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Abstract We study the Higgs derivative interactions on
models including arbitrary number of the Higgs doublets.
These interactions are generated by two ways. One is higher
order corrections of composite Higgs models, and the other
is integration of heavy scalars and vectors. In the latter case,
three point couplings between the Higgs doublets and these
heavy states are the sources of the derivative interactions.
Their representations are constrained to couple with the dou-
blets. We explicitly calculate all derivative interactions gen-
erated by integrating out. Their degrees of freedom and con-
ditions to impose the custodial symmetry are discussed. We
also study the vector boson scattering processes with a cou-
ple of two Higgs doublet models to see experimental signals
of the derivative interactions. They are differently affected
by each heavy field.
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1 Introduction

The standard model (SM) has been completed by the dis-
covery of the Higgs boson [1,2]. However, the SM does not
explain the mechanism of the electroweak symmetry break-
ing (EWSB). The symmetry is broken by hand with the neg-
ative mass square of the Higgs doublet. In order to find some
clues of the origin of the EWSB, physics of the Higgs sector
has been investigated well.

Physics of the higher energy region can be described with
higher dimensional operators at the lower energy region.
Their effects appear as smoking gun signals of new physics.
For the Higgs sector, the Higgs derivative interactions, which
consist of two derivatives and four Higgs doublets, have
attracted interest as operators which shed light on a new
structure behind the Higgs sector. These operators modify
the normalization of the Higgs boson, so that they ubiqui-
tously affect the Higgs physics. In particular, the cross sec-
tions of the vector boson scatterings are enhanced by this
effect because they violate the unitarity condition of these
processes.

They have been studied well by Ref. [3] in the context of
composite Higgs models. In these models, the Higgs doublet
is embedded in nonlinear sigma models. The derivative inter-
actions are given by the expansion of the kinetic term. Their
effects in future colliders has been studied by many papers,
e.g. Refs. [4–10].

The derivative interactions are also generated by integrat-
ing out heavy scalars and vectors. Three point interactions
between the Higgs bilinears and heavy bosons are the sources
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of these effective interactions. They also appear in composite
Higgs models. Since the representations of the heavy fields
are constrained to couple with the bilinears, the interactions
generated by integrating out have qualitatively different fea-
tures from composite ones [11,15–17].

Introducing additional Higgs doublets is a popular way
to extend the Higgs sector. In particular, the minimal exten-
sion, the two Higgs doublet models, are studied well. The
derivative interactions also appear in these models because
of other heavy bosons and the composite nature. For exam-
ple, an explicit model is studied by Ref. [18]. Some general
features of the Higgs derivative interactions have been inves-
tigated by Refs. [19,20] in the context of composite N Higgs
doublet models.

In this paper, we calculate the derivative interactions gen-
erated by the heavy boson integrations for models including
an arbitrary number of the Higgs doublets. The given deriva-
tive interactions are constrained because we assume mod-
els have perturbative UV completions.1 We investigate some
features appearing in the vector boson scatterings on the two
Higgs doublet models.

Recently, some experimental results from ATLAS and
CMS implied new bosons around 2 TeV [22–25]. Their cou-
plings with the Higgs boson could help us to investigate the
origin of the EWSB. The low energy structure of couplings
between these new particles and the doublets are explicitly
shown in this manuscript.

This paper is organized as follows. After this introduc-
tion, we show the derivative interactions generated by the
heavy boson integrations in Sect. 2. We also discuss con-
ditions imposing the custodial symmetry to the interac-
tions and terms contributing the oblique parameters there.
In Sect. 3, we investigate some properties of the given
derivative interactions. For the case of the N Higgs dou-
blet models, we compare the degrees of freedom (DOFs)
of the derivative interactions we have obtained and the gen-
eral effective Lagrangian of the derivative interactions which
respect only the SM symmetry. For the two Higgs dou-
blet models, we discuss how the contribution occurs as
regards the vector boson scattering processes. We present
our conclusions in Sect. 4. The potential terms simultane-
ously generated by the heavy scalar integrations and the
conditions to impose the custodial symmetry on the deriva-
tive interactions are shown in Appendices A and B, respec-
tively.

1 Here a perturbative UV completion does not mean a renormalizable
theory, which is valid up to very high scale like the GUT scale or the
Planck scale. We consider possible models just behind the electroweak
scale including TeV scalar and vectors. For instance, composite vector
resonances are also considered as heavy vectors.

2 Integrating out and effective Lagrangian

We explicitly calculate the Higgs derivative interactions
given by the integration of heavy scalar bosons and vector
bosons. The derivative interactions are generated by three
point interactions among them. First, we explain the pro-
cedure and the notation used in this paper. Afterwards, the
explicit forms of the derivative interactions are shown with
a conventional operator base. It is a straightforward general-
ization of Ref. [11].

The contributions of the heavy scalars appear in various
sets of the Higgs flavor indices. On the other hand, those of the
heavy vectors are strongly constrained because we assume
they interact with doublets through kinetic terms, namely,
flavor diagonal terms.

We also discuss conditions to preserve the custodial sym-
metry in the derivative interactions based on Ref. [20]. These
conditions are discussed in terms of the Wilson coefficients,
namely, the tree level, because 1-loop contributions can also
be produced by other sectors. The 1-loop calculation has been
studied in Ref. [21]

The disappearance of the Wilson coefficients obtained in
this section is related to the unitarity sum rule. A consequence
of the sum rule leads to the custodial symmetry and other
relations as studied in Refs. [26–35]. This rigidity can also
be observed below.

2.1 Integration of heavy bosons

First, we study the Higgs derivative interactions generated
by the heavy scalars. Since we focus on the three point inter-
actions, these heavy scalars can be classified into four kinds
of representations with respect to SU(2)L×U(1)Y . They are
the SU(2)L singlet or triplet with the hypercharge of 0 or 1.
Hereafter, the singlet and the triplet are, respectively, referred
to as 1 and 3, and their hypercharges are shown as their sub-
scripts. Even if there are many fields for a representation,
their differences are merged in terms of an effective inter-
action, except for some special situations mentioned later in
this section. We calculate the effective interactions using a
scalar field for each representation.

Our discussion is based on the following Lagrangian:

LS = −m2
0

2
φ2

0 + m0φ0

⎛
⎝∑

i

λi i0 I 0
i i +

∑
i< j

(λ
i j
0 I 0

i j + H.c.)

⎞
⎠

− m2
Sφ

†
SφS + mS

∑
i< j

(
λ
i j
S φ

†
S I

S
i j + H.c.

)

− m2
L

2
φa
Lφa

L + mLφa
L

(∑
i

λi iL I
La
ii
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+
∑
i< j

(λ
i j
L I

La
i j + H.c.)

⎞
⎠ − m2

Tφ
a†
T φa

T

+ mT

(
φ
a†
T

⎛
⎝∑

i

λi iT

2
I Taii +

∑
i< j

λ
i j
T I

Ta
i j

⎞
⎠ + H.c.

)
,

(2.1)

where

I 0
i j = H†

i H j , (2.2)

I Si j = HT
i σ 2Hj , (2.3)

I Lai j = H†
i σ aHj , (2.4)

I Tai j = HT
i σ 2σ aHj , (2.5)

and φ0, φS , φa
L , and φa

T are the heavy scalar fields of the 10, 11,
30, and31 representations, respectively.2 Using the symmetry
of the indices for the doublets in the above operators, the
couplings satisfy the following relations:

λ
i j
0 = λ

j i∗
0 , (2.7)

λ
i j
S = −λ

j i
S , (2.8)

λ
i j
L = λ

j i∗
L , (2.9)

λ
i j
T = λ

j i
T . (2.10)

The flavor diagonal components of the 10 and 30 cou-
plings, λi i0 and λi iL , are real. The couplings of the 11 scalars,

λ
i j
S , are antisymmetric under the exchange of indices. Hence,

this coupling disappears in the one Higgs doublet models.
Integrating out the heavy scalars roughly generates the

effective interactions as follows:

− m2
L

2
φa
Lφa

L + λLmLφa
L H

†σ aH ⇒ λ2
Lm

2
L

2
(H†σ aH)

× 1

∂2 + m2
L

(H†σ aH) (2.11)

2 The triplet scalar fields, 30,1, have vacuum expectation values which
explicitly violate the custodial symmetry. If we write them as vφ , they
roughly satisfy the relation

λ
v

M
∼ vφ

v
, (2.6)

where λ, v, and M stand for the three point coupling, the vacuum expec-
tation value of the doublet, and the mass of the triplet scalar, respectively.
Because of the electroweak precision measurement, vφ/v ∼ 0.01 for
each triplet. This means M is a few tens TeVfor λ = 1, so that their
effects are much smaller than the expected limits written in Ref. [10].
However, the vacuum expectation values of the 30 scalar and the 31
scalar can be canceled each other, i.e., the alignment limit of the Georgi–
Machacek model. In this case, vφ/v can be a few tens GeV, so M can
be about 1 TeV. These discussions are implicitly assumed in Ref. [11].
The current situation of the latter case has been studied by Refs. [12–14].

