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Abstract High energy (CERN SPS and LHC) inelastic
pp (p p̄) scattering is treated in the framework of the addi-
tive quark model together with Pomeron exchange theory.
We extract the midrapidity inclusive density of the charged
secondaries produced in a single quark–quark collision and
investigate its energy dependence. Predictions for the πp col-
lisions are presented.

1 Introduction

Regge theory provides a useful tool for the phenomenological
description of high energy hadron collisions [1–4]. The quan-
titative predictions of Regge calculus are essentially depen-
dent on the assumed coupling of participating hadrons to the
Pomeron. In our previous papers [5,6] we described elas-
tic pp (p p̄) scattering and diffractive dissociation processes
including the recent LHC data in terms of a simple Regge
exchange approach in the framework of the additive quark
model (AQM) [7,9], or constituent quarks model as it is also
referred to. It has been successfully applied to pp scattering
processes at LHC energies [8]. In the present paper we con-
sider the inclusive densities of produced secondaries in the
midrapidity region in the same approach.

In AQM baryon is treated as a system of three spatially sep-
arated compact objects—the constituent quarks. Each con-
stituent quark is colored and has an internal quark–gluon
structure and a finite radius that is much less than the radius
of the proton, r2

q � r2
p. This picture is in good agreement

both with SU (3) symmetry of the strong interaction and the
quark–gluon structure of the proton [10–13]. The constituent
quarks play the roles of incident particles in terms of which
pp scattering is described in AQM.

In the case of inelastic pp collisions the secondary par-
ticles are produced in AQM in one or several qq collisions,
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so it opens the possibility to investigate inclusive densities of
the secondaries produced in the single qq collision at the dif-
ferent initial energies. After that we can calculate the central
inclusive densities in πp collisions without any new param-
eters.

2 High energy pp interactions in AQM

Elastic amplitudes for large energy s = (p1 + p2)
2 and small

momentum transfer t are dominated by Pomeron exchange.
We neglect the small difference in pp and p p̄ scattering com-
ing from the exchange of negative signature Reggeons, Odd-
eron (see e.g. [14] and references therein), ω-Reggeon etc.,
since their contributions are suppressed by s.

The single t-channel exchange results in the amplitude of
constituent quarks scattering,

M (1)
qq (s, t) = γqq(t) ·

(
s

s0

)αP (t)−1

· ηP (t), (1)

where αP (t) = αP (0) + α′
P · t is the Pomeron trajectory

specified by the intercept and slope values αP (0) and α′
P ,

respectively. The Pomeron signature factor,

ηP (t) = i − tan−1
(

παP (t)

2

)
,

determines the complex structure of the amplitude. The factor
γqq(t) = g1(t) · g2(t) has the meaning of the Pomeron cou-
pling to the beam and target particles, the functions g1,2(t)
being the vertices of the constituent quark–Pomeron interac-
tion (filled circles in Fig. 1). It is worth to emphasize that the
qq interaction is described here by single effective Pomeron
exchange between each qq pair. Generally it may include
the contributions of several Gribov bare Pomerons [15] and
the parameters of the effective Pomeron could be different
from those of the bare Pomerons. At the same time the one
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quark interaction with the two different target quarks is medi-
ated by the exchange of the two effective Pomerons. In this
respect there is a close resemblance between the nucleon–
nucleon scattering in AQM and the nucleus–nucleus scatter-
ing in Glauber theory. The qq interaction plays the same role
in the first case as the NN interaction in the second.

The elastic pp scattering amplitude (or the p p̄ scattering
amplitude, here we do not distinguish between the two) is
basically expressed as

Mpp(s, t) =
∫

dK dK ′ψ∗(k′
i + Q ′

i ) ψ∗(ki + Qi )

×V (Q, Q ′) ψ(k′
i ) ψ(ki ). (2)

In this formula ψ(ki ) ≡ ψ(k1, k2, k3), is the initial proton
wave function in terms of the quarks’ transverse momenta
ki , while ψ(ki + Qi ) ≡ ψ(k1 + Q1, k2 + Q2, k3 + Q3) is
the wavefunction of the scattered proton. The interaction ver-
tex V (Q, Q ′) ≡ V (Q1, Q2, Q3, Q ′

1, Q
′
2, Q

′
3) stands for the

multipomeron exchange, Qk and Q ′
l are the momenta trans-

ferred to the target quark k or beam quark l by the Pomerons
attached to them, Q is the total momentum transferred in the
scattering, Q2 = Q′ 2 = −t .

