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Abstract The thermal properties of the light decuplet
baryons are investigated in the framework of the thermal
QCD sum rules. In particular, the behavior of the mass and
residue of the �, �∗, �∗, and � baryons with respect to
temperature are analyzed taking into account the additional
operators appearing in the Wilson expansion at finite temper-
ature. It is found that the mass and residue of these particles
remain overall unaffected up to T � 150 MeV but, beyond
this point, they start to diminish considerably.

1 Introduction

Over the past decade, the in-medium investigation of fun-
damental parameters of hadrons such as their mass, decay
constant, widths and strong coupling constants among var-
ious hadrons has become one of the hot topics in hadron
physics. Such investigations can help us not only to better
analyze the hot and dense QCD matter produced by heavy ion
collision experiments, but they also can help us get valuable
knowledge on the perturbative and nonperturbative natures of
QCD. Investigations of the parameters of different members
of light baryons can also provide us with useful information
on the structure of dense astrophysical objects like neutron
stars, since at the center of the neutron stars there can be
intensively produced the strange members of octet baryons
as well as the decuplet baryons beside the nucleons.

The theoretical studies on the hadronic parameters at finite
temperature have mainly been devoted to mesons. There are
a few studies dedicated to the analysis of the light baryons
in hot medium. It is well known that the investigation of
parameters of both the decuplet and the octet baryons at
finite temperature is very important in understanding of the
SU(3) flavor chiral symmetry breaking. In Ref. [1], the tem-
perature dependence of the pole mass of the octet and decu-
plet baryons is investigated using the chiral perturbation the-
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ory. In Ref. [2], the baryon masses at finite temperature has
been investigated in both the octet and the decuplet represen-
tations for the Nambu–Jona-Lasinio (NJL) and Polyakov–
Nambu–Jona-Lasinio (PNJL) models. It has been found that
the baryon masses decrease by increasing the temperature
and there is a strong dependence on the melting or decon-
finement temperature determined by the flavor content of the
baryons. In Ref. [3], the mass of the decuplet baryons at finite
temperature are investigated using thermal QCD sum rules.
In this paper, the authors find that below T ≤ 0.11 GeV the
masses show very little dependence on the temperature, but
decrease with increasing temperature above this point. The
self energy of the �-baryon is also investigated at finite tem-
perature and density using the real time formalism of thermal
field theory in Ref. [4].

The aim of this article is to extend our previous studies
on the thermal properties of nucleon and hyperons [5,6] and
evaluate the behavior of the mass and residue of the decu-
plet �, �∗, �∗, and �− baryons with respect to temperature
employing the thermal QCD sum rule method. This method
is the extended version of the vacuum QCD sum rule [7,8]
to finite temperature and first introduced by Bochkarev and
Shaposhnikov [9]. This method has two new aspects com-
pared to the case of zero temperature: the Lorentz invariance
is broken at finite temperature with the choice of reference
frames, for the restoration of which the four-velocity vector of
the medium is introduced; and some new operators appear in
the operator product expansion (OPE) at finite temperature
and the vacuum condensates are replaced by their thermal
expectation values. In our calculations, we use the thermal
quark propagators containing new nonperturbative contribu-
tions appearing in the Wilson expansion at finite temperature.
We use the expressions of the temperature-dependent quark
and gluon condensates as well as the temperature-dependent
fermionic and gluonic parts of the energy density calculated
via lattice QCD. We find the temperature-dependent expres-
sion of the continuum threshold in decuplet channel using
the obtained sum rules for the masses and residues.
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Table 1 The values of N and
the quark flavors q1, q2, and q3
for �0, �∗0, �∗0, and �−
decuplet baryons

N q1 q2 q3

�0 √
1/3 d d u

�∗0 √
2/3 u d s

�∗0 √
1/3 s s u

�− 1/3 s s s

This study is organized as follows. In Sect. 2, the thermal
QCD sum rules for the mass and residue of �, �∗, �∗, and
�− decuplet baryons are derived. In Sect. 3, the numerical
analyses of the obtained sum rules for the decuplet baryons
as well as comparison of the results with those existing in the
literature are presented.

