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Abstract The pre-inflationary evolution of the universe
describes the beginning of the expansion from a static ini-
tial state, such that the Hubble parameter is initially zero, but
increases to an asymptotic constant value, in which it could
achieve a de Sitter (inflationary) expansion. The expansion
is driven by a background phantom field. The back-reaction
effects at this moment should describe vacuum geometrical
excitations, which are studied in detail in this work using
relativistic quantum geometry.

1 Introduction

The inflationary model is a very well-tested description of
how the universe can provide a physical mechanism to gen-
erate primordial energy density fluctuations on cosmological
scales [1–3], below Planckian scales. During this stage, the
primordial scalar perturbations drove the seeds of large scale
structure which had then gradually formed today’s galax-
ies. This is being tested in current observations of cosmic
microwave background (CMB) [4]. These fluctuations are
today larger than a 1000 times the size of a typical galaxy, but
during inflation they were very much larger than the size of
the causal horizon [5]. According to this scenario, the almost
constant potential depending of a minimal coupling to a grav-
ity inflation field, φ, called the inflaton, caused the acceler-
ated expansion of the very early universe. During this epoch,
the potential energy density was dominant, so that the kinetic
energy can be neglected. This is known as the slow-roll con-
dition for the inflaton field dynamics. In this framework the
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problem of nonlinear (scalar) perturbative corrections to the
metric has been studied in [6,7].

Geometrodynamics [8,9] is a picture of general relativity
that studies the evolution of the spacetime geometry. The sig-
nificant advantages of geometrodynamics usually have come
at the expense of manifest local Lorentz symmetry [10]. Dur-
ing the 1970s and 1980s a method of quantization was devel-
oped in order to deal with some unresolved problems of quan-
tum field theory in curved spacetimes [11–13]. In this context,
recently we have introduced a new method to study the scalar
perturbations of the metric in a non-perturbative manner
[14] by introducing relativistic quantum geometry (RQG).
This formalism is non-perturbative and serves to describe
the dynamics of the geometric departure of a background
Riemann spacetime with the help of a quantum geometrical
scalar field [15–17]. The dynamics of the geometrical scalar
field is defined on a Weyl-integrable manifold that preserves
the gauge-invariance under the transformations of the Ein-
stein’s equations, which involves the cosmological constant.
Our approach is different from quantum gravity. The natural
way to construct quantum gravity models is to apply quan-
tum field theory methods to the theories of classical gravi-
tational fields interacting with matter. In spite of numerous
efforts the general problems of quantum gravity still remain
unsolved. Our approach is different because our subject is
the dynamics of the geometrical quantum fields. This dynam-
ics is obtained from the Einstein–Hilbert action, and not by
using the standard effective action used in various models of
quantum gravity [18]. There are no non-linearities or high-
derivative problems in the dynamical description, so our for-
malism is much easier to apply to different physical systems
like inflation [14], or pre-inflation. This primordial epoch is
of significant interest in cosmology and deserves a detailed
study. Presently, we cannot understand completely the first
epoch of the universal evolution. How the did universe begin
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to expand and how must we understand the first stage of this
evolution? The theory that describes this epoch is called pre-
inflation [19–21]. The existence of a pre-inflationary epoch
with fast-roll of the inflaton field would introduce an infrared
depression in the primordial power spectrum. This depres-
sion might have left an imprint in the CMB anisotropy [22].
It is supposed that during pre-inflation the universe began to
expand from some Planck-size initial volume, to thereafter
pass to an inflationary epoch. In this framework RQG should
be very useful when we try to study the evolution of the geo-
metrical back-reaction effects given that we are dealing with
Planck energetic scales, and back-reaction effects should be
very intense at these scales.

In this work we shall describe a model in which the uni-
verse begins to expand from nothing (the initial energy den-
sity is null). The Hubble parameter is initially zero and there-
after increases to an asymptotic constant value, in which it
could achieve a de Sitter (inflationary) expansion. In our
model the background expansion is driven by a phantom
scalar field φ, in which the equation of state of the universe
during pre-inflation is Ppi/ρpi < −1 [23–25]. The back-
reaction effects at this moment should describe vacuum geo-
metrical excitations, which are the main subject in this work.

