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Abstract We calculate the fully-differential rate of the
decays B → Pτ(→ μν̄ν)ν̄ where P = D, π , background
to the semimuonic decays B → Pμν̄. The decays with a 3ν

final state can have a sizable impact on the experimental anal-
yses of the ratios RD and Rπ , depending on the event selec-
tion in the analysis. We outline a strategy which permits the
extraction of RPB(τ → μν̄ν) from the neutrino-inclusive
rate. Our analytic results can also be used to test both exist-
ing and upcoming experimental analyses. We further provide
Monte Carlo samples of the 5D rate of the neutrino-inclusive
decays B → PμX ν̄ .

1 Introduction

Charged-current semileptonic decays of b hadrons are a pre-
cious source of information about flavor physics, both within
and beyond the standard model (SM). They are the primary
source of information on the elements |Vcb| and |Vub| of the
Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix [1–3]
and, at the same time, they offer the possibility of interesting
tests of physics beyond the SM via appropriate Lepton Fla-
vor Universality (LFU) ratios. In this paper we concentrate
on the simplest of such LFU ratios, namely

RP = B(B̄ → Pτ ν̄)

B(B̄ → Pμν̄)
, (1)

where P = D, π .
The theoretical estimate of RP within the SM relies dom-

inantly on the hadronic form factors f+ (the vector form fac-
tor) and f0 (the scalar form factor); see Appendix A for their
definitions. For both final states, precise lattice QCD result
of these form factors have recently been published [4,5].
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In addition, Light-Cone Sum Rule (LCSR) results for the
B → π vector form factor and two of its derivatives have
been obtained, which complement the lattice QCD results.
According to these studies the SM prediction for RD [5] is

RSM
D = 0.300 ± 0.008. (2)

On the experimental side, measurements of the ratio RD have
been published by both BaBar [6] and, more recently, by
Belle [7],

RBaBar
D = 0.440 ± 0.058 ± 0.042,

RBelle
D = 0.375 ± 0.064 ± 0.026, (3)

for while only upper experimental bounds on Rπ are available
[8]. Combining Babar and Belle results and normalizing them
to the SM lead to

�RD = Rexp
D

RSM
D

− 1 = 0.35 ± 0.17. (4)

This deviation from the SM is not particularly significant;
however, a similar effect has been observed also in the
RD∗ ratios [6,7,9]. Combining the two deviations, which
are compatible with a universal enhancement of semilep-
tonic b → cτν transitions over b → cμν ones, the dis-
crepancy with respect to the SM raises to about ∼ 4σ . This
fact has stimulated several studies on possible New Physics
(NP) explanations (see e.g. Ref. [10–13]). As pointed out in
Ref. [12], because of τ → �ν̄ν decays, a possible enhance-
ment of semileptonic b → cτν transitions may have a non-
trivial impact in the extraction of |Vcb| from the correspond-
ing b → c�ν modes, and this impact is likely to be different
for exclusive and inclusive modes.

Our main goal is to analyze how leptonic τ → μν̄ν decays
affect the determination of RP and, more generally, the kine-
matical distribution of B̄ → Pμν̄ decays via the decay chain
B̄ → Pτ(→ μν̄ν)ν̄ in experimental analyses where there is
no precise information available on the missing mass (or the
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initial B momentum). As we will discuss, our results provide
a first attempt toward new strategies to improve the determi-
nation of RP from data and, possibly, also the determination
of |Vcb| and |Vub|. At first glance, leptonic τ decay modes
might seem unimportant, since they occur at the expense of
an additional power of the Fermi coupling GF at the ampli-
tude level. However, this process occurs on-shell and the
suppression of the τ decay amplitude is compensated by
the inverse of the τ lifetime appearing in the τ propagator.
This becomes already apparent in the τ → μν̄μντ branch-
ing fraction: B(τ → μν̄μντ ) = (17.41 ± 0.04) % [14]. It is
therefore interesting to calculate the rate for the decay chain
B̄ → Pτ(→ μν̄ν)ν̄ and compute numerically its impact on
the observable rate of B̄ → PμX ν̄ , X ν̄ = {ν̄, ν̄νν̄}, to which
we will henceforth refer as the “neutrino-inclusive” decay.

The layout of this article is as follows. We continue in
Sect. 2 with definitions and the bulk of our analytical results.
Numerical results and their implications are presented in
Sect. 3, and we summarize in Sect. 4. The appendix A con-
tains details as regards the form factors, details concerning
the kinematic variables are given in Appendix B, and the
numeric results of the 3ν PDFs are reported in Appendix C.

2 Setup

2.1 Kinematics

As anticipated in the introduction, in this article we assume
that experiments cannot distinguish between the semilep-
tonic decay B̄ → Pμν̄ and B̄ → Pτ(→ μν̄ν)ν̄ using the
missing-mass information. This assumption certainly holds
for analyses performed at hadron colliders (e.g., by the LHCb
experiment).1 On the other hand, it does not hold for anal-
yses performed at e+e− colliders with flavor tagging based
on the full reconstruction of the opposite B decay, where
B̄ → Pμν̄ and B̄ → Pτ(→ μν̄ν)ν̄ will be clearly distin-
guished using the missing-mass information. The latter type
of analyses will certainly provide precise results in the future;
however, they cannot be performed at present and will require
high statistics. It is therefore useful to discuss the case where
there is no (or poor) missing-mass information.

