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Abstract In this paper we study anisotropic spherical poly-
tropes within the framework of general relativity. Using
the anisotropic Tolman–Oppenheimer–Volkov equations, we
explore the relativistic anisotropic Lane–Emden equations.
We find how the anisotropic pressure affects the boundary
conditions of these equations. Also we argue that the behav-
ior of physical quantities near the center of star changes in
the presence of anisotropy. For constant density, a class of
exact solution is derived with the aid of a new ansatz and its
physical properties are discussed.

1 Introduction

In theoretical astrophysics there is a growing interest to dis-
cuss the stellar structures in which the matter content is an
anisotropic fluid. The effect of anisotropy can be studied both
in Newtonian gravity and general relativity. For the config-
urations with not extremely high densities, the presence of
an anisotropy factor has been discussed in the Newtonian
regime [1–3] and otherwise general relativity must be used.

In 1972 Ruderman [4] for the first time argued that the
nuclear matter may have anisotropic features in the very high
density regime (>1015 gr

cm3 ) and thus the nuclear interaction
needs to be treated from a relativistic point of view. After
the pioneering work of Bowers and Liang [5] in 1974, the
study of anisotropic distribution of matter got wide atten-
tion. Anisotropy arises due to the existence of solid stellar
core or by the presence of type-IIIA superfluid [6,7], phase
transitions, pion condensation in a star [8], electromagnetic
field [9–11], rotation, etc. For an exhaustive review on the
anisotropic pressure see [12], and a comprehensive study of
this topic may be found in [13].

Most studies assume that the matter of the anisotropic star
is described by an equation of state relating the radial pres-
sure Pr or transversal pressure P⊥ to the energy density ρ.
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The polytropic equation of state is one of the most impor-
tant choices for a state equation which has a wide range of
applications [14–17]. There are two possible cases of the
polytropic equation of state, namely: the radial pressure is
proportional to the baryonic density, or it is proportional to
the total energy density. Here we consider the latter case,
Pr = Kργ , where γ = 1 + 1

n is the polytropic exponent,
ρ is the total energy density and n to the energy density For
n = 2, the exact solutions of Einstein’s field equations for an
anisotropic sphere have been obtained by Thirukkanesh and
Ragel [18].

The anisotropic model has been investigated for uniform
matter density in [19] and for variable density distribution in
[20,21].

Anisotropic pressure can affect the stability of the stellar
objects. Following the Bondi formalism, the stability of a
locally anisotropic fluid was first studied in [22].A general
study of this issue, following the Chandrasekhar formalism
[23], was reported in [24–26]. Dev and Gleiser [2,27,28]
have extended the variational formalism of Chandrasekhar
for an isotropic star to study the stability of anisotropic gen-
eral relativistic spheres against radial perturbations. Assum-
ing some specific density profiles and the adiabatic expo-
nent, they have found that there can exist stable relativistic
anisotropic spheres leading to instability in isotropic spheres.

Here our main purpose is to obtain the exact solutions
of general relativistic star equations in the presence of
anisotropic pressure. Maharaj and Sharma [29] have obtained
some exact solutions of compact anisotropic stars analyti-
cally by assuming a linear equation of state with an appro-
priate ansatz.

The investigation of anisotropic configurations was not
restricted to static spherically symmetric cases. All possible
static cylindrical symmetric solutions are analyzed in [30],
satisfying the conformal flatness condition. Also in [31], the
stationary case is studied in detail. A general study of this
issue has been presented in [32].
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Also the modeling of dense charged gravitating objects
in strong gravitational fields has attracted much interest in
recent years because of its relevance to relativistic astro-
physics [33]. The investigation of these objects requires
an exact solution of the Einstein–Maxwell system. An
anisotropic fluid with a linear, quadratic, and polytropic equa-
tion of state in the presence of an electromagnetic field is
studied in [34–38].

The importance of an equation of state in a stellar model
has been emphasized by Varela et al. [39] who provided a
mechanism of dealing with charged anisotropic matter in
a general approach. Also the exact solutions for a charged
anisotropic quark star have been reported by Sunzu et al.
[40].