2 Relativistic quantum geometry: the structure of
spacetime in an expanding universe

We shall consider a metric tensor in the Riemann manifold
with a null covariant derivative (we denote by a semicolon
the Riemann-covariant derivative): �ḡαβ = ḡαβ;γ dxγ = 0,
such that the Weyl [26] covariant derivative ḡαβ|γ = θγ ḡαβ ,
described with respect to the Weyl connections,1

	α
βγ =

{
α

β γ

}
+ θα ḡβγ , (1)

is nonzero; we have

δḡαβ = ḡαβ|γ dxγ = − [
θβ ḡαγ + θα ḡβγ

]
dxγ . (2)

In the case of an expanding universe, the Riemann manifold
will be described by the background geometry characterized
with a FRW metric. Of course, all the variations with respect
to the expanding background are in the Weyl geometrical rep-
resentation. As was demonstrated in [15] the Einstein tensor
can be written

Ḡαβ = Gαβ + θα;β + θαθβ + 1

2
gαβ

[(
θμ

)
;μ + θμθμ

]
≡ Gαβ − ḡαβ�, (3)

1 To simplify the notation we shall denote θα ≡ θ,α , where the comma
denotes the partial derivative. Furthermore, we shall denote by a bar the
quantities represented on the Riemann background manifold.

and we can obtain the semi-Riemann invariant (the cosmo-
logical constant) �

� = −3

4

[
θαθα + �̄θ

]
. (4)

Notice that �(θ, θα) is a Riemann invariant, but not a Weyl
invariant. Hence, one can define a geometrical Weyl quantum
actionW = ∫

d4x
√−ḡ�(θ, θα), such that the dynamics of

the geometrical field, after imposing δW = 0, is described
by the Euler–Lagrange equations, which take the form

∇̄α�α = 0, or �̄θ = 0. (5)

The canonical momentum components are �α ≡ − 3
4θα and

the relativistic quantum algebra is given by [15]
[
θ(x), θα(y)

] = −iα δ(4)(x − y),

[θ(x), θα(y)] = iα δ(4)(x − y), (6)

with α = i h̄ Ūα and 2 = αα = h̄2Ūα Ūα for the
Riemann components of velocities Ūα .

3 Pre-inflation and back-reaction

One of the most important paradigms in cosmology con-
sists in providing an explanation of the initial moment of the
expansion of the universe. This implies a model of how the
universe begun its expansion before the inflationary acceler-
ated expansion with a Hubble parameter very close to a con-
stant and Pi/ρi � −1. A possible scenario is pre-inflation,
in which the Hubble parameter is initially null, to there-
after increase to an asymptotically constant value. During
the beginning of the expansion the universe has an equation
of state with Ppi/ρpi < −1, which implies that the expansion
is driven by a minimally coupled to gravity scalar phantom
field φ. During pre-inflation the action is

I =
∫
V

d4x
√|ḡ|

[
R̄

2κ
+ λ

2
φ̇2 − V (φ)

]
, (7)

where κ = 8πG, G is the gravitational constant,
√|ḡ| =

a3(t) is the volume of the manifold M, and ḡμν =
diag[1,−a2,−a2,−a2] are the components of the diagonal
tensor metric. With the aim to describe pre-inflation, we shall
use λ = −1, which describes the dynamics of a fast-rolling
phantom field. However, this epoch would be followed by
an inflationary expansion driven by the slow-rolling inflaton
field, for which the dynamics is obtained when λ = 1. Here,
φ(t) is the background solution that describe the dynamics of
an isotropic and homogeneous background metric that char-
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acterizes a semi-Riemann manifold. We have

φ̈ + 3H φ̇ + λV ′(φ) = 0, (8)

where V (φ) is the potential and the prime denotes the deriva-
tive with respect to φ. The semi-Riemann (background) Ein-
stein equations are

Ḡαβ ≡ R̄αβ − 1

2
ḡαβ R̄ = −κ T̄αβ, (9)

where the components of the background stress tensor are

T̄αβ = δL̄
δḡαβ − ḡαβL̄. For a background FRW metric the Ein-

stein equations result,

3H2 = κρpi = κ

[
λ

φ̇2

2
+ V (φ)

