and

Y is given by

Ḃ = BY

[
B +

(
ρ

6
Y 3 + α + 1

3
B

3
1−2α Y

6α
2α−1 − �

3
B3

)]
,

(127)

Ẏ = Y 2
(

ρ

6
Y 3 + α + 1

3
B

3
1−2α Y

6α
2α−1 − �

3
B3

)
, (128)

where˙≡ B2Y d
dt .

From the analysis of the dynamical system (127)–(128)
we find one critical point (B = 0, Y = 0) which repre-
sents the Einstein–de Sitter universe. The phase portraits for
dynamical system (125)–(126) and (127)–(128) are depicted
in Figs. 18, 19, 20, and 21.

Let us consider the curvature in the dynamical analysis.
Then in the phase space in the positive curvature domain, we
find new trajectories which represent an oscillating universe
with the initial singularity and a universe with a bounce (Figs.
17, 20, 21).

8 Cosmology with diffusion

The parametrization of dark energy can also be described in
terms of the scalar field φ [37,38]. As an example of such a
covariant parametrization of � let us consider cosmological
models with diffusion. In this case the Einstein equations and
equations of the current density Jμ are the following:

Rμν − 1

2
gμνR + φgμν = Tμν, (129)

∇μT
μν = σ J ν, (130)

∇μ J
μ = 0, (131)

where σ is a positive parameter.
From the Bianchi identity, ∇μ

(
Rμν − 1

2gμνR
) = 0, and

Eqs. (129) and (130) we get the following expression for
�(a(t)):

∇μφ = σ Jμ. (132)

We assume also that matter is a perfect fluid. Then the energy-
momentum tensor is expressed in the following form:

Tμν = ρuμuν + p
(
gμν + uμuν

)
, (133)

whereuμ is the 4-velocity and the current density is expressed
by

Jμ = nuμ. (134)

Under these considerations Eqs. (130), (132) and (131)
are described by the following expressions:

∇μ(ρuμ) + p∇μu
μ = σn, (135)

∇μ(nuμ) = 0, (136)
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Fig. 22 A phase portrait for the dynamical system (142)–(142). The
critical point (1) (x = 0, y = 0) is a stable node and represents the de
Sitter universe. The critical point (2) (x = 2/3, y = 2/3) is a saddle
and represents the Milne universe. The critical point (3) (x = 1, y = 0)
is an unstable node type and represents the Einstein–de Sitter universe.
Note the existence of trajectories crossing the boundary x = ρm = 0 in
a non-physical region
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Fig. 23 A phase portrait for the dynamical system (144)–(145). The
critical point (4) (X = 0, Y = 0) is a saddle and represents the static
universe. The critical point (2) (X = 3/2, Y = 1) is a saddle and
represents the Milne universe

and

∇μφ = σnuμ. (137)

We consider for simplicity the case of cosmological equa-
tions with the zero curvature. Equation (136) is now

n = n0a
−3. (138)

In this case we have the following cosmological equations:

3H2 = ρm + �(a(t)), (139)
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Fig. 24 A phase portrait for the dynamical system (146)–(147). The
blue region represents the physical domain. The critical points (5) and
(6) (X̃ = 0, Ỹ = 1) and (X̃ = 0, Ỹ = −1) represent the de Sitter
universe with diffusion. The blue region represents a physical domain
restricted by B2 + Y 2 ≤ 0, B ≥ 0

ρ̇m = −3Hρm + σn0a
−3, (140)

dφ

dt
= −σn0a

−3. (141)

If we choose the dimensionless state variables x = ρm
3H2

and y = σn0a−3

3H3 and the parametrization of time as ′ ≡ d
d ln a

then we get the following dynamical system:

x ′ = 3x(x − 1) + y, (142)

y′ = 3y(
3

2
x − 1). (143)

The phase portrait for (142)–(143) is demonstrated in Fig. 22.
The dynamical system (142)–(143) can be rewritten in the

projective variables for the analysis of critical points in infin-
ity. In this case we use the following projective coordinates:
X = 1

x , Y = y
x . For the new variables X and Y , we obtain

X ′ = X (X (3 − Y ) − 3) , (144)

Y ′ = Y

(
3

2
− XY

)
(145)

where ′ ≡ X d
d ln a .