Anisotropy can exist not only in ordinary compact stars
but also in hypothetical objects like boson stars [41] and
gravastars [42]. Besides the isolated objects in astrophysics,
anisotropy is present in globular clusters, galactic bulges, and
dark halos [43,44].

In this paper we want to discuss the anisotropic poly-
tropes in the context of general relativity. In the next sec-
tion we derive the relativistic Lane–Emden equations in the
presence of anisotropy factor. Then we obtain their bound-
ary conditions and generalize the Chandrasekhar’s theorem
[45] to the anisotropic case. In Sect. 3, first we find a series
expansion for the dimensionless Lane–Emden function, θ ,
and the anisotropy factor, �, near the center of star. Then
in order to obtain the exact solutions, we have assumed that
the presence of anisotropy factor does not change the gen-
eral form of the relativistic hydrostatic equilibrium equations.
This ansatz leads us to find a new class of exact solutions for
the anisotropic Lane–Emden equations for constant density.
This procedure is different from the usual approach [2,18,46]
which is to suppose an ansatz on the form of anisotropy factor
and try to get the physical solution of the equations. At the
end in Sect. 4, we present a summary of the main conclusions.

2 Relativistic anisotropic polytropes

Since we deal with the static and spherically symmetric con-
figurations, we use the following metric:

ds2 = exp [ν(r)]dt2 − exp[κ(r)]dr2 − r2d�2 , (1)

The components of the energy-momentum tensor for
anisotropic matter are

T 0
0 = ρc2; T 1

1 = −Pr; T 2
2 = T 3

3 = −P⊥; (2)

T j
k = 0 i f j �= k.

So the Einstein field equations become

exp (−κ)

[
1

r

dν

dr
+ 1

r2

]
− 1

r2 = 8πGPr

c4 , (3)

exp (−κ)

[
1

r

dκ

dr
− 1

r2

]
+ 1

r2 = 8πGρ

c2 , (4)

1

2
exp (−κ)

[
d2ν

dr2 + 1

2

(
dν

dr

)2

+ 1

r

(
dν

dr
− dκ

dr

)

−1

2

(
dν

dr

) (
dκ

dr

)]
= 8πGP⊥

c4 , (5)

and the radial component of the Bianchi identities reduces to
the equation of hydrostatic equilibrium:

dPr

dr
= −1

2

dν

dr
(Pr + ρc2) + 2�

r
, � = P⊥ − Pr. (6)

In fact this equation can be obtained from Eq. (3)–(5) and
usually it is convenient to use it instead of (5). The set of
equations (3), (4), and (6) contain five unknown functions,
κ(r), ν(r), Pr(r), P⊥(r), and ρ(r), and we have to add two
more equations to make the set of equations closed. To do
this, we use the polytropic equation of state and introduce a
new ansatz for the anisotropy factor, which is explained in
the next section.

To obtain a unique solution of the Einstein equations, one
must also specify the boundary conditions. Outside the star,
the spacetime geometry is described by the Schwarzschild
metric. Thus we have

κ = −ν = − ln

(
1 − 2GM

c2r

)
for r ≥ R (7)

where R is the radius of star and M is its mass. By integrat-
ing (4) with initial condition κ(0) = 0 (in order to avoid a
singularity, κ must tend to zero at least as r2 for r → 0), we
get

κ = − ln

[
1 −

(
8πG

rc2

) ∫ r

0
ρr2dr

]
. (8)

By defining the auxiliary function

u(r)=c2r
[1 − exp (−κ)]

2GM
= M(r)

M
; (u(0)=0, u(R)=1),

(9)

Equation (4) becomes

M
du(r)

dr
= 4πρr2, (10)
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where M(r) is the relativistic mass inside the radius r :

M(r) = 4π

∫ r

0
ρr2dr. (11)