We write for the neutrino-inclusive differential decay
width to one muon

d� (B̄ → PμX ν̄ )

dq2 dcos ϑ[μ]
≡ d� (B̄ → Pμν̄μ)

dq2 dcos ϑ[μ]

+d� (B̄ → Pτ(→ μν̄μντ )ν̄τ )

dq2 dcos ϑ[μ]

≡ d� 1

dq2 dcos ϑ[μ]
+ d� 3

dq2 dcos ϑ[μ]
. (5)

1 See the supplementary material to Ref. [9], Figure 9.

In the above, we introduce the shorthand �n for the specific
decay width with n = 1 or n = 3 neutrinos in the final state.2

The kinematic variables are defined as follows.

• We define qμ as the momentum transfer away from the
B̄–P system, i.e.: qμ ≡ pμ − kμ, where p and k are the
momenta of the B̄ and P = D, π mesons, respectively.
For �1 this implies that qμ coincides with the momentum
of the lepton pair μν̄μ. We stress that this does not hold
for �3.

• We define the angle ϑ[μ] via

cos ϑ[μ] ≡ 2

(
q − 2q[μ]

) · k√
λ

. (6)

We abbreviate the Källén function λ ≡ λ(M2
B, M2

P , q2)

here and throughout this article. For �1, the above for-
mula coincides with

cos ϑ[μ] = 2

(
q[ν̄μ] − q[μ]

) · k√
λ

, (7)

and the physical meaning of ϑ[μ] is the helicity angle of
the muon in the μν̄μ rest frame, with −1 ≤ cos ϑμ ≤ +1.
We stress that for �3 this physical interpretation is no
longer valid. Yet, we find it convenient to keep using
cos ϑ[μ] for the description of the neutrino-inclusive rate
�(B̄ → PμX ν̄ ). We emphasize also that the phase space
boundaries for cos ϑ[μ] in �3 differ from those in �1, and
they implicitly depend on the full kinematics of the 3ν

decays.

For the description of �3, we need to define further kine-
matic variables, which will be integrated over at a later point.
We choose q2[τ ], the invariant-mass square of the τ decay

products, q2[ντ ν̄μ] ≡ (q[ντ ]+q[ν̄μ])2, the invariant-mass square
of the two neutrinos produced in the τ decay, and the five fol-
lowing angles:

1. ϑ[τ ], the helicity angle of the τ in the τ ν̄τ rest frame:

cos ϑ[τ ] = (q − 2q[τ ]) · k
βτ

√
λ

+ (1 − 2βτ )

βτ

(M2
B − M2

P − q2)

2
√

λ
,

(8)

where 2βτ ≡ 1 − q2[τ ]/q2,

2 We also drop the subscript for the neutrino flavor where possible.
Note that effects of neutrino mixing and/or oscillation are not relevant
to our study.
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2. φ, the azimuthal angle between the μ–ντ ν̄μ plane and the
B̄–τ ν̄τ plane,

ε(p, q, q[μ], q[ντ ν̄μ]) = −1

2
βνν̄

√
1 − 2βτβτq

2

√
λ sin φ sin ϑ∗[μ] sin ϑ[τ ], (9)

3. ϑ∗[μ], the polar angle of the μ momentum in the τ rest
frame with respect to q[ντ ν̄μ] in the τ rest frame:

cos ϑ∗[μ] = 1

2βνν̄βτ

[
(1 − 2βνν̄)(1 − βτ )

+ (q[μ] − q[ντ ν̄μ]) · q
q2

]
, (10)

where 2βνν̄ ≡ 1 − q2[ντ ν̄μ]/q2[τ ],
4. ϑ∗∗[ν̄μ], the polar angle of the ν̄μ momentum in the ντ ν̄μ

rest frame with respect to the μ momentum in the ντ ν̄μ

rest frame:

cos ϑ∗∗[ν̄μ] = (q[ντ ν̄μ] − 2q[ν̄μ]) · q[μ]
βνν̄q2[τ ]

, (11)

5. φ∗∗, the azimuthal angle between the τ–μ and ν̄μ–ντ

decay planes in the τ rest frame,

ε(q[τ ], q[ν̄τ ], q[μ], q[ντ ν̄μ]) = 1

2
βνν̄βτ

√
1 − 2βνν̄q

2q2[τ ]
sin ϑ∗[μ] sin ϑ∗∗[ν̄μ] sin φ∗∗.

(12)

In general, we denote the solid angle in the τ ν̄τ rest frame
without any asterisks, the solid angle within the τ rest frame
with one asterisk, and the solid angle in the ν̄μντ rest frame
with two asterisks.