= λ2
L

2
(H†σ aH)

(
1 − ∂2

m2
L

+ · · ·
)

(H†σ aH). (2.12)

In the large parentheses of the last line, the first term con-
tributes to the potential, and the second term gives us the
derivative interactions we are interested in. The generated
potential terms are shown in Appendix A.

Following the above procedure, the given derivative inter-
actions are written as

LS
eff = 1

2m2
0

⎛
⎝∂

⎛
⎝∑

i

λi i0 I 0
i i +

∑
i< j

(λ
i j
0 I 0

i j + H.c.)

⎞
⎠

⎞
⎠

2

+ 1

m2
S

∑
i< j,k<l

∂
(
λ
i j
S I

S
i j + H.c.

)
∂

(
λklS I

S†
kl + H.c.

)

+ 1

2m2
L

⎛
⎝∂

⎛
⎝∑

i

λi iL I
La
ii +

∑
i< j

(λ
i j
L I

La
i j + H.c.)

⎞
⎠

⎞
⎠

2

+ 1

m2
T

∂

⎛
⎝∑

i

λi iT

2
I Taii +

∑
i< j

λ
i j
T I

T a
i j

⎞
⎠

× ∂

(∑
k

λkk∗T

2
I Ta†
kk +

∑
k<l

λkl∗T I Ta†
kl

)
. (2.13)

These interactions can be expressed with the following four
kinds of operators:

H†
i H j (∂Hj )

†(∂Hk), (2.14)

∂(H†
i H j )(H

†
k
←→
D Hl), (2.15)

∂(H†
i H j )∂(H†

k Hl), (2.16)

(H†
i
←→
D Hj )(H

†
k
←→
D Hl), (2.17)

where H†
i
←→
D Hj stands for H†

i (DHj ) − (DH†
i )Hj and the

Lorentz indices are suppressed. As is well known, the first
two kinds of operators can be eliminated with the field redef-
inition.3 We use the rest of the operators to express the given
derivative interactions with the notation below,

OH
i jkl = 1

1 + δikδ jl
∂(H†

i H j )∂(H†
k Hl) (2.18)

OT
i jkl = 1

1 + δikδ jl
(H†

i
←→
D Hj )(H

†
k
←→
D Hl). (2.19)

It is convenient to classify these operators for the combina-
tions of the indices as follows:

3 This procedure simultaneously introduces higher dimensional oper-
ators in the Yukawa couplings. They are not specified in this paper.
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type I: all doublets have the same flavor, e.g. ∂(H†
i Hi )∂(H†

i
Hi );
type II: one of doublets is different from the others, e.g.
∂(H†

i Hi )∂(H†
i H j );

type III: two flavors of doublets are included by two each
e.g. ∂(H†

i Hi )∂(H†
j H j );

type IV: three flavors of doublets are included in operator
e.g. ∂(H†

i Hi )∂(H†
j Hk);

type V: all doublets have different indices e.g. ∂(H†
i H j )∂

(H†
k Hl).

The integration of the heavy vector fields are similar to that
of the heavy scalar fields. We study the following Lagrangian
to derive the Higgs derivative interactions:4

LV = m2
0

2
V0μV0μ + V0ν

(∑
i

gii0 J 0
i iν + g′(ρ0∂μB

μν)

)

+ m2
SV

μ†
S VSμ +

(
Vμ†
S

(∑
i

giiS
2

J S
iiμ

)
+ H.c.

)

+ m2
L

2
V aμ
L V a

Lμ + V a
Lν

(∑
i

giiL J
La
iiν

+ gρL(DμW
μν)a

)
, (2.20)

where the Higgs currents are defined as

J 0
i i = i H†

i
←→
D Hi , (2.21)

J S
ii = i HT

i σ 2←→D Hi , (2.22)

J La
ii = i H†

i σ a←→D Hi . (2.23)

The couplings, gii0,L are real and giiS can be complex. Since
we assume the couplings with the vector fields appear from
the kinetic terms, the vector of the 31 representation, which
only interacts with the flavor off diagonal currents, is not
included. The 11 vector can be introduced as the 10 and the
30 in terms of the O(4) representation of the Higgs boson.
It is embedded in a part of the SU(2)R . Further details are
described in Ref. [11].

Integrating out the heavy vectors, we obtain the effective
Lagrangian which consists of the squared currents,

LV
eff = − 1

2m2
0

(∑
i

gii0 J 0
i i + g′ρ0∂ · B

)2

− 1

m2
S

(∑
i

giiS
2

J S
ii

)
·
⎛
⎝∑

j

g j j∗
S

2
J S†
j j

⎞
⎠

4 Fermion currents can also couple with the heavy vector fields. How-
ever, they can be eliminated by the SM equation of motion as mentioned
in Ref. [11].

− 1

2m2
L

(∑
i

giiL J
La
ii + gρL(∂ · W )a

)2

. (2.24)

With the effective operators of OH and OT , only the type
I and the type III effective operators appear due to their fla-
vor diagonal couplings. In the case of the heavy vectors, the
derivative interactions are the leading contributions of inte-
grating out. They do not give us additional potential terms.

The above effective Lagrangian also produces higher
dimensional operators including the gauge currents, ∂ · B
and (D · W )a . They contribute to the oblique parameters
introduced by Refs. [36–39]. We will take care of these tree
level effects since they are usually too large to compensate
with contributions of the other sectors because of the same
reason as with the custodial symmetry.

2.2 Type I

Integrating out the heavy scalars, the following type I deriva-
tive interactions are obtained:

LS
I = λi i20

2m2
0

(
∂ I 0

i i

)2 + λi i2L

2m2
L

(
∂ I Laii

)2

+ λi iT λi i∗T

4m2
T

(
∂ I Taii

) (
∂ I Ta∗

i i

)
(2.25)

⇒
(

λi i20

m2
0

− 2λi i2L

m2
L

− λi iT λi i∗T

2m2
T

)
OH
iiii

+
(

λi i2L

m2
L

− λi iT λi i∗T

2m2
T

)
OT
iiii . (2.26)

Since the operator OT
iiii violates the custodial symmetry,

the following condition is required:

λi i2L

m2
L

= λi iT λi i∗T

2m2
T

. (2.27)

The 10 scalar preserves the symmetry. It also happens for the
other types of the derivative interactions as shown in the rest
of this section.

If we suppose that λi iT is real,5 the condition can be written

λi iL

mL
= ± λi iT√

2mT
. (2.28)

5 This assumption to show a simple situation may looks artificial.
However, imaginary parts of couplings should satisfy too many rela-
tions to preserve the custodial symmetry as shown below. Even if they
can survive the relations, couplings with the Standard Model fermions
not studied in this paper give strong constraints on these CP violating
phases; see e.g. Ref. [40].
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Their signs can be independently chosen for each doublet.
This relation means that different representations of SU(2)R
collectively recover the custodial SO(4) symmetry. This sit-
uation is expected if they are embedded in a larger multiplet
respecting the symmetry in UV completions.

Likewise, in the above calculation, the heavy vectors pro-
duce the derivative interactions

LV
I = − gii20

2m2
0

J 0
i i

2 − giiS g
ii∗
S

4m2
S

J S
ii J

S†
i i − gii2L

2m2
L

J La
ii

2 (2.29)

⇒ 3

(
giiS g

ii∗
S

2m2
S

+ gii2L

m2
L

)
OH
iiii

+
(
gii20

m2
0

− giiS g
ii∗
S

2m2
S

)
OT
iiii . (2.30)

The custodial symmetry is recovered by eliminating the
coefficient of OT with the condition,

gii20

m2
0

= giiS g
ii∗
S

2m2
S

. (2.31)

For the case of the scalars, the condition is imposed between
the 3 representations. However, in this case, the 1 represen-
tations are related each other.