By using (6) and (9), we can obtain the Tolman–Oppenhe-
imer–Volkov (TOV) equation of hydrostatic equilibrium for
the spherically static anisotropic star from (3):

dPr

dr
=

−G
(
ρ + Pr

c2

) [
M(r) + 4π Pr

c2 r3
]

r2
[
1 − 2GM(r)

c2r

] + 2�

r
(12)

As is obvious, vanishing � recovers the TOV equation for
isotropic star. Moreover, in the non-relativistic limit (c →
∞), one can easily obtain the anisotropic Jeans equation for
the radial pressure:

dPr

dr
= −GρM(r)

r2 + 2�

r
. (13)

The boundary conditions of (12) are

M(0) = 0, Pr(0) = P0 , (14)

M(R) = M, Pr(R) = 0 . (15)

These conditions imply that the radial pressure is finite at the
origin and vanishes at the surface of star. The mass function
M(r) goes to zero at the origin and reduces to the total mass
at the surface. For a specified � and implicating the equation
of state

Pr = Pr(ρ), (16)

we obtain a closed system of equations, (11), (12), and (16).
Then the metric coefficients are given by (6) and (10).

As we have mentioned before, for many astrophysi-
cal applications, assuming the polytropic equation of state
enables one to make an approximate model of a star. One can
always parametrize this equation by introducing the Lane–
Emden function defined by

Pr = P0θ
n+1, ρ = ρ0θ

n (17)

where ρ0 and P0 are the central values of relativistic den-
sity and pressure. With respect to this new function, Eq. (6)
becomes

2q0(n + 1)
dθ

dr
− 4�

rθnρ0
+ (q0θ + 1)

dν

dr
= 0, (18)

where

q0 = P0

ρ0c2 . (19)

This equation yields

ν = ν0 + ln

(
1 + q0

1 + q0θ

)2(n+1)

− 4

ρ0c2

∫ r

0

�dr

rθn(q0θ + 1)
,

(20)

where the integration constant ν0 is the central value of ν. To
find it, we use the fact that the value of the above expression
is given by Eq. (7) at the surface of the star. This yields

ν0 = ln
1 − 2GM

Rc2

(1 + q0)2(n+1)
+ 4

ρ0c2

∫ R

0

�dr

rθn(q0θ + 1)
. (21)

So we can write the metric coefficient ν(r) in terms of θ and
� as

ν(r) = ln
1 − 2GM

Rc2

(1 + q0θ)2(n+1)
+ 4

ρ0c2

∫ R

r

�dr

rθn(q0θ + 1)
. (22)

Substituting e−κ from (9) and dν
dr from (18) into Eq. (3), and

using (10), the above equation reduces to

q0(n + 1) dθ
dr r

(1 + q0θ)

(
1 − 2GM

rc2 u

)
+ GMu

rc2 + GMq0θ

c2

du

dr

+ 2�

ρ0c2θn(1 + q0θ)

(
1 − 2GMu

rc2

)
= 0. (23)

Now defining the dimensionless parameters ξ and η:

η = M

4πρ0α3 u , r = αξ, (24)

where 1 α2 = ± (n+1)P0
4πGρ2

0
, Eqs. (10) and (23) take the following

form:

±ξ − 2q0(n + 1)η

1 + q0θ

(
ξ

dθ

dξ
+ 2

�

ρ0c2θn(n + 1)q0

)

+η + q0θξ
dη

dξ
= 0, (25)

dη

dξ
= θnξ2, (26)

which are the general relativistic Lane–Emden equations for
anisotropic polytropes. In the non-relativistic limit, accord-
ing to (19), q0 ∼ 0 and one can recover the Newtonian
anisotropic Lane–Emden equation [3]. Also setting � = 0,
the isotropic Lane–Emden equation is obtained.

In Eq. (25) if ξ tends to zero, we will have

dθ

dξ
|ξ→0 = ∓2�(0)

ρ0c2(n + 1)q0ξ
|ξ→0. (27)

So we arrive at the following theorem.

1 The plus sign holds if −1 < n < ∞, and the minus sign if −∞ <

n < −1.