With the above definitions of the kinematics in mind, we
can now begin discussing phenomenological applications.
We wish to first address the case, in which a 3ν event is
misinterpreted as a 1-neutrino event. In such a case, the mis-
reconstructed cos ϑ[μ] reads

cos ϑ[μ]
∣
∣∣
3ν

= 2βνν̄

{(
(1 − 2βνν̄)

βνν̄

+ 2βτ

)
M2

B − M2
P − q2

2
√

λ

+βτ cos ϑ[τ ]

−
(

2βτ

M2
B − M2

P − q2

2
√

λ
− (1−βτ ) cos ϑ[τ ]

)

cos ϑ∗[μ]

−√
1 − 2βτ sin ϑ∗[μ] sin ϑ[τ ] cos φ

}
. (13)

As an alternative to cos ϑ[μ] we also consider Eμ, the muon
energy in the B rest frame. It is defined in terms of Lorentz
invariants as

Eμ ≡ p · q[μ]
MB

. (14)

In the 1ν decay, Eμ is not independent from our nominal
choice of kinematic variables q2 and cos ϑμ. The expression
for Eμ reads

Eμ

∣∣∣
1ν

= 1

4MB

[(
M2

B − M2
P + q2

)
− √

λ cos ϑμ

]
, (15)

and it attains its maximal value at q2 = 0 and cos ϑμ = −1.
Its full range reads

mμ ≤ Eμ

∣
∣∣
1ν

≤ M2
B − M2

P

2MB
. (16)

However, for a misreconstructed 3ν event we obtain instead

Eμ

∣∣∣
3ν

= βνν̄

2MB

[ (
M2

B − M2
P + q2)

(
(1 − βτ ) + βτ cos ϑ∗[μ]

)

−√
λ

(
βτ + (1 − βτ ) cos ϑ∗[μ]

)
cos ϑ[τ ]

+√
1 − 2βτ

√
λ sin ϑ∗[μ] sin ϑ[τ ] cos φ

]
, (17)

which now exhibits an additional dependence on the kine-
matics variables cos ϑ∗[μ] and φ, as well as q2[ντ ν̄μ]. We find
for its range

mμ ≤ Eμ

∣∣
∣
3ν

≤
M2

B − M2
P + m2

τ +
√

λ
(
M2

B, M2
P ,m2

τ

)

4MB
.

(18)

2.2 Decay rate

In order to proceed, we require an analytic expression for the
neutrino-inclusive differential decay rate. The result for �1

is known for some time in the literature (see e.g. [15,16] for
reviews in the presence of model-independent NP contribu-
tions). However, �3 has not been calculated to the best of
our knowledge. We begin the computation with the matrix
element for the B̄(p) → P(k)τ (q[τ ])ν̄(q[ν̄τ ]) transition:

iM = −i
GFVcb√

2

[

f+(q2)

{

(p + k)μ − M2
B − M2

P

q2 qμ

}

+ f0(q
2)
M2

B − M2
P

q2 qμ

]

L(V−A)
μ , (19)

with q ≡ p − k = q[τ ] + q[ν̄τ ]. In the above, we abbreviate
the leptonic currents as

L(V−A)
μ ≡ [

ū(q[τ ])γμ(1 − γ5)v(q[ν̄τ ])
]
. (20)

The contributions to �3 then arise from the leptonic decay
of the τ . The corresponding matrix elements can be readily
obtained through the replacement
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L(V−A)
μ �→ −iGF√

2

i

q2[τ ] − m2
τ + imτ�τ

L̃(V−A)
μ

= GF√
2(q2[τ ] − m2

τ + imτ�τ )

[
ū(q[μ])γα(1 − γ5)v(q[ν̄μ])

]

(21)

×
[
ū(q[ντ ])γ α(1 − γ5)(/q[τ ] + mτ )γμ(1 − γ5)v(q[ν̄τ ])

]
,

where mτ and �τ denote the mass and the total width of the
τ lepton, respectively.

The fully-differential rate for the 3-neutrino final state can
then be expressed as:

d7�3

dq2 dq2[ντ ν̄μ] d2� d�∗ d2�∗∗

= −
3G2

F |Vcb|2
√

λ(q2 − m2
τ )

(
m2

τ − q2[ντ ν̄μ]
)
B(τ → μν̄ν)

217π5m8
τ M

3
Bq

2

×
[
| f+|2

(

T1 − M2
B − M2

D

q2 T2 + (M2
B − M2

D)2

q4 T3

)

+ Re ( f+ f0)

(
M2

B − M2
D

q2 T2 − 2
(M2

B − M2
D)2

q4 T3

)

+ | f0|2 (M2
B − M2

D)2

q4 T3

]
, (22)

with auxiliary quantities

T1 ≡ (p + k)μ(p + k)ν
∑

spins

L̃(V−A)
μ L̃∗,(V−A)

ν ,

T2 ≡ (
(p + k)μqν + (p + k)νqμ

) ∑

spins

L̃(V−A)
μ L̃∗,(V−A)

ν ,

(23)

T3 ≡ qμqν
∑

spins

L̃(V−A)
μ L̃∗,(V−A)

ν .

