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Abstract The rotating regular Hayward’s spacetime, apart
from mass (M) and angular momentum (a), has an additional
deviation parameter (g) due to the magnetic charge, which
generalizes the Kerr black hole when g �= 0; for g = 0 it goes
over to the Kerr black hole. We analyze how the ergoregion
is affected by the parameter g to show that the area of the
ergoregion increases with increasing values of g. Further, for
each g, there exists a critical aE , which corresponds to a reg-
ular extremal black hole with degenerate horizons r = r EH .
aE decreases whereas r EH increases with an increase in the
parameter g. Banãdos, Silk, and West (BSW) demonstrated
that the extremal Kerr black hole can act as a particle acceler-
ator with arbitrarily high center-of-mass energy (ECM) when
the collision of two particles takes place near the horizon.
We study the BSW process for two particles with different
rest masses, m1 and m2, moving in the equatorial plane of
the extremal Hayward’s black hole for different values of g,
to show that ECM is arbitrarily high when one of the particles
takes a critical value of the angular momentum. Our result,
in the limit g → 0, reduces to that of the Kerr black hole.

1 Introduction

Recently, Banãdos, Silk, and West (BSW) [1] demonstrated
that a Kerr black hole can act as a particle accelerator, i.e.,
when two particles collide arbitrarily close to the horizon
of an extremal Kerr black hole, the center-of-mass energy
(ECM) can grow infinitely in the limiting case of maximal
rotation. The ECM becomes higher for an extremal black
hole when one of the colliding particles has a critical angular
momentum. This aroused much attention [1–23] in a series
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of subsequent papers by generalizing the BSW mechanism to
different spacetimes, also opening a window into new physics
with astrophysical applications, e.g., to understand the phe-
nomenon like gamma ray bursts and AGNs in the Galaxy.
Jacabson and Sotiriou [2] elucidated the BSW mechanism to
discuss some practical limitations for the Kerr black hole to
act as a particle accelerator. It was pointed out that infinite
ECM for the colliding particles can only be attained when the
black hole is exactly extremal and only in infinite time and
on the horizon of the black hole. On the other hand, Lake
[3] studied the BSW mechanism near the Cauchy horizon to
show that ECM of the colliding particles is infinite. With the
BSW mechanism extended to the Kerr–Newman black hole
case [4], an unlimited ECM requires an additional restriction
on the value of the spin parametera. Zaslavskii [5] argued that
a similar effect exists for a nonrotating but charged black hole
even for the simplest case of radial motion of particles in a
Reissner–Nordström background and also demonstrated that
the BSW mechanism is a universal property of the rotating
black holes [6,7]. The BSW mechanism has been extended to
an Einstein–Maxwell–Dilaton black hole [8], rotating stringy
black hole [9], a Kerr–(anti-) de Sitter black hole [10], BTZ
[11], a rotating black hole in Horava–Lifshitz gravity [12] and
around the four-dimensional Kaluza–Klein extremal black
hole in [8], and there resulted an infinitely large ECM near
the horizon.

Later, Gao and Zhong showed that the BSW mechanism
is possible for the nonextremal black holes, showing that
for a critical angular momentum, the ECM diverges at the
inner horizon. The interesting work of Grib and Pavlov [13–
15] shows that the scattering energy of the particles in the
center-of-mass frame can be arbitrarily large, not only for
extremal black holes but also for nonextremal ones, when
we take into account the multiple scattering. It turns out that
the divergence of the ECM of the colliding particles is a phe-
nomenon not only associated with black holes but also with
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naked singularities [16–19]. The BSW mechanism was fur-
ther extended to the case of two different massive colliding
particles near the Kerr black hole [20] and also in the case of
Kerr–Newman black hole [21], and for the Kerr–Taub–NUT
spacetime [22], suggesting that ECM depends not only on the
rotation parameter a but also on the NUT charge n. These
works on two different massive colliding particles are gener-
alizations of previous studies (see also Harada and Kimura
2014 for a review of the BSW mechanism [23]).

