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Abstract The aim of this paper is to discuss the theory
of Newtonian and relativistic polytropes with a generalized
polytropic equation of state. For this purpose, we formu-
lated the general framework to discuss the physical proper-
ties of polytropes with an anisotropic inner fluid distribution
under conformally flat condition in the presence of charge.
We investigate the stability of these polytropes in the vicin-
ity of a generalized polytropic equation through the Tolman
mass. It is concluded that one of the derived models is phys-
ically acceptable.

1 Introduction

The theory of polytropes has a significant role to play in
studying the inner structure of astrophysical compact objects
(CO) very precisely. In Newtonian gravity, various useful
physical phenomena have been addressed with polytropic
equations of state (EoSs). Chandrasekhar [1] presented the
basic theory of Newtonian polytropes emerging through the
laws of thermodynamics for polytropic spheres. Tooper [2,3]
provided the basic formalism of polytropes for a compress-
ible fluid under the assumption of quasi-static equilibrium.
He extended his work for an adiabatic fluid sphere and
provided the fundamental framework to derive the Lane–
Emden equation (LEe) for relativistic polytropes. Kovetz [4]
redefined some anomalies in the theory of slowly rotating
polytropes presented by Chandrasekhar [1]. Abramowicz [5]
extended the general form of the LEe for spherical, planar,
and cylindrical polytropes for higher dimensional spaces.

In general relativity (GR), polytropes have been discussed
by many researchers by means of the LEe which can be
derived from the hydrostatic equilibrium configuration of
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the CO. Cosenza et al. [6] presented a heuristic procedure
to construct anisotropic models in GR. Herrera and Santos
[7] provided a comprehensive study to discuss the possible
causes for the existence of local anisotropy in self-gravitating
systems both in the Newtonian and the relativistic regime.
Herrera and Barreto [8] investigated relativistic polytropes
under the assumption of a post-quasi-static regime and pre-
sented a new way to describe various physical variables like
pressure, mass, and energy density by means of effective
variables. They considered two possible configurations of
polytropes in the framework of GR and found that only one
was physically viable. Anisotropy plays a very vital role in
the theory of GR applied to a discussion of spherical CO.
Herrera et al. [9] developed a full set of governing equations
for spherically symmetric dissipative fluids with anisotropic
stresses to study self-gravitating systems in the framework of
GR. Herrera and Barreto [10,11] used the Tolman mass (mea-
sure of active gravitational mass) to find the stability of both
Newtonian and relativistic polytropes with an anisotropic
inner matter configuration. Herrera et al. [12] analyzed in
detail anisotropic polytropes with a conformally flat condi-
tion, which was useful in reducing the parameters involved
in a relativistic modified LEe. Recently, Herrera et al. [13]
discussed the stability of anisotropic polytropes by means of
cracking.

The presence of charge on the stars is an important phys-
ical ingredient in studying the dynamics of astrophysical
objects. To discuss the effect of charge on CO is always of
great value in GR. Bekenstein [14] introduced the idea of
hydrostatic equilibrium to observe gravitational collapse in
charged CO. Bonnor [15,16] observed that electric repulsion
can delay the gravitational collapse in spherically symmet-
ric CO. Bondi has [17] provided a detailed explanation of
the contraction in isotropic radiating CO with the help of
Minkowski coordinates. Koppar et al. [18] provided a new
technique to derive a charge generalization of a known static
fluid solution for spherical symmetry. Ray et al. [19] exam-
ined the high density CO, which can hold an amount of charge
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of approximately 1020 coulomb. Herrera et al. [20] analyzed
charged dissipative spherical fluids. The physical meaning of
structure scalars is analyzed for charged dissipative spherical
fluids and for neutral dust in the presence of a cosmologi-
cal constant. Takisa and Maharaj [21] studied the models of
charged polytropic spherical symmetries. Sharif and Sadiq
[22] presented a general formalism to study the effects of
charge on anisotropic polytropes and developed a modified
LEe. Azam et al. [23–26] analyzed different charged CO
models to formulate their stability in the scenario of linear
and quadratic regimes. It is found that the stability of these
objects depends on the electromagnetic field as well as the
choice of EoS.