In the above we abbreviate d2� = dcos ϑ[τ ] dφ , d�∗ =
dcos ϑ∗[μ] , and d2�∗∗ = dcos ϑ∗∗[ν̄μ] dφ∗∗ , and we empha-
size that the integration range over d cos ϑ goes from −1
to +1. The full expressions for T1,2,3 are quite cumbersome
to typeset. Instead, we opt to publish them as ancillary files
within the arXiv preprint of this article. We also find that
the integration of Eq. (22) over �∗∗, �∗, φ, and q2[ντ ν̄μ]
yields B(τ → μν̄μντ ) × d2�(B̄ → Pμν̄) /dq2 dcos ϑ[τ ]
as required. This is a successful crosscheck of our calcula-
tion.

In order to carry out our phenomenological study of the
quantities cos ϑ[μ] in Eq. (13) and Eμ in Eq. (17) in the
decay chain B̄ → Pτ(→ μν̄ν)ν̄, we do not require any
dependence on the νν̄ solid angle �∗∗ = (cos ϑ∗∗[ν̄μ], φ∗∗).
We therefore integrate over the latter, and thus obtain the
five-differential rate

d5�3

dq2 dq2[ντ ν̄μ] d2� d�∗

= �̃3

πm8
τq

6

[
A + B cos ϑ[τ ] + C cos2 ϑ[τ ]

+ (
D sin ϑ[τ ] + E sin ϑ[τ ] cos ϑ[τ ]

)
cos φ

]
, (24)

with normalization

�̃3 = |Vcb|2G2
FB(τ → μνν̄)

29π3M3
B

. (25)

The angular coefficients in Eq. (24) read

A =
[
(q2 − m2

τ )
(
m2

τ − q2[ντ ν̄μ]
)]2 √

λ
[ (

m2
τ + 2q2[ντ ν̄μ]

)

×
(
| f0|2(M2

B − M2
P )2m2

τ + | f+|2q2λ
)

−
(
m2

τ − 2q2[ντ ν̄μ]
) (

| f0|2
(
M2

B − M2
P

)2
m2

τ

−| f+|2q2λ
)

cos ϑ∗[μ]
]
,

B = 2| f0|| f+|m2
τ

(
M2

B−M2
P

)
λ
[
(q2 − m2

τ )
(
m2

τ − q2[ντ ν̄μ]
)]2

×
[
(m2

τ + 2q2[ντ ν̄μ]) − (m2
τ − 2q2[ντ ν̄μ]) cos ϑ∗[μ]

]
,

C = −| f+|2λ3/2
[(

q2 − m2
τ

) (
m2

τ − q2[ντ ν̄μ]
)]2

×
[(

q2 − m2
τ

) (
m2

τ + 2q2[ντ ν̄μ]
)

+
(
q2 + m2

τ

) (
m2

τ − 2q2[ντ ν̄μ]
)

cos ϑ∗[μ]
]
, (26)

D = 2mτ

√
q2| f0|| f+|(M2

B − M2
P )

[(
q2

−m2
τ

) (
m2

τ − q2[ντ ν̄μ]
)]2 (

m2
τ − 2q2[ντ ν̄μ]

)
λ sin ϑ∗[μ],

E = 2mτ

√
q2| f+|2[(q2 − m2

τ )

(m2
τ − q2[ντ ν̄μ])]2(m2

τ − 2q2[ντ ν̄μ])λ3/2 sin ϑ∗[μ].

We can now proceed to the production of pseudo-events that
are distributed as Eq. (24), which is a necessary prerequi-
site for our phenomenological applications in the following
section.

3 Numerical results

Our numerical results are based on a Monte Carlo (MC) study
of the decays B̄ → Pμν̄ and B̄ → Pτ(→ μνν̄)ν̄. For this
purpose, we added the signal PDFs for both decays to the
EOS library of flavor observables [17]. The relevant form
factors f+ and f0 are taken in the BCL parametrization [18].
The BCL parameters are fitted from a recent lattice QCD
studies [4,5], and additionally LCSR results in the case of
B̄ → π [19]; see Appendix A for details.
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Fig. 1 Histograms of 4×105 pseudo-events for the neutrino-inclusive
decay B → DμX ν̄ (a, b), as well as for the decay B → Dτ(→ μνν̄)ν̄

(c). We show histograms of distributions in the (misreconstructed) angle
cos ϑμ (a), and Eμ, the muon energy in the B̄ rest frame (b). The red

areas correspond to the neutrino-inclusive decay, while the blue areas
highlight the contributions stemming only from B → Dτ(→ μνν̄)ν̄.
We also show the histogram of Eμ

∣
∣
3ν

and its compatibility with our
ansatz Eq. (35) (c)

In order to obtain pseudo-events for the neutrino-inclusive
decay, we carry out the following steps:

1. We draw 4.8 × 106 samples { 	X (1)
i } = {(q2, cos ϑ[μ])i },

which are distributed as their signal PDF P1,

P1(q
2, cos ϑ[μ]) ≡ 1

�1

d2�1

dq2 d cos ϑ[μ]
. (27)

2. We draw 4.8 × 106 samples { 	X (3)
i } = {(q2, q2[ντ ν̄μ],

cos ϑ[τ ], φ, cos ϑ∗[μ])i }, which are distributed as their sig-
nal PDF P3,

P3(q
2, q2[ντ ν̄μ], cos ϑ[τ ], φ, cos ϑ∗[μ])

≡ 1

�3

d5�3

dq2 dq2[ντ ν̄μ] d cos ϑ[τ ] dφ d cos ϑ∗[μ]
. (28)

3. We combine the two sets of samples with weights ω1 =
�1/(�1+�3) and ω3 = 1−ω1, respectively. The weights
can be expressed in terms of RP and B(τ → μνν̄):

ω1 = 1

1 + RPB(τ → μνν̄)
. (29)

All samples are obtained from a Markov Chain Monte
Carlo setup, which implements the Metropolis–Hastings
algorithm [20,21]. The first 8 × 105 samples per set are dis-
carded, in order to minimize the impact from the Markov
Chains’ starting values. In order to avoid correlations from
rejection of proposals, we only take every tenth sample. The
effective sample size is therefore 4 × 105. We provide the
so-obtained pseudo-events online [22] in the binary HDF5
format.3

3 See https://www.hdfgroup.org/HDF5/ for its description.

3.1 B̄ → DμX ν̄

Distribution in cos ϑ[μ] In the neutrino-inclusive decay, the
misreconstructed observable cos ϑ[μ] as given in Eq. (13) is
no longer bounded by +1. We find that it attains its maximal
value

max cos ϑ[μ]
∣∣
3ν


 56.7 for q2 =(MB−MD)2, q2[ντ ν̄μ]
= m2

τ , cos ϑ[τ ] = − cos ϑ∗[μ] = 1. (30)

The distribution of cos ϑ[μ] in the neutrino-inclusive decay is
shown in Fig. 1a, where we also disentangle the individual 1ν

and 3ν contributions. We find that cos ϑ[μ] exceeds 1 for ∼
23 % of the 3ν events, and exceeds 2 for ∼ 1.3 % of 3ν events.
As a consequence, we decide against a parametrization of
the neutrino-inclusive PDF P(cos ϑμ) in terms of Legendre
polynomials (or any other orthonormal polynomial basis).

On the other hand, our findings imply that the cos ϑ[μ]
distribution can be used to extract the product RDB(τ →
μν̄ν) from data. We can indeed write

RDB(τ → μν̄ν) = ρ
exp
D

ρ0
D − ρ

exp
D

(31)

where

ρ0
D ≡ # of 3ν events with cos ϑμ > 1

total # of 3ν events
,

ρ
exp
D ≡ # of Xν events with cos ϑμ > 1

total # ofXν events.
(32)

Based on our MC pseudo-events, we find

ρ0
D = 0.234 ± 0.001 (33)

where the error is dominantly statistical, and arises from our
limited number of MC samples. We explicitly cross check
our uncertainty estimate by re-running the simulations with
modified inputs on the B → D form factors. We find that
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Fig. 2 Histograms of 4×105 pseudo-events for the neutrino-inclusive
decay B → πμX ν̄ (a, b), as well as for the decay B → πτ(→ μνν̄)ν̄

(c). We show histograms of distributions in the (misreconstructed) angle
cos ϑμ (a), and Eμ, the muon energy in the B̄ rest frame (b). The red

areas correspond to the neutrino-inclusive decay, while the blue areas
highlight the contributions stemming only from B → πτ(→ μνν̄)ν̄.
We also show the histogram of Eμ

∣∣
3ν

and its compatibility with our
ansatz Eq. (35) (c)

shifting any single individual constraint in Table 1 by 1σ

yields results that are compatible with the interval given in
Eq. (33).

The distribution in Eμ The distribution of Eμ in the
neutrino-inclusive decay is shown in Fig. 1b. We find that
a lower cut Eμ > 1.0 GeV can reduce the rate of misiden-
tified 3ν events by a factor of ∼ 4, while ∼ 76 % of the 1ν

events (the signal) remain. This corresponds to a reduction of
the rate of background events in the neutrino-inclusive decay
from its maximum value of RDB(τ → μνν̄) ≈ 5.2 % down
to 1.3 %.