While we are far away from any robust quantum the-
ory of gravity that tell us how the singularities of classical
black holes are solved, there are some models of black hole
solutions without the central singularity. These are regular
black holes first proposed by Bardeen metric [24], which is a
solution of Einsteins gravity coupled to a nonlinear electro-
dynamics field [25]. Another interesting model is the Hay-
ward’s black hole metric [26] and Ayón-Beato–García [25].
The rotating or Kerr-like solutions of the Bardeen and the
Hayward’s metrics have also been obtained [27]. These rotat-
ing black holes violate even the weak energy condition is
violated, but such a violation can be made very small [27].
Astrophysical black holes are more interested in the study
of rotating regular black hole, but the actual nature of these
objects has still to be tested [28,29]. These regular black
holes have an additional deviation parameter (say g) apart
from the mass (M) and angular momentum (a), which pro-
vides a deviation from the Kerr black hole. It turns out that for
these black holes, for each nonzero g, there exists a critical
aE , which corresponds to a regular extremal black hole with
degenerate horizons [30]. The BSW mechanism for these
rotating regular black holes has also been analyzed in [31–
33], suggesting that a rotating regular black hole can also act
as a particle accelerator, which in turn provides a suitable
framework for Planck-scale physics.

In the current paper, we want to discuss the collision of
two different massive particles falling from rest at infinity in
the background of rotating regular Hayward’s black holes.

2 Rotating regular Hayward’s black holes

The spherically symmetric Hayward’s metric [26] is given
by

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2d�2, (1)

with

f (r) = 1 − 2mr2

r3 + 2l2m
and d�2 = dθ2 + sin2 θdφ2,

wherem is the mass and l is a constant. The metric (1) asymp-
totically behaves as

f (r) ∼ 1 − 2m

r
as r → ∞,

where near the center

f (r) ∼ 1 − r2

l2
as r → 0.

The solution (1), for l = 0, reduces to the well-known
Schwarzschild black hole and is flat for m = 0. The met-
ric function and the curvature invariants are well behaved
everywhere, including at the origin. The analysis of f (r) = 0
implies a critical mass m∗ = 3

√
3l/4 and a critical radius

r∗ = √
3l, such that a regular extremal black hole has degen-

erate horizons at r = r∗ when m = m∗. When m < m∗,
we have a regular nonextremal black hole horizon with both
Cauchy and event horizon, corresponding to two roots of
f (r) = 0, and no black hole when m > m∗.

Next, the rotating spacetime corresponding to (1) is also
obtained [27], which looks similar to the Kerr black hole
except that M is replaced by m(r). In this section, we shall
discuss the horizon structure and the ergoregion of a rotating
regular Hayward’s black hole metric. The rotating regular
Hayward’s black hole in Boyer–Lindquist coordinates reads
[27]

ds2 = −
[

1− 2m(r)r

�

]
dt2 − 4am(r)r sin2 θ

�
dtdφ+ �

�
dr2

+ �dθ2 +
[
r2 + a2 + 2a2m(r)r sin2 θ

�

]
sin2 θdφ2,

(2)

where � and �, respectively, are given by

� = r2 + a2 cos2 θ,

� = r2 + a2 − 2m(r)r. (3)

Here a is a rotation parameter, and m(r) is a function related
to mass of the black hole via

m(r) = M
r3+α�−α/2

r3+α�−α/2 + g3rβ�−β/2 , (4)

where M represents the black hole mass, g is the magnetic
charge which provides a deviation from the standard Kerr
black hole, and α, β are two real numbers. In the equatorial
plane (θ = π/2), the mass function (4) takes the form

m(r) = M
r3

r3 + g3 , (5)