In the development of the CO models the selection of the

EoS is a very crucial issue. A polytropic EoS, Pr = Kρ
1+ 1

n
0 ,

has been used by many researchers [5–14] for development
and discussion of spherical CO. Chavanis [27] proposed the

generalized polytropic EoS Pr = α1ρo + Kρ
1+ 1

n
o to discuss

various cosmological aspects of the universe. He developed
a model of the early universe to elaborate the transforma-
tion from a pre-radiation era to the radiation era for positive
indices n > 0. In this continuity, he also produced models
which described the late universe by considering negative
indices in the case of a generalized polytropic EoS [28]. Fre-
itas and Goncalves [29] used a generalized polytropic EoS
to study primordial quantum fluctuations and build a uni-
verse with constant density at the origin. In this work, we
will use a generalized polytropic EoS to discuss the theory
of Newtonian polytropes and relativistic charged polytropes.

The plan of this paper is as follows. In Sect. 2, we shall
provide the basics of the Einstein–Maxwell field equation
and the hydrostatic equilibrium equation. In Sect. 3, Newto-
nian polytropes will be discussed and Sect. 4 is devoted to
the observation of relativistic polytropes. Energy conditions
and the conformally flat condition are discussed in Sect. 5.
Section 6 is devoted to a stability analysis of polytropes. In
the last section, we shall conclude and present our results.

2 The Einstein–Maxwell field equations

We consider a static spherically symmetric space-time

ds2 = eνdt2 − eλdr2 − r2dθ2 − r2 sin2 θdφ2, (1)

where ν, λ are functions of r only. The energy-momentum
tensor for an anisotropic matter distribution is given by

Ti j = (Pt + ρ)ViVj − gi j Pt + (Pr − Pt )Si S j , (2)

where Pt , Pr , and ρ, respectively, represent the tangential
pressure, the radial pressure, and the energy density of the

inner fluid distribution. The four-velocity Vi and four-vector
Si satisfy the following equations:

Vi =e
ν
2 δ0

i , V iVi =1, Si =e
λ
2 δ1

i , Si Si =−1, Si Vi =0.

(3)

The electromagnetic energy-momentum tensor is defined by

T (em)
i j = 1

4π

(
Fm
i Fjm − 1

4
FmnFmngi j

)
, (4)

where

Fi j = ψ j,i − ψi, j (5)

is the Maxwell field tensor and it satisfies the following rela-
tions:

Fi j
; j = μ0 J

i , F[i j;k] = 0, (6)

where ψi is the four-potential, μ0 is the magnetic perme-
ability, and J i is the four-current. Also, the four-potential
and four-velocity satisfy the following relations in co-moving
coordinates:

ψi = ψ(r)δ0
i , J i = σV i , i = 0, 1, 2, 3, (7)

where ψ is the scalar potential and σ is the charge density.
The Maxwell equation (6) yields

ψ ′′ +
(2

r
− ν′

2
− λ′

2

)
ψ ′ = 4πσe

ν+λ
2 , (8)

where the prime ′ denotes differentiation with respect to r .
From the above, we have

ψ ′ = q(r)

r2 e
ν+λ

2 , (9)

where q(r) = 4π
∫ r

0 μe
λ
2 r2dr represents the total charge

inside the sphere.
The Einstein–Maxwell field equations for the line element

of Eq. (1) are given by

λ′e−λ

r
+ (1 − e−λ)

r2 = 8πρ − q2

r4 , (10)

ν′e−λ

r
− (1 − e−λ)

r2 = 8π Pr − q2

r4 , (11)

e−λ

[
ν′′

2
− ν′λ′

4
+ ν′2

4
+ λ′ − ν′

2r

]
= 8π Pt + q2

r4 , (12)

and solving Eqs. (10)–(11) simultaneously leads to the hydro-
static equilibrium equation [22]
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dPr
dr

− 2

r

(
� + qq′

8πr3

)
+ (4πr4Pr − q2 + mr)

r(r2 − 2mr + q2)
= 0, (13)

where we have used � = (Pt − Pr ).
The junction conditions are commonly used to relate inner

and outer regions of the CO over a boundary surface. The
choice of the outer geometry totally relies on the inner fluid
distribution of the CO. For spherical symmetry, if the matter
in the interior of a star is charged and anisotropic, we take the
Reissner–Nordsträm space-time as the exterior geometry,

ds2 =
(

1 − 2M

r
+ Q2

r2

)
dt2 −

(
1 − 2M

r
+ Q2

r2

)−1
dr2

−r2dθ2 − r2 sin2 θdφ2. (14)

