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Abstract In this work, we estimate the masses of tetraquark
states with four different flavors by virtue of QCD sum rules,
in both b and c sectors. We construct four [8c]b̄s ⊗ [8c]d̄u
tetraquark currents with J P = 0+, and then we perform an
analytic calculation up to dimension eight in the operator
product expansion. We keep terms which are linear in the
strange quark mass ms, and in the end we find two possible
tetraquark states with masses (5.57±0.15) and (5.58±0.15)

GeV. We find that their charmed-partner masses lie in (2.54±
0.13) and (2.55 ± 0.13) GeV, respectively, and are hence
accessible in experiments like BESIII and Belle.

1 Introduction

Recently, the DØ Collaboration has reported the first obser-
vation of a narrow structure, called X (5568), in the decay
chain X (5568) → B0

s π±, B0
s → J/ψφ, J/ψ → μ+μ−,

φ → K+K− based on the p p̄ collision data at
√
s = 1.96

TeV collected at the Fermilab Tevatron collider [1]. Its
mass and width were, respectively, measured to be MX =
5567.8 ± 2.9+0.9

−1.9 MeV and �X = 21.9 ± 6.4+5.0
−2.5 MeV, and

the favored quantum number is J P = 0+. The statistical sig-
nificance including the look-elsewhere effect and systematic
errors is about 5.1 σ . The decay final state B0

s π+ indicates
that the component of X(5568) has to be sub̄d̄, and this is the
first observation of a hadronic state with four different fla-
vors. However, more recently a preliminary analysis on data
collected

√
s = 7 and 8 TeV by the LHCb Collaboration

does not confirm the existence of state X(5568) [2]. The con-
tradictory information from DØ and LHCb Collaborations
on X(5568) is very interesting and urges more investigations
of related topics.

a e-mail: tangl@hebtu.edu.cn
b e-mail: qiaocf@ucas.ac.cn

The observation of X(5568) has immediately inspired
extensive discussions on the possibility of its internal struc-
ture. Very recently, the authors investigated the X (5568) as a
scalar tetraquark state using the approach of QCD sum rules
[3–7]. Meanwhile, in Ref. [8], the authors constructed a series
of tetraquark currents to calculate the corresponding mass
in the framework of QCD sum rules, and their results sup-
port the X(5568) as a tetraquark state with quantum numbers
J P = 0+ or 1+. Wang and Zhu [9] employed the effective
Hamiltonian approach to calculate the mass of the tetraquark
state. The molecular picture of Xb was carried out in Ref. [10]
using the QCD sum rules, where the Xb(5568) was taken as
the BK̄ bound states. Assuming the X(5568) as the S-wave
BK̄ molecular state, Xiao and Chen discussed the decay of
X (5568) → B0

s π+ in Ref. [11]. Besides, a number of works
analyzing the structure of X(5568) were accomplished based
on other theoretical methods [12–15], and its decay property
was investigated in Refs. [6,7,16].

It is to be noted that according to quantum chromodynam-
ics (QCD), there exists a tetraquark configuration, which is
composed of two color-octet parts. Since there exists a QCD
interaction, it is different from the molecular state with two
color-singlet mesons. That is to say, it could decay to two
mesons by exchanging one or more gluons. Therefore, the
study of the color-octet tetraquark state is very important for
possible new hadron states. In this work, we will construct
four color-octet tetraquark currents, and we calculate their
masses by means of QCD sum rules.

After the introduction, we present the primary formulas
of the QCD sum rules in Sect. 2. The numerical analyses and
related figures are shown in Sect. 3. Finally, we give a short
summary of the tetraquark states with open flavors in Sect. 4.