which is independent of the parameters α, β, and θ . The
metric (2) represents a rotating regular Hayward’s black hole
[27], which is a generalization of the Kerr spacetime because
when g = 0, then it reduces to the standard Kerr black hole
[34] and for both a = g = 0, the metric reduces to the
Schwarzschild black hole [35]. A regular Hayward’s black
hole satisfies the weak energy condition only for the nonro-
tating case (a = 0) and violates the weak energy condition
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Fig. 1 Plot showing the behavior of the ergoregion in the xz-plane of a rotating regular Hayward’s black hole for g = 0 with different values of
a. The blue and red lines correspond to the static limit surface and horizons, respectively

for the rotating case [27]. The metric is regular everywhere,
including at r = 0, θ = π/2, as the Ricci scalar (RabRab)
and the Kretschmann scalar (Rabcd Rabcd ) are well behaved
[31].

2.1 Ergoregion of rotating regular Hayward’s black hole

Recently, the horizon structure of the rotating regular Hay-
ward’s black hole has been analyzed [31]. Here, we are going
to discuss the ergoregion of the rotating regular Hayward’s
black hole. The metric (2) becomes singular at � = 0, which
is a coordinate singularity. The event horizon of the rotating
regular Hayward’s black hole is given by the zeros of � = 0,

r2 + a2 − 2m(r)r = 0. (6)

It is shown that Eq. (6) admits two roots, which correspond
to, respectively, the event horizon and the Cauchy horizon.
Definitely, the event horizon depends on θ , and hence it is dif-
ferent from the Kerr black hole. If the two horizons coincide,
then we get an extremal black hole; otherwise it is known
as a nonextremal black hole. Thus, the rotating regular Hay-
ward’s black hole has an extremal black hole for each nonzero
value of the deviation parameter g. There is another impor-
tant surface of a black hole, particularly known as a static
limit surface. The main property of the static limit surface
is that the nature of particle geodesics changes after cross-
ing the static limit surface, i.e., a timelike geodesic becomes
spacelike and vice versa. The static limit surface satisfies
gtt = 0, i.e.,

r2 + a2 cos2 θ − 2m(r)r = 0. (7)

From Eqs. (6) and (7), it is clear that the horizons and the
static limit surface depend on the constants α, β, g, and θ . It
turns out that for each g, there exist critical aE and r EH , which
corresponds to a regular extremal black hole with degener-
ate horizons, and aE decreases whereas r EH increases with
increase in g. The region between the event horizon and
static limit surface is known as the ergoregion; from this

region energy can be extracted via the Penrose process [36].
We show that as we increase the value of g for corresponding
a, then the region between the event horizon and the static
limit surface increases. In Figs. 1 and 2, we plot the contours
of the horizon surfaces in the xz-plane of the rotating regu-
lar Hayward’s black hole to show the ergoregion for various
values of g. The ergoregion for the rotating regular Hay-
ward’s black hole is shown in Fig. 2, whereas the ergoregion
of the Kerr black hole is shown in Fig. 1. The ergoregion
has two boundaries: the event horizon and the outer static
limit surface. The observer in the ergoregion cannot remain
static. The ergoregion is sensitive to the deviation parame-
ter g, and its area increases with g. This can be seen by the
event horizon r+

H and the static limit surface (r+
sls), which are

depicted in Table 1, for various values of a and g. Interest-
ingly, δa = r+

sls − r+
H increases with g as well as a, thereby

suggesting that the ergoregion is enlarged. Further, we find
that for each value of rotation parameter a, there exists a crit-
ical value of g = g∗, such that for g < g∗, we have two
horizons suggesting a nonextremal Hayward’s black hole,
whereas for g = g∗, one gets an extremal black hole where
the two horizons coincide (cf. Fig. 2); for g > g∗, we obtain
no horizons or no black hole.