123



347 Page 4 of 8 Eur. Phys. J. C (2016) 76 :347

Theorem The finite solutions of relativistic anisotropic
Lane–Emden equations at the origin have to satisfy the fol-
lowing relations:

dθ

dξ
|ξ→0 = ∓2�(0)

ρ0c2(n + 1)q0ξ
|ξ→0, θ(0) = 1, η(0) = 0.

(28)

This is the generalization of Theorem 1 in [3] for the rela-
tivistic anisotropic case.

3 Analytical solutions of relativistic Lane–Emden
equation

In this section we shall discuss how one can solve the Lane–
Emden equations (25), (26) with the boundary conditions
(28). These are a system of two equations for three unknowns,
the function θ(ξ), �(ξ), and η(ξ). To solve these equations,
we need another equation. One can assume either a special
form for one of the above functions or a mathematical relation
between these functions in order for the set of equations to be
closed. Here we use the latter approach, which is explained
in Sect. 3.2.

First in Sect. 3.1 we find a series expansion of θ(ξ), �(ξ),
and η(ξ) near the center of anisotropic star. For the isotropic
case one can find the corresponding series expansion in [14]
and the references in it. That is,

θ ≈ 1 + aξ2 + bξ4 + · · · , (29)

η = ξ3

3
+ na

ξ5

5
+ [nb + n(n − 1) a

2

2 ]ξ7

7
, (30)

where

a = ∓ ( 1
3 + 4 q0

3 + q2
0 )

2
, (31)

b =
[
n

15
+ 2nq0

9
+

(
16n

45
+ 2

3

)
q2

0

+
(

6n

5
+ 8

3

)
q3

0 + (n + 2)q4
0

]
/8 . (32)

In Sect. 3.2 we shall solve the Lane–Emden equations
assuming the density is constant throughout the star. A similar
calculation for an isotropic star has been derived by Tooper
[47]. In this case, the variables θ and η are separable and the
exact analytical solutions of (25) and (26) for � = 0, are [47]

θ =

[
(1 + 3q0)

√
1 − 2q0ξ2

3 − (1 + q0)

]

q0

[
3(1 + q0) − (1 + 3q0)

√
1 − 2q0ξ2

3

] , (33)

η = ξ3

3
. (34)

3.1 Series expansion

Near the center of star, we assume that

θ(ξ) =
∞∑
k=0

akξ
k,

�(ξ) =
∞∑
k=0

bkξ
k, (35)

η(ξ) =
∞∑
k=0

dkξ
k .

Inserting these expressions into the Lane–Emden equations
(25) and (26), we get

a0 =1, a1 = ±2�′(0)

ρc2(n + 1)q0
, a2 =∓1

2

(
1

3
+q2

0 + 4

3
q0

)
,

(36)

b0 = 0, b1 = �′(0), (37)

d1 = 0, d2 = 0, d3 = 1

3
, d4 = ∓2n�′(0)

4c2(n + 1)q0
, (38)

provided that the pressure and density gradient (and also
�(0) according to Eq. (28)) are finite at the center of star.
Thus if r → 0, η ≈ ξ3, � ≈ ξ , and θ ≈ 1. Comparing Eqs.
(36)–(38) with (31) and (32), one can find how the anisotropy
factor affects the behavior of quantities near the center of star.

3.2 An exact solution

Following [3], we assume that the presence of � does not
change the forms of the isotropic Lane–Emden equations
and it only modifies the coefficients of these equations. To
do this, noting Eq. (18), we introduce a constant m such that
(hereafter we set c = 1)

2q0(n + 1)dθ − 4�

rρ0θn
dr = 2q0(m + 1)dθ. (39)

Substituting this into Eq. (18) and integrating it, the metric
coefficient ν(r) becomes

ν(r) = ln

[
(1 − 2GM

R )

(1 + q0θ)2(m+1)