2 Formalism

In this work, we study the color-octet tetraquark state with
J P = 0+ via the approach of the QCD sum rules [17–21]. In
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the literature, the color-octet–octet type currents have been
used to study the scalar, vector, and axial-vector tetraquark
states [22–25]. The starting point of the QCD sum rules
is the two-point correlation function constructed from two
hadronic currents. For a scalar state as considered in this
work, the two-point correlation function has the following
form:

�(q2) = i
∫

d4xeiq·x 〈0|T { j (x) j†(0)}|0〉. (1)

Here j (x) and j (0) are the above-mentioned hadronic cur-
rents with J P = 0+, and they are constructed as follows:

jA(x) = [i b̄ j (x)γ5(t
a) jks

k(x)][i d̄m(x)γ5(t
a)mnu

n(x)],
(2)

jB(x) = [b̄ j (x)(ta) jks
k(x)][d̄m(x)(ta)mnu

n(x)], (3)

jC (x) = [b̄ j (x)γ μ(ta) jks
k(x)][d̄m(x)γμ(ta)mnu

n(x)],
(4)

jD(x) = [b̄ j (x)γ μγ5(t
a) jks

k(x)][d̄m(x)γμγ5(t
a)mnu

n(x)],
(5)

where j , k,m, andn are color indices, ta is the generator of the
group SUc(3). Here, the subscripts A, B, C , and D represent
the currents composed of two 0− color-octet constituents,
two 0+, two 1−, and two 1+, respectively. We will take into
account all these currents in the following calculation.

The principle of quark–hadron duality is the basic assump-
tion to employ the approach of the QCD sum rules, as shown
in Refs. [21,26]. Hence, on the one hand, the correlation
function �(q2) can be calculated at the quark–gluon level,
where the operator product expansion (OPE) is employed;
on the other hand, it can be expressed at the hadron level,
in which the coupling constant and mass of the hadron are
introduced.

In order to calculate the spectral density of the OPE side,
the full propagators Sqi j (x) and SQi j (p) of a light quark (q = u,
d or s) and a heavy quark (Q = c or b) are used:

Sqjk(x) = iδ jk x/

2π2x4 − δ jkmq

4π2x2 − i tajk
32π2x2 (σαβx/ + x/σαβ)

−δ jk

12
〈q̄q〉 + iδ jk x/

48
mq〈q̄q〉 − δ jk x2

192
〈gsq̄σ · Gq〉

+ iδ jk x2x/

1152
mq〈gsq̄σ · Gq〉 − tajkσαβ

192
〈gsq̄σ · Gq〉

+ i tajk
768

(σαβx/ + x/σαβ)mq〈gsq̄σ · Gq〉, (6)

SQjk(p) = iδ jk(p/ + mQ)

p2 − m2
Q

− i

4

tajk
(p2 − m2

Q)2
[σαβ(p/ + mQ)

+ (p/+mQ)σαβ ]+ iδ jkmQ〈g2
s G

2〉
12(p2−m2

Q)3

[
1+mQ(p/+mQ)

p2−m2
Q

]

+ iδ jk
48

{
(p/+mQ)[p/(p2−3m2

Q)+2mQ(2p2−m2
Q)]

(p2−m2
Q)6

×(p/ + mQ)

}
〈g3

s G
3〉, (7)

where the vacuum condensates are clearly displayed. Note
that these full propagators of QCD for both light and heavy
quarks have been explained in Ref. [27].

Accordingly, based on the dispersion relation, the correla-
tion function �(q2) at the quark–gluon level can be obtained:

�OPE
i (q2) =

∫ ∞
(mb+ms)2

ds
ρOPE
i (s)

s − q2 + �
〈G3〉
i (q2)

+�
〈q̄q〉〈q̄Gq〉
i (q2) + �

〈G2〉2

i (q2), (8)

where ρOPE
i (s) = Im[�OPE

i (s)]/π and

ρOPE
i (s) = ρ

pert
i (s) + ρ

〈s̄s〉
i (s) + ρ

〈G2〉
i (s) + ρ

〈s̄Gs〉
i (s)

+ ρ
〈q̄q〉2

i (s)+ρ
〈G3〉
i (s)+ρ

〈q̄q〉〈q̄Gq〉
i (s)+ρ

〈G2〉2

i (s),

(9)

in which the subscript i runs from A to D, and �
〈G3〉
i (q2),

�
〈q̄q〉〈q̄Gq〉
i (q2) and �

〈G2〉
i (q2) represent those contributions

of the correlation function that do not have imaginary parts
but have nontrivial values after the Borel transform.