We can use also the Poincaré sphere to search critical
points in infinity. We introduce the following new variables:
X̃ = x√

1+x2+y2
, Ỹ = y√

1+x2+y2
. In the variables X̃ , Ỹ , we

obtain the dynamical system of the form
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Fig. 25 The potential Veff(a) for a > 0.6 (top diagram) and for a <

0.6 (bottom diagram). The top dashed lines (Veff = 1/2) represent
the energy level, which corresponds with the negative curvature. The
bottom dashed lines (Veff = −1/2) represent the energy level, which
corresponds with the positive curvature. Themiddle dashed lines (Veff =
0) represent the energy level, which corresponds with the flat universe.
The forbidden domain for the motion is colored. Note that, for the case
of the positive curvature, the universe is oscillating (the left bottom part
of the top diagram) or is the universe with the bounce (the right bottom
part of both diagrams)

X̃ ′ = (1 − X̃2)(3X̃2 + (Ỹ − 3X̃)

√
1 − X̃2 − Ỹ 2)

− 3X̃ Ỹ 2
(

3

2
X̃ −

√
1 − X̃2 − Ỹ 2

)
, (146)

Ỹ ′ = −X̃ Ỹ (3X̃2 + (Ỹ − 3X̃)

√
1 − X̃2 − Ỹ 2)

+ 3(1 − Ỹ 2)Ỹ

(
3

2
X̃ −

√
1 − X̃2 − Ỹ 2

)
, (147)

where ′ ≡
√

1 − X̃2 − Ỹ 2 d
d ln a . The phase portraits for

(144)–(145) and (146)–(147) are demonstrated in Figs. 23
and 24.

We can rewrite Eqs. (139–141) as the Newtonian equation
of motion for a particle of unit mass moving in the potential
V (a) (Eq. (25)) for finding the potential V (a). The potential
V (a) has the following form:

V (a) = −1

2
H(a)2a2. (148)

Figure 25 presents the evolution of V (a). For the curvature
we get new solutions which are for a universe with a bounce
and an oscillating universe without the initial singularity.

9 Conclusion

In this paper we have studied the dynamics of cosmolog-
ical models with the running cosmological constant term
using the dynamical system methods. We considered dif-
ferent parametrizations of the � term which are used in the
cosmological applications. The most popular approaches are
to parametrize the � term through the scale factor a or the
Hubble parameter H . We considered cosmological models
for which the energy-momentum tensor of matter (we assume
dust matter) is not conserved. In this case there is an interac-
tion between both dark matter and dark energy sectors.

There is a class of parameterizations of the � term through
the Ricci scalar (or the trace of the energy-momentum ten-
sor), the energy density of the scalar field or their kinetic part,
and a scalar field φ minimally or non-minimally coupled to
gravity. These choices are consistent with the covariance of
general relativity.

We have discovered a new class of the emergent � param-
eterizations (in the case of �(a)) obtained directly from the
exact dynamics, which does not violate the covariance of
general relativity.

In consequence, the energy density deviates from the stan-
dard dilution. Due to decaying vacuum energy the standard
relation ρm ∝ a−3 is modified. From the cosmological point
of view this class of models is a special case of cosmology
with the interacting term Q = − d�

dt .
The main motivation for studying such models comes

from the solution of the cosmological constant problem,
i.e., explanations why the cosmological upper bound (ρ� �
10−47 GeV) dramatically differs from theoretical expecta-
tions (ρ� ∼ 1071GeV) by more than 100 orders of magni-
tude [39]. In this context the running � cosmology is some
phenomenological approach toward finding the relation �(t)
lowering the value of cosmological constant during the cos-
mic evolution.