3 Equations of motion of the particle

Next, we calculate the equations of motion of a particle which
will be necessary to determine the ECM of the two colliding
particles for the rotating regular Hayward’s black hole (2).
Indeed, we are interested in a study of the radial motion of
the particle falling from rest at infinity in the background of
a rotating regular Hayward’s black hole. Henceforth, we will
restrict our discussion to the equatorial plane (θ = π/2). The
motion of the particle is determined by the Lagrangian

L = 1

2
gμν

dxμ

dτ

dxν

dτ
, (8)
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Fig. 2 Plot showing the behavior of the ergoregion in the xz-plane of a rotating regular Hayward’s black hole for different values of g. Here we
take M = 1, θ = π/2. The blue and red lines correspond to the static limit surface and horizons, respectively
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Table 1 Table for different values of a and g for a rotating regular Hayward’s black hole. δ is the region between the static limit surface and event
horizon (δa = r+

sls − r+
H )

g a = 0.6 a = 0.7 a = 0.8 a = 0.9

r+
H r+

sls δa r+
H r+

sls δa r+
H r+

sls δa r+
H r+

sls δa

0 1.80000 1.90554 0.10554 1.71414 1.86891 0.15477 1.60000 1.82462 0.22462 1.43589 1.77136 0.33547

0.1 1.79961 1.90523 0.10562 1.71367 1.86858 0.15491 1.59935 1.82426 0.22491 1.43477 1.77095 0.33618

0.3 1.78944 1.89725 0.10781 1.70103 1.85992 0.15889 1.58186 1.81466 0.23280 1.40355 1.76004 0.35649

0.5 1.74839 1.86576 0.11737 1.64846 1.82553 0.17707 1.50329 1.77620 0.27291 – 1.71562 –

where τ is an affine parameter along the geodesic. Also,
we know that the metric (2) has two Killing vectors, i.e.,

ξa = (
∂
∂t

)a
and χa =

(
∂
∂φ

)a
, which are, respectively,

associated with two conserved quantities, the energy E and
the angular momentum L . Furthermore, we can write the
geodesic equations for a particle in terms of these conserved
quantities

gabξ
aub = −E,

gabχ
aub = L ,

where ua = dxa/dτ , represents a 4-velocity. The above
equations can be written as

gttu
t + gtφu

φ = −E, (9)

gtφu
t + gφφu

φ = L . (10)

The 4-momentum of the particle having mass m is given by

pμ = muμ, (11)

where uμ is the 4-velocity of the particle. With the help of
normalization of the 4-velocity uμuμ = −1, we can easily
obtain the following relation:

pμ p
μ = −m2. (12)

This quantity is Lorentz invariant, i.e., it remains the same
in all inertial frames under the Lorentz transformations and
it also shows the conservation of momentum. Now, solving
Eqs. (9) and (10) simultaneously, and using the condition
(12), we obtain the geodesic equations [31,32,37,38]

ut = 1

r2�

[
− a(aE − L)� +

(
r2 + a2

)
P

]
, (13)

uφ = 1

r2�

[
− (aE − L)� + aP

]
, (14)

ur = ± 1

r2

√
P2 − �

[
m2r2 + (L − aE)2

]
, (15)

where m corresponds to the mass of a particle, and

P = (r2 + a2)E − La.

Equations (13)–(15) represent the motion of the particle
around the rotating Hayward’s black hole. One can easily

check that if we set g = 0, then Eqs. (13), (14), and (15)
reduce to the geodesic equations of the Kerr black hole. Thus
Eqs. (13), (14), and (15) are corrected by the deviation param-
eter g, and in the limit g → 0, we set the corresponding equa-
tions for the Kerr black hole [1]. The radial equation for the
timelike particles moving along the geodesics is described
by

1

2
(ur )2 + Veff = 0, (16)

where Veff is the effective potential given by

Veff = − 1

2r4

[
[(r2 +a2)E−La]2 −�[m2r2 +(L−aE)2]

]
,

(17)

as the deviation parameter g → 0, Veff reduces to

Veff = − 1

2r4

[
[(r2 + a2)E − La]2

−(r2 + a2 − 2Mr)[m2r2 + (L − aE)2]
]
, (18)

which is equivalent to the expression of a standard Kerr black
hole [2]. We need to study Veff to get the range for the angular
momentum with which the particle can approach the black
hole. One can have an idea about the allowed and prohibited
regions of the particle around the black hole, i.e., Veff ≤ 0
and Veff > 0. We can obtain the possible values of angular
momentum of the test particle by using the circular orbits
conditions, i.e.,