Applying the Borel transform to the quark–gluon side, we
have

�OPE
i (M2

B) =
∫ ∞

(mb+ms)2
dsρOPE(s)e−s/M2

B + �
〈G3〉
i (M2

B)

+�
〈q̄q〉〈q̄Gq〉
i (M2

B) + �
〈G2〉
i (M2

B). (10)

In order to take into account the effects induced by the mass
of the strange quark, we keep terms which are linear in the
strange quark mass ms in the following calculations. For all
the tetraquark states considered in this article, we put the
detailed formulas of spectral densities in Eq. (10) into the
appendix.

On the hadron side, after isolating the ground state con-
tribution of the tetraquark state, we obtain the correlation
function �(q2), which is expressed as a dispersion integral
over a physical regime,

�i (q
2) = (λiX )2

(Mi
X )2 − q2

+ 1

π

∫ ∞

s0

ds
ρi
X (s)

s − q2 , (11)

where Mi
X is the mass of the tetraquark state with J P = 0+,

and ρi
X (s) is the spectral density that contains the contri-

butions from the higher excited states and the continuum
states, s0 is the threshold of the higher excited states and
continuum states. The coupling constant λX is defined by
〈0| j iX |X〉 = λiX , where X is the lowest lying tetraquark
state.
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Performing the Borel transform on the hadron side (Eq.
(11)) and then matching it to Eq. (10), we can obtain the mass
of the scalar tetraqark state with open flavors:

Mi
X (s0, M

2
B) =

√
− Ri

1(s0, M2
B)

Ri
0(s0, M2

B)
, (12)

where X denotes the tetraquark state and

Ri
0(s0, M

2
B) =

∫ s0

(mb+ms)2
ds ρOPE(s)e−s/M2

B + �
〈G3〉
i (M2

B)

+�
〈q̄q〉〈q̄Gq〉
i (M2

B) + �
〈G2〉2

i (M2
B), (13)

Ri
1(s0, M

2
B) = ∂

∂ 1
M2

B

R0(s0, M
2
B). (14)

3 Numerical results

The expressions of the QCD sum rules contain various input
parameters, such as the condensates and the quark masses. As
shown in Refs. [5,8,17–21,28], we take these values asmu =
md = 0, ms(2GeV) = (95 ± 5) MeV, mc(mc) = mc =
(1.275 ± 0.025) GeV, mb(mb) = mb = (4.18 ± 0.03) GeV,
〈q̄q〉 = −(0.24 ± 0.01)3 GeV3, 〈s̄s〉 = (0.8 ± 0.1)〈q̄q〉,
〈g2

s G
2〉 = 0.88 GeV4, 〈s̄gsσ · Gs〉 = m2

0〈s̄s〉, 〈g3
s G

3〉 =
0.045 GeV6, and m2

0 = 0.8 GeV2. Here, mc and mb are the
running masses of the heavy quarks in the MS scheme.

Moreover, there exist two additional parameters M2
B and

s0 introduced by the QCD sum rules, which should be fixed
in accordance with the standard procedures. In Refs. [17–
19,21], there are two criteria to constrain the parameter M2

B
and the threshold s0. The first criterion is the convergence
of the OPE. That is, we need to compare the relative con-
tribution of each term to the total contributions of the OPE
side, and choose a reliable region of M2

B to retain their conver-
gence. Second, the pole contribution (PC) defined as the pole
contribution (corresponding to the contribution of the ground
state) divided by the total contribution (pole plus continuum)
should be larger than 50 % [21,29]. Thus, we can safely elim-
inate the contributions of the higher excited and continuum
states.