As discussed in the heavy scalar case, if giiS is real, the
sizes of the interactions are fixed up to signs,

gii0
m0

= ± giiS√
2mS

. (2.32)

The 30 vector does not violate the custodial symmetry such
as the 10 scalar. The results obtained here are the same as
that given by Ref. [11].

2.3 Type II

The effective Lagrangian of the type II derivative interactions
are similar to that of the type I,

LS
II = λi i0 λ

i j
0

m2
0

(
∂ I 0

i i

) (
∂ I 0

i j

)
+ λi iLλ

i j
L

m2
L

(
∂ I Laii

) (
∂ I Lai j

)

+ λi iT λ
i j∗
T

2m2
T

(
∂ I Taii

) (
∂ I Ta∗

i j

)
+ H.c. (2.33)

=
(

λi i0 λ
i j
0

m2
0

− 2λi iLλ
i j
L

m2
L

− λ
i j
T λi i∗T

2m2
T

)
OH
iii j

+
(

λi iLλ
i j
L

m2
L

− λ
i j
T λi i∗T

2m2
T

)
OT
iii j + H.c.. (2.34)

As discussed in Ref. [19], the above Wilson coefficients have
to be real to preserve the custodial symmetry. Besides, the

following condition is required because the coefficient of
OT
iii j violates the symmetry:

λi iLλ
i j
L

m2
L

= λ
i j
T λi i∗T

2m2
T

. (2.35)

Assuming the three point couplings are real, with Eq. (2.28),
the above relation becomes

λ
i j
L

mL
= ± λ

i j
T√

2mT
. (2.36)

The relative sign is the same as in Eq. (2.28) for any combi-
nation of the indices.

2.4 Type III

The type III derivative operators given by the heavy scalars
are shown now,

LS
III = 1

2m2
0

(
λ
i j
0 ∂ I 0

i j + H.c.
)2 + λi i0 λ

j j
0

m2
0

(
∂ I 0

i i

) (
∂ I 0

j j

)

+ λ
i j
S λ

i j∗
S

m2
S

(
∂ I Si j

) (
∂ I S†

i j

)
+ 1

2m2
L

(
λ
i j
L ∂ I Lai j + H.c.

)2

+ λi iLλ
j j
L

m2
L

(
∂ I Laii

)(
∂ I Laj j

)
+λ

i j
T λ

i j∗
T

m2
T

(
∂ I Tai j

)(
∂ I Ta†

j j

)

+
(

λi iT λ
j j∗
T

4m2
T

(
∂ I Taii

) (
∂ I Ta†

j j

)
+ H.c.

)
(2.37)

⇒
(

λi i0 λ
j j
0

m2
0

− λ
i j
S λ

i j∗
S

2m2
S

− λ
i j
L λ

i j∗
L + λi iLλ

j j
L

m2
L

−λ
i j
T λ

i j∗
T

2m2
T

)
OH
ii j j +

(
λ
i j
0 λ

i j∗
0

m2
0

+ λ
i j
S λ

i j∗
S

2m2
S

−λ
i j
L λ

i j∗
L + λi iLλ

j j
L

m2
L

− λ
i j
T λ

i j∗
T

2m2
T

)
OH
i j ji

+
((

λ
i j2
0

m2
0

− 2λ
i j2
L

m2
L

− λ
j j
T λi i∗T

2m2
T

)
OH
i ji j + H.c.

)

+
(

−λ
i j
S λ

i j∗
S

2m2
S

+ λ
i j
L λ

i j∗
L

m2
L

− λ
i j
T λ

i j∗
T

2m2
T

)
OT
ii j j

+
(

λ
i j
S λ

i j∗
S

2m2
S

+ λi iLλ
j j
L

m2
L

− λ
i j
T λ

i j∗
T

2m2
T

)
OT
i j ji

+
((

λ
i j2
L

m2
L

− λ
j j
T λi i∗T

2m2
T

)
OT
i ji j + H.c.

)
. (2.38)

The couplings with the 11 scalars appear of this type.
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To impose the custodial symmetry, the coefficients of
OH
i ji j and OT

i ji j have to be real. We also need the follow-
ing two nontrivial relations to preserve the symmetry:

λi iT λ
j j
T

2m2
T

= λi iLλ
j j
L

m2
L

+ λ
i j2
S

3m2
S

, (2.39)

λ
i j2
T

2m2
T

= λ
i j2
L

m2
L

− λ
i j2
S

6m2
S

, (2.40)

where, for simplicity, it is supposed that all couplings are
real. The conditions without this simplification are shown
in Appendix B. The couplings with the 11 scalars are also
required to preserve the symmetry, unlike the type I and the
type II operators.

The type I, II, and III interactions appear for any pair of
indices in models including more than two doublets. Using
Eqs. (2.28) and (2.36), it is found that the 11 couplings, λ

i j
S ,

disappear and the relative signs between λL and λT are the
same for any pair of the indices. If the heavy scalars have
only flavor off diagonal couplings, the relative signs are still
free. Another way not to fix the relative signs is as follows.
We divide the doublets into several groups, and each group
couples with different heavy scalars for each representation.
In this case, the relative signs can be changed for the different
groups.

The following type III derivative operators are obtained
by integrating out the heavy vectors:

LV
III = −gii0 g

j j
0

m2
0

J 0
i i J

0
j j − 1

4m2
S

(
giiS g

j j∗
S J S

ii J
S†
j j + H.c.

)

− giiL g
j j
L

m2
L

J La
ii J La

j j (2.41)

⇒ 3

(
giiL g

j j
L

m2
L

)
OH
i j ji + 3

((
g j j
S gii∗S

2m2
S

)
OH
i ji j + H.c.

)

+
(
gii0 g

j j
0

m2
0

− giiL g
j j
L

m2
L

)
OT
ii j j +

(
giiL g

j j
L

m2
L

)
OT
i j ji

−
((

g j j
S gii∗S

2m2
S

)
OT
i ji j + H.c.

)
. (2.42)

Assuming that the vector couplings are real, the two condi-
tions of the custodial symmetry for the Wilson coefficients
become the same. The condition is similar to those of the
type I and II,

gii0 g
j j
0

m2
0

= giiS g
j j
S

2m2
S

. (2.43)

Using this condition, the relative signs written in Eq. (2.32)
become the same for the different Higgs doublets. If the heavy

vectors couple with only two of the doublets, the imaginary
parts of gS can be kept after imposing the custodial symmetry.

2.5 Type IV

The type IV derivative operators are calculated as follows:

LS
IV = 1

m2
0

(
λ
i j
0 ∂ I 0

i j + H.c.
) (

λik0 ∂ I 0
ik + H.c.

)

+ λi i0

m2
0

(
∂ I 0

i i

) (
λ
jk
0 ∂ I 0

jk + H.c.
)

+
(

λ
i j
S λik∗S

m2
S

(∂ I Si j )(∂ I
S∗
ik ) + H.c.

)

+ 1

m2
L

(
λ
i j
L ∂ I Lai j + H.c.

) (
λikL ∂ I Laik + H.c.

)

+ λi iL

m2
L

(
∂ I Laii

) (
λ
jk
La∂ I

La
jk + H.c.

)
+ 1

m2
T

×
(
λ
i j
T λik∗T (∂ I Tai j )(∂ I Ta†

ik )

+λi iT λ
jk∗
T

2
(∂ I Taii )(∂ I Ta†

jk ) + H.c.