]
, (10)

−
(

3H2 + 2Ḣ
)

= κ Ppi = κ

[
λ

φ̇2

2
− V (φ)

]
. (11)

From the two Einstein equations we obtain φ̇ = − 2H ′
κλ

, and
the time dependent potential can be written as a function of
the Hubble parameter and its time derivative:

V (t) = 1

κ

[
3H2 + Ḣ

]
. (12)

This expression can be re-written taking into account the φ-
dependence

V (φ) = 1

κ

[
3H2(φ) − 2

κλ

(
H ′)2

]
. (13)

3.1 The pre-inflationary model with a phantom field

We consider a model in which the Hubble parameter is ini-
tially zero and tends asymptotically to H |t�1/(

√
2A) → H0,

H(t) = H0 tanh [2 H0 t], (14)

where the cosmological constant is related to H0: � = 3H2
0 .

The scale factor of the universe during this stage is

a(t) = a0[
1 − tanh2 (2 H0 t)

]1/4 , (15)

with a0 = H−1
0 . Notice that this solution describes a uni-

verse in which Ḣ > 0. In other words, the model describes a
universe which began to expand since we have an initial scale
factor a(t = 0) ≡ H−1

0 . Furthermore, the Hubble parameter
increases super-exponentially from a null value to an asymp-
totically constant value. The scalar potential can be written
as a function of t ,

V (t) = H2
0

κ

[
tanh2 (2H0t) + 2

]
, (16)

so that for sufficiently large times, we obtain V (t)|t→∞ →
3H2

0
κ

. From the Einstein equations (10) and (11), we obtain
the time dependence of φ̇

φ̇ = 2H0√
κ

[
1 − tanh2 (2H0t)

]1/2
. (17)

Using the fact that V ′ = V̇
φ̇

in the equation of motion (8), we
obtain the time dependence of the background scalar field,

φ(t) = 2√
κ

arctan
(
e2H0t

)
− π

2
√

κ
, (18)

where 0 ≤ φ ≤ π
2
√

κ
. Notice that the phantom field increases

during pre-inflation. Therefore, if we use this expression in
Eqs. (14) and (16), we obtain the φ-dependence of the Hubble
parameter and the scalar potential

H(φ) = H0

[
1 − 2 cos2

[√
κ

2

(
φ + π

2
√

κ

)]]
, (19)

V (φ) = H2
0

κ

{[
1 − 2 cos2

[√
κ

2

(
φ + π

2
√

κ

)]]2

+ 2

}
,

(20)

such that V (φ(t = 0)] = 2H2
0

κ
≤ V (φ) ≤ V [φ(t → ∞)] =

3H2
0

κ
. Notice that ρpi(t = 0) = 0, so that in this model the

universe is created from nothing.

3.2 Back-reaction effects in pre-inflation

The geometrical scalar field θ can be expressed as a Fourier
expansion

θ(
x, t)= 1

(2π)3/2

∫
d3k

[
Ak e

i 
k.
xξk(t) + A†
k e

−i 
k.
xξ∗
k (t)

]
,

(21)

where A†
k and Ak are the creation and annihilation operators.

From the point of view of the metric tensor, an example in
power-law inflation can be illustrated by

gμν = diag
[
e2θ ,−a2(t)e−2θ ,−a2(t)e−2θ ,−a2(t)e−2θ

]
,

(22)

where the scale background scale factor a(t) is given by
(15). The quantum volume of the manifold described by (22)
is Vq = a3(t)e−2θ = √−ḡ e−2θ . The dynamics for θ is
governed by the equation

θ̈ + 3
ȧ

a
θ̇ − 1

a2 ∇2θ = 0, (23)
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and the momentum components are �α ≡ − 3
4θα , so that the

relativistic quantum algebra is given by the expressions (6)
with co-moving relativistic velocities U 0 = 1, Ui = 0.