Veff = 0 and
dVeff

dr
= 0. (19)

Here, we are interested in calculating the range of the critical
angular momentum with which particle can reach the horizon
of the black hole, which can be calculated from the effective
potential using Eq. (19). Since geodesics are timelike, i.e.,
dt/dτ ≥ 0, Eq. (13) leads to

1

r2

[
−a(aE − L) + (r2 + a2)

P
�

]
≥ 0, (20)
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and the above condition at the horizon reduces to

E − �H L ≥ 0,

�H = a

(r EH )2 + a2
. (21)

The critical angular momentum of the particle is defined by
LC = E/�H , where �H is the angular velocity of the black
hole at the horizon. This has been calculated numerically for
the rotating regular Hayward’s black hole in Ref. [31] for
both extremal and nonextremal black holes. If L > LC , then
the particle will never reach to the horizon of the black hole,
where LC is the critical angular momentum of the particle.
Instead, if L < LC , then the particle will always fall into the
black hole, and if L = LC , then the particle hits exactly at
the event horizon of the black hole.

4 Center-of-mass energy of the colliding particles in
Hayward’s black hole

We know the range of the angular momentum for which the
particle can reach the horizon and a collision takes place
at the horizon of the black hole. Here, we shall study the
ECM for the collision of two particles with rest masses m1

and m2 (m1 �= m2), which are initially at rest at infinity,
moving toward the rotating regular Hayward’s black hole and
colliding in the vicinity of the event horizon. Let us consider

the case that the particles are coming with energies E1, E2

and angular momentum L1, L2. The 4-momentum of the
i th particle is pμ

i = miu
μ
i , where mi and uμ

i correspond,
respectively, to the mass and the 4-velocity of the i th particle
(i = 1, 2), and the total 4-momenta of the particles is given
by

pμ
t = pμ

(1) + pμ

(2) = m1u
μ

(1) + m2u
μ

(2). (22)

Then ECM of the two particles is given by

E2
CM = −pμ

t ptμ = m2
1 + m2

2 − 2gμν p
μ

(1) p
ν
(2); (23)

by substituting Eq. (22) into Eq. (23), we have

E2
CM = m2

1 + m2
2 − 2m1m2gμνu

μ

(1)u
ν
(2), (24)

which, due to uaua = −1, can be rewritten in the following
form:

ECM = √
2m1m2

√
1 + (m1 − m2)2

2m1m2
− gμνu

μ

(1)u
ν
(2), (25)

when m1 = m2 = m0, Eq. (25) reduces to

ECM = m0
√

2
√

1 − gμνu
μ

(1)u
ν
(2). (26)

Equation (25) is valid for the massive particles. Inserting the
values of gμν , uμ

(1), and uν
(2) from Eqs. (2), (13), (14), and

(15) into Eq. (25), we can obtain ECM of the two particles
for the rotating regular Hayward’s black hole,

E2
CM

2m1m2
= (m1 − m2)

2

2m1m2
+ 1

r(r2 − 2m(r)r + a2)

[
a2[(2m(r) + r)E1E2 + r ]

− 2am(r)(L1E2 + L2E1) − L1L2(−2m(r) + r) + [−2m(r) + r(1 + E1E2)]r2

−
√
r(r2 + a2)(E2

1 − m2
1) + 2m(r)(aE1 − L1)2 − L2

1r + 2m(r)r2m2
1

×
√
r(r2 + a2)(E2

2 − m2
2) + 2m(r)(aE2 − L2)2 − L2

2r + 2m(r)r2m2
2

]
, (27)

where the massm(r) is given by Eq. (5). Obviously, the result
Eq. (27) confirms that the parameter g has influence on ECM.
Thus, ECM depends on the parameters g and a. When g → 0,
in Eq. (27), we obtain the ECM of two different mass particles
of the Kerr black hole [20],