2 Thermal QCD sum rules for the mass and residue
of decuplet baryons

In this section, thermal QCD sum rules for the mass and
residue of �, �∗, �∗, and � decuplet baryons are derived.
For this purpose, we choose the following two-point thermal
correlation function:

�μν(p, T ) = i
∫

d4xeip·x T r{ρT [J D
μ (x) J̄ D

ν (0)]}, (1)

where J D
μ (x) is the interpolating current of D decuplet

baryon, ρ = e−βH/Tre−βH is the thermal density matrix
of QCD with H being the QCD Hamiltonian, T = 1/β is
temperature and T indicates the time ordering operator.

For J D
μ (x) interpolation current, we use the following

expression in a compact form (see for instance [10–12]):

JDμ (x) = Nεabc [(qT,a
1 (x)Cγμq

b
2 (x))qc3(x)

+ (qT,a
2 (x)Cγμq

b
3 (x))qc1(x)

+ (qT,a
3 (x)Cγμq

b
1 (x))qc2(x)], (2)

where a, b, c are color indices and C denotes the charge con-
jugation operator. The values of normalization constant N
and the q1, q2, and q3 quarks for the considered light decu-
plet baryons are given in Table 1.

To construct the thermal sum rules for the considered
decuplet baryons, the aforesaid correlation function is com-
puted both in hadronic and OPE representations. Matching
then the coefficients of sufficient structures from the two rep-
resentations, through a dispersion relation, the sum rules for
the mass and residue of decuplet baryons are obtained. In
order to suppress the contributions of the higher resonances
and continuum, a Borel transformation as well as continuum
subtraction are performed.

The hadronic side of the correlation function is obtained
by inserting a complete set of intermediate state with spin

s into Eq. (1). After performing the spacetime integral, we
get

�Had
μν (p, T ) = −〈0|J D

μ (0)|D(p, s)〉T 〈D(p, s)|J D†
ν (0)|0〉T

p2 − m2
D(T )

+ . . . , (3)

where . . . denotes the contributions of the higher states and
continuum andmD(T ) is the temperature-dependent mass of
decuplet baryons. The matrix element 〈0|J D

μ (0)|D(p, s)〉T
is defined as

〈0|J D
μ (0)|D(p, s)〉T = λD(T )uμ(p, s), (4)

where uμ(p, s) is the Rarita–Schwinger spinor and λD(T )

is the temperature-dependent residue of D baryon. We shall
remark that the J D

μ current couples not only to the spin-3/2
but also to the spin-1/2 states. To get only the contributions
of the decuplet baryons, we need to remove the unwanted
contribution coming from the spin-1/2 states. To this end
we employ the following procedures. The matrix element of
J D
μ between the spin-1/2 and vacuum states can be written

as

〈0|J D
μ |1

2
(p)〉T = (Apμ + Bγμ)u(p), (5)

where A and B are constants. By multiplication of both sides
of Eq. (5) with γμ, and taking into account the condition
J D
μ γ μ = 0, one immediately finds A in terms of B, i.e.

〈
0|J D

μ (0)|1

2
(p)

〉
T

= B

(
− 4

m 1
2

pμ + γμ

)
u(p). (6)

From this equation we notice that the unwanted contributions
coming from the spin-1/2 states are proportional to either pμ

or γμ. To eliminate these contributions, we order the Dirac
matrices as γμ � pγν and set to zero the terms with γμ in the
beginning and γν at the end and those proportional to pμ and
pν .