Junction conditions play a very significant role in the study
of the CO. These conditions determine whether the combina-
tion of two space-time metrics provides a physically viable
solution or not when a hyper-surface divides the space-time
into interior and exterior regions. The smooth matching of
interior and exterior regions through the first and second fun-
damental forms [30–33] yields the following relations on the
boundary surface:

eν = e−λ =
(

1 − 2M

r
+ Q2

r2

)
, m(r) = M, q(r) = Q,

Pr = 0, (15)

and the Misner–Sharp mass leads to [34,35]

m(r) = r

2

(
1 − e−λ + q2

r2

)
. (16)

In spherical symmetry the Misner–Sharp mass can be
described as a measure of the total energy within a sphere of
a radius r at a time t . The theory of polytropes is based on the
assumption of hydrostatic equilibrium and polytropic EoS. In
this work, we discuss Newtonian and relativistic polytropes
by using a generalized polytropic EoS, which is a combina-
tion of linear and polytropic EoSs.

3 Newtonian Polytrope

In the framework of Newtonian gravity, the polytropic EoSs
are very useful in describing a huge variety of situations like
inner pressure, types of inner fluid distribution etc. In this sec-
tion, we formulate Newtonian polytropes through a hydro-
static equilibrium equation in the scenario of a generalized
polytropic equation of state. Polytropes are supposed to be
in hydrostatic equilibrium; we have to keep in mind that the
appearance of cracking occurs when the system is taken out
of equilibrium. We consider the following basic equations
[8]:

dPr
dr

= −dφ

dr
ρo, (17)

and in spherical coordinates the Poisson equation is given by

1

r2

d

dr

(
r2 dφ

dr

)
= 4πρo, (18)

here ρo is the mass density and φ is taken to be the Newtonian
gravitational potential. Equations (17)–(18), along with the
generalized polytropic EoS [27,28]

Pr = α1ρo + Kρ
γ
o = α1ρo + Kρ

1+ 1
n

o , (19)

lead to a modified LEe (for γ �= 1). Here K is the polytropic
constant and n is the polytropic index. We take

ρo = ρgcθ
n(r), (20)

where ρgc is the density evaluated at center c, and using Eqs.
(19)–(20) in (17), we get

nα1θ
′

θ
+ (n + 1)Kρgcθ

′ = −dφ

dr
. (21)

From Eqs. (18), (20), and (21), we obtain

−A2
3

(
r

A2

)−2 d

dr

(
r2θ ′

θ

)
−

(
r

A2

)−2 d

dr

(
r2θ ′) = θn,

(22)

where A2
2 and A2

3 are given by

A2
2 = 4πρ

1− 1
n

gc

K (n + 1)
, A2

3 = Kn(n + 1)α1

16π2ρ
2− 1

n
gc

. (23)

Inserting ξ = r
A2

in the above equation, we obtain the mod-
ified form of the LEe,

( A2
3 + θ

θ

)d2θ

dξ2 + 2

ξ

( A2
3 + θ

θ

)dθ

dξ
−

( A2
3

θ2

)(dθ

dξ

)2 +θn = 0,

(24)

with the boundary conditions

dθ

dξ
(ξ = 0) = 0, θ(ξ = 0) = 1. (25)

The boundary of the sphere is defined by ξ = ξn , such that
θ(ξn) = 0.
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4 The relativistic polytropes

This section deals with the relativistic configuration of poly-
tropes with generalized EoS. The generalized polytropic EoS
is the linear combination of the linear EoS ‘Pr = α1ρo’ and

the polytropic EoS ‘Pr = Kρ
1+ 1

n
o ’. The linear EoS describes

pressureless (α1 = 0) or radiation (α1 = 1
3 ) matter. The

polytropic part describes the cosmology of the early uni-
verse for positive values of the polytropic index, whereas
it elaborates the late time universe with negative values of
the polytropic index [27,28]. In order to discuss the cosmic
behavior, ρo was taken to be the Planck density, but for rel-
ativistic discussion we will consider it as the mass density
and total energy density in case 1 and case 2, respectively.
Here, we shall present the general formalism for relativistic
polytropes with generalized polytropic EoS and investigate
the presence of charge in the following two cases.