Alternatively, one can subtract the 3ν background from
the neutrino-inclusive rate. For this purpose we proceed to
obtain the relevant PDF of 3ν events. Since the ranges of

Eμ

∣∣∣
1ν

and Eμ

∣∣∣
3ν

are very similar, we can remap their union

to a new kinematic variable y,

y ≡ 2Eμ

Emax
μ

− 1, with Emax
μ

= max
(
Eμ

∣
∣∣
1ν

, Eμ

∣
∣∣
3ν

)

 2.31 GeV ,

so that − 1 ≤ y ≤ +1. (34)

We then make an ansatz for the PDF P3(y) ≡ d�3 /d y by
expanding in Legendre polynomials pk(y):

P3(y) = 1

2
+

12∑

k=1

c(3)
k pk(y). (35)

Since the Legendre polynomials form an orthogonal basis of
function on the support [−1,+1], the coefficients c(3)

k are
independent of the degree of P3(y). Their mean values and
covariance are obtained using the method of moments; see
[23] for a recent review. We find that our ansatz Eq. (35)
describes the PDF exceptionally well, and refer to Fig. 1c
for the visualization. Our results for the mean values and
covariance matrix of the moments are compiled in Table 3.

They can be used in upcoming experimental studies in order
to cross check the signal/background discrimination.

3.2 B̄ → πμX ν̄

Based on the B̄ → π form factors parameters as described
in Appendix A, we obtain

RSM
π = 0.70 ± 0.01, (36)

which is in good visual agreement with the plot of Rπ in
figure 8 of Ref. [24]. This result implies a potentially larger
impact of the 3ν decays as a background in the extraction of
both Rπ and |Vub|.

Distribution in cos ϑ[μ] As in the case of B̄ → DμX ν̄ , the
misreconstructed observable cos ϑ[μ] is no longer bounded
from above by +1. However, we find that its maximal value
is much smaller for B̄ → π transitions than it is for B̄ → D
transitions:

max cos ϑ[μ]
∣
∣
3ν


 3.75 for q2 = (MB − Mπ )2,

q2[ντ ν̄μ] = m2
τ , cos ϑ[τ ] = − cos ϑ∗[μ] = 1. (37)

A consequence of this smaller upper bound in B̄ → π tran-
sitions, the tail of 3ν events is much lighter; see Fig. 2a. This
is also reflected in our numerical result for the ratio ρ0

π ,

ρ0
π = (2.89 ± 0.03) × 10−2. (38)

We can therefore not recommend to extract the ratio Rπ

through a lower cut on cos ϑ[μ]. Our result also shows that
more than 97 % of 3ν events fall in the physical region of 1ν

events.
Distribution in Eμ We find that a lower cut Eμ >

1.5 GeV can reduce the rate of of misidentified 3ν events
by a factor of ∼10, while ∼69 % of the 1ν events (the sig-
nal) remain. This corresponds to a reduction of the rate of
background events in the neutrino-inclusive decay from its
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maximum value of RπB(τ → μνν̄) 
 12.1 % down to
∼1.2 %.

For the range of Eμ we find

max
(
Eμ

∣∣
∣
1ν

, Eμ

∣∣
∣
3ν

)

 2.64 GeV , (39)

and the energy ranges are overlapping given our numerical
precision. Thus, the description of the neutrino-inclusive rate
though Eμ, or equivalently y, should work even better for
B̄ → π transitions than for B̄ → D transitions. Our results
for the mean values and covariance matrix of the Legendre
moments c(3)

k are compiled in Table 4. We refer to Fig. 2c for
a comparison of P3(y) with our MC pseudo-events.

3.3 Implications for the extraction of |Vcb| and |Vub|

Using the above results we can finally draw some semi-
quantitative conclusions about the error in the extraction |Vcb|
and |Vub| from b → c(u)�ν decays. The presence of the
τ → μν̄ν background in those processes can be dealt with,
experimentally, in different ways. The two extreme cases we
can envisage are the following: (i) reduction of the back-
ground via explicit cuts; (ii) fully inclusive subtraction. The
first method can be applied to exclusive decays such as those
discussed in the present paper. As shown above, combining
cuts in Eμ and cos ϑ[μ] leads to a significant reduction of the
τ → μν̄ν contamination in B̄ → DμX ν̄ , with negligible
implications for the extraction of |Vcb|. However, this proce-
dure cannot be applied to fully inclusive modes. In the latter
case, the τ → μν̄ν contamination is more likely to be simply
subtracted from the total number of events. If this subtraction
is made assuming the SM expectation of RD (and RD∗), it
leads to systematic error if �RD �= 0, i.e. in the presence of
New Physics [12]. The maximal value of this error is

�|Vcb|(incl.)

|Vcb| = 1

2
�RDB(τ → μν̄ν) ≈ 0.9 %, (40)

which is not far from the combined theory and experimental
error presently quoted for |Vcb| [14]. We thus conclude that
the τ → μν̄ν contamination must be carefully analyzed in
the determination of |Vcb|.

The impact of the τ → μν̄ν contamination is more diffi-
cult to be estimated in the |Vub| case. On the one hand, the
large value of Rπ leads to a potentially larger impact. On
the other hand, even in inclusive analyses some cut on Eμ

is unavoidable in order to reduce the b → c�ν background:
as shown above, this naturally leads to a significant reduc-
tion of the τ → μν̄ν contamination. Given the present large
experimental errors, the τ → μν̄ν contamination is likely to
be a subleading correction in the extraction of |Vub|, but it is
certainly an effect that has to be properly analyzed in view
of future high-statistics data.