Finally, by inserting Eq. (4) into Eq. (3) and summing over
the spin-3/2 states, the correlation function in hadronic side
in the Borel scheme is obtained as

B̂�Had
μν (p, T ) = −

[
λ2
D(T )e−m2

D(T )/M2
]
� pgμν

−
[
λ2
D(T )mD(T )e−m2

D(T )/M2
]
gμν + other structures

including the four velocity vector of the medium, (7)

where M2 is the Borel parameter to be fixed in next section.
On the other hand, the OPE side of the thermal corre-

lation function is calculated in terms of the quark–gluon
degrees of freedom in deep Euclidean region. By insert-
ing the explicit forms of the interpolating currents into
the correlation function given in Eq. (1) and contracting
out all quark pairs via Wick’s theorem, we obtain the
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OPE side of thermal correlation function for the consid-
ered decuplet baryons in terms of the thermal light-quark
propagators:

�OPE,�
μν (p, T ) = i

3
εabcεa′b′c′

∫
d4xeipx

×
〈{

2Sca
′

d (x)γνS
′ab′
d (x)γμS

bc′
u (x)

− 2Scb
′

d (x)γνS
′aa′
d (x)γμS

bc′
u (x)

+ 4Scb
′

d (x)γνS
′ba′
u (x)γμS

ac′
d (x)

+ 2Sca
′

u (x)γνS
′ab′
d (x)γμS

bc′
d (x)

− 2Sca
′

u (x)γνS
′bb′
d (x)γμS

ac′
d (x)

− Scc
′

u (x)Tr
[
Sba

′
d (x)γνS

′ab′
d (x)γμ

]

+ Scc
′

u (x)Tr
[
Sbb

′
d (x)γνS

′aa′
d (x)γμ

]

− 4Scc
′

d (x)Tr
[
Sba

′
u (x)γνS

′ab′
d (x)γμ

] }〉
T

,

(8)

�OPE,�∗
μν (p, T ) = −2i

3
εabcεa′b′c′

∫
d4xeipx

×
〈{

Sca
′

d (x)γνS
′bb′
u (x)γμS

ac′
s (x)

+ Scb
′

d (x)γνS
′aa′
s (x)γμS

bc′
u (x)

+ Sca
′

s (x)γνS
′bb′
d (x)γμS

ac′
u (x)

+ Scb
′

s (x)γνS
′aa′
u (x)γμS

bc′
d (x)

+ Sca
′

u (x)γνS
′bb′
s (x)γμS

ac′
d (x)

+ Scb
′

u (x)γνS
′aa′
d (x)γμS

bc′
s (x)

+ Scc
′

s (x)Tr

[
Sba

′
d (x)γνS

′ab′
u (x)γμ

]

+ Scc
′

u (x)Tr

[
Sba

′
s (x)γνS

′ab′
d (x)γμ

]

+ Scc
′

d (x)Tr

[
Sba

′
u (x)γνS

′ab′
s (x)γμ

]}〉
T

,

(9)

�OPE,�∗
μν (p, T ) = i

3
εabcεa′b′c′

∫
d4xeipx

×
〈{

2Sca
′

s (x)γνS
′ab′
s (x)γμS

bc′
u (x)

− 2Scb
′

s (x)γνS
′aa′
s (x)γμS

bc′
u (x)

+ 4Scb
′

s (x)γνS
′ba′
u (x)γμS

ac′
s (x)

+ 2Sca
′

u (x)γνS
′ab′
s (x)γμS

bc′
s (x)

− 2Sca
′

u (x)γνS
′bb′
s (x)γμS

ac′
s (x)

− Scc
′

u (x)Tr

[
Sba

′
s (x)γνS

′ab′
s (x)γμ

]

+ Scc
′

u (x)Tr

[
Sbb

′
s (x)γνS

′aa′
s (x)γμ

]

− 4Scc
′

s (x)Tr

[
Sba

′
u (x)γνS

′ab′
s (x)γμ

]}〉
T

,

(10)

�OPE,�−
μν (p, T ) = εabcεa′b′c′

∫
d4xeipx

×
〈{

Sca
′

s (x)γνS
′ab′
s (x)γμS

bc′
s (x)