4.1 Case 1

Here, we consider the generalized polytropic EoS as

Pr = α1ρo + Kρ
γ
o = α1ρo + Kρ

1+ 1
n

o , (26)

so that the original polytropic part remains conserved; also
the mass density ρo is related to the total energy density ρ

by [12]

ρ = ρo + nPr . (27)

Now making the assumptions

α = Prc

ρgc
, α2 = 1 + (n + 1)(α1 + αθ), α3 = (n + 1)α,

α4 = 4π Prcq2

αα3
, r = ξ

A
, ρo = ρgcθ

n,

m(r) = 4πρgcv(ξ)

A3 , A2 = 4πρgc

(n + 1)α
, (28)

where Prc is the pressure at center of the star, ρgc is the mass
density evaluated at the center of the CO, ξ , θ and v are
dimensionless variables. Using the above assumptions along
with the EoS (26), the hydrostatic equilibrium equation Eq.
(13) implies

(
1 − 2α3

v(ξ)

ξ
+ α4

ξ2

)

×
(
nα1θ

−1 + α3

α2α3
ξ2 dθ

dξ
− 2

α2α2
3ξ3� + 2π P2

rcq
dq
dξ

αα2α
3
3 Prcξ2

θ−n

)

− α4

α3ξ
+ v(ξ) + (α1 + αθ)ξ3θn = 0. (29)

Now differentiating Eq. (16) with respect to r and using the
assumptions given in Eq. (28), we get

dv(ξ)

dξ
= ξ2θn(1 + nα1 + nαθ) − α4

α3ξ2 + α4

α3ξq

dq

dξ
. (30)

Thus Eq. (29) coupled with Eq. (30) yields a modified LEe
[see the appendix, Eq. (53)] which describes the relativistic
polytropes in the presence of charge q with a generalized
polytropic EoS.

4.2 Case 2

Here, we consider the generalized polytropic EoS

Pr = α1ρ + Kρ1+ 1
n , (31)

where the mass density ρo is replaced by the total energy
density ρ in Eq. (26), and they are related to each other by
[12]

ρ = ρo(
1 − Kρ

1
n
o

)n . (32)

We make the following assumptions:

α = Prc

ρc
, α5 = 1 + α1 + αθ,

r = ξ

A
, ρo=ρcθ

n, m(r) = 4πρcv(ξ)

A3 , A2 = 4πρc

(n+1)α
,

(33)

where c represents the quantity at the center of the star, α2, α3,
and α4 obey the same relations as in Eq. (28) with α defined
in Eq. (33). Using the above assumptions along with the EoS
(31), the hydrostatic equilibrium equation (13) becomes
(

1 − 2α3
v(ξ)

ξ
+ α4

ξ2

)

×
(
nα1θ

−1 + α3

α3α5
ξ2 dθ

dξ
− 2

α2α2
3ξ3� + 2π P2

rcq
dq
dξ

αα3
3α5Prcξ2

θ−n

)

− α4

α3ξ
+ v(ξ) + (α1 + αθ)ξ3θn = 0. (34)

Now differentiating Eq. (16) with respect to r and using the
assumptions given in Eq. (33), we get

dv(ξ)

dξ
= ξ2θn − α4

α3ξ2 + α4

α3ξq

dq

dξ
. (35)

Equation (34) coupled with Eq. (35) gives the modified LEe
[see the appendix, Eq. (54)] representing the relativistic poly-
tropes in the presence of a charge q with a generalized poly-
tropic EoS.
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5 Energy conditions and conformally flat condition

The energy conditions in GR are designed to obtain max-
imum possible information without enforcing a particular
EoS. The energy conditions are provided in the sense that
energy density cannot be negative because if it allows for
random +ve and −ve energy regions, the empty space would
become unstable. The energy conditions satisfied by all the
spherically symmetric models are [22,36]