]
, (40)
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Fig. 1 Anisotropy factor as a
function of ξ for different values
of k and q0

which is identical to the isotropic one [14] in which the coeffi-
cient n has changed tom. Using Eqs. (9) and (40) and defining
a dimensionless parameter ξ such that

r = α̃ξ (m �= −1,±∞), (41)

where α̃ = [± (m+1)P0
4πGρ2

0
] 1

2 . Equations (25) and (26) reduce to

{ [±1 − 2q0(m + 1)
η
ξ
]

1 + q0θ

}
ξ2 dθ

dξ
+ η + q0ξθ

dη

dξ
= 0, (42)

dη

dξ
= θnξ2. (43)

Equations (42) and (43) are the extended forms of the rel-
ativistic Lane–Emden equations for anisotropic configura-
tions, resulting by our ansatz described above.

Here we want to obtain the analytical solution of aniso-
tropic Lane–Emden equations for constant density. For n =
0, a solution of Eqs. (42) and (43) satisfying the initial con-
ditions (28) is

θ = (1 + 3q0)(1 − q0ξ
2

2k )

2k
3 − (1 + q0)

q0[3(1 + q0) − (1 + 3q0)(1 − q0ξ2

2k )
2k
3 ]

, (44)

in which k = 3
4(m+1)

is a natural number and q0 > 0. This
solution vanishes at

ξR =
√√√√2k

q0

[
1 −

(
q0 + 1

3q0 + 1

) 3
2k

]
, (45)

which is the dimensionless value of the radial coordinate at
the boundary. Thus we find that

�

P0
=

(1 + q0)(1 + 3q0)(3 − 4k)ξ2
(

1 − q0ξ
2

2k

)−1+ 2k
3

6k

(
−3(1 + q0) + (1 + 3q0)

(
1 − q0ξ2

2k

)2k/3
)2 .

(46)

With suitable choices of k and q0, the equations of (44)
and (46) present a new class of solutions for an anisotropic
constant-density star.

This solution can be considered as a well-defined solution
if the physical quantities like the anisotropy factor are finite
inside the star. It can easily be shown that for all values of q0

and k, the anisotropy factor (46) is finite. Also if q0 ≥ 1, the
anisotropy factor has a local maximum inside the star but this
is not true for q0 < 1. Here in Fig. 1 we have plotted |�|

P0
as

a function of ξ for some values of q0 and k. For any choice,
the plots are from the center to the corresponding radius of
the star. The radial pressure is plotted in Fig. 2 for the same
values of k and q0 as in Fig. 1. Now it becomes clear that
it is a positive regular function everywhere inside the star. It
starts with its local maximum value at the center of the star
and gradually decreases until it vanishes at the surface of star.

In [48], it is shown that all static anisotropic spherically
symmetric solutions of Einstein’s equations can be produced
by two generating functions. One of them is proportional to
the anisotropy factor, (ξ) = −8πG�(ξ), and the other,
z(ξ), is defined by

exp [ν(ξ)] = exp
∫ [

2z(ξ) − 2

αξ

]
αdξ . (47)

Using (40) and (46), the generating functions of our solution
are
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Fig. 2 Radial pressure as a
function of ξ for different values
of k and q0

Fig. 3 Dominant energy
condition as a function of ξ for
different values of k and q0

(ξ)

= −8πGP0

(1+q0)(1+3q0)(3−4k)ξ2
(

1− q0ξ
2

2k

)−1+ 2k
3

6k

(
−3(1+q0)+(1+3q0)

(
1− q0ξ2

2k

)2k/3
)2 ,

(48)

z(ξ) = 1

2α

×
⎡
⎣ 2

ξ
+ 2q0(1+3q0)ξ(1− q0ξ2

2k )2k/3

(−2k+q0ξ2)(−3+(1− q0ξ2

2k )2k/3+3q0(−1+(1− q0ξ2

2k )2k/3))

⎤
⎦ .

(49)

Now let us to discuss the validity of the energy con-
ditions. Since q0 is positive, the weak, null, and strong
energy conditions hold for every positive value of central
pressure. A simple calculation shows that for cases with
0 < q0 ≤ 1, the dominant energy condition is satisfied in
the same way as the other conditions. But for cases with
q0 > 1, this condition is not satisfied within a radius of√

2k
q0

{1 − 1
2 [(1 + 2

3k)
√

2(1+q0)
1+3q0

] 3
k } from the center of the star.