Furthermore, as was calculated in a previous work [14],
the variation of the energy density fluctuations is given by
the expression

1

ρ̄

δρ̄

δS
= −2θ0 = −2θ̇ , (24)

such that θ̇ ≡ 〈
B|θ̇2|B〉1/2

. To understand what the line ele-
ment S is in a quantum context, we can define the operator

x̌α(t, 
x) = 1

(2π)3/2

∫
d3k ěα

[
bk x̌k(t, 
x) + b†

k x̌
∗
k (t, 
x)

]
,

(25)

where b†
k and bk are the creation and annihilation operators of

spacetime, such that 〈B|[bk, b†
k′ ]|B〉 = δ(3)(
k− 
k′) and ěα =

εα
βγ δ ě

β ěγ ěδ , where εα
βγ δ are the Levi-Civita symbols. In this

framework, we must understand that the exact differential
related to a coordinate xα ,

dxα|B〉 = ŪαdS|B〉 = δ x̌α(xβ)|B〉, (26)

is the eigenvalue that results when we apply the operator
δ x̌α(xβ) on the background quantum state |B〉, defined as a
Fock space on the Riemann manifold. The Weyl line element
is given by

dS2 δBB′ = (
ŪαŪ

α
)

dS2 δBB′ = 〈B ∣∣δ x̌αδ x̌α
∣∣ B ′〉. (27)

Hence, the differential Weyl line element dS provides the
displacement of the quantum trajectories with respect to the
“classical” (Riemann) ones: dS̄2 = ḡαβdxαdxβ .

3.3 Quantization of modes

The equation of motion for the modes ξk(t) is

ξ̈c(t) + 3
ȧ

a
ξ̇c(t) + k2

a(t)2 ξc(t) = 0. (28)

The annihilation and creation operators Bk and B†
k satisfy the

usual commutation algebra

[
Ak, A

†
k′
]

= δ(3)(
k − 
k′), [Ak, Ak′ ] =
[
A†
k, A

†
k′
]

= 0.

(29)

Using the commutation relation (29) and the Fourier expan-
sions (21), we obtain the normalization condition for the
modes. For convenience we shall re-define the dimensionless
time: τ = b t , where b =

√
2�
3 = 1

a0
, so that the normaliza-

tion condition for ξc(τ ) is

ξk(t)
dξ∗

k (τ )

dτ
− ξ∗

k (τ )
dξk(τ )

dτ
= i

(
a0

a(τ )

)3

, (30)

where the asterisk denotes the complex conjugated. The gen-
eral solution for the modes ξk(τ ) is

ξk(τ ) = C1
sinh (τ )√

2 cosh2 (τ ) − 1

×Hn

[
−1,

k2 − 1

4
; 0,

1

2
,

3

2
,

1

2
;− tanh2 (τ )

]

+C2
cosh (τ )√

2 cosh2 (τ ) − 1

×Hn

[
−1,

k2 + 1

4
;−1

2
, 0,

1

2
,

1

2
;− tanh2 (τ )

]
,

(31)

where Hn[a, q;α, β, γ, δ; z] = ∑∞
j=0 c j z

j is the Heun
function. Since the Heun functions are written as infinite
series, we can make a series expansion in both sides of (30),
in order to obtain the restrictions for the coefficients C1 and
C2, and the wavenumber values k. The polynomial expansion

of ξk(t)
[
ξ∗
k (τ )

]′ − ξ∗
k (t) [ξk(τ )]′ = i

(
a0
a(τ )

)3
can be written

as a series expansion,

ξk(t)
(
ξ∗
k (τ )

)′ − ξ∗
k (t) (ξk(τ ))′ − i

(
a0

a(τ )

)3

=
∞∑
N=1

fN (k) τ N = 0, (32)

where fN (k(N )
n ) = 0, for each N . To simplify the notation we

denote the τ -derivative with a prime. There are 2N modes for
each N th order of the expansion, which comes from the roots
of each equation. These roots provide us with the discrete
quantum modes coming from the quantization of θ . From
the zeroth order of the expansion (in τ ), we obtain C2 =
−i C1/2. Hence, we shall choose C1 = 1 and C2 = −i/2 in
the general solution (31). The first eight terms of the series
are

∞∑
N=1

fN (k) τ N = 2

3
i
(
k2 + 2

)
τ2 + 4/3 i

(
k2 + 2

)
τ3

+ 2

45
i
(
−43 k2 − 95 + 3 k4

)
τ4

+ 4

15
i
(
−21 k2 − 45 + k4

)
τ5

+ 1

945
i
(

3667 k2 + 8996 − 474 k4 + 12 k6
)

τ6

+ 2

315
i
(

2263 k2 + 5248 − 214 k4 + 4 k6
)

τ7

+ 1

14175
i
(
−99563 k2 − 268995

+17513 k4 − 820 k6 + 10 k8
)

τ8 + · · · = 0.