E2
CM

2m1m2
(g → 0) = (m1 − m2)

2

2m1m2
+ 1

r(r2 − 2Mr + a2)

[
a2[(2M + r)E1E2 + r ]

− 2aM(L1E2 + L2E1) − L1L2(−2M + r) + [−2M + r(1 + E1E2)]r2

−
√
r(r2 + a2)(E2

1 − m2
1) + 2M(aE1 − L1)2 − L2

1r + 2Mr2m2
1

×
√
r(r2 + a2)(E2

2 − m2
2) + 2M(aE2 − L2)2 − L2

2r + 2Mr2m2
2

]
. (28)
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Furthermore, if we choose m1 = m2 = m0, and E1 =
E2 = E = 1, then Eq. (27) reduces to

E2
CM

2m2
0

= 1

r(r2 − 2m(r)r + a2)

[
2a2(m(r) + r) − 2am(r)(L1 + L2) − L1L2(−2m(r) + r)

+ 2(−m(r) + r)r2 −
√

2m(r)(a − L1)2 − L2
1r + 2m(r)r2

√
2m(r)(a − L2)2 − L2

2r + 2m(r)r2

]
, (29)

which represents the ECM of two equal mass particles as
shown in [31]. Again, if we consider the case when g → 0,
M = 1, m1 = m2 = m0, and E1 = E2 = E = 1, then
Eq. (27) reduces to

E2
CM

2m2
0

(g → 0) = 1

r(r2 − 2r + a2)

[
2a2(1 + r) − 2a(L1 + L2) − L1L2(−2 + r)

+ 2(−1 + r)r2 −
√

2(a − L2)2 − L2
2r + 2r2

√
2(a − L1)2 − L2

1r + 2r2

]
, (30)

which is exactly the same expression as obtained in [1]. Thus,
we have obtained ECM of the rotating regular Hayward’s
black hole for two different mass particles which is a gen-
eralization of the Kerr black hole. One can easily check that
Eq. (27) has the 0/0-form at the event horizon of the black
hole; therefore we apply the l’Hôpital’s rule to find the limits
of ECM at the event horizon of both extremal and nonextremal
black holes one by one.

4.1 Near horizon collision in near-extremal Hayward’s
black hole

Now, we can study the properties of ECM (27) as r → r EH of
the extremal rotating regular Hayward’s black hole. We note
that in the limit r → r EH , Eq. (27) has the 0/0-form. Hence,
we apply the l’Hôpital’s rule twice and get the following
form:

E2
CM

2m1m2
(r → r EH )

= (m1 − m2)
2

2m1m2
+ 1

(E1 − �H L1)(E2 − �H L2)

×
[
0.60991L1L2 + 1.67177

[
(E1 − �H L1)

2m2
2

+ (E2 − �H L2)
2m2

1

] − 1.42804(L1E2 + L2E1)

+ 0.49184(L2
1E

2
2 + L2

2E
2
1)

+ (3.34356 + 0.98368L1L2)E1E2

]
, (31)

where a = aEH = 0.896105795790474, M = 1, g = 0.5,
r E_H = 1.13802. The critical values of the angular momen-
tum can be calculated by Ei − �H Li = 0 or LCi = Ei/�H

(i = 1, 2), where LCi represents the critical value of angular
momentum of the i th particle and �H = a/(r2

H + a2) is the

angular velocity at the event horizon of the black hole. It is
clear from Eq. (31) that if either LC1 = L1 or LC2 = L2,

then the ECM becomes infinite, i.e., the necessary condition
for getting ECM infinite is L = LC or �H L = E , for each
particle. One can also see the behavior of ECM vs. r for an
extremal rotating regular Hayward’s black hole from Fig. 3; it

can be seen that ECM is infinite for the critical values of angu-
lar momentum L1 = 2.0, 2.0305, 2.34136, 2.52987, corre-
sponding to g = 0, 0.2, 0.5, 0.6, and it remains finite for
other values.