In the study of the �(t)CDM cosmology different
parametrizations of the � term are postulated. Some of them
like �(φ), �(R) or �(tr Tμ

ν ), �(T ), where T = 1
2 φ̇2 are

consistent with the principle of covariance of general relativ-
ity. Others, like � = �(H), are motivated by the quantum
field theory.

We demonstrated that the parameterization � = �(a) can
be obtain from the exact dynamics of the cosmological mod-
els with scalar field and the potential by taking approximation
of trajectories in a neighbourhood of the invariant submani-
fold Ḣ

H2 of the original system. The trajectories approaching
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a stable de Sitter state are mimicking the effects of the run-
ning �(a) term. The arbitrary parametrizations of �(a), in
general, violate the covariance of general relativity. However,
some of them which emerge from the covariant theory are
an effective description of the behaviour of trajectories in the
neighbourhood of a stable de Sitter state.

In the paper we have studied the dynamics of these cos-
mological models in detail. We have examined the structure
of the phase space which is organized by critical points rep-
resenting stationary states, invariant manifolds, etc. We have
explored the dynamics at finite domains of the phase space
as well as at infinity using the projective coordinates.

The detailed results obtained from the dynamical system
analysis are as follows:

– We have found that Alcaniz and Lima’s solution in the
exploration of the conception of �(H) cosmology rep-
resents the scaling solution ρ�(a) ∼ ρm(a). For this
trajectory deS+ is a global attractor.

– The non-covariant �(a) parametrization can be obtained
from the covariant action for the scalar field as an emer-
gent parameterization.

– We have found strong evidence for the tuned-in � term
in the �(a) cosmology: ��,0 < 3.19 × 10−7. This limit
was obtained on the base of Ade et al.’s estimation of the
constant early dark energy fraction [14].

– We have shown that trajectories in the phase space for
which ρ� ∼ ρm represent scaling solutions.

Due to the dynamical system analysis we can reveal the
physical status of the Alcaniz–Lima ansatz in the �(H)

approach. From the point of view of dynamical system theory
this solution is a universal asymptote for trajectories which go
toward a global attractor, i.e. a de Sitter state. In this regime
both ρ� − �bare and ρm are proportional, i.e., it is a scaling
solution.

The detailed studies of the dynamics on the phase portraits
showed how ‘large’ is the class of running � cosmological
models for which the concordance �CDM model is a global
attractor.

We also demonstrated on the example of cosmological
models with non-minimal coupling constant and constant
potential that a running part of the � term can be constrained
by the Planck data. Applying the idea of constant early dark
energy fraction and Ade et al.’s bound we have found a con-
vincing constraint on the value of the running � term.

In the paper we considered some parametrization of the
� term, which violates the covariance of the Lagrangian like
�(H), �(a) parameterization but it is used as a some kind
of an effective description. In the phase space of cosmolog-
ical models with such a parametrization we observe some
difficulties which are manifested by trajectories crossing the
boundary line of zero energy density invariant submanifold.

It is a consequence of the fact that ρm = 0 is not a trajec-
tory of the dynamical system. On the other hand the �(a)

parametrization can emerge from the basic covariant theory
as some approximation of the true dynamics.

We illustrated such a possibility for the scalar field cos-
mology with a minimal and non-minimal coupling to gravity.
In the phase space of evolutionary scenarios the difficulties
disappear. Trajectories depart from the invariant submani-
fold Ḣ

H2 = 0 of the corresponding dynamical system and
this behaviour can be approximated by a running cosmolog-
ical term such as a slow roll parameter ε1 = Ḣ

H2 � 1.
We included the curvature in the dynamical analysis. In

the phase space in the positive curvature domain, we found
new trajectories which represent an oscillating universe with
the initial singularity and without the initial singularity and
a universe with a bounce. For models in this paper, pertur-
bations of the flat model, by the negative curvature, do not
change qualitatively this model in contrast to a closed model.
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