ρ + q2

8πr4 > 0,
Pr
ρ

≤ 1 + q2

4πρr4 ,
Pt
ρ

≤ 1. (36)

For case 1 the conditions given in Eq. (36) turn out to be

1 + n(α + α1)θ + α4θ
−n

2α3ξ4 > 0,

1 ≤ n + (α1 + αθ)−1 + α4θ
−n

(α1 + αθ)α3ξ4 ,

3v(ξ)

ξ3 + 2α4
dq
dξ

α3qξ3 + α1θ + αθn+1 ≤ 4α4

α3ξ3 , (37)

and for case 2 the conditions given in Eq. (36) emerge as

1 + α4θ
−n

α3ξ4 > 0, α1 + αθ − α4θ
−n

α3ξ4 ≤ 1,

3v(ξ)

ξ3 + 2α4
dq
dξ

α3qξ3 + α1 + αθn+1 ≤ 4α4

α3ξ4 . (38)

We observe that the coupled equations (29)–(30) and Eqs.
(34)–(35) form a system of differential equations. These sys-
tems involve three variables and we want some additional
information to study a polytropic CO. We use the confor-
mally flat condition to reduce one variable in the above said
system of equations. The electric part of the Weyl tensor is
related to the Weyl scalar given by [12,22]

W = r3e−λ

6

(
eλ

r2 + λ′ν′

4
− 1

r2 − ν′2

4
− ν′′

2
− λ′ν′

2r

)
. (39)

Now using the conformally flat condition, i.e., W = 0, along
with the field equations, Eqs. (10)–(11), in Eq. (39), we get

� = Pt − Pr = e−λ

4π

(
eλ

r2 − λ′

2r
− 1

r2

)
− q2

4πr4 . (40)

The above equation along with Eqs. (28) and (30) for case 1
yields

� = ρgc

(
(1+nα1+nαθ)θn+3

v(ξ)

ξ3 −4
α4

α3ξ4 +2
α4

dq
dξ

α3qξ3

)
.

(41)

Similarly, the anisotropy parameter for case 2 turns out to be

� = ρc

(
θn + 3

v(ξ)

ξ3 − 4
α4

α3ξ4 + 2
α4

dq
dξ

α3qξ3

)
. (42)

Using Eqs. (41) in (29), we obtain the first equation of a
coupled differential system corresponding to case 1,

(
1 − 2α3

v(ξ)

ξ2 + α4

ξ2

)(
nα1θ

−1 + α3

α2α3
ξ2 dθ

dξ

− 2ξ

α2α3
(1 + nα1 + nαθ)

+
(

− 6αv(ξ)

α2α3Prcξ2 + 8αα4

α2α
2
3 Prcξ3

− 4αα4
dq
dξ

α2α
2
3

+ 4π P2
rcq

dq
dξ

αα2α
3
3ξ2

)
θ−n

)

− α4

α3ξ
+ v(ξ) + (α1 + αθ)ξ3θn = 0. (43)

The above equation coupled with Eq. (30) provides a mod-
ified LEe [see the appendix, Eq. (55)] which describes the
conformally flat polytropes for case 1.
In the same way, for case 2, using Eqs. (41) in (34), we obtain(

1 − 2α3
v(ξ)

ξ
+ α4

ξ2

) (
nα1θ

−1 + α3

α3α5
ξ2 dθ

dξ
− 2ξ

α3α5

+
(

− 6v(ξ)

α3α5Prcξ2 + 8α4

α3α5Prcξ3

− 4α4
dq
dξ

α2
3α5qξ2

− 4π Prcq
dq
dξ

αα3
3ξ2

)
θ−n

)

− α4

α3ξ
+ v(ξ) + (α1 + αθ)ξ3θn = 0. (44)

The above equation coupled with Eq. (35) leads to a mod-
ified LEe [see the appendix, Eq. (56)] for conformally flat
polytropes (case 2).