In Fig. 3, we have plotted the dominant energy condition as
a function of ξ for different values of q0 and k. While the

dashed lines in each cases represent − 1
q0

and 1
q0

, it is clear

that for q0 = 3
2 there is a violation of the dominant energy

condition.
Other quantities of physical interest are the stellar radius

and mass. To find these, one needs to find the radius of the
star, R′, measured by an external observer. This radius for an
anisotropic polytropic sphere with constant density is

R′ =
∫ R

0
exp

[
κ(r)

2

]
dr = α̃

∫ ξR

0

dξ√
1 − 2q0(m + 1)

ξ2

3

= α̃

(
3

2q0(m + 1)

)1/2

arcsin

(
2q0(m + 1)ξ2

R

3

)1/2

.

(50)

For m = 0, Eq. (50) reduces to the corresponding radius in
the case of isotropic star [14]. Now one can find the mass–
radius relationship from (11):

M = 4πρ0α̃
3
∫ ξR

0
ξ2dξ = 4πρ0α̃

3ξ3
R

3
, (51)
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Fig. 4 Mass–radius relation as
a function of ξ for different
values of k and q0

then according to Eq. (41)

M = (m + 1)q0ξ
2
R R

3G
, (52)

and using the value of ξR (45), one can find the mass of an
anisotropic star:

M = 1

3

(
G

4πρ0

) 1
2
{

3

2

[
1 −

(
q0 + 1

3q0 + 1

) 3
2k

]} 3
2

. (53)

To get the mass–radius relationship, one is required to eval-
uate the integrals of (50) and (51) with arbitrary radial coor-
dinate which now appears as the upper limit of integrals. We
thus get

M(r)

r ′ =
√

128(ρ0πG)3

27

r3

arcsin [ 8
3πGρ0r2]1/2

. (54)

Here in order to plot the mass–radius relation we replace
both M(r) and r with their dimensionless parameters η(ξ)

and ξ . Figure 4 shows the dimensionless form of the mass–
radius relation (54) as a function of ξ for specified values of
k and q0.

Also the internal compactness of the star can be written
as follows:

M(r)

r
=

√
(4πGρ0)3

q0(m + 1)
r2, (55)

and correspondingly the surface redshift z(r) is given by

1+z(r)=
[

1−2
M(r)

r

]−1/2

=
⎡
⎣1−2

√
(4πGρ0)3

q0(m+1)
r2

⎤
⎦

−1/2

.

(56)

4 Concluding remarks

In this paper, we have discussed the relativistic Lane–Emden
equations and their boundary conditions for an anisotropic
star. We made a new proposal to find the exact solution of
these equations for constant density. Noting Eq. (18), we
assume that the effect of anisotropy is changing the coef-
ficient of the first term from 2q0(n + 1) to 2q0(m + 1) or
alternatively changing the coefficient of the third term from
(q0θ + 1) to m(q0θ + 1) where m is different from the poly-
tropic index in general. The first case is studied in Sect. (3.2)
in detail. For the second case using Eq. (18), one can intro-
duce m such that

m

2
[P0θ + ρ0]dν

dr
= 1

2

dν

dr
(P0θ + ρ0) + −2�

r
. (57)

So the resulting Lane–Emden equations will be

{ [±1 − 2q0(n+1)
m

η
ξ
]

1 + q0θ

}
ξ2 dθ

dξ
+η+q0ξθ

dη

dξ
= 0,

dη

dξ
= ξ2θn

(58)

where the plus sign holds if −1 < n+1
m < ∞ and the minus

sign if −∞ < n+1
m < −1. In this case the dimensionless

parameter ξ is introduced as r=(
± n+1

m q0
4πGρ0

)1/2ξ . These equa-
tions for n = 0 yield the same solution (44) and (46) in
which k = 3

4m.
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