The scattering amplitude is presented in AQM as a sum
over the terms with a given number of Pomerons,

Mpp(s, t) =
∑
n

M (n)
pp (s, t), (3)

where the amplitudes M (n)
pp collect all diagrams comprising

various connections of the beam and target quark lines with n
Pomerons. Similar to Glauber theory [16,17] one has to rule
out the multiple interactions between the same quark pair.
AQM permits the Pomeron to connect any two quark lines
only once. It crucially decreases the combinatorics, leaving
the diagrams with no more than n = 9 effective Pomerons.
Several AQM diagrams are shown in Fig. 1.

In the following we assume the Pomeron trajectory to have
the simplest form,
(
s

s0

)αP (t)−1

= e�·ξ e−r2
q q

2
, ξ ≡ ln

s

s0
, r2

q ≡ α′ · ξ.

a b c

q q1 q 2 q1 q2

Fig. 1 The AQM diagrams for pp elastic scattering. The straight lines
stand for quarks, the wavy lines denote Pomerons, Q is the momentum
transferred, t = −Q2. a The one of the single Pomeron diagrams, b
and c represent double Pomeron exchange with two Pomeron coupled
to the different quark b and to the same quarks c, q1 + q2 = Q

The value r2
q defines the radius of the quark–quark interac-

tion, while S0 = (9 GeV)2 has the meaning of a typical
energy scale in Regge theory.

In the first order there are nine equal quark–quark contri-
butions due to one Pomeron exchange between qq pairs. The
amplitude (2) reduces to a single term with Q1 = Q ′

1 = Q,
Q2,3 = Q ′

2,3 = 0,

M (1)
pp = 9

(
γqqηP (t)e�·ξ

)
e−r2

q Q2
FP (Q, 0, 0)2, (4)

expressed through the overlap function

FP (Q1, Q2, Q3) =
∫

dK ψ∗(k1, k2, k3)

×ψ(k1 + Q1, k2 + Q2, k3 + Q3). (5)

The function FP (Q, 0, 0) plays the role of a proton form
factor for the strong interaction in AQM.

The quarks’ wave function has been taken in the simple
form of Gaussian packets,

ψ(k1, k2, k3) = N
[
e−a1(k2

1+k2
2+k2

3) + C1 e
−a2(k2

1+k2
2+k2

3)

+C2 e
−a3(k2

1+k2
2+k2

3)
]
, (6)

normalized to unity. The parametrization by the single expo-
nent is unable to reproduce the minimum in dσ/dt distri-
bution evidently seen in the experimental data for

√
s =

7 TeV [18,19]. The two exponential fit used in our previous
papers [5,6] reproduces this minimum but gives too low val-
ues of dσ/dt at |t | ∼ 0.7−0.8 Gev2. In the present paper the
wave function is parameterized by the sum of three Gaussian
exponents, which allows for the better description of dσ/dt .

Now the parameters read

� = 0.14, α′ = 0.116 GeV−2, γqq = 0.45 GeV−2.

a1 = 9.0 GeV−2, a2 = 0.29 GeV−2,

a3 = 2.0 GeV−2, C1 = 0.024, C2 = 0.05.

One has to remark here that we do not claim the real matter
distribution inside the proton to be close to the Gaussian
shape, this form is suitable only to perform all the integrals
analytically. The value a1 is quite compatible with the large
proton size assumed above, whereas a2,3 values manifest the
presence of the small radius components in the proton wave
function. However, their relative weights are small so the total
wave function (6) matches the condition r2

p � r2
q , which is

effectively fulfilled for the mean radii that are important for
the calculations validity.
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Fig. 2 Left Differential cross section of the elastic pp scattering (solid
line) and πp scattering (dashed line), see Sect. 4, at