Meanwhile, in order to find a proper value of
√
s0, we

perform a similar analysis as in Refs. [30,31]. Because the
continuum threshold s0 is connected to the mass of the ground
state by the relation

√
s0 ∼ (MX + δ) GeV, in which δ lies

in the range of 0.4–0.8 GeV, various
√
s0 satisfying this con-

straint should be taken into account in the numerical analyses.
Among these values, we need then to pick out the proper one
that has an optimal window for Borel parameter M2

B . That
is to say, in this optimal window, the tetraquark mass MX is
independent of the Borel parameter M2

B as much as possi-
ble. Finally, the value of

√
s0 corresponding to the optimal

mass curve is the central value of
√
s0. In practice, it is nor-
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Fig. 1 a The OPE convergence ROPE
A as a function of the Borel param-

eter M2
B in the region 2.5 ≤ M2

B ≤ 8.0 GeV2 for the tetraquark state of
case A, where

√
s0 = 6.3 GeV.bThe OPE convergence ROPE

C as a func-
tion of the Borel parameter M2

B in the region 2.5 ≤ M2
B ≤ 8.0 GeV2

for the tetraquark state of case C , where
√
s0 = 6.3 GeV. The black

line represents the fraction of perturbative contribution, and each sub-
sequent line stands for the addition of one extra condensate, i.e., +〈s̄s〉
(red line), +〈g2

s G
2〉 (blue line), +〈gs s̄σ ·Gs〉 (red dotted line), +〈q̄q〉2

(blue dotted line). Since the curves that add the condensate terms of
〈g3

s G
3〉, 〈q̄q〉〈gsq̄σ · Gq〉, and 〈g2

s G
2〉2 one by one are just straight

lines, respectively, we do not show them here

mally acceptable to vary the
√
s0 by 0.2 GeV [32,33] in the

QCD sum rules calculation, which determines the upper and
lower bounds of

√
s0. Hence, these bounds give rise to the

uncertainties of
√
s0.

We illustrate the OPE convergences in Fig. 1a, b, respec-
tively for case A andC . Performing the first criterion, we find
the lower limit constraint of M2

B is M2
B � 3.0 GeV2 with√

s0 = 6.3 GeV for both case A and C . The curves of the
pole contribution RPC are drawn in Fig. 2a, b, which indicate
the upper limit constraint of M2

B is M2
B � 4.0 GeV2 with√

s0 = 6.3 GeV for both case A and C . It should be noted
that the limit constraints of M2

B also depend on the threshold
parameter

√
s0. That is, there are different limit constraints

of M2
B for different

√
s0. For determining the value of

√
s0,

we carry out an analysis similar to Ref. [29]. The masses MA
X

and MC
X as a function of the Borel parameter M2

B for differ-
ent values

√
s0 are drawn in Fig. 3a, b. The Borel parameters,

continuum threshold parameters, the pole contributions, and
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Fig. 2 aThe pole contribution RPC
A for the tetraquark state as a function

of the Borel parameter M2
B in case A with

√
s0 = 6.3 GeV. b The pole

contribution RPC
C for the tetraquark state as a function of the Borel

parameter M2
B in case C with

√
s0 = 6.3 GeV

the predicted masses for both case A andC are shown explic-
itly in Table 1.

However, we find there does not exist a reasonable region
of the parameter M2

B for both case B and D. Therefore, we
can conclude that these two cases do not correspond to any
tetraquark states.

Eventually, the masses of the tetraquark states with cur-
rents A and C are determined to be

MA
X = (5.57 ± 0.15) GeV, (15)

MC
X = (5.58 ± 0.15) GeV, (16)

where the central value of the mass MX corresponds to the
result with the optimal stability of M2

B , and the errors stem
from the uncertainties of the condensates, the quark mass,
the threshold parameter

√
s0, and the Borel parameter M2

B .
Moreover, we predict their charmed partners with masses

of (2.54 ± 0.13) and (2.55 ± 0.13) GeV, respectively.