)
(2.44)

⇒
(

λi i0 λ
jk
0

m2
0

− λikS λ
i j∗
S

2m2
S

− λi iLλ
jk
L + λikL λ

i j∗
L

m2
L

− λikT λ
i j∗
T

2m2
T

)
OH
ii jk +

(
λ
i j
0 λik0

m2
0

−2λ
i j
L λikL

m2
L

− λ
jk
T λi i∗T

2m2
T

)
OH
i jik

+
(

λ
i j
0 λik∗0

m2
0

+ λ
i j
S λik∗S

2m2
S

−λ
i j
L λik∗L + λi iLλ

jk∗
L

m2
L

− λ
i j
T λik∗T

2m2
T

)
OH
i jki

+
(

−λikS λ
i j∗
S

2m2
S

+ λikL λ
i j∗
L

m2
L

− λikT λ
i j∗
T

2m2
T

)
OT
ii jk

+
(

λ
i j
L λikL

m2
L

− λ
jk
T λi i∗T

2m2
T

)
OT
i jik

+
(

λ
i j
S λik∗S

2m2
S

+ λi iLλ
jk∗
L

m2
L

− λ
i j
T λik∗T

2m2
T

)
OT
i jki + H.c..

(2.45)

These coefficients must be real to impose the custodial
symmetry. Additionally neglecting the imaginary part of the
each three point scalar coupling, the requirement of the fol-
lowing relations guarantees the symmetry:
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λi iT λ
jk
T

2m2
T

= λi iLλ
jk
L

m2
L

+ λ
i j
S λikS

3m2
S

, (2.46)

λ
i j
T λikT

2m2
T

= λ
i j
L λikL

m2
L

− λ
i j
S λikS

6m2
S

. (2.47)

They are trivially satisfied by the conditions discussed in the
previous section. Using the second condition, the relative
signs of the flavor off diagonal couplings are fixed even if
the flavor diagonal couplings do not exist.

2.6 Type V

The following effective Lagrangian is the type V derivative
interactions given by the integration of the heavy scalars:

LS
V = 1

m2
0

((
λ
i j
0 (∂ I 0

i j ) + H.c.
) (

λkl0 (∂ I 0
kl) + H.c.

)

+
(
λik0 (∂ I 0

ik) + H.c.
) (

λ
jl
0 (∂ I 0

jl) + H.c.
)

+
(
λil0 (∂ I 0

il) + H.c.
) (

λ
jk
0 (∂ I 0

jk) + H.c.
))

+ 1

m2
S

((
λ
i j
S ∂ I Si j

) (
λkl∗S ∂ I S†

kl

)
+

(
λikS ∂ I Sik

) (
λ
jl∗
S ∂ I S†

jl

)

+
(
λilS ∂ I Sil

) (
λ
jk∗
S ∂ I S†

jk

)
+ H.c.

)

+ 1

m2
L

((
λ
i j
L (∂ I Lai j ) + H.c.

) (
λklL (∂ I Lakl ) + H.c.

)

+
(
λikL (∂ I Laik ) + H.c.

) (
λ
jl
L (∂ I Lajl ) + H.c.

)

+
(
λilL (∂ I Lail ) + H.c.

) (
λ
jk
L (∂ I Lajk ) + H.c.

))

+ 1

m2
T

((
λ
i j
T ∂ I Tai j

) (
λkl∗T ∂ I T a†

kl

)

+
(
λikT ∂ I T aik

) (
λ
jl∗
T ∂ I T a†

jl

)

+
(
λilT ∂ I T ail

) (
λ
jk∗
T ∂ I T a†

jk

)
+ H.c.

)
(2.48)

⇒
(

λ
i j
0 λkl0

m2
0

− λ
jl
S λik∗S

2m2
S

− λ
i j
L λklL + λilLλ

jk∗
L

m2
L

−λ
jl
T λik∗T

2m2
T

)
OH
i jkl +

(
λ
i j
0 λkl∗0

m2
0

− λ
jk
S λil∗S
2m2

S

−λ
i j
L λkl∗L + λikL λ

jl∗
L

m2
L

− λ
jk
T λil∗T
2m2

T

)
OH
i jlk

+
(

λik0 λ
jl
0

m2
0

− λklS λ
i j∗
S

2m2
S

− λikL λ
jl
L + λilLλ

jk
L

m2
L

−λklT λ
i j∗
T

2m2
T

)
OH
ik jl +

(
λik0 λ

jl∗
0

m2
0

+ λ
jk
S λil∗S
2m2

S

−λ
i j
L λkl∗L + λikL λ

jl∗
L

m2
L

− λ
jk
T λil∗T
2m2

T

)
OH
ikl j

+
(

λil0 λ
jk
0

m2
0

+ λklS λ
i j∗
S

2m2
S

− λikL λ
jl
L + λilLλ

jk
L

m2
L

−λklT λ
i j∗
T

2m2
T

)
OH
il jk +

(
λil0 λ

jk∗
0

m2
0

+ λ
jl
S λik∗S

2m2
S

−λ
i j
L λklL + λilLλ

jk∗
L

m2
L

− λ
jl
T λik∗T

2m2
T

)
OH
ilk j

+
(

−λ
jl
S λik∗S

2m2
S

+ λilLλ
jk∗
L

m2
L

− λ
jl
T λik∗T

2m2
T

)
OT
i jkl

+
(

−λ
jk
S λil∗S
2m2

S

+ λikL λ
jl∗
L

m2
L

− λ
jk
T λil∗T
2m2

T

)
OT
i jlk

+
(

−λklS λ
i j∗
S

2m2
S

+ λilLλ
jk
L

m2
L

− λklT λ
i j∗
T

2m2
T

)
OT
ik jl

+
(

λ
jk
S λil∗S
2m2

S

+ λ
i j
L λkl∗L

m2
L

− λ
jk
T λil∗T
2m2

T

)
OT
ikl j

+
(

λklS λ
i j∗
S

2m2
S

+ λikL λ
jl
L

m2
L

− λklT λ
i j∗
T

2m2
T

)
OT
il jk

+
(

λ
jl
S λik∗S

2m2
S

+ λ
i j
L λklL

m2
L

− λ
jl
T λik∗T

2m2
T

)
OT
ilk j + H.c.. (2.49)

Assuming that all of couplings are real, the following condi-
tions impose the custodial symmetry on the above effective
Lagrangian:

0 = −λikS λ
jl
S + λilSλ

jk
S + λ

i j
S λklS , (2.50)

λ
i j
T λklT

2m2
T

= λ
i j
L λklL

m2
L

+ λikS λ
jl
S + λilSλ

jk
S

6m2
S

, (2.51)

λikT λ
jl
T

m2
T

= λikL λ
jl
L

m2
L

+ λ
i j
S λklS − λilSλ

jk
S

6m2
S

, (2.52)

λilT λ
jk
T

m2
T

= λilLλ
jk
L

m2
L

− λ
i j
S λklS + λikS λ

jl
S

6m2
S

. (2.53)

In addition to the three conditions like those appearing in
the type III and IV cases, a relation among the 11 couplings
is required. However, these conditions are weaker than the
conditions which have been discussed in the type III.

2.7 Gauge currents

The heavy vector fields of the 30 and the 10 representations
can couple with the SM gauge currents. After integrating out,
their couplings appear in contributions to the oblique param-
eters. Expanding the related part of Eq. (2.24), we obtain
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LV
eff ⊃

∑
i

ρ0
g′gii0
m2

0

Bμν
(
i(DμH)†(DνH) − i(DνH)†(DμH)

−gWa
μνH

†σ aH − g′BμνH
†H

)
+

∑
i

ρL
ggiiL
m2

L

Waμν

×
(
i(DμH)†σ a(DνH) − i(DνH)†σ a(DμH)

−gWa
μνH

†H − g′BμνH
†σ aH

)

− 1

2

(
g′ρ0

m0

)2

(∂ · B) · (∂ · B)

− 1

2

(
gρL

mL

)2

(D · W )a · (D · W )a . (2.54)

Following the definition of Ref. [39], the parameters are

Ŝ = −g2
(

ρ0

(∑
i

gii0
v2
i

m2
0

)
+ ρL

(∑
i

giiL
v2
i

m2
L

))
, (2.55)

W = 1

2

(
gρLmW

mL

)2

, (2.56)

Y = 1

2

(
g′ρ0mW

m0

)2

. (2.57)

The parameter Ŝ is modified by the effect of the additional
doublets. The others are the same as the models including
only the SM Higgs doublet.