− Sca
′

s (x)γνS
′bb′
s (x)γμS

ac′
s (x)

− Scb
′

s (x)γνS
′aa′
s (x)γμS

bc′
s (x)

+ Scb
′

s (x)γνS
′ba′
s (x)γμS

ac′
s (x)

− Scc
′

s (x)Tr

[
Sba

′
s (x)γνS

′ab′
s (x)γμ

]

+ Scc
′

s (x)Tr

[
Sbb

′
s (x)γνS

′aa′
s (x)γμ

]}〉
T

,

(11)

where S′ = CSTC .
Note that the same structures as the hadronic side enter to

the OPE side. The unwanted contributions are removed with
the same procedures as the hadronic side of the correlation
function.

To proceed, we need the thermal light-quark propagator,
whose expression (expanded in terms of different operators
having different mass dimensions) in x space is given as (see
also [6,13])

Si jq (x) = i
� x

2π2x4 δi j − mq

4π2x2 δi j

− 〈q̄q〉
12

δi j − x2

192
m2

0〈q̄q〉
[
1 − i

mq

6
� x

]
δi j

+ i

3

[
� x

(mq

16
〈q̄q〉 − 1

12
〈u� f u〉

)

+ 1

3

(
u · x �u〈u� f u〉

)]
δi j

− igsλ
i j
A

32π2x2 G
A
μν(� xσμν + σμν � x), (12)

where mq denotes the light-quark mass, 〈q̄q〉 is the
temperature-dependent light-quark condensate, GA

μν is the

temperature-dependent external gluon field, �
f
μν is the

fermionic part of the energy momentum tensor and λ
i j
A are the

standard Gell–Mann matrices. As is seen, the temperature-
dependent condensates are introduced instead of the vacuum
saturated condensates (for details see for instance Refs. [14–
16]). As also previously mentioned, the four-velocity vector
of the medium uμ is also introduced to restore the Lorentz
invariance at finite temperature broken with the choice of the
thermal rest frame. In the rest frame of the heat bath, the four-
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velocity vector of the medium is written as uμ = (1, 0, 0, 0),
which leads to u2 = 1 and p · u = p0. In Eq. (12), the terms
containing the four-quark operators as well as terms with
logarithms are neglected, since they give small contributions
to the results.

By using the above thermal light-quark propagator in the
coordinate space and performing the Fourier integral to go to
momentum space and applying the Borel transformations as
well as the continuum subtraction, after lengthy calculations,
for the OPE side of the correlation function in the Borel
scheme we obtain

B̂�OPE
μν (p0, T ) = �OPE

1 (p0, T ) � pgμν

+�OPE
2 (p0, T )gμν

+other structures, (13)

where �OPE
1 and �OPE

2 are functions of QCD degrees of free-
dom as well as the new operators. As examples, we present
the explicit forms of these functions for �∗ particle in the
appendix. Not that we have used the following relation to
relate the two-gluon condensate to the gluonic part of the
energy-momentum tensor �

g
λσ :

〈TrcGαβGμν〉 = 1

24
(gαμgβν − gανgβμ)〈Ga

λσG
aλσ 〉

+ 1

6
[gαμgβν − gανgβμ − 2(uαuμgβν

− uαuνgβμ − uβuμgαν + uβuνgαμ)]
× 〈uλ�

g
λσu

σ 〉. (14)

After calculation of both the hadronic and the OPE sides
of the thermal correlation function, we match the coefficients
of the structures � pgμν and gμν to obtain the sum rules

− λ2
D(T )e−m2

D(T )/M2 = �OPE
1,D (p0, T ) (15)

and

− λ2
D(T )mD(T )e−m2

D(T )/M2 = �OPE
2,D (p0, T ) (16)

by simultaneous calculations of which we get the
temperature-dependent mass and residue of the particles
under consideration.