4 Summary

In this work, we estimate the masses of the tetraquark states
with four different flavors by virtue of QCD sum rules, in both
b and c sectors. We construct four [8c]b̄s ⊗ [8c]d̄u tetraquark
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Fig. 3 a The mass of the tetraquark state in case A as a function of
the Borel parameter M2

B , for different values of
√
s0. b The mass of the

tetraquark state in case C as a function of the Borel parameter M2
B , for

different values of
√
s0

Table 1 The Borel parameters, continuum threshold parameters, pole
contributions, and predicted masses of the tetraquark states with currents
A and C

M2
B (GeV2)

√
s0 (GeV) Pole MX (GeV)

Case A 3.0–4.0 6.3 ± 0.1 (50–83) % 5.57 ± 0.15

Case C 3.0–4.0 6.3 ± 0.1 (50–82) % 5.58 ± 0.15

currents with J P = 0+, and then we perform an analytic
calculation up to dimension eight in the OPE. We keep terms
which are linear in the strange quark mass ms.

The numerical results are, respectively, (5.57±0.15) GeV
and (5.58 ± 0.15) GeV for case A and C . However, due
to the lack of reasonable windows of the Borel parame-
ter M2

B , case B and D do not correspond to any hadron
states. Our results imply that two S-wave octet parts can
form a resonance, whereas two P-wave octet parts cannot
form a resonance. Therefore, we can speculate that two
[8c]b̄s ⊗ [8c]d̄u tetraquark states with J P = 1+ should exist
and have a degenerate mass. We will present detailed analy-
ses of tetraquark states with J P = 1+ in our next work.

In conclusion, we find in b-quark sector two possible
open-flavor tetraquark states with masses (5.57 ± 0.15) and
(5.58 ± 0.15) GeV may exist, while their charmed partners
lie in (2.54 ± 0.13) and (2.55 ± 0.13) GeV, respectively, and
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are hence accessible in experiments like BESIII and Belle.
Though a preliminary analysis performed by the LHCb Col-
laboration does not favor the existence of X (5568) [2], the
tetraquark state with open flavors is still an interesting target
deserving more explorations.
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Appendix A: The spectral densities for cases A–D

For case A where the current is composed of two 0− color-
octet parts, we obtain the spectral density as follows:

ρ
pert
A (s) = 1

211 × 32π6

∫ λ

0
dα

H3
α (Hα − 4mbmsα)

α(1 − α)3 , (A1)

ρ
〈s̄s〉
A (s) = 〈s̄s〉

27 × 3π4

∫ λ

0
dα

H2
α (ms − α(mb + ms))

α(1 − α)2 , (A2)

ρ
〈GG〉
A (s) = − 〈g2

s GG〉
215×33π6

∫ λ

0
dα

1

α(1−α)3 [9H2
α (α2−3α+2)

− 4Hαmbα(4mbα
2 − 3ms(α

2 + 6α − 3)) + 16m3
bmsα

4],
(A3)

ρ
〈s̄Gs〉
A (s) = 〈s̄gsσ · Gs〉

210 × 32π4

×
∫ λ

0
dα

Hα[3mbα(7α − 8) + ms(5α2 − 13α + 8)]
α(1 − α)2 ,

(A4)

ρ
〈G3〉
A (s) = 〈g3

s G
3〉

213 × 33π6

∫ λ

0
dα

α2(Hα + 2mbα(mb − 3ms))

(1 − α)3 ,

(A5)

ρ
〈q̄q〉2

A (s) = 〈q̄q〉
72π2

∫ λ

0
dα

(mbmsα − Hα)

α
, (A6)

ρ
〈G2〉2

A (s) = 〈g2
s G

2〉2

216 × 3π6 λ, (A7)

ρ
〈q̄q〉〈q̄Gq〉
A (s) = 0, (A8)

�
〈G3〉
A (M2

B) = 〈g3
s G

3〉
212 × 33π6

∫ 1

0
dα

m3
bmsα

3

(1 − α)4 e
− m2

b
α(1−α)M2

B , (A9)

�
〈q̄q〉〈q̄Gq〉
A (M2

B) = −〈q̄q〉〈q̄gsσ · Gq〉
24 × 32π2

×
∫ 1

0
dα

1

α2(1 − α)
e
− m2

b
α(1−α)M2

B , (A10)