The strongest constraint comes from Ŝ, and its contribu-
tion can be written

Ŝ = −4m2
W

⎛
⎝ ρ0

m2
0

√∑
i

gii 2
0 ξ̂0 + ρL

m2
L

√∑
i

gii 2
L ξ̂L

⎞
⎠ · μ̂,

(2.58)

∈ 4m2
W

√√√√√∑
i

⎛
⎝

(
ρ0gii0
m2

0

)2

+
(

ρLgiiL
m2

L

)2
⎞
⎠ [−1, 1], (2.59)

where ξ̂0,L and μ̂ are N dimensional unit vectors defined by

(ξ̂0,L)i = gii0,L√∑
gii 2

0,L

, (2.60)

(μ̂)i = v2
i

v2 . (2.61)

As is well known, the absolute value of Ŝ should be smaller
than about 0.001. For example, in the one Higgs doublet
model, assuming that m0 = mL = M , gX = 1, and ρX ∼
mW /mX , the constraint implies M � 1.6 TeV.

Table 1 The DOFs of the general effective Lagrangian. The first and
second ones are, respectively, the real and the imaginary DOFs in the
case including n Z2-odd doublets. Imposing the custodial symmetry,
the real one becomes the third one, and the imaginary one vanishes

General DOFs

Re (N 2(N 2 + 3) − 4n(N − n)(N 2 − 2nN + 2n2))/2

Im (N 2(N 2 − 1) − 4n(N − n)(N 2 − 2nN + 2n2))/2

Cust. (N 2(N 2 + 2) − 2n(N − n)(2N 2 − 1 − 4n(N − n)))/3

3 Properties of the given derivative interactions

In this section, we show several differences between the
effective Lagrangian of the general Higgs derivative interac-
tions and that of the case generated by integrating out which
we have calculated in the previous section.

First, we discuss the DOFs of the Wilson coefficients. If
the DOFs of the general one are larger than of the other one,
we find that UV models are described by a composite Higgs
model because the DOFs of composite Higgs models can be
the same as the general one; see Ref. [20].

Second, we explicitly show the derivative interactions in
the usual two Higgs doublet model and the inert doublet
model. Several properties appearing in the vector boson scat-
terings6 are discussed in each model.

3.1 Degrees of freedom

We compare the DOFs of the Wilson coefficients between the
effective Lagrangian given by integrating out and the general
one. Naively, the DOFs of the general effective Lagrangian
for the derivative interactions are proportional to N 4, while
those given by integrating out are proportional to N 2. Hence,
the DOFs of the former one can be much larger than of the
latter one for the large N case.

Following Ref. [19], the DOFs of the general effective
theory with n Z2-odd doublets7are calculated as Table 1.

The DOFs given by integrating out the Z2-even scalars,
the Z2-odd scalars, and the vectors are shown in Tables 2, 3,
and 4, respectively.

The total DOFs of the heavy scalars are independent of
the number of the Z2-odd doublets.

For simplicity, we assume all couplings are real. Then, as
discussed in the previous section, the DOFs of the derivative
interactions are the same as with the sum of the real couplings

6 Strictly speaking, they are not the vector boson scatterings but the
vector and scalar boson scatterings because additional doublets give
us additional scalar particles not eaten by vector bosons. However, for
simplicity, we call them vector boson scatterings.
7 This discrete symmetry is introduced to sequester a part of doublets
from the Standard Model Higgs. The minimal example is the inert dou-
blet model briefly studied later.
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Table 2 The DOFs generated by integrating out the heavy Z2-even scalars with n Z2-odd doublets

Z2-even Re Im (N ≥ 2) Sum

10 (N (N + 1) − 2n(N − n))/2 (N (N − 1) − 2n(N − n))/2 N 2 − 2n(N − n)

11 (N (N − 1) − 2n(N − n))/2 ((N + 1)(N − 2) − 2n(N − n))/2 N (N − 1) − 2n(N − n) − 1

30 (N (N + 1) − 2n(N − n))/2 (N (N − 1) − 2n(N − n))/2 N 2 − 2n(N − n)

31 (N (N + 1) − 2n(N − n))/2 ((N + 2)(N − 1) − 2n(N − n))/2 N (N + 1) − 2n(N − n) − 1

Sum N (2N + 1) − 4n(N − n) N (2N − 1) − 4n(N − n) − 2 2(2N 2 − 1 − 4n(N − n))

Table 3 The DOFs generated by integrating out the heavy Z2-odd
scalar fields with n Z2-odd doublets

Z2-odd Re Im (N ≥ 2) Sum

10 (N − n)n (N − n)n 2(N − n)n

11 (N − n)n (N − n)n − 1 2(N − n)n − 1

30 (N − n)n (N − n)n 2(N − n)n

31 (N − n)n (N − n)n − 1 2(N − n)n − 1

Sum 4(N − n)n 4(N − n)n − 2 8(N − n)n − 2

Table 4 The DOFs generated by integrating out the heavy vector fields

Vector Re Im (≥2) Sum

10 N 0 N

11 N N − 1 2N − 1

30 N 0 N

Sum 3N 0 4N − 1

in the 10 and the 30 representations. The 31 scalar couplings
and the 11 vector couplings are fixed to preserve the custodial
symmetry, and the contributions of the 11 scalar disappear.

The DOFs of the general effective Lagrangian with the
custodial symmetry are minimized if half of the doublets are
Z2-odd, and the number of DOFs is

1

6
N 2(N 2 + 5). (3.1)

Even if N is an odd number, this minimum number of DOFs
is obtained for n = (N ± 1)/2. The total DOFs generated by
integrating out is

N (N + 3). (3.2)

Hence, the difference of these DOFs between the general one
and the case of integrating out is

1

6
N (N 3 − N − 18). (3.3)

If N ≥ 3, the maximal number of DOFs of the case of
integrating out is smaller than that of the other one. Their dif-
ference is three for N = 3. Assuming the vector couplings

are unique, like the gauge theory, for each representation, the
difference becomes larger. Without using the assumption to
simplify, the difference of the DOFs is occasionally the same
as these results. The difference between these DOFs becomes
larger and larger if N increases. Therefore, the Higgs deriva-
tive interactions generated by integrating out is a proper sub-
set of the general one.

If we do not assume the alignment limit of the Georgi–
Machacek type structure, the triplet scalar couplings are inef-
ficient. The DOFs of this case is

N (N + 5)

2
. (3.4)

N ≥ 3 is required when the maximum number of effective
DOFs given by the case of integrating out is smaller than that
given by the general one, namely the maximum DOFs of the
composite one.

3.2 Two Higgs doublet models

The explicit forms of the derivative interactions and the
contributions to some vector boson scattering processes are
shown below on a couple of two Higgs doublet models. One
of them includes an additional doublet which has the vacuum
expectation value, and the other includes an inert doublet. We
discuss only the processes of the initial states which consist
of the longitudinal W boson pairs, since their cross sections
are typically larger than the others.

In the following study, we neglect the imaginary parts of
the couplings and separately apply the custodial symmetry
on the heavy scalars and the heavy vectors. If both of them
simultaneously exist in the higher scale, the extra contribu-
tion violating the symmetry can be parametrically canceled
as a fine tuning.

The current constraints of these models without the higher
dimensional operators have been studied by Refs. [41–43].

3.2.1 With an additional Higgs doublet

Including the second Higgs doublet without the Z2 symme-
try, the Z2-even scalars and the vectors can be introduced as
the sources of the derivative interactions.
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Integrating out the heavy scalars, the following derivative
interactions are obtained:

LScalar =
(

λ11 2
0

m2
0

− 3λ11 2
L

m2
L

)
OH

1111

+
(

λ11
0 λ12

0

m2
0

− 3λ11
L λ12

L

m2
L

)
(OH

1112 + H.c.)

+
(

λ11
0 λ22

0

m2
0

− 2λ12 2
L + λ11

L λ22
L

m2
L

)
OH

1122

+
(

λ12 2
0

m2
0

− 2λ12 2
L + λ11

L λ22
L

m2
L

)
OH

1221

+
(

λ12 2
0

m2
0

− 2λ12 2
L + λ11

L λ22
L

m2
L

)
(OH

1212 + H.c.)

+
(

λ12
0 λ22

0

m2
0

− 3λ12
L λ22

L

m2
L

)
(OH

2221 + H.c.)