(33)
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From each k-dependent polynomial we obtain the roots,
which provide us the permitted modes that guarantee the
quantization of θ . There are infinite discrete permitted modes.
The expectation value for θ̇2 on the quantum state |B〉 >, cal-
culated on the background semi-Riemann hypersurface, is

〈
B|θ̇2|B

〉
= a2

0

(2π2)

∞∑
n=1

(
kn k

∗
n

) [[
ξkn (τ )

]′ [
ξ∗
kn (τ )

]′]
, (34)

such that
(
ξkn (τ )

)′ is a τ -derivative of ξkn evaluated at k = kn :
(ξk(τ ))′

∣∣
k=kn

and kn2 are the complex roots of the polyno-
mials fN (k) = 0 in (33). Equation (34) can be alternatively
written for each mode kn , thus:

〈
B|θ̇2|B

〉
kn

= a2
0

(2π2)

(
kn k

∗
n

) [[
ξkn (τ )

]′ [
ξ∗
kn (τ )

]′]
, (35)

which takes into account the contribution of each kn-mode
in

〈
B|θ̇2|B〉

. We see that the first modes have roots in k1,2 =
±√

2 i . The modes for these roots have the same contribution
in the expression for

〈
B|θ̇2|B〉

k1,2
. The modes of the second

polynomial in (33) are the same. The modes of the third poly-
nomial come from the roots of 3 k4−43 k2−95 = 0, they are
k3,4,5,6 = 1.394736996 i,−1.394736996 i, 4.034677759,

−4.034677759. The modes of the fourth polynomial have
roots in k7,8,9,10 = 1.399977069 i,−1.399977069 i,
4.791652721,−4.791652721. In Fig. 1 we have drawn the
contributions of the modes k1 (red), k3 (blue), k5 (black), and
k7 (green), to

〈
B|θ̇2|B〉

kn
, for a0 = G1/2. Notice that all the

contributions tend asymptotically to zero for a few Planck
times (tp � 10−43 sec). In other words, the excitations of
the background (i.e., the Riemann vacuum), are significant
at the moment of the big bang, but decrease to zero when
Ḣ/H2 → 0. This corresponds just to the approximation to
the de Sitter (inflationary) regime.

4 Final comments

We have studied back-reaction effects in a pre-inflationary
universe using RQG. This formalism makes possible the
non-perturbative treatment of the vacuum fluctuations of the
spacetime, by making a displacement from a semi-Riemann
description to a Weyl one. In this framework the Einstein
equations are exactly valid on the Riemann manifold, but the
quantum effects are described on the Weyl one by the field
θ . In the Weyl manifold the cosmological constant is not an
invariant, but a Lagrangian density �(θ, θα) with which we
define the quantum actionW . The dynamics of the geometri-
cal field θ is that of a free scalar field and describes the dynam-
ics of the geometrical quantum fluctuations with respect to

2 k∗
n is the complex conjugate.

Fig. 1 Contributions to
〈
B|θ̇2|B〉

kn
drawn for a0 = G1/2, due to

the modes k1 = 1.414213562 i (red), k3 = 1.394736996 i (blue),
k5 = 4.034677761 (black), and k7 = −4.082914929+0.6506152090 i
(green)

the Riemann (classical) background. When we apply this for-
malism to the pre-inflationary scenario, which describes the
beginning of the universal expansion from nothing, we see
that the modes of the geometrical field θ are discrete, but
infinite in number. The contribution of some of these to the
variation of the energy density were drawn in Fig. 1. Notice
that all the modes’ contributions become asymptotically null
for τ � 1. Another distinctive characteristic of these modes
is that they are not unstable, as in the case of the modes of θ

during inflation [14]. A subsequent study of how to describe
the transition from pre-inflation to inflation remains pendent.
This issue will be the subject of future work.
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