3 Numerical computations and conclusions

To numerically analyze the sum rules for the masses
and residues of �, �∗, �∗, and �− decuplet baryons
at finite temperature, we use input parameters such as
the quark masses as well as the light-quark and gluon
condensates in vacuum. They are collected in Table 2.
Beside these parameters, we need the temperature-dependent
quark and gluon condensates as well as the temperature-
dependent energy density. For the quark condensate, we

Table 2 Input parameters used in calculations [17–20]

Parameters Values

p�
0 1.231 GeV

p�∗
0 1.383 GeV

p�∗
0 1.531 GeV

p�−
0 1.672 GeV

mu (2.3+0.7
−0.5) MeV

md (4.8+0.5
−0.3) MeV

ms (95 ± 5) MeV

m2
0 (0.8 ± 0.2) GeV2

〈0|uu|0〉 = 〈0|dd|0〉 −(0.24 ± 0.01)3 GeV3

〈0|ss|0〉 −0.8(0.24 ± 0.01)3 GeV3

〈
0 | 1

π
αsG2 | 0

〉
(0.012 ± 0.004) GeV4

use the following parametrization which reproduces the lat-
tice QCD and QCD sum rules results presented in [21–
23]:

〈q̄q〉 = 〈0|q̄q|0〉
1 + e

18.10042
(

1.84692
[

1
GeV2

]
T 2+4.99216

[
1

GeV

]
T−1

) ,

(17)

where 〈0|q̄q|0〉 is the vacuum light-quark condensate and
this function is valid up to a critical temperature Tc =
197 MeV.

For the gluonic and fermionic parts of the energy density,
we get the parametrization

〈�g
00〉 = 〈� f

00〉 = T 4e

(
113.867

[
1

GeV2

]
T 2−12.190

[
1

GeV

]
T

)

− 10.141

[
1

GeV

]
T 5, (18)

obtained using lattice QCD graphics given in [24] and valid
for T ≥ 130 MeV.

The temperature-dependent gluon condensate obtained
using the QCD sum rules predictions and lattice QCD data
in [25] is employed as

〈G2〉 = 〈0|G2|0〉
[

1−1.65
( T

Tc

)8.735+0.04967
( T

Tc

)0.7211
]
,

(19)

where 〈0|G2|0〉 is the gluon condensate in vacuum.
The temperature-dependent continuum threshold for the

decuplet baryons is one of auxiliary parameters that should
also be determined. For this aim, we use the obtained sum
rules for the mass and residue in Eqs. (15) and (16) as well
as an extra equation obtained from Eq. (15) by applying a
derivative with respect to − 1

M2 to both sides. By eliminat-
ing the mass and residue from these equations, we get the
continuum threshold in terms of the temperature, i.e.
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Table 3 The working regions of M2 for �, �∗, �∗ and �− decuplet
baryons

M2

� 1.5 GeV2 � M2 � 3.0 GeV2

�∗ 1.7 GeV2 � M2 � 3.5 GeV2

�∗ 2.0 GeV2 � M2 � 3.8 GeV2

�− 2.2 GeV2 � M2 � 4.0 GeV2

s0(T ) = s0

[
1 − 0.93

( T

Tc

)12
]
, (20)

where s0 is the continuum threshold at T = 0. This parameter
is not totally arbitrary but it depends on the energy of the first
excited state with the same quantum numbers as the chosen
interpolating currents for the decuplet baryons under consid-
eration. The T -dependent continuum threshold extrapolates
this condition to all temperatures. For s0, we take the interval
[mD(0)+0.4]2 GeV2 ≤ s0 ≤ [mD(0)+0.6]2 GeV2 in which
the physical quantities show relatively weak dependence on

it. By comparison of Eq. (20) with the expression of the
temperature-dependent continuum threshold of the hyper-
ons [6] we see that there is an extra 0.93 coefficient in the
decuplet case.