+
(

λ22 2
0

m2
0

− 3λ22 2
L

m2
L

)
OH

2222

−
(

λ12 2
L − λ11

L λ22
L

m2
L

)
OT

1221

+
(

λ12 2
L − λ11

L λ22
L

m2
L

)
(OT

1212 + H.c.), (3.5)

where seven couplings are included in the Wilson coeffi-
cients.

Integrating out heavy vectors, the following effective
Lagrangian is obtained with four couplings:

LVector = 3

(
g11 2

0

m2
0

+ g11 2
L

m2
L

)
OH

1111

+ 3

(
g11
L g22

L

m2
L

)
OH

1221

+ 3

(
g11

0 g22
0

m2
0

)
(OH

1212 + H.c.)

+ 3

(
g22 2

0

m2
0

+ g22 2
L

m2
L

)
OH

2222

+
(
g11

0 g22
0

m2
0

− g11
L g22

L

m2
L

)
OT

1122

+
(
g11
L g22

L

m2
L

)
OT

1221 −
(
g11

0 g22
0

m2
0

)
(OT

1212 + H.c.).

(3.6)

If the above interactions dominate the vector boson scatter-
ings, the collision energies of the vector bosons are much

larger than their masses. Hence we neglect the masses and
consider the W boson pairs as the initial states of the scat-
terings in the following part. The cross sections of the other
initial states are much smaller than this state. All of the cross
sections have been given by Ref. [19] in terms of the Wilson
coefficients. We follow its notation. For the leading order, the
mixing matrices are defined as

(
h
H

)
=

(
cα sα

−sα cα

)(
S1

S2

)
, (3.7)

(
W±

L
H±

)
=

(
cβ sβ

−sβ cβ

) (
C±

1
C±

2

)
, (3.8)

where h, H , W±
L , and H± are, respectively, the SM-like

Higgs, the heavy Higgs, the Goldstone boson eaten by W±
and the charged Higgs. The fields given as Si and C±

i are the
scalar and the charged scalar components of the doublets,
Hi .

In the one Higgs doublet case, the derivative interactions
are effectively written by a certain parameter. Then the ratios
of the cross sections are independent of the model parame-
ters. This feature is not preserved in the two Higgs doublet
models because of two mixing angles, α and β. However,
in the decoupling limit, which is favored by current exper-
imental results, the feature is recovered. The amplitudes of
the vector boson scatterings are expressed by a certain coef-
ficient like the one Higgs case for processes appearing in the
case. Therefore, these processes are insensitive to the two
Higgs nature.

Considering the processes including an additional Higgs
boson, the same sign W boson scattering with a charged
Higgs boson is a promising process. The cross section of the
sub process is

σ(W±
L W±

L → W±
L H±)

= ŝ

16π
(CS0(β) + CSL(β) + CV 0(β) + CV L(β))2 ,

(3.9)

with

CS0(β) = 1

8m2
0

(
−(2s2β + s4β)λ11 2

0 + 4(c2β + c4β)λ11
0 λ12

0

+ 2s4β(λ11
0 λ22

0 + 2λ12 2
0 )

+ 4(c2β − c4β)λ12
0 λ22

0 + (2s2β − s4β)λ22 2
0

)
,

(3.10)

CSL(β) = 3

8m2
L

(
(2s2β + s4β)λ11 2

L

− 4(c2β + c4β)λ11
L λ12

L − 2s4β(2λ12 2
L + λ11

L λ22
L )

123



Eur. Phys. J. C (2016) 76 :297 Page 11 of 16 297

− 4(c2β − c4β)λ12
L λ22

L − (2s2β − s4β)λ22 2
L

)
,

(3.11)

CV 0(β) = 3

8m2
0

(
−(2s2β + s4β)g11 2

0

+ 2s4βg
11
0 g22

0 + (2s2β − s4β)g22 2
0

)
, (3.12)

CV L(β) = 3

8m2
L

(
−(2s2β + s4β)g11 2

L

+ 2s4βg
11
L g22

L + (2s2β − s4β)g22 2
L

)
, (3.13)

where ŝ is the squared collision energy of sub processes.
If the flavor off diagonal couplings, λ12··· , are negligibly

small, the β dependences of the scalar contributions are the
same as the vector ones. Assuming all couplings are the
same, the scalar contributions in the amplitude proportional
to 2c2β +s4β , which vanishes at β = π/4. The vector contri-
butions disappear for any β in this case. Different values of β

pick up different couplings. The contributions by the heavy
vectors do not include the coefficients of OH

1112 and OH
2221.

Hence, the effects of integrating out the heavy vectors are
suppressed when β ∼ 0, π/2 or π .

The cross section including two charged Higgs bosons in
the final state is given as follows:

σ(W±
L W±

L → H±H±)

= ŝ

32π
(CS0(β) + CSL(β) + CV 0(β) + CV L(β))2 ,

(3.14)

where

CS0(β) = 1

8m2
0

(
(1 − c4β)

(
λ11 2

0 − 4λ12 2
0 + λ22 2

0

)

− 4s4β(λ11
0 λ12

0 − λ12
0 λ22

0 ) + 2(3 + c4β)λ11
0 λ22

0

)
,

(3.15)

CSL(β) = 1

8m2
L

(
(1 − c4β)

(
−3λ11 2

L − 3λ22 2
L + 8λ12 2

L

+4λ11
L λ22

L

)
+ 12s4β

(
λ11
L λ12

L − λ12
L λ22

L

)

− 2(3 + c4β)
(

2λ12 2
L + λ11

L λ22
L

))
, (3.16)

CV 0(β) = 3

8m2
0

(
(1 − c4β)

(
g11

0 − g22
0

)2)
, (3.17)

CV L(β) = 3

8m2
L

(
(1 − c4β)

(
g11
L − g22

L

)2)
. (3.18)

Assuming, again, that all couplings are the same, the scalar
contributions disappear at β = π/4 again. The vector con-
tributions also disappear for any β like the previous one.

The above two processes are affected by the couplings
between the heavy bosons and the additional Higgs doublet.

However, in the unique coupling limit, they simultaneously
vanish at β = π/4. To see the β dependent behavior in
this limit, we show the cross section of the same sign WL

scattering,

σ(W±
L W±

L → W±
L W±

L )

= ŝ

32π
(CS0(β) + CSL(β) + CV 0(β) + CV L(β))2 ,

(3.19)

where

CS0(β) = 1

8m2
0

(
(3 + 4c2β + c4β)λ11 2

0

+ 4(2s2β + s4β)λ11
0 λ12

0 + 2(1 − c4β)
(
λ11

0 λ22
0 + 2λ12 2

0

)

+ 4(2s2β − s4β)λ12
0 λ22

0 + (3 − 4c2β + c4β)λ22 2
0

)
,

(3.20)

CSL(β) = 3

8m2
L

(
−(3 + 4c2β + c4β)λ11 2

L

− 4(2s2β + s4β)λ11
L λ12

L − 2(1 − c4β)
(

2λ12 2
L + λ11

L λ22
L

)

− 4(2s2β − s4β)λ12
L λ22

L − (3 − 4c2β + c4β)λ22 2
L

)
,

(3.21)

CV 0(β) = 3

8m2
0

(
(3 + 4c2β + c4β)g11 2

0

+ 2(1 − c4β)g11
0 g22

0 + (3 − 4c2β + c4β)g22 2
0

)
, (3.22)

CV L(β) = 3

8m2
L

(
(3 + 4c2β + c4β)g11 2

L

+ 2(1 − c4β)g11
L g22

L + (3 − 4c2β + c4β)g22 2
L

)
. (3.23)

This mode is a promising mode to see the Higgs derivative
interactions in the one Higgs doublet models. As we have
mentioned, it does not reflect the two Higgs nature in the
decoupling limit. However, in the unique coupling limit, its
mixing dependence is different from the previous ones. For
the scalar contributions, the cross section of the sub process
is maximized at β = π/4 where the cross sections of the
previous two processes disappear. The vector contributions
are independent of β and also do not vanish.

The vector boson scatterings with the SM particles are
not sensitive to the two Higgs nature in the decoupling limit.
However, comparing them with other scatterings including
additional Higgs bosons help us to see the couplings between
the doublets and the other heavy bosons behind them.