�
〈G2〉2

A (M2
B) = 〈g2

s G
2〉2

216 × 33π6

∫ 1

0
dα

mbα

(1 − α)3M2
B

×
[
m2

bms + M2
B(1 − α)(mb − 3ms)

]
e
− m2

b
α(1−α)M2

B ,

(A11)

where M2
B is the Borel parameter, Hα = m2

bα − α(1 − α)s,
and λ = 1 − m2

b/s.
For case B where the current is composed of two 0+ color-

octet parts, we obtain the spectral density as follows:

ρ
pert
B (s) = 1

211 × 32π6

∫ λ

0
dα

H3
α (Hα + 4mbmsα)

α(1 − α)3 , (A12)

ρ
〈s̄s〉
B (s) = 〈s̄s〉

27 × 3π4

∫ λ

0
dα

H2
α (ms + α(mb − ms))

α(1 − α)2 , (A13)

ρ
〈GG〉
B (s) = − 〈g2

s GG〉
215×33π6

∫ λ

0
dα

1

α(1−α)3 [9H2
α (α2−3α+2)

−4Hαmbα(4mbα
2 + 3ms(α

2 + 6α − 3)) − 16m3
bmsα

4],
(A14)

ρ
〈s̄Gs〉
B (s) = 〈s̄gsσ · Gs〉

210 × 32π4

×
∫ λ

0
dα

Hα[3mb(8 − 7α)α + ms(5α2 − 13α + 8)]
α(1 − α)2 ,

(A15)

ρ
〈G3〉
B (s) = 〈g3

s G
3〉

213 × 33π6

∫ λ

0
dα

α2(Hα+2mbα(mb+3ms))

(1−α)3 ,

(A16)

ρ
〈q̄q〉2

B (s) = 〈q̄q〉
72π2

∫ λ

0
dα

(mbmsα + Hα)

α
, (A17)

ρ
〈G2〉2

B (s) = 〈g2
s G

2〉2

216 × 3π6 λ, (A18)

ρ
〈q̄q〉〈q̄Gq〉
B (s) = 0, (A19)

�
〈G3〉
B (M2

B) = − 〈g3
s G

3〉
212 × 33π6

∫ 1

0
dα

m3
bmsα

3

(1 − α)4 e
− m2

b
α(1−α)M2

B ,

(A20)

�
〈q̄q〉〈q̄Gq〉
B (M2

B) = 〈q̄q〉〈q̄gsσ · Gq〉
24 × 32π2

×
∫ 1

0
dα

1

α2(1 − α)
e
− m2

b
α(1−α)M2

B , (A21)

�
〈G2〉2

B (M2
B) = − 〈g2

s G
2〉2

216 × 33π6

∫ 1

0
dα

mbα

(1 − α)3M2
B

×[m2
bms − M2

B(1 − α)(mb + 3ms)]e
− m2

b
α(1−α)M2

B . (A22)

For case C where the current is composed of two 1− color-
octet parts, we obtain the spectral density as follows:
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ρ
pert
C (s) = 1

29 × 32π6

∫ λ

0
dα

H3
α (Hα − 2mbmsα)

α(1 − α)3 , (A23)

ρ
〈s̄s〉
C (s) = 〈s̄s〉

26 × 3π4

∫ λ

0
dα

H2
α (2ms(1 − α) − mbα)

α(1 − α)2 ,

(A24)

ρ
〈GG〉
C (s) = − 〈g2

s GG〉
214 × 33π6

×
∫ λ

0
dα

1

α(1 − α)3 [−81H2
α (α2 − 3α + 2)

+ 2Hαmbα(−16mbα
2

+ms(−39α2 + 45α + 18)) + 16m3
bmsα

4], (A25)

ρ
〈s̄Gs〉
C (s) = 〈s̄gsσ · Gs〉

29 × 32π4

∫ λ

0
dα

Hα(3mbα + 11ms(α − 1))

α(1 − α)
,

(A26)