Next we consider the limits E1 = E2 = E , and m1 =
m2 = m0; in this case Eq. (31) reduces to

E2
CM

2m2
0

(r → r EH )

= 1

(E − �H L1)(E − �H L2)

× [0.60991L1L2 + 1.67177[(E − �H L1)
2

+ (E − �H L2)
2]m2

0 − 1.42804(L1 + L2)E

+ 0.49184(L2
1+L2

2)E
2+(3.34356+0.98368L1L2)E

2].
(32)

Here the critical angular momentum in this case can be
calculated by using LC = E/�H . One can observe from
Eq. (32) that if either LC = L1 or LC = L2, i.e., if one
of the particles is coming with a critical angular momentum,
then we should get an infinite amount of ECM and the angular
momentum of one of the particles is not equal to LC or greater
than LC ; then the amount of ECM is finite. One can obtain
the limit of ECM (27) for g → 0 at r → r EH , and a = aE ,
which will take the following form:

E2
CM

2m1m2
(r → r+

H )

= (m1 − m2)
2

2m1m2
+ 1

4(E1 − �H L1)(E2 − �H L2)

×
[
4(E1 − �H L1)

2m2
2 + 8E2(E1 − �H L1)
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Fig. 3 Plots showing the behavior of ECM vs. r for extremal rotating regular Hayward’s black hole with mass of the colliding particles m1 =
1,m2 = 2 and different values of the angular momentum L1 and L2. The vertical line corresponds to the location of the event horizon

−4(E1 − �H L1)L2 + E2
1L

2
2 + E2

2L
2
1 − 2E1E2L1L2

+ 4E2
2m

2
1 − 4E2L2m

2
1 + L2

2m
2
1

]
; (33)

it represents the Kerr black hole case of two different massive
colliding particles.

4.2 Particle collision for nonextremal black hole

If the two horizons of (2) do not coincide, we have a nonex-
tremal rotating regular Hayward’s black hole. As mentioned
above, both the numerator and the denominator of Eq. (27)
vanish at r → r+

H . Hence, applying the l’Hôpital’s rule and
calculating ECM at r → r+

H , after a tedious calculation, we
obtain

E2
CM

2m1m2
(r → r+

H )

= (m1 − m2)
2

2m1m2
+ 0.5(E2 − �H L2)

(E1 − �H L1)

× [0.872182L2
1 + 3.41504E1L1 − 16.8792E2

1

+ 1.97103m2
1

]
+ 0.5(E1 − �H L1)

(E2 − �H L2)

[
0.872182L2

2

+ 3.41504E2L2 − 16.8792E2
2 + 1.97103m2

2

]

+ 2.13440(0.8E1 − L1)(0.8E2 − L2)

− 3.00658L1L2 + 1.97103 + 15.51320E1E2, (34)

where a = 0.8, g = 0.5, and r+
H = 1.50328. The expres-

sion Ei − �H Li = 0 (i = 1, 2) gives the critical angular
momentum of a particle for the nonextremal black hole case,
which is L ′

Ci
= Ei/�H . It seems from Eq. (34) that either

L
′
C1

= L1 or L
′
C2

= L2; then ECM diverges, but in this

case it is not possible because L
′
C1

and L
′
C2

does not lie in
the range of the angular momentum. Hence, one can say that
ECM never becomes infinite; it will remain finite. Further-
more, for E1 = E2 = E , and m1 = m2 = m0, Eq. (34)
takes the form

E2
CM

2m2
0

(r → r+
H )

= 0.5(E − �H L2)

(E − �H L1)

(
0.872182L2

1 + 3.41504EL1

− 16.8792E2 + 1.97103m2
0

)

+ 0.5(E − �H L1)

(E − �H L2)