According to Ref. [10], the Wilson coefficients, C , which
stands for the functions in the parentheses of Eq. (3.19), are
constrained thus:

1√
C

� 2.5 TeV, (3.24)
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after the running of ILC 500 TeVwith 500 fb−1. The 30 scalar
and the vector contributions are numerically enhanced com-
paring with the 10 scalar contribution. They might be sensi-
tive to the physics of even a bit higher scale.

3.2.2 With inert doublet

Another possibility of the two doublet scenario is the inert
doublet model, where the additional doublet is a Z2-odd
scalar and does not possess the vacuum expectation value.
In this model, physical states also respect the discrete sym-
metry and no mixing occurs between the doublets.

We can introduce the Z2-even scalars, the Z2-odd scalars,
and the vectors. The following effective Lagrangians are
obtained by integrating out:

LSeven =
(

λ11 2
0

m2
0

− 3λ11 2
L

m2
L

)
OH

1111

+
(

λ11
0 λ22

0

m2
0

− λ11
L λ22

L

m2
L

)
OH

1122 −
(

λ11
L λ22

L

m2
L

)
OH

1221

−
(

λ11
L λ22

L

m2
L

)
(OH

1212 + H.c.)

+
(

λ22 2
0

m2
0

− 3λ22 2
L

m2
L

)
OH

2222

+
(

λ11
L λ22

L

m2
L

)
OT

1221 −
(

λ11
L λ22

L

m2
L

)
(OT

1212 + H.c.),

(3.25)

and

LSodd = −
(

2λ12 2
L

m2
L

)
OH

1122 +
(

λ12 2
0

m2
0

− 2λ12 2
L

m2
L

)
OH

1221

+
(

λ12 2
0

m2
0

− 2λ12 2
L

m2
L

)
(OH

1212 + H.c.)

−
(

λ12 2
L

m2
L

)
OT

1221 +
(

λ12 2
L

m2
L

)
(OT

1212 + H.c.).

(3.26)

The flavor diagonal and the off diagonal couplings respec-
tively originate from the Z2-even and the Z2-odd scalars. The
heavy vector contributions are the same as Eq. (3.6) because
their couplings are diagonal for the Higgs indices.

Since doublets do not mix with each other, the processes
consisting of the SM particles are the same as the one Higgs
doublet case studied in Ref. [11]. At least two new scalars
are required in the effective four point vertices to see some
new effects of the above effective operators.

A fascinating scenario of the inert doublet model is that
the additional CP-even neutral component becomes the dark
matter. According to Ref. [42], the current experimental con-
straints divide the parameter region into two parts. One is the
light dark matter scenario, where the dark matter is about
90 GeV, and the other is the heavy dark matter scenario,
where the dark matter is heavier than 500 GeV. If the light
dark matter exists, the dark matter pair production cross sec-
tion by the vector boson scattering can be large at the high
energy region. For example, the cross section of this sub pro-
cess is

σ(W+
L W−

L → HH) = ŝ

32π

(
λ11

0 λ22
0

m2
0

− λ11
L λ22

L + 2λ12 2
L

m2
L

)2

.

(3.27)

This contribution can enhance the process of two forward jets
plus large missing energy at high energy. The heavy vector
contributions do not appear in this process. The cross section
of W±

L W±
L → H±H± is proportional to the above process,

so that this mode is also insensitive to the effects of the heavy
vector bosons. Then the pair production of the charged Higgs
bosons help us to see the vector couplings,

σ(W+
L W−

L → H+H−)

= ŝ

48π

((
3g11

L g22
L

m2
L

+ −3λ11
0 λ22

0 + 2λ12 2
0

2m2
0

+λ11
L λ22

L + 2λ12 2
L

2m2
L

)2

+3

4

(
λ11

0 λ22
0

m2
0

− λ11
L λ22

L + 2λ12 2
L

m2
L

)2
⎞
⎠ . (3.28)

Even using this mode, the coupling with the 10 vector does
not appear. Its contribution appear in W+

L W−
L → H A. How-

ever, the cross section of this mode is about one order of
magnitude smaller than the above processes.

4 Conclusion

The Higgs derivative interactions are important to study the
UV structure of the Higgs sector and the origin of the EWSB.
They are generated by strongly interacting models and heavy
particle integrations.

We have studied these derivative interactions generated
by integrating out in the models including any number of
the Higgs doublets. The three point couplings between the
heavy bosons and the Higgs bilinears give us the tree level
contribution to the derivative interactions. These effects are
expected to appear in the vector boson scattering processes.
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The DOFs of the Wilson coefficients in the general effec-
tive Lagrangian of these interactions increase as N 4, while
those given by integrating out increase as N 2. Hence, a part of
the parameter region in the general effective Lagrangian can-
not be described with the effective Lagrangian given by the
heavy particle integrations. If the integration cannot generate
the given DOFs, the UV completion has to be a composite
Higgs model. Imposing the custodial symmetry, we found
that, if N ≥ 3, the DOFs of the general one can be larger
than those of the other one.

We have also investigated the effects of the derivative
interactions to the vector boson scatterings in the usual two
Higgs doublet model and the inert doublet model with the
assumptions explained there.

For the two Higgs doublet model, we have assumed
the decoupling limit. In this limit, at least, one new Higgs
boson is required to see the couplings between the heavy
bosons and the additional Higgs doublet. The cross sec-
tions of W±

L W±
L → W±

L H± and W±
L W±

L → H±H±
are shown there. If we assume all couplings are the same,
like the gauge theory, they can simultaneously disappear
at a certain β. However, the cross section of W±

L W±
L →

W±
L W±

L does not disappear even in these cases. Therefore,
the usual vector boson scatterings are also important to inves-
tigate the derivative interactions in the two Higgs doublet
models.

For the case of the inert doublet, two new Higgs bosons
are required to observe new effects. If the additional CP-even
Higgs boson is the dark matter, the two jet and large miss-
ing transverse momentum event is affected by the deriva-
tive interactions through W+

L W−
L → HH . This process is

generated by only the heavy scalar contributions. Another
promising process, W±

L W±
L → H±H±, is also independent

of the heavy vector contributions. The 30 vector contribution
appears in W+

L W−
L → H+H−. To see the contribution of

the 10 vector, we need to observe W+
L W−

L → H A, whose
cross section is much smaller than the others. Therefore, in
the inert doublet scenario, we have found that it is difficult
to find the effects of the heavy vector contributions through
the Higgs derivative interactions.
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Appendix A: Induced potential

Integrating out of the scalar particles induces potential terms
of the Higgs doublets. For the 10 scalar, quadratic terms are
also generated by integrating out. The terms for a Higgs pair,
Hi and Hj , are as follows:

L(i, j)
M = m2

0(λ
i i
0 I 0

i i + λ
i j
0 I 0

i j + λ
i j∗
0 I 0

j i ). (A.1)

These terms naively generate the Higgs boson whose masses
are O(m0).

The induced quartic couplings can be written as five types
of the index combinations introduced in Sect. 2. In the follow-
ing expressions, we use the notation of the quartic terms such
as Hi jkl := (H†

i H j )(H
†
k Hl). They are shown as follows:

LP
I = (λi i0

2 + λi iL
2 + λi iT λi i∗T )Hiiii , (A.2)

LP
II = (λi i0 λ

i j
0 + λi iLλ

i j
L + λi i∗T λ

i j
T )Hiii j + H.c., (A.3)

LP
III =

(
(λ

i j
0

2 + λ
i j
L

2 + λi i∗T λ
j j
T )Hi ji j + H.c.