ρ
〈G3〉
C (s) = 〈g3

s G
3〉

211 × 33π6

∫ λ

0
dα

α2(Hα + mbα(2mb − 3ms))

(1 − α)3 ,

(A27)

ρ
〈q̄q〉2

C (s) = 〈q̄q〉
36π2

∫ λ

0
dα

(2mbmsα − Hα)

α
, (A28)

ρ
〈G2〉2

C (s) = 139〈g2
s G

2〉2

217 × 33π6 λ, (A29)

ρ
〈q̄q〉〈q̄Gq〉
C (s) = 〈q̄q〉〈q̄gsσ · Gq〉

128π2 λ, (A30)

�
〈G3〉
C (M2

B) = 〈g3
s G

3〉
211 × 33π6

∫ 1

0
dα

m3
bmsα

3

(1 − α)4 e
− m2

b
α(1−α)M2

B ,

(A31)

�
〈q̄q〉〈q̄Gq〉
C (M2

B) = 〈q̄q〉〈q̄gsσ · Gq〉
27 × 32π2

×
∫ 1

0
dα

(18mbmsα
2 − 7)

α2(1 − α)
e
− m2

b
α(1−α)M2

B ,

(A32)

�
〈G2〉2

C (M2
B) = − 〈g2

s G
2〉2

215 × 33π6

∫ 1

0
dα

mbα

(1 − α)3M2
B

×[m2
bms + M2

B(1 − α)(9mb − 3ms)]e
− m2

b
α(1−α)M2

B . (A33)

For case D where the current is composed of two 1+ color-
octet parts, we obtain the spectral density as follows:

ρ
pert
D (s) = 1

29 × 32π6

∫ λ

0
dα

H3
α (Hα + 2mbmsα)

α(1 − α)3 , (A34)

ρ
〈s̄s〉
D (s) = 〈s̄s〉

26 × 3π4

∫ λ

0
dα

H2
α (2ms(1 − α) + mbα)

α(1 − α)2 , (A35)

ρ
〈GG〉
D (s) = 〈g2

s GG〉
214 × 33π6

×
∫ λ

0
dα

1

α(1 − α)3 [81H2
α (α2 − 3α + 2)

+ 2Hαmbα(16mbα
2

+ms(−39α2 + 45α + 18)) + 16m3
bmsα

4] , (A36)

ρ
〈s̄Gs〉
D (s) = −〈s̄gsσ · Gs〉

29 × 32π4

∫ λ

0
dα

Hα(3mbα − 11ms(α − 1))

α(1 − α)
,

(A37)

ρ
〈G3〉
D (s) = 〈g3

s G
3〉

211 × 33π6

∫ λ

0
dα

α2(Hα + mbα(2mb + 3ms))

(1 − α)3 ,

(A38)

ρ
〈q̄q〉2

D (s) = 〈q̄q〉
36π2

∫ λ

0
dα

(2mbmsα + Hα)

α
, (A39)

ρ
〈q̄q〉〈q̄Gq〉
D (s) = −〈q̄q〉〈q̄gsσ · Gq〉

128π2 λ, (A40)

ρ
〈G2〉2

D (s) = 139〈g2
s G

2〉2

217 × 33π6 λ, (A41)

�
〈G3〉
D (M2

B) = − 〈g3
s G

3〉
211 × 33π6

∫ 1

0
dα

m3
bmsα

3

(1 − α)4 e
− m2

b
α(1−α)M2

B ,

(A42)

�
〈q̄q〉〈q̄Gq〉
D (M2

B) = 〈q̄q〉〈q̄gsσ · Gq〉
27 × 32π2

×
∫ 1

0
dα

(18mbmsα
2 + 7)

α2(1 − α)
e
− m2

b
α(1−α)M2

B ,

(A43)

�
〈G2〉2

D (M2
B) = 〈g2

s G
2〉2

215 × 33π6

∫ 1

0
dα

mbα

(1 − α)3M2
B

×[m2
bms − M2

B(1 − α)(9mb + 3ms)]e
− m2

b
α(1−α)M2

B . (A44)
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