4 Summary

Lepton Flavor Universality tests in charged-current semilep-
tonic B decays provide a very interesting window on possible
physics beyond the SM. In the paper we have analyzed how
the leptonic τ → μν̄ν decays affect the determination of
the LFU ratios RP , where P = D, π . In particular, we have
presented a complete analytical determination of the observ-
able distributions (energy spectrum and helicity angle of the
muon) of the B̄ → Pτ(→ μν̄ν)ν̄ decay chain. This result
has allowed us to identify clean strategies both to extract RP

from measurements of the B̄ → PμX ν̄ neutrino-inclusive
rate, and also to minimize the impact of the τ → μν̄ν decay
in the three-body B̄ → Pμν modes. Finally, this study has
also allowed us to conclude that the b → cτ(→ �ν̄ν)ν back-
ground inb → c�ν decays represents a non-negligible source
of uncertainty for the extraction of |Vcb| in the presence of
NP modifying RD: its impact could reach the ∼ 1 % level
and has to be analyzed with care mode by mode.
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Appendix A: B̄ → P form factors

The hadronic matrix element for the vector current between
two pseudoscalar states is commonly (e.g. [18]) expressed in
terms of two form factor

〈P(k)| c̄γ μb |B̄(p)〉 = f+(q2)

[

(p + k)μ− M2
B−M2

P

q2 qμ

]

+ f0(q
2)
M2

B − M2
P

q2 qμ. (A1)

In the above, qμ ≡ pμ − kμ. In the limit q2 → 0 one finds
a relation between the two form factors in the form of

f+(0) = f0(0), (A2)

otherwise Eq. (A1) would diverge.
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Table 1 Mean values and covariance matrix for the data points reconstructed from [5] at q2 ∈ {0 GeV2, 4 GeV2, 8 GeV2, t− = (M2
B − M2

D)}
f+(0 GeV2) f+(4 GeV2) f+(8 GeV2) f+(t−) f0(4 GeV2) f0(8 GeV2) f0(t−)

Mean

0.665 0.798 0.972 1.177 0.729 0.810 0.901
Covariance matrix

f+(0 GeV2) 1.128 × 10−3 1.042 × 10−3 9.230 × 10−4 7.727 × 10−4 1.093 × 10−3 1.063 × 10−3 1.045 × 10−3

f+(4 GeV2) 1.042 × 10−3 1.079 × 10−3 1.108 × 10−3 1.123 × 10−3 1.026 × 10−3 1.017 × 10−3 1.021 × 10−3

f+(8 GeV2) 9.230 × 10−4 1.108 × 10−3 1.331 × 10−3 1.576 × 10−3 9.307 × 10−4 9.511 × 10−4 9.865 × 10−4

f+(t−) 7.727 × 10−4 1.123 × 10−3 1.576 × 10−3 2.112 × 10−3 8.108 × 10−4 8.681 × 10−4 9.425 × 10−4

f0(4 GeV2) 1.093 × 10−3 1.026 × 10−3 9.307 × 10−4 8.108 × 10−4 1.126 × 10−3 1.165 × 10−3 1.210 × 10−3

f0(8 GeV2) 1.063 × 10−3 1.017 × 10−3 9.511 × 10−4 8.681 × 10−4 1.165 × 10−3 1.283 × 10−3 1.410 × 10−3

f0(t−) 1.045 × 10−3 1.021 × 10−3 9.865 × 10−4 9.425 × 10−4 1.210 × 10−3 1.410 × 10−3 1.635 × 10−3

Table 2 Mean values and covariance matrix for the data points reconstructed from [4] at q2 ∈ {18 GeV2, 22 GeV2, 26 GeV2}
f+(18 GeV2) f+(22 GeV2) f+(26 GeV2) f0(18 GeV2) f0(22 GeV2) f0(26 GeV2)

Mean

1.016 1.971 6.443 0.417 0.609 0.961
Covariance matrix

f+(18 GeV 2) 3.492 × 10−3 1.997 × 10−3 1.648 × 10−3 1.067 × 10−3 2.904 × 10−4 1.096 × 10−4

f+(22 GeV 2) 1.997 × 10−3 3.371 × 10−3 6.193 × 10−3 2.123 × 10−4 2.167 × 10−4 1.294 × 10−4

f+(26 GeV 2) 1.648 × 10−3 6.193 × 10−3 7.419 × 10−2 2.064 × 10−3 1.139 × 10−3 1.346 × 10−3

f0(18 GeV 2) 1.067 × 10−3 2.123 × 10−4 2.064 × 10−3 8.478 × 10−4 4.266 × 10−4 3.150 × 10−4

f0(22 GeV 2) 2.904 × 10−4 2.167 × 10−4 1.139 × 10−3 4.266 × 10−4 3.923 × 10−4 4.009 × 10−4

f0(26 GeV 2) 1.096 × 10−4 1.294 × 10−4 1.346 × 10−3 3.150 × 10−4 4.009 × 10−4 6.467 × 10−4