)
+ (λi i0 λ

j j
0

+ λ
i j
S λ

i j∗
S − λi iLλ

j j
L + 2λ

i j
L λ

i j∗
L + λ

i j
T λ

i j∗
T )Hii j j

+ (λ
i j
0 λ

i j∗
0 − λ

i j
S λ

i j∗
S − λ

i j
L λ

i j∗
L + 2λi iLλ

j j
L

+ λ
i j
T λ

i j∗
T )Hi j ji , (A.4)

LP
IV = (λi i0 λ

jk
0 + λ

i j∗
S λikS − λi iLλ

jk
L + 2λ

i j∗
L λikL

+ λ
i j∗
T λik∗T )Hii jk + (λ

i j
0 λik0 + λ

i j
L λikL + λi i∗T λ

jk∗
T )Hi jik

+ (λ
i j
0 λik∗0 − λ

i j
S λik∗S − λ

i j
L λik∗L + 2λi iLλ

jk∗
L

+ λ
i j
T λikT )Hi jki + H.c., (A.5)

LP
V = (λ

i j
0 λkl0 + λik∗S λ

jl
S − λ

i j
L λklL + 2λilLλ

jk∗
L

+ λik∗T λ
jl
T )Hi jkl + (λ

i j
0 λkl∗0 + λil∗S λ

jk
S − λ

i j
L λkl∗L

+ 2λikL λ
jl∗
L + λil∗T λ

jk
T )Hi jlk + (λik0 λ

jl
0 + λ

i j∗
S λklS

− λikL λ
jl
L + 2λilLλ

jk
L + λ

i j∗
T λklT )Hik jl + (λik0 λ

jl∗
0

− λil∗S λ
jk
S − λikL λ

jl∗
L + 2λ

i j
L λkl∗L + λil∗T λ

jk
T )Hikl j

+ (λil0 λ
jk
0 − λ

i j∗
S λklS − λilLλ

jk
L + 2λikL λ

jl
L

+ λ
i j∗
T λklT )Hil jk + (λil0 λ

jk∗
0 − λil∗S λ

jk
S − λilLλ

jk∗
L

+ 2λ
i j
L λklL + λik∗T λ

jl
T )Hilk j + H.c.. (A.6)

Appendix B: Conditions of the custodial symmetry

We show the conditions of the custodial symmetry for the
Higgs derivative interactions with the couplings of the per-
turbative UV completions. The conditions with the Wilson
coefficients are given by Ref. [20].

For the type I and the type II interactions, the conditions
are obviously as written in Sect. 2. The coefficients of OT

123
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operators have to disappear, and all coefficients have to be
real. The conditions given in Sect. 2 can be obtained with the
linear combinations of the following relations after neglect-
ing the imaginary parts of the couplings. In terms of the
Wilson coefficients, the conditions for the type III effective
operators are

0 = cTii j j + cTi j j i + cTi ji j , (B.1)

0 = 3cTii j j + cHi j j i − cHi ji j , (B.2)

where cH··· and cT··· are, respectively, the coefficients of OH··· and
OT··· operators. Then we obtain the following two relations:

0 = 2
2λi iLλ

j j
L + (λ

i j
L + λ

i j∗
L )2

m2
L

− 4λ
i j
T λ

i j∗
T + λi iT λ

j j∗
T + λ

j j
T λi i∗T

m2
T

+ 4
gii0 g

j j
0

m2
0

− giiS g
j j∗
S + g j j

S gii∗S

m2
S

, (B.3)

0 = −2
(λ

i j
0 − λ

i j∗
0 )2

m2
0

− 4
λ
i j
S λ

i j∗
S

m2
S

+ 4
(λ

i j
L + λ

i j∗
L )2 − λi iLλ

j j
L

m2
L

+ −8λ
i j
T λ

i j∗
T + λi iT λ

j j∗
T + λ

j j
T λi i∗T

m2
T

+ 12
gii0 g

j j
0

m2
0

− 3
giiS g

j j∗
S + g j j

S gii∗S

m2
S

. (B.4)

The type IV operators also require the following two rela-
tions:

0 = cTii jk + cTi jik + cTi jki , (B.5)

0 = 3cTii jk − cHi jik + cHi jki . (B.6)

They can be expressed with the couplings of the perturbative
UV completions discussed in this paper as follows:

0 = 2
λi iL (λ

jk
L + λ

jk∗
L ) + (λ

i j
L + λ

i j∗
L )(λikL + λik∗L )

m2
L

− λi iT λ
jk∗
T + λ

jk
T λi i∗T + 2(λ

i j
T λik∗T + λikT λ

i j∗
T )

m2
T

, (B.7)

0 = −2
(λ

i j
0 − λ

i j∗
0 )(λik0 − λik∗0 )

m2
0

− 2
λ
i j
S λik∗S + λikS λ

i j∗
S

m2
S

+ −λi iL (λ
jk
L + λ

jk∗
L ) + 2(λ

i j
L + λ

i j∗
L )(λikL + λik∗L )

m2
L

+ −4(λ
i j
T λik∗T + λikT λ

i j∗
T ) + λi iT λ

jk∗
T + λ

jk
T λi i∗T

m2
T

. (B.8)

Finally, for the type V operators, the following four rela-
tions are known as the conditions to impose the custodial
symmetry:

0 = cTi jkl + cTi jlk + cTik jl + cTikl j + cTil jk + cTilk j , (B.9)

0 = 3(cTi jkl + cTi jlk) − cHik jl + cHikl j − cHil jk + cHilk j , (B.10)

0 = 3(cTik jl + cTikl j ) + cHil jk − cHilk j − cHi jkl + cHi jlk, (B.11)

0 = 3(cTil jk + cTilk j ) + cHi jkl − cHi jlk + cHik jl − cHikl j . (B.12)

In terms of the perturbative UV completions, the above rela-
tions are written as follows:
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0 = (λilL + λil∗L )(λ
jk
L + λ

jk∗
L ) + (λikL + λik∗L )(λ

jl
L + λ

jl∗
L ) + (λ

i j
L + λ

i j∗
L )(λklL + λkl∗L )

m2
L

− λikT λ
jl∗
T + λ

jl
T λik∗T + λilT λ

jk∗
T + λ

jk
T λil∗T λ

i j
T λkl∗T + λklT λ

i j∗
T

m2
T

, (B.13)

0 = − (λik0 − λik∗0 )(λ
jl
0 − λ

jl∗
0 ) + (λil0 − λil∗0 )(λ

jk
0 − λ

jk∗
0 )

m2
0

− λikS λ
jl∗
S + λ

jl
S λik∗S + λilSλ

jk∗
S + λ

jk
S λil∗S

m2
S

+ 2(λilL + λil∗L )(λ
jk
L + λ

jk∗
L ) + 2(λikL + λik∗L )(λ

jl
L + λ

jl∗
L ) − (λ

i j
L + λ

i j∗
L )(λklL + λkl∗L )

m2
L

+ −2(λikT λ
jl∗
T + λ

jl
T λik∗T ) − 2(λilT λ

jk∗
T + λ

jk
T λil∗T ) + λ

i j
T λkl∗T + λklT λ

i j∗
T

m2
T

, (B.14)

0 = −(λ
i j
0 − λ

i j∗
0 )(λkl0 − λkl∗0 ) + (λil0 − λil∗0 )(λ

jk
0 − λ

jk∗
0 )

m2
0

+ −λ
i j
S λkl∗S − λklS λ

i j∗
S + λilSλ

jk∗
S + λ

jk
S λil∗S

m2
S

+ 2(λ
i j
L + λ

i j∗
L )(λklL + λkl∗L ) + 2(λilL + λil∗L )(λ

jk
L + λ

jk∗
L ) − (λikL + λik∗L )(λ

jl
L + λ

jl∗
L )

m2
L

+ −2(λ
i j
T λkl∗T + λklT λ

i j∗
T ) − 2(λilT λ

jk∗
T + λ

jk
T λil∗T ) + λikT λ

jl∗
T + λ

jl
T λik∗T

m2
T

, (B.15)

0 = (λ
i j
0 − λ

i j∗
0 )(λkl0 − λkl∗0 ) + (λik0 − λik∗0 )(λ

jl
0 − λ

jl∗
0 )

m2
0

+ λ
i j
S λkl∗S + λklS λ

i j∗
S + λikS λ

jl∗
S + λ

jl
S λik∗S

m2
S

+ 2(λ
i j
L + λ

i j∗
L )(λklL + λkl∗L ) + 2(λikL + λik∗L )(λ

jl
L + λ

jl∗
L ) − (λilL + λil∗L )(λ

jk
L + λ

jk∗
L )

m2
L

+ −2(λ
i j
T λkl∗T + λklT λ

i j∗
T ) − 2(λikT λ

jl∗
T + λ

jl
T λik∗T ) + λilT λ

jk∗
T + λ

jk
T λil∗T

m2
T

. (B.16)

The real parts of λ0 and gL do not appear in any relations, so
that they always respect the custodial symmetry.
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