6 Stability analysis

The stability of the model can be discussed by means of the
Tolman mass, which measures the active gravitational mass
of the CO. The important feature of the Tolman mass is that
it can be evaluated by integrating over the region occupied
by matter or electromagnetic energy [37–39]. The modified
form of the Tolman mass for an anisotropic spherically sym-
metric metric (1) is given by [22]

mT =M
r3
�

r3 +r3
∫ r�

r
e(λ+ν)/2

(
2

r̃4 W− 4π�

r̃
+ q2

16r̃5

)
dr̃ ,

(45)

where � represents the values calculated at the boundary of
the CO. In order to get an expression for ν, we will solve the
Einstein–Maxwell field equations (10)–(11) simultaneously;
we have
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ν′

2
= (4πr4Pr − q2 + mr)

r(r2 − 2mr + q2)
. (46)

The integration of the above equation yields

ν = ν� −
∫ r�

r
2
(4πr4Pr − q2 + mr)

r(r2 − 2mr + q2)
dr. (47)

We define the dimensionless variables by

x = r

r�
= ξ

Ã
, Ã = Ar�, y = M

r�
, m̃ = m

M
. (48)

For case 1, using Eqs. (28), (46), and (48) in (45), we get

mT

M
= x3+ (n+1)αx3 Ã2

4πy

∫ 1

x

(
1−2y+Q2/r2

�

1−2(n+1)αv/x Ã+q2/x2r2
�

)1/2

× exp

(∫ 1

x
−4π(α1+αθ)θnx4r4

� −q2(n+1)αvxr2
�/ Ã

r3
�x4−2(n+1)αvr4

�x3/ Ã+q2r2
�x

)
dx

×
(−4π�

xr�
+ q2

16x5r�ρgc

)
dx, (49)

where y = (n+1)αν�

ξ�
and � is given by

� = �

ρgc
=

(
(1 + nα1 + nαθ)θn + 3

v(ξ)

ξ3 − 4
α4

α3ξ4

+ 2
α4

dq
dξ

α3qξ3

)
. (50)

For case 2, inserting Eqs. (33), (46), and (48) in (45), we
obtain

mT

M
= x3+ (n+1)αx3 Ã2

4πy

∫ 1

x

(
1−2y+Q2/r2

�

1−2(n+1)αv/x Ã+q2/x2r2
�

)1/2

× exp

(∫ 1

x
−4π(α1+αθ)θnx4r4

� − q2(n+1)αvxr2
�/ Ã

r3
�x4−2(n+1)αvr4

�x3/ Ã+q2r2
�x

)
dx

×
(−4π�

xr�
+ q2

16x5r�ρc

)
dx (51)

and � is given by

� = �

ρgc
=

(
θn + 3

v(ξ)

ξ3 − 4
α4

α3ξ4 + 2
α4

dq
dξ

α3qξ3

)
. (52)

In order to study the physical viability of these models, we
have calculated the Tolman mass whose behavior describes
some physical features of these models, particularly the sta-
bility of the model. Figures 1, 2 and 3 have been plotted
for case 1 (relativistic polytropes) corresponding to different
parametric values n, α, y, Q, and α1 = 0.5 [12,22]. Figure
1 shows that the Tolman mass is gradually decreasing and
does not show any abnormal behavior as the value of α and
charge Q increases. The curves become steeper with higher
values of α and charge Q, but they remain positive, which

x
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Fig. 1 Case 1: mT
M as a function of x for n = 1, curve a: α = 8 ×

10−11, y = 0.3991, Q = 0.2 M�, curve b: α = 10−10, y = 0.4091,
Q = 0.4 M�, curve c: α = 2 × 10−10, y = 0.3998, Q = 0.6 M�, curve
d: α = 4 × 10−10, y = 0.3858, Q = 0.64 M�
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is consistent with the results of Herrera et al. [12] for neu-
tral polytropes. It is noted that for smaller values of y, the
sphere gets more compact, which corresponds to an equilib-
rium configuration. This behavior is shown by the migration
of the Tolman mass toward the boundary surface. In terms of
stability, it happens due to a sharper reduction of the active
gravitational mass in the inner regions of the sphere, which
may correspond to more stable configurations for small val-
ues of y. The smooth behavior of Fig. 2 describes the solution
of Eq. (30) which shows that the stability of the model can
be enhanced through decreasing the values of y. Figure 3
represents the anisotropy of the model, which is larger near
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Q = 0.4 M�, curve c: α = 2 × 10−10, y = 0.3998, Q = 0.6 M�

the center and becomes weaker near the surface. For case 2,
the model does not satisfy the energy conditions presented in
Eq. (38) for various values of parameters. These results are
consistent with [12,22] for charged and neutral polytropes.