Finally, we determine the working regions for the Borel
mass parameter M2. To this aim, we require that not only
the contributions of the higher states and continuum are ade-
quately suppressed but also the portion of perturbative part
exceeds the nonperturbative contributions and the series of
the OPE converge. This leads to the working windows of
the Borel mass parameter for different decuplet baryons as
presented in Table 3.

According to the philosophy of the method used, the phys-
ical quantities should be practically independent the auxiliary
parameters M2 and s0. To see how this condition is satisfied
for the decuplet baryons, we plot their mass and residue ver-
sus M2 for different fixed values of the continuum threshold
s0 at T = 0 in Figs. 1 and 2. From these figures, we see that
these quantities depend on both M2 and s0 very weakly in
their working intervals.

s0 2.66 GeV2

s0 2.99 GeV2

s0 3.35 GeV2

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
1.0
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m
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G
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(a)
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s0 3.54 GeV2
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G
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(c)
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s0 5.16 GeV2
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1.6
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1.8

1.9

2.0

M2 GeV2

m
0

G
eV

(d)

Fig. 1 a The mass of the � baryon as a function of M2 for different fixed values of s0 at T = 0. b The same as a but for �∗ baryon. c The same
as a but for �∗ baryon. d The same as a but for the �− baryon
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s0 2.66 GeV2

s0 2.99 GeV2

s0 3.35 GeV2

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
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M2 GeV2
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M2 GeV2
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s0 4.54 GeV2
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M2 GeV2
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0

G
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3
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(c) (d)

Fig. 2 a The residue of the � baryon as a function of M2 for different fixed values of s0 at T = 0. b The same as a but for �∗ baryon. c The same
as a but for �∗ baryon. d The same as a but for the �− baryon

The final task is to investigate the variations of the mass
and residue of �, �∗, �∗, and �− baryons with respect to
temperature and compare the obtained results on the behavior
of these quantities with respect temperature with our previ-
ous work for nucleon and hyperons [5,6] as well as exist-
ing predictions in the literature [1–3]. For this purpose, we
plot these quantities as a function of temperature in Figs. 3
and 4. These figures indicate that the mass and residue of
�, �∗, �∗, and �− decuplet baryons remain approximately
unchanged up to T ∼= 0.15 GeV, however, after this point,
they start to diminish rapidly by increasing the temperature.
The main reason behind such behavior is the variation of the
T -dependent continuum threshold with respect to tempera-
ture presented in Eq. (20) and calculated, for the first time
in the present study, in the decuplet channel. Our analyses
show that this quantity does not change up to T ∼= 0.15 GeV,
beyond which it drastically falls. At the critical or deconfine-
ment temperature, the continuum threshold falls with amount
of 93 %. As we already mentioned the continuum threshold
separates the ground state from the higher states and contin-
uum. It appears in the upper limits of many integrals in the

sum rules obtained for the masses and residues (see the OPE
expressions in the appendix) where their lower limits are
roughly zero because of the light-quark masses. When tem-
perature is increased the region of integration gets smaller.
The temperature-dependent quark condensate that gives a
higher contribution after the perturbative part also shows a
similar behavior and kills many terms in the expressions of
the sum rules as it approaches zero near the critical tempera-
ture. Such variations of the parameters of the hadrons under
consideration near to the critical temperature can be con-
sidered as a sign of a transition to the quark–gluon plasma
(QGP) as the new phase of the matter.