√
s = 7 TeV. The

experimental points for pp scattering have been taken from [18,19].
Right Pseudorapidity distribution of the secondaries dNNSD/dη in pp

scattering for the non-single diffractive events. The solid line shows the
AQM estimates by Eq. (12). The experimental points have been taken
from [20]

The higher orders elastic terms are expressed through the
functions (5) integrated over Pomerons’ momenta,

M (n)
pp (s, t) = in−1

(
γqqηP (tn)e

�·ξ
)n ∫

d2q1

π
· · · d

2qn
π

×π δ(2)(q1 + . . . + qn − Q)

× e−r2
q (q2

1 +···+q2
n ) 1

n!
∑

n connections

FP (Q1, Q2, Q3)

×FP (Q ′
1, Q

′
2, Q

′
3), tn 	 t/n. (7)

The sum in this formula refers to all distinct ways to con-
nect the beam and target quark lines with n Pomerons in
the scattering diagram. The set of momenta Qi and Q ′

l the
quarks acquire from the attached Pomerons is particular for
each connection pattern. A more detailed description can be
found in [5].

With the amplitude (3) the differential cross section in the
normalization adopted here is evaluated as

dσ

dt
= 4π

∣∣Mpp(s, t)
∣∣2

= 4π
[(

Re Mpp(s, t)
)2 + (

Im Mpp(s, t)
)2

]
. (8)

The optical theorem, which relates the total cross section and
the imaginary part of the amplitude, in this normalization
reads

σ tot
pp = 8π Im Mpp(s, t = 0). (9)

Fig. 3 The first quark order diagram contributing to the inelastic par-
ticle production in pp collision

The condition for the AQM applicability, r2
q/r2

p � 1, holds
rather well, since r2

p 	 12 Gev−2 whereas r2
q 	 1.5 Gev−2

at
√
s ≈ 7 TeV.

The resulting differential cross sections for pp scattering
at

√
s = 7 TeV are presented in Fig. 2 together with the

predictions for πp scattering at the same energy (see below).

3 AGK cuts and inclusive densities in pp and qq
interactions

All amplitudes of the inelastic processes in high energy pp
collisions can be treated as the sum of various absorptive parts
of elastic pp amplitude; see the AGK cutting rules [21]. In
the AQM the diagram with a single qq interaction, Fig. 3,
has only one absorptive part.

The one-Pomeron cut in the left hand side of Fig. 3 cor-
responds to the multiperipheral ladder of the produced sec-
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a

c

b

Fig. 4 The diagrams with a double interaction

ondaries in the right hand side of Fig. 3. The resulting cross
section is σ (1).

In the case of double interaction in Fig. 1b the imaginary
part is given by the sum of three different absorptive parts
presented in Fig. 4. The first one, the cut between Pomerons,
is shown in Fig. 4a. It describes the elastic and diffractive
dissociation processes without production of secondaries in
the central (midrapidity) region. The second absorptive part,
Fig. 4b, corresponds to the cut of one Pomeron and gives the
first rescattering correction to the processes in Fig. 3. The
multipheripheral ladders in Figs. 3 and 4b are practically
the same and have the same midrapidity inclusive densities
dNqq/dy. The absorptive part in Fig. 4b has the numerical
factor −4 due to the combinatorics [21]. The third absorptive
part is shown in Fig. 4c, where the cut slices both Pomerons. It
means the simultaneous production of two multipheripheral
ladders of the secondaries. These ladders are also practically
identical to those in Figs. 3 and 4b and result in equal inclu-
sive densities dNqq/dy (we neglect the very small numerical
difference coming from the energy conservation). The com-
binatorial factor here is +2 [21]. The contribution to the inclu-
sive density of the secondaries from Fig. 4c is 4dNqq/dy. It is
compensated by the negative contribution −4dNqq/dy from
the process in Fig. 4b. Finally, the sum of all absorptive parts
collected in Fig. 4 yields a zero contribution to the inclusive
densities of secondary particles in complete agreement with
the AGK cutting rules [21].