7 Conclusion and discussion

In this work, we have developed the general framework to
discuss the Newtonian and relativistic polytropes with a gen-
eralized polytropic EoS in the presence of an electromagnetic
field under the conformally flat condition. The generalized

polytropic EoS Pr = α1ρo+Kρ
1+ 1

n
o is the union of linear and

polytropic EoSs. It is widely used in cosmology to explain
different eras of the universe with the help of mathematical
models. In the cosmic scenario ρo was taken to be the Planck
density but for a relativistic discussion we have taken it as a
mass density and the total energy density in case 1 and case
2, respectively. In order to discuss the physical features of
Newtonian and relativistic ploytropes, we have formulated
the general formalism to obtain a modified LEe. The solu-
tions of the LEe are called polytropes, which depend on the
density profile function of the dimensionless radius ξ and the
order of the solution is constrained by the value of the poly-
tropic index n. The LEes are helpful to explain a relativistic
CO as they produced a simple solution to describe the internal
structure of the CO. But the cost of this simplicity is a power
law relationship between the pressure and the density, which
should be valid throughout the inner matter of the CO. The
LEes have been initially developed for relativistic charged
ploytropes with an anisotropic factor involved in them [see
Eqs. (53) and (54)], which have three unknown variables. The

conformally flat conditions are used to simplify these equa-
tions by eliminating anisotropy factor, which corresponds to
a modified LEe [see Eqs. (55) and (56)], for charged poly-
tropic spheres in the context of a generalized polytropic EoS.
The energy conditions are helpful in order to check the phys-
ical viability of the CO in GR without enforcing an EoS. The
energy conditions for both cases of relativistic polytropes
have been developed in the presence of charge.

The stability of the relativistic polytropes is analyzed with
the help of the Tolman mass. For case 1, the model behaved
well as shown in Figs. 1, 2 and 3. The models developed
here are anisotropic (in pressure) and helped us to discuss
highly charged CO solutions. Figure 1 represents the physi-
cal behavior of the Tolman mass for different values of charge
and model’s parameters [12,22]. The Tolman mass, which is
a measure of the active gravitational mass, gradually shifts
toward the boundary surface but remains stable and does not
present any fluctuations. Figure 1 represents the slow migra-
tion of the Tolman mass toward the boundary as the charge
increases, corresponding to higher stability of the model. It is
worth mentioning here that our results for the Tolman mass
are considerably consistent with work of Herrera et al. [12]
for polytropic EoSs.

Figure 2 describes the solution of Eq. (30), which shows
that the stability of the model can be enhanced through
decreasing the values of y. This figure has been plotted for
the indicated values of the triplet n, α, Q and shows a stable
behavior for small values of α. Also, the configurations of
the solution remain stable for an increasing value of charge,
although the solution curves start bending toward the bound-
ary of the CO, as shown in Fig. 2. It is also evident that the
behavior of the parameter shows dispersal in the beginning,
i.e., near the center of the CO, and it becomes more consis-
tent as we move toward the boundary with the increase of
charge. So, we can say that charge is the stabilizing factor
here for relativistic polytropes with generalized polytropic
EoS. Thus, the discussion of charge is essential for the study
and exploration of relativistic polytropic COs as regards their
physical viability.

The inclusion of anisotropy plays a vital role in the study of
the astrophysical CO. The inner fluid distribution is assumed
to be anisotropic for a spherically symmetric CO. Figure 3
represents the graphs of �, which is the ratio of the anisotropy
and the central mass density. The curves remain stable even
after an increase of the charge but rapidly move toward the
boundary of the sphere, and this phenomenon shows that the
anisotropy is affected by the presence of an electromagnetic
field. Hence, the presence of anisotropy with charge may lead
toward gravitational collapse of the polytropic CO and can
also be a source of the cracking phenomenon. The presence
of cracking can be tested by means of methods provided by
Herrera [40] and Gonzalez [41]. In this work, methods for
the development of a generalized LEe have been presented.
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We observe that in case 2 polytropes are not physically viable
due to a violation of the energy conditions.
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