The average results on the masses obtained in the limit
T → 0 arem�(0) = 1.239±0.148 GeV,m�∗(0) = 1.394±
0.167 GeV, m�∗(0) = 1.525 ± 0.183 GeV and m�−(0) =
1.693 ± 0.203 GeV which, within the errors, are in good
consistencies with the experimental data [18]. We also obtain
the average values λ�(0) = 0.038 ± 0.010 GeV3, λ�∗(0) =
0.043 ± 0.012 GeV3, λ�∗(0) = 0.053 ± 0.014 GeV3, and
λ�−(0) = 0.068 ± 0.019 GeV3 for the residues at zero tem-
perature which are also consistent with the results of Ref.
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Fig. 3 a The mass of the � baryon as a function of temperature at fixed values of s0 and M2. b The same as a but for �∗ baryon. c The same as a
but for �∗ baryon. d The same as a but for the �− baryon

[26]. Looking at the values of zero-temperature masses and
residues we see that there is a considerably large SU(3) fla-
vor symmetry breaking effect from � (consisting of up and
down quarks) and �− (consisting of only s quark). These
violations are with amounts of 27 and 44 % for the mass and
residue, respectively. However, when considering the ther-
mal behavior of the mass and residue of decuplet baryons
we cannot detect any SU(3) flavor violation effects and all
members demonstrate roughly the same trend with respect to
temperature. Near deconfinement or the critical temperature,
the masses of �, �∗, �∗, and �− decuplet baryons fall with
amount of roughly 80 %, while the residues overall reduce
with amount of 35 % compared to their vacuum values.
Though the zero-temperature values of the mass and residue
of the decuplet baryons are very different from those of the
octet baryons [5,6], the behaviors of the mass and residue
of the decuplet baryons in terms of temperature obtained
in the present work are similar to those of the nucleon and
hyperons [5,6] and we do not see the effect of the spin on
the thermal properties of baryons with the same quark con-
tents. The variations of the masses versus temperature for

the decuplet baryons obtained in the present study are also in
agreement with those of Ref. [2,3], i.e., in all of these stud-
ies the masses reduce rapidly with respect to T near to the
critical temperature.

In conclusion, we investigated the mass and residue of �,
�∗, �∗, and �− decuplet baryons at finite temperature in the
framework of thermal QCD sum rules to acquire sum rules
for these quantities in terms of different QCD degrees of free-
dom and the new operators appearing at finite temperature.
We found the fit function for the temperature-dependent con-
tinuum threshold in terms of vacuum threshold. By fixing the
auxiliary parameters, M2 and s0, and using the temperature-
dependent quark and gluon condensates as well as the thermal
average of the energy density obtained via lattice QCD and
QCD sum rules, we analyzed the behaviors of the masses and
residues versus temperature. We observed that the mass and
residue of the decuplet baryons remain unchanged with the
variations of temperature up to T ∼= 0.15 GeV, after this point
they decrease rapidly so that near the critical temperature the
masses and residues reach roughly 20 and 65 % of their vac-
uum values, respectively. The melting of the baryons near
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Fig. 4 a The residue of the � baryon as a function of temperature at fixed values of s0 and M2. b The same as a but for �∗ baryon. c The same
as a but for �∗ baryon. d The same as a but for the �− baryon

the critical or deconfinement temperature may be considered
as a sign of transition to the QGP phase that are searched for
at different colliders. We also extracted the numerical values
of the masses and residues at T → 0 limit which are in good
consistencies with the existing experimental data as well as
other predictions in the literature.

Our results may be used in analyses of the results of the
future heavy ion collision experiments. The T -dependent
quantities considered in the present work, especially the
temperature-dependent residues, can be used in the study
of the strong couplings of the particles under consideration
with other hadrons as well as their electromagnetic proper-
ties and radiative decays at finite temperature. The residue is
the main input parameter in such studies.