Similarly, there is no contribution to the resulting inclu-
sive density due to diagrams with a larger number of quark–
quark interaction, therefore it is only the impulse approxima-
tion diagrams in Fig. 3 that provide the inclusive density of
the secondaries produced in pp collisions in the midrapidity
region,

σ inel
pp · dNpp

dy
= 9 σ (1)

qq · dNqq

dy
, (10)

where σ
(1)
qq is the first order contribution to the total cross

section. This equation is true as well for the pseudorapidity
inclusive densities, which amounts to the replacement dy →
dη.

The cross section of pp interaction used in (10) depends
on the way the value of the inclusive density is fixed. It is
determined as the number of the secondaries divided by the
number of events in the small interval dy in the midrapid-
ity region. In the diffractive dissociation the secondaries are
produced practically only in the fragmentation regions; there-
fore, the number of secondary particles in the midrapidity
region does not change whether or not we include diffractive
dissociation events in our sample. However, the number of
events, i.e. the denominator in the definition of dN/dy, dif-
fers for these two cases, so the net value dNpp/dy in the left
hand side of (10) has to be multiplied by σ inel

PP if we take all
inelastic events, or by σ nondiffr

PP if we take the events without
diffractive dissociation.

Let us try to estimate the energy dependence of dNqq/dy
and dNqq/dη using the existing data. There are several avail-
able experimental points for dNpp/dη at the different ener-
gies measured in all inelastic events. They are shown in Fig. 5
together with the calculations of dNpp/dy and dNpp/dη

in the quark–gluon string model (QGSM) [22,23]. Actually
QGSM output is employed here only to extrapolate the exist-
ing experimental data.

The inelastic cross section entering Eq. (10) can be
obtained from the identity

σ inel
pp = σ tot

pp − σ elastic
pp , (11)

where the total cross section is evaluated through the optical
theorem (9) by summing up all nine orders of AQM dia-
grams (7), while the elastic cross section, σ elastic

pp , is obtained
by integrating differential cross section (8) over t . The cross
section σ

(1)
qq is given by the first order of the AQM amplitude

(4).
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Fig. 5 Left The pseudorapidity distributions of all charged secondaries
produced in the inelastic pp and p p̄ collisions at different energies
together with their description in QGSM (solid curve). The dotted
line shows the extracted dNqq/dη values. The dashed line presents
the obtained pseudorapidity distribution of charged secondaries in

the inelastic πp collision. The experimental points are taken from
Refs. [24,25]. Right The total cross sections of pp (solid line) and
πp (dashed line) as the initial energy functions. The experimental pp
points are taken from [26,27]

Equations (10) and (11) allow one to find dNqq/dη values
presented in Fig. 5. At the LHC energies

√
s > 0.9 TeV

dNqq/dη becomes independent on the initial energy within
our theoretical accuracy ∼10 %.

Experimental papers often present the data for the energy
dependence of the pseudorapidity distribution of the secon-
daries, dNNSD/dη, measured in the non-single diffractive
events. It can be obtained by the formula

dNNSD

dη
= dN

dη

σ inel
pp

σ inel
pp − 2σ SD

pp
, (12)

where σ SD
pp is the cross section of the single diffractive pp

scattering (from one side). To make a quick estimate we have
used σ SD

pp values calculated in AQM in our previous paper [6].
The results are shown in Fig. 2 (right panel) together with the
existing experimental points. We get a reasonable agreement,
the ratio dNNSD

dη
/ dN

dη
∼ 1.1 ÷ 1.15 at the LHC energies.

4 Predictions for π p collisions

To obtain the predictions of midrapidity inclusive densities in
πp collisions one needs to know the total πp cross section.
It has not been measured experimentally at the very high
energies but can be calculated in AQM. In our approach the
interaction of quarks and antiquarks constituting the pion
are the same as those in the proton (so far as only Pomeron
exchange is encountered). The amplitude of the elastic πp

collision is evaluated in AQM similarly to the elastic pp one,
see (7),

M (n)
πp (s, t) = in−1

(
γqqηP (tn)e

�·ξ
)n ∫

d2q1

π
· · · d

2qn
π

×π δ(2)(q1 + · · · + qn − Q)

× e−r2
q (q2

1 +···+q2
n ) 1

n!
∑

n connections

Fπ (Q1, Q2)

×FP(Q ′
1, Q

′
2, Q

′
3), tn 	 t/n. (13)

Here Fπ and FP are the pion and proton form factors, while
all other variables are the same as those for pp scattering.

The quark combinatorics is more simple for πp collisions
compared to pp case. In particular, there are only six orders
of the admissible diagrams. The sum for the first order con-
tribution reduces to a single term, 6Fπ (Q, 0) FP (Q, 0, 0),
Q2 = −t . The second order sum includes three types of
diagrams,

1

2!
∑

2 connections

Fπ (Q1, Q2) FP (Q ′
1, Q

′
2, Q

′
3)

= 6 Fπ (Q, 0)FP (q1, q2, 0) + 3 Fπ (q1, q2)FP (Q, 0, 0)

+ 6 Fπ (q1, q2)FP (q1, q2, 0),

Q = q1 + q2,

where the first two terms come from the diagram with both
Pomerons coupled to the same quark line in the pion (first
term, Fig. 6a) and in the proton (second term, Fig. 6b); in the
third term they connect different quark lines (Fig. 6c). The
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a b c

q1 q1 q 2 q1 q2q2

Fig. 6 Second order AQM diagrams for πp scattering

numerical coefficients encounter the number of connections
resulting in equal expressions after variables changing in the
integrals (13).

The rest orders have a similar structure derived from the
combinatorics to redistribute q1, . . . , qn momenta among Qi

and Q ′
i groups. In the highest order, containing six effective

Pomerons,

1

6!
∑

6 connections

Fπ (Q1, Q2, Q3) FP (Q ′
1, Q

′
2, Q

′
3)

= Fπ (q1 + q2 + q3, q4 + q5 + q6)

×FP (q1 + q4, q2 + q5, q3 + q6),

each quark from the proton interacts with both the quarks
from the pion.

The differential and the total πp cross sections are eval-
uated via Eq. (8) and the optical theorem (9) respectively.
Our results for the elastic πp scattering show a minimum at√
s = 7 TeV placed at −t ≈ 0.65 GeV2 (Fig 2). The ratio of

the total pp and πp cross section in the optical approxima-
tion of AQM is well known to be 3/2 [7]. With the multiple
rescattering included this value changes depending on the
ratio of proton and pion radii. The experimental data [28]
gives for the ratio r2

π/r2
p ≈ 0.57, so we take the pion wave

function in the same form, Eq. (6), rescaling all radius param-
eters as aπ

1,2,3 = 0.57a p
1,2,3. Actually the dependence σ tot

πp on
the parameters of a1,2,3 and C1,2 is rather weak. We get the
ratio σ tot

pp/σ
tot
πp ≈ 1.2÷1.3. Unfortunately there are no exper-

imental data on the πp scattering at the LHC energies, the
AQM results for them are presented in Fig. 5 together with
the predictions for the pp case. Note here as well that AQM
predictions for dσpp/dt (t = 0) are in good agreement with
the data [5].

The obtained values σ tot
πp allow one to find the midra-

pidity inclusive density in πp collisions. The results for
dNπp/dη(η = 0) as a function of the initial energy are
presented in Fig. 5. The obtained data can be used for the
calculation of particle production at the very high energies;
in particular, in cosmic ray physics.

5 Conclusion

In the framework of AQM we have extracted the inclusive
density of the secondaries in qq interactions in the midrapid-

ity region. We used these values to get a prediction for πp
collisions at high energies. These quantities can be useful to
estimate the secondary production at the very high energies,
say, in cosmic ray physics.

The applicability of AQM requires the contribution from
the multipomeron qq interactions to be small compared to
the interaction between different quarks responsible in this
approach for the pp scattering. This is valid for the soft pro-
cesses, whose amplitude is practically pure imaginary so
that the qq cross section does not exceed the geometrical
limit ∼r2

q . On the other hand there are additional combi-
natorial factors increasing the pp cross section, so it can
always be assumed to be larger than the qq one. A reason-
able description of the elastic pp scattering has been reached
without appealing to the enhanced diagrams with interacted
Pomerons. It provides evidence that AQM is at work up to
LHC energies. However, for the energies essentially above
the LHC ones the multipomeron interactions would begin to
play an important role, which could modify our results for
asymptotically high energies.
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