While the heavy quark limit can be used as a guiding
principle to parametrize both form factors, we prefer not to
apply it. Instead, we follow the BCL ansatz [18] and write

f+(q2) = f+(0)

1−q2/M2
R(1−)

[
1 + ∑3

k=1 α+
k z

k(q2; t+, 0)
]
,

f0(q
2) = f+(0)

1−q2/M2
R(0+)

[
1 + ∑2

k=1 α0
k z

k(q2, t+, 0)
]
, (A3)

where MR(1−) and MR(0+) denote the masses of the low-
lying resonances with spin/parity quantum numbers J =
1− and J = 0+, respectively. Note the use of f+(0) in the
parametrization of f0(q2), which automatically fulfills the
equation of motion Eq. (A2). In the parametrization Eq. (A3),
we make use of the conformal mapping from q2 to z, where

z(q2; t+, t0) =
√
t+ − q2 −

√
t+ − t0

√
t+ − q2 −

√
t+ − t0

. (A4)

Following [18] we impose Im f+(q2) = (q2 − t+)3/2 close
to the pair-production threshold t+ ≡ (MB + MD)2. This
leads to a relation between the expansion parameters α+

k :

α+
3 = 1

3

K−1∑

k=1

(−1)kk α+
k . (A5)

B̄ → D The lattice QCD results as presented in [5] fol-
low the BCL parametrization, however, they do not automat-
ically fulfill the equation of motion Eq. (A2). We therefore
reconstruct lattice data points for four different choices of
q2 (see Table 1), and fit our choice of the parametrization
to these reconstructed points. We use MR(1−) = 6.330 GeV
and MR(0+) = 6.420 GeV as in [5].

B̄ → π The lattice QCD results as presented in [4] fol-
low the BCL parametrization. However, they do not auto-
matically fulfill the equation of motion, Eq. (A2). Moreover,
for the form factor f0(q2), no pole for a low-lying resonance
scalar resonance is used. We therefore reconstruct lattice data
points for three different choices of q2 in the domain for
which lattice data point had been obtained (see Table 2). In
addition, we use the results of a recent LCSR study [19] for
the form factor f+ at q2 = {0, 10} GeV 2. The LCSR results
provide, beyond the form factor f+, also its first and sec-
ond derivatives with respect to q2. We fit our choice of the
parametrization to the aforementioned constraints. We use
MR(1−) = 5.325 GeV and MR(0+) = 5.540 GeV .

123



Eur. Phys. J. C (2016) 76 :360 Page 9 of 10 360

Appendix B: Scalar products

In order to facilitate the comparison with our results, we list
here all scalar products that emerge in the calculation of Eq.
(22).

The scalar products involving p are

p · q = M2
B + q2 − M2

D

2
, (B1)

p · q[τ ] = (1−βτ )(M2
B+q2−M2

D)−βτ

√
λ cos ϑ[τ ]

2
(B2)

p · q[μ] = 1

2
βνν̄

[
(M2

B + q2 − M2
D)((1 − βτ ) + βτ cos ϑ∗[μ]

(B3)

−√
λ(βτ + (1 − βτ ) cos ϑ∗[μ]) cos ϑ[τ ]

+√
λ

√
1

2
− βτ sin ϑ∗[μ] sin ϑτ cos φ

]
.

The scalar products involving q read

q · q[τ ] = (1 − βτ )q
2, (B4)

q · q[μ] = βνν̄((1 − βτ ) + βτ cos ϑ∗[μ])q2, (B5)

q · q[ν̄μ] = 1

2

[
(1 − βνν̄)(1 − βτ ) − βνν̄(1 − βτ ) cos ϑ∗∗[ν̄μ]

−βτ (βνν̄ − (1 − βνν̄) cos ϑ∗∗[ν̄μ]) cos ϑ∗[μ]

− 2

√
1

2
− βνν̄βτ sin ϑ∗[μ] sin ϑ∗∗[ν̄μ] cos φ∗∗]q2.

For scalar products involving q[τ ] we find

q[τ ] · q[μ] = βνν̄q
2[τ ], (B6)

q[τ ] · q[ν̄μ] = 1

2

[
(1 − βνν̄) − βνν̄ cos ϑ∗∗[ν̄μ]

]
q2[τ ]. (B7)

For the antisymmetric tensors we obtain

ε(p, q, q[μ], q[ν̄μ])

=
βνν̄βτ

√
1
2 − βτ

2

√
λq2 sin ϑ∗[μ] sin ϑ[τ ] sin φ, (B8)

In all of the above, we abbreviate

βτ = q2 + q2[τ ]
2q2 , βνν̄ =

q2[τ ] + q2[ντ ν̄μ]
2q2[τ ]

. (B9)

Appendix C: Results for the Legendre Ansatz in P3( y)

The mean values and covariance matrices for the Legendre
moments in the PDFs P3(y) of B̄ → Dτ(→ μν̄ν)ν̄ and
B̄ → πτ(→ μν̄ν)ν̄ decays are listed in Tables 3 and 4,
respectively. Ta
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