Acknowledgments This work has been partly supported by the Scien-
tific and Technological Research Council of Turkey (TUBITAK) under
the national postdoctoral research scholarship program 2218.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix: OPE expressions for �∗

In this appendix, as examples, we present the functions
�OPE

1 (p0, T ) and �OPE
2 (p0, T ) for �∗ baryon which are

obtained as

�OPE
1 (p0, T )

= 1

160π4

∫ s0(T )

(2ms+mu)2
ds exp

(
− s

M2

)
s2

+ 〈q̄q〉
48π2

[
m2

0(8ms − mu) + (4mu − 16ms)

×
∫ s0(T )

(2ms+mu)2
ds exp

(
− s

M2

)]

+ 〈s̄s〉
24π2

[
m2

0(3ms + 4mu) − 4(ms + 2mu)
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×
∫ s0(T )

(2ms+mu)2
ds exp

(
− s

M2

)]

− 〈u� f u〉
9π2

[
4p2

0 −
∫ s0(T )

(2ms+mu)2
ds exp

(
− s

M2

)]

+ αs〈u�gu〉
9π3

∫ s0(T )

(2ms+mu)2
ds exp

(
− s

M2

)

+ 5〈αsG2〉
144π3

∫ s0(T )

(2ms+mu)2
ds exp

(
− s

M2

)
− 〈s̄s〉2

×
[
(2m2

0 − 4M2)

9M2

]
− 〈q̄q〉〈s̄s〉

[
(4m2

0 − 8M2)

9M2

]

+ 〈q̄q〉〈u� f u〉
81M6 {2m2

0mu(−7M2 − 8p2
0) + 48M2

×[msM
2 + mu(M

2 + 2p2
0)]}

+ 〈s̄s〉〈u� f u〉
81M6 {4m2

0ms(−7M2 − 8p2
0) + 48M2

×[3msM
2 + muM

2 + 4ms p
2
0]}

+
[
αs〈q̄q〉〈u�gu〉

108πM4 mu + αs〈s̄s〉〈u�gu〉
54πM4 ms

]

× (3m2
0 − 8M2)

−
[ 〈q̄q〉〈αsG2〉

432πM4 mu + 〈s̄s〉〈αsG2〉
216πM4 ms

]

× (3m2
0 − 20M2) + 2αs〈u� f u〉〈u�gu〉

27πM4 (M2 + p2
0)

− 〈αsG2〉〈u� f u〉
27πM4 (3M2 − 4p2

0)

− 2〈u� f u〉2

9M2 (5 + 2t + 5t2), (A.1)

�OPE
2 (p0, T ) = (2ms + mu)

64π4

∫ s0(T )

(2ms+mu)2
ds exp

(
− s

M2

)
s2

+ 〈q̄q〉 + 2〈s̄s〉
72π2

×
[ ∫ s0(T )

(2ms+mu)2
(3m2

0−8s)ds exp
(

− s

M2

)]

+ 2〈u� f u〉
9π2 (2ms + mu)

×
[
p2

0 +
∫ s0(T )

(2ms+mu)2
ds exp

(
− s

M2

)]

+ αs〈u�gu〉
36π3 (2ms + mu)

×
∫ s0(T )

(2ms+mu)2
ds exp

(
− s

M2

)

+〈αsG2〉
48π3 (2ms + mu)

×
∫ s0(T )

(2ms+mu)2
ds exp

(
− s

M2

)

+〈s̄s〉2
[−5m2

0ms+18muM2

27M2

]
+ 〈q̄q〉〈s̄s〉

×
[−5m2

0(ms + mu) + 36msM2

27M2

]

+ 4〈q̄q〉〈u� f u〉
27M4

×[−4M2(2M2 + p2
0) + m2

0(3M
2 + p2

0)]
+ 8〈s̄s〉〈u� f u〉

27M4

×[−4M2(2M2 + p2
0) + m2

0(3M
2 + p2

0)]
− 2αs〈q̄q〉〈u�gu〉

27πM2 (m2
0 − 2M2)

− 4αs〈s̄s〉〈u�gu〉
27πM2 (m2

0 − 2M2)

+ 〈q̄q〉〈αsG2〉
54πM2 (m2

0 − 4M2)

+ 〈s̄s〉〈αsG2〉
27πM2 (m2

0 − 4M2)

+ 16〈u� f u〉2

81M4 (2ms + mu)(3M
2 + 14p2

0).

(A.2)
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