(
0.872182L2

2 + 3.41504EL2

− 16.8792E2 + 1.97103m2
0

)
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Fig. 4 Plots showing the behavior of ECM vs. r for a nonextremal rotating regular Hayward’s black hole with mass of the colliding particles
m1 = 1,m2 = 2, and for different values of L1, L2, and g. The vertical line corresponds to the location of event horizon

+ 2.13440(0.8E − L1)(0.8E − L2) − 3.00658L1L2

+ 1.97103 + 15.51320E2. (35)

Figure 4 shows the behavior of ECM with radius r for a
nonextremal black hole, which indicates that ECM remains
finite for each value of L1 and L2. Furthermore, the effect
of g can also be seen from Fig. 4, which indicates that ECM

increases with g. The limit of nonextremal ECM for two dif-
ferent mass particles, in the case of g → 0, has the following
form:

E2
CM

2m2
0

(r → r+
H )

= (m1 − m2)
2

2m1m2
− 0.5(E2 − �H L2)

E1 − �H L1

×
(

19.712E2
1 − 3.2E1L1 − 1.2L2

1 − 3.072m2
1

)

+ 2(0.8E1 − L1)(0.8E2 − L2) + 0.6L2
2 − 3.2L1L2

+ 1.6E2L2 + 18.432E1E2 − 9.856E2
2

+ 1.536m2
2 + 3.072, (36)

where a = 0.8, and r+
H = 1.6. From Eq. (36), it is clear that

ECM becomes infinite if one of the angular momenta gets a
critical value.

5 Conclusion

The singularity theorems under fairly general conditions
imply that a sufficiently massive collapsing object will
undergo continual gravitational collapse, resulting in the for-
mation of a singularity. However, it is widely believed that
singularities do not exist in Nature, but that they are an arti-
fact of general relativity. Hence, especially in the absence
of well-defined quantum gravity, the regular models without
singularities received much attention. Also, the astrophysical
black holes may be different from the Kerr black holes pre-
dicted in general relativity [28], but the actual nature of these
objects has still to be verified. The rotating regular Hayward’s
black hole can be seen as one of the non-Kerr black hole met-
rics, which in Boyer–Lindquist coordinates is the same as the
Kerr black hole with M replaced by a mass function m(r),
which has an additional parameter due to the magnetic charge
g; Hayward’s black hole reduces to the Kerr black hole in the
absence of charge (g = 0). Interestingly, for each nonzero
value of g, the Hayward’s black hole is extremal with criti-
cal spin parameter a∗ with degenerate horizons [31]. In this
paper, we have performed a detailed analysis of the ergore-
gion in the rotating regular Hayward’s black hole [27], and
we discuss the effect of the deviation parameter g on the
ergoregion. Our analysis reveals (cf. Fig. 2) that for each a
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there exists a critical g = g∗ such that for g > g∗, the rotat-
ing regular Hayward’s black hole has a disconnected horizon,
and the horizons coincide when g = g∗, and we have two
horizons when g < g∗. When the ergoregion of a rotating
regular Hayward’s black hole is compared with the Kerr black
hole (cf. Fig. 1), we find that the ergoregion is sensitive to
the deviation parameter g, and the ergoregion enlarges as the
value of the deviation parameter increases.

We have also studied the collision of two particles with
different rest masses moving in the equatorial plane of the
rotating regular Hayward’s black hole, and we calculated
the ECM for these colliding particles. We obtain a general
expression of ECM for the rotating regular Hayward’s black
hole, the ECM is calculated when the collision takes place
near the horizon for both extremal and nonextremal black
holes. It is demonstrated that ECM not only depends on the
rotation parameter a of the rotating regular Hayward’s black
hole, but also on the deviation parameter g. Further, for an
extremal black hole, we address the case of arbitrarily high
ECM when the collision occurs near the horizon and one of the
particles has critical angular momentum. We also calculate
ECM for the nonextremal rotating regular Hayward’s black
hole, and we found that ECM is finite with an upper bound
which increases with an increase